55
2013 Sociedad Nacional de Industrias. Centro de Desarrollo Industrial Wilfredo Elías Pimentel Serrano, MANUAL PARA INTERVENCION PAIS BLACK BELT LEAN SIX SIGMA FASE III-ANALIZAR Propuesta elaborada para ser discutida y Mejorada con el aporte de los Black Belt del Programa OPTISIGMA Desarrollada en la ciudad de Lima –Perú en 2013. MANUAL DE INTERVENCION PAIS FASE III-ANALIZAR 2013

3 guia imp lss iii analizar weps 02 ago 13 1

Embed Size (px)

Citation preview

Page 1: 3 guia imp lss iii  analizar weps 02 ago 13 1

2013

Sociedad Nacional de

Industrias.

Centro de Desarrollo Industrial

Wilfredo Elías Pimentel Serrano,

MANUAL PARA INTERVENCION PAIS

BLACK BELT LEAN SIX SIGMA

FASE III-ANALIZAR Propuesta elaborada para ser discutida y Mejorada con el aporte

de los Black Belt del Programa OPTISIGMA

Desarrollada en la ciudad de Lima –Perú en 2013.

MANUAL DE INTERVENCION PAIS

FASE III-ANALIZAR 2013

Page 2: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

2

El Manual de Intervención para proyectos Lean Six Sigma es un material

que tiene el propósito de ayudar a los estudiantes del programa Black

Belt, en la formulación de sus Proyectos Lean Six Sigma.

Es un documento abierto y receptivo a sugerencias y mejoras,

actualmente se encuentra en su fase aplicativa y puesta en práctica con

los participantes de los Black Belt formados por la Sociedad Nacional de

Industrias y de otras instituciones especializadas

La publicación de la Versión N°01 en la Fase ANALIZAR, está prevista para

su mejora hasta el 31de Diciembre 2013

Se invita a todo el público lector hacer llegar las sugerencias y

recomendaciones para mejorar el presente proyecto a los autores del

proyecto

Sociedad Nacional de Industrias: www.sni.org.pe/

Centro de Desarrollo Industrial: www.cdi.org.pe/

Wilfredo Elías Pimentel Serrano: [email protected],

Lima Perú 2013

Page 3: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

3

MANUAL DE INTERVENSION PAIS

LEAN SIX SIGMA

FASE III - ANALIZAR 2013

Page 4: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

4

INTRODUCCION “Lean Six Sigma”, es una de las estrategias de gestión más completas y con más éxito de los últimos 25 años, permite la consecución de niveles de eficacia y eficiencia, absolutamente extraordinarios: 3.4 defectos por millón de oportunidades, concentrándose en los procesos de negocio y en los componentes que comprometen esos procesos. Es un enfoque disciplinado, que busca eliminar los defectos que ocurren en los productos, procesos y transacciones de la organización, disminuyendo el costo de las operaciones y de los bienes, sobre la base del procesamiento estadístico de la información y el uso de las herramientas Lean. Es un proceso práctico y activo que logra resultados, ha demostrado ser la vía más rápida para mejorar los procesos con una estrategia que conduce a la excelencia y eficiencia de clase mundial. Considerando la necesidad de apoyar el sostenimiento de las empresas en la región, el BID viene auspiciando la implementación de esta metodología en el Perú, a través del Programa Optisigma que es conducido por el Centro de Desarrollo Industrial de la SNI. Los logros alcanzados por los Proyectos Lean Six Sigma son presentados en la Semana de la Calidad anualmente. El CDI tiene la responsabilidad de multiplicar este programa por lo que busca el perfeccionamiento de nuestros futuros Black Belts y Green Belts. El presente Manual de Intervención País, pretende ayudar en la formulación de más proyectos Lean Six Sigma y descubrir nuevas oportunidades para que las empresas en diferentes sectores, organismos públicos y privados, puedan beneficiarse en la mejora de sus procesos en forma rápida con alto impacto, esfuerzos razonables y mínimo riesgo. En ese sentido, el presente material, está centrado en desarrollar la metodología del Lean Six Sigma, teniendo como soporte el uso del Minitab para los desarrollos estadísticos. Consideramos que la profundización de los conceptos estadísticos por la amplitud y profundidad requiere ser complementados con la lectura de material especializado en cada tema. El Manual focaliza cada una de las fases del Lean Six Sigma, así como los contenidos mínimos con los cuales se puede formular el proyecto. Solo el trabajo sostenido y la profundización en el estudio le permitirán al Black Belt tener avances más específicos y pueda ir incorporando mayores conceptos que le permitan obtener las mejores soluciones en sus proyectos. .

Director del CDI

Page 5: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

5

INDICE

1. Objetivos 2. Estadística Básica y las 7 herramientas de Calidad

2.1 Estadística Básica 2.2 Las 7 Herramientas de Calidad

3. Análisis del Modo y Efecto de Falla 3.1 AMEF 3.2 Propósito del AMEF 3.3 Tipos de AMEF 3.4 Modos de Fallas, Efectos y Causas 3.5 Numero de Prioridad de Riesgo 3.6 Procedimiento para la elaboración de un AMEF de Proceso

4. Prueba de Hipótesis 4.1 Prueba de Hipótesis 4.2 Estadístico de Prueba 4.3 Tipos de Errores 4.4 Resumen de Pruebas de Hipótesis

5. Análisis de Regresión y Correlación 5.1 Relaciones entre variables 5.2 Metodología del Análisis de Regresión 5.3 Diagrama de Dispersión 5.4 Coeficiente de Correlación de Pearson 5.5 Regresión Simple 5.6 Regresión Múltiple 5.7 Regresiones No Lineales

6. Análisis de Varianzas 6.1 ANOVA de un Factor o Dirección 6.2 ANOVA de Diseño en Cuadrada Latino 7. Tablas de Contingencia 7.1 Tablas de Contingencia

7.2 Prueba Chi Cuadrada

Page 6: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

6

Esquema General de la Fase Analizar1

AMEF

ANALISIS DEL

MODO EFECTO

Y FALLA

Causa Raíz

Voz del Cliente

Característica

Critica de

Calidad

Mediciones

Herramientas de

Calidad

Diagramas Flujo

del Proceso

Prueba de

Hipotesis

Fase Mejorar

1 World Enterprise.- Lean Six Sigma

Page 7: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

7

1 Objetivos

Esta fase tiene como objetivo identificar las causas de variación y defectos en el proceso. Se formulan las hipótesis sobre las posibles Causas Raíz y se desarrollan las pruebas estadísticas que permiten determinar cuáles son las causas reales. Se afinan cuáles son los objetivos definitivos de mejora y los ahorros por alcanzar. Las herramientas que se utilizan son: Las herramientas de calidad, AMEF, Análisis de Varianza, Intervalos de confianza, Relación y Correlación, Pruebas T, etc, y en general las diversas herramientas estadísticas que permitan confirmar la Causas Raíz.

Page 8: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

8

2 Estadística Básica y las 7

Herramientas de Calidad

2.1 Estadística Básica Siempre es recomendable revisar los aspectos fundamentales de la estadística, permiten fijar los conceptos y las posibilidades de convertir rápidamente problemas de la vida real en problemas estadísticos, ensayar una solución en este campo del conocimiento y luego desarrollar las soluciones en la vida real. Aun cuando lo indicado en el párrafo anterior pareciera obvio, en la práctica no lo es, los mejores resultados se van logrando en la medida de que se ejercita la estadística, en muchos casos se ha observado que los proyectistas pueden haber desarrollado importantes avances, sin embargo estas no podrían ser sostenibles por existir incoherencias en el marco teórico estadístico. Para efectos de este capítulo se revisarán los conceptos fundamentales en relación a las Medidas de Tendencia Central y de Dispersión.

Page 9: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

9

Medidas de Tendencia Central

CUADRO BASE DE ESTADÍSTICAS BASICAS

NOMBRE: Medidas de Tendencia Central: Media, Mediana, Moda Nº 1

PROCESO: SUBPROCESO:

RESPONSABLE: FUENTE:

DEFINICION (Que significa)

Media Aritmética: Corresponde a la suma de todos los datos dividido por el número total de ellos. Mediana: Es el valor ocupado por la posición central cuando los datos se ordenan de acuerdo a su magnitud de menor a mayor. Si el conjunto de valores es un número par, entonces se calcula la media aritmética o promedio a los dos valores del centro. Moda: Corresponde al valor de los datos que más se repite.

PROPÓSITO (Para qué sirve)

Las medidas de tendencia Central son los valores numéricos que tienden a localizar en algún sentido la parte central de un conjunto de datos. La media caracteriza al conjunto de datos. La mediana permite conocer el valor que divide en dos partes la muestra. La moda sirve para describir una distribución si sólo se desea tener una idea aproximada y rápida de donde está la mayor concentración de observaciones.

APLICACIÓN ( Modo de Uso)

Media Mediana Moda

1. Sumar los valores de un conjunto de datos. 2. Dividir la suma entre el número total de valores. 3. Utilizar la fórmula de cálculo: :, Sumatoria de todos los datos/Número total de datos

Xm =

(X1 * n1) + (X2 * n2) + .....+ (Xn-1 * nn-1) + (Xn * nn)

--------------------------------------------------------------------------

n

Identificar el dato que más se repite. El valor de la

moda corresponderá al dato que se repita con

mayor frecuencia

OBSERVACIONES

La Media Aritmética, presenta el problema de que su valor se puede ver muy influido por valores extremos, que se aparten en exceso del resto de la serie. Estos valores podrían condicionar en gran medida el valor de la media, perdiendo representatividad.

Page 10: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

10

Medidas de Dispersión

CUADRO BASE DE ESTADÍSTICAS BASICAS

NOMBRE: La Varianza, la Desviación Estándar, Rango y Coeficiente de

Variación Nº 2

PROCESO: SUBPROCESO:

RESPONSABLE:

DEFINICION (Que significa)

Varianza: Mide la distancia existente entre los valores de la serie y la media Desviación Estándar : Raíz cuadrada de la varianza Rango: Mide la amplitud de los valores de la muestra y se calcula por diferencia entre el valor más elevado y el valor más bajo

Coeficiente de variación de Pearson: Cociente entre la desviación típica y la media. .

PROPÓSITO (Para qué sirve)

Las medidas de dispersión estudian la distribución de los valores de la serie, analizando si estos se encuentran más o menos concentrados, o más o menos dispersos. En el análisis estadístico no basta el cálculo e interpretación de las medidas de tendencia central o de posición, ya que, por ejemplo, cuando pretendemos representar toda una información con la media aritmética, no estamos siendo absolutamente fieles a la realidad, pues suelen existir datos extremos inferiores y superiores a la media aritmética. La Dispersión se refiere a la variabilidad entre los valores, es decir, qué tan grandes son las diferencias entre los valores. La idea de dispersión se relaciona con la mayor o menor concentración de los datos en torno a un valor central, generalmente la media aritmética

APLICACIÓN ( Modo de Uso)

Medidas de Dispersión

1. Varianza: Es la medida de dispersión más importante en la Estadística, está asociada su cálculo a la media Aritmética. La varianza es siempre un valor positivo (x) ³ 0 , sus unidades están siempre dadas al cuadrado. 2. Desviación estándar. La desviación estándar mide la dispersión de los datos respecto del promedio

3. El Rango: Es la medida de dispersión más sencilla se define como:

R = Dato Mayor - Dato Menor .

1 La varianza será siempre un valor positivo o cero, en el caso de que las puntuaciones sean iguales. 2 Si a todos los valores de la variable se les suma un número la varianza no varía. 3 Si todos los valores de la variable se multiplican por un número la varianza queda multiplicada por el cuadrado de dicho número. 4 Si tenemos varias distribuciones con la misma media y conocemos sus respectivas varianzas se puede calcular la varianza total

OBSERVACIONES

1 La varianza, al igual que la media, es un índice muy sensible a las puntuaciones extremas. 2 En los casos que no se pueda hallar la media tampoco será posible hallar la varianza. 3 La varianza no viene expresada en las mismas unidades que los datos, ya que las desviaciones están elevadas al cuadrado..

Page 11: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

11

2.2 Las 7 Herramientas de Calidad En la fase de análisis se procura una participación ordenada de los involucrados en el proceso, así como de todos aquellos miembros de la organización que puedan aportar con un adecuado encaminamiento de las variables que intervienen en el proceso. De ahí que, un primer paso es usar las herramientas de Calidad, dado que la visibilidad y la sencillez de los recursos que emplea, como son los gráficos motivan una amplia participación de gran parte de los empleados. En la mayoría de los casos, el uso de las herramientas de calidad, facilitará enormemente la tarea de centrar y orientar el esfuerzo de análisis, por lo que los proyectistas deberán esforzarse por hacer el mejor uso de estas herramientas. Las siete herramientas fundamentales dan objetividad a las observaciones, para reducir la persistencia de los enfoques abstractos y de las observaciones llevándolos a una data numérica. Las herramientas que se conocen bajo este concepto son:

Histogramas Diagrama de Pareto Diagrama de Causa Efecto .Diagrama de Dispersión. Lluvia de Ideas. Estratificación. Gráficas y Cuadros de Control

Page 12: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

12

Histogramas

CUADRO BASE: HERRAMIENTAS DE CALIDAD

NOMBRE: Histograma N° 1

PROCESO: SUBPROCESO:

RESPONSABLE:

DEFINICION (Que significa)

Es la presentación de datos en forma ordenada, mediante un gráfico constituido por rectángulos de igual ancho y altura proporcional a las cantidades que representan

PROPÓSITO (Para que sirve)

La naturaleza gráfica del histograma permite ver pautas que son difíciles de observar en una simple tabla numérica, además permite resaltar el centro y la dispersión de los datos de la muestra. La sencillez de construcción e interpretación de los histogramas hace de ellos una herramienta efectiva para el análisis elemental de datos. Por otro lado permite clarificar el patrón de variación y por ende desarrollar una explicación razonable de dicha variación.

UTILIZACIÓN (Como se aplica)

1. Determinar el rango de los datos: RANGO es igual al dato mayor (D1) menos el dato menor (D2); R = D1 - D2 2. Cálculo del número de clase: Un criterio usado frecuentemente es que el número de clases debe ser aproximadamente la raíz cuadrada del número de datos, por ejemplo, la raíz cuadrada de 30 (número de artículos) es mayor que cinco, por lo que se seleccionan seis clases. Nc = 6 3. Cálculo de longitud de clase: Es igual a la división entre el rango y el número clase (aproximar a número más cercano). LC = R / Nc 4. Construir los intervalos de clases: Los intervalos resultan de dividir el rango de los datos en relación al resultado del PASO 2 en intervalos iguales. 5. Realizar tabla de frecuencias: En el se exponen la frecuencia de cada intervalo de clase y en ocasiones, según sea necesario, la frecuencia acumulada (se obtiene de dividir cada frecuencia con el total de la muestra y se suman progresivamente) Nota: La frecuencia es el número de veces que se repite un dato 6. Graficar el histograma: Se hace un gráfico de barras, las bases de las barras son los intervalos de clases y altura son la frecuencia de las clases. Si se unen los puntos medios de las bases superiores de los rectángulos se obtiene el polígono de frecuencias. PASO 7 Identificar y clasificar el patrón de variación; desarrollar una explicación lógica y pertinente del patrón.

Page 13: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

13

Diagrama de Pareto

CUADRO BASE: HERRAMIENTAS DE CALIDAD

NOMBRE: Diagrama de Pareto Nº 2

PROCESO: SUBPROCESO:

RESPONSABLE:

DEFINICION (Que significa)

El Diagrama de Pareto es un gráfico de barras verticales, que representa factores sujetos a estudio en forma ordenada de ocurrencia o de importancia, de mayor a menor, con el objeto de determinar qué problemas resolver y en qué orden realizarlos.

PROPÓSITO (Para qué sirve)

Sirve para que se pueda asignar un orden de prioridades de no conformidades, reprocesos, reclamos, etc. Mediante el Diagrama de Pareto se pueden detectar los problemas que tienen más relevancia mediante la aplicación del principio de Pareto (pocos vitales, muchos triviales) que dice que hay muchos problemas sin importancia frente a solo unos graves.

UTILIZACIÓN (Como se aplica)

1. Decidir el problema a investigar y como recolectar los datos. 2. Estratificar, en la medida de lo posible, los datos según diferentes causas, tipos de no conformidades, etc. 3. Construir un histograma de frecuencias. 4. Dibujar un polígono de frecuencias acumulado, uniendo los puntos graficados como frecuencias acumuladas.

OBSERVACIONES

Page 14: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

14

Diagrama de Causa Efecto

CUADRO BASE: HERRAMIENTAS DE CALIDAD

NOMBRE: Diagrama de Causa y Efecto Nº 3

PROCESO: SUBPROCESO:

RESPONSABLE:

DEFINICION (Que significa)

Muestra la relación entre una característica de la calidad y sus factores causales.

PROPÓSITO (Para qué sirve)

El empleo de este diagrama facilita en forma notable el entendimiento y compresión del proceso, ya que es necesaria la participación de todo el personal involucrado en el proceso para su construcción y uso. Además, este diagrama, ilustra claramente las diferentes causas que afectan un proceso, identificándolas y relacionándolas unas con otras. Para cada efecto surgirán varias categorías de causas principales que pueden ser resumidas en las llamadas 6 M’s: Mano de obra, máquinas, métodos. Materiales Mediciones y Medio Ambiente.

UTILIZACIÓN (Como se aplica)

1. Describir el defecto o la característica de la calidad. 2. Seleccionar una característica de la calidad y escribirla en el extremo derecho de la flecha horizontal principal. 3. Elaborar una lista con todos los factores que podrían tener influencia sobra la característica de la calidad con la participación de todos los integrantes del equipo de trabajo. Se recomienda aplicar la técnica de “lluvia de ideas”. 4. Estratificar estos factores de acuerdo a las 6 M’s. Sobre las ramas de los factores principales anotar los subfactores que afectan o influencian los principales.

OBSERVACIONES

Page 15: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

15

Diagrama de Dispersión

CUADRO BASE: HERRAMIENTAS DE CALIDAD

NOMBRE: Diagrama de Dispersión Nº 4

PROCESO: SUBPROCESO:

RESPONSABLE:

DEFINICION (Que significa)

Un diagrama de dispersión es una representación gráfica de la relación entre dos variables, muy utilizada en las fases de Comprobación de teorías e identificación de causas raíz.

PROPÓSITO (Para qué sirve)

Establecer el grado de correlación existente entre dos factores, dos variables o dos causa. Si existe correlación al controlar la(s) variable(s) independiente(s), se está controlando el efecto del factor dependiente.

UTILIZACIÓN (Como se aplica)

1. Recolectar de 50 a 100 pares de datos (X,Y), pero al menos 30 pares, cuyas relaciones se desean estudiar, y preparar una tabla.

2. Decidir las escalas a utilizar en las abscisas y en las ordenadas de manera que ambas longitudes sean aproximadamente iguales. Cuando las variables sean un factor y una característica de la calidad, usar la abscisa para el factor y la ordenada para la característica de la calidad.

3. Registrar los datos en el gráfico. Cuando se obtengan los mismos valores para diferentes observaciones, se registran estos puntos haciendo círculos concéntricos, una o más veces. 4. Registrar todos los aspectos que puedan ser de utilidad, tales como: Titulo del diagrama, periodo de tiempo, numero de pares de datos, títulos y unidades de cada eje, nombre de la persona que hizo el diagrama, etc.

OBSERVACIONES

Para interpretar un diagrama de dispersión, primero debemos observar si hay o no puntos alejados en el diagrama. En general los puntos que están muy alejados del grupo principal, son producto de errores de medición o de registro de datos, o fueron causados por algún cambio en las condiciones de operación. Para el análisis de la regresión (en caso que se hiciera) se debe excluir estos puntos. Se recomienda realizar regresión para un mejor estudio de la relación entre las variables dependiente e independiente.

Page 16: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

16

Lluvia de Ideas

CUADRO BASE: HERRAMIENTAS DE CALIDAD

NOMBRE: Brainstorming o “Lluvia de ideas”

Nº 5

PROCESO: SUBPROCESO:

RESPONSABLE:

DEFINICION (Que significa)

Es una herramienta de trabajo grupal que facilita el surgimiento de nuevas ideas sobre un tema o problema determinado. La lluvias de ideas (Brainstorming), es una técnica de grupo para generar ideas originales en un ambiente relajado.

PROPÓSITO (Para qué sirve)

La lluvia de ideas se utiliza cuando exista la necesidad de: liberar la creatividad de los equipos, generar un número extensos de ideas, involucrar oportunidades para mejorar; permitiendo: plantear y resolver los problemas existentes, plantear posibles causas y soluciones alternativas, desarrollar la creatividad, discutir conceptos nuevos y superar el conformismo y la monotonía.

UTILIZACIÓN (Como se aplica)

1. Se define el tema o el problema. Se nombra a un conductor del ejercicio. 2. Se emiten ideas libremente sin extraer conclusiones en esta etapa, sin criticarlas. Se listan las ideas sin repetirlas. 3. El ejercicio termina cuando ya no existen nuevas ideas 4. Se analizan, evalúan y organizan las mismas, para valorar su utilidad en función del objetivo que pretendía lograr con el empleo de esta técnica.

OBSERVACIONES

Page 17: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

17

Estratificación

FICHA TÉCNICA DE HERRAMIENTAS ESTADÍSTICAS

NOMBRE: Estratificación” Nº 6

PROCESO: SUBPROCESO:

RESPONSABLE:

DEFINICION (Que significa)

Es una herramienta de trabajo grupal que facilita la segmentación de una condición macro, por medio del cual se describe con más detalle las diferentes estructuras de sus partes, es una técnica de grupo para focalizar determinadas características de una condición macro en unidades de menor tamaño y más compactas que puedan ser analizadas con mayor facilidad

PROPÓSITO (Para qué sirve)

La segmentación se utiliza para tener una mejor comprensión de la condición macro, por ejemplo si se desea evaluar una condición de data mensualizada, se puede estratificar en semanas, luego en días. Permite que las unidades de análisis sean mejor comprendidas, de manera que se pueda establecer condiciones más específicas de análisis.

UTILIZACIÓN (Como se aplica)

1. Se define la condición Macro. 2. Se emiten ideas libremente las diferentes características por medio de las cuales se puede desarrollar una estratificación. 3. El ejercicio termina cuando ya se han identificado las unidades base en las cuales deseamos expresar las condiciones de análisis 4. Se analizan, evalúan y organizan cada una de las unidades estratificadas, para valorar su utilidad en función del objetivo que pretendía lograr con el empleo de esta técnica.

OBSERVACIONES

Los Cuadros y Gráficos de Control ya se ha estudiado en la Fase Medir (Cuadernillo naranja)

Page 18: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

18

3 Análisis del Modo y

Efecto de Falla (AMEF)

3.1 AMEF

El AMEF o FMEA por sus siglas en inglés ( Failure Mode and Effect Analisis) es una técnica esencialmente de acción preventiva que fué utilizada por primera vez en 1960 en la Industria Aeroespacial durante la misión del Apolo, posteriormente en 1974 se desarrolla el estándar MIL-STD-1629, Procedure for Performing a Failure Mode, Effects and Criticality Analysis. Permite detectar anticipadamente los posibles modos de falla, es considerado como un enfoque sistematizado de actividades para: Reconocer y Evaluar Fallas Potenciales y sus Efectos.

3.2 Propósitos del AMEF

Evaluar el diseño del proceso o servicio. Identificar fallas potenciales de procesos o servicios. Categorizar los defectos para la medición del desempeño. Priorizar las acciones para reducir el riesgo. Formular el plan de control del proceso. Evaluar objetivamente la ocurrencia de causas y la habilidad de los

controles para detectar la causa cuando ocurre. Clasificar el orden potencial de deficiencias de producto y proceso. Enfocar la prevención y eliminación de problemas del producto y proceso Reducir el tiempo y costo de redesarrollo del producto Documentar y dar seguimiento a acciones tomadas para reducir el riesgo

Page 19: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

19

Cuándo iniciar un AMEF Al diseñar los nuevos Productos y Procesos. Cambio de diseños o procesos existentes. Evitar nuevas incidencias después de completar la Solución de Problemas

3.3 Tipos del AMEF Se suelen identificar en la metodología dos tipos de AMEF

AMEF de Diseño: Incluye definir las características del

producto.

AMEF de Proceso: incluye los planos y las especificaciones

técnicas correspondientes. AMEF de diseño (DAMEF) Usualmente utilizada para facilitar el análisis de los componentes de diseño. Identificar los Modos de Efectos y Fallas en relación a la funcionalidad prevista. Se enumeran los criterios de valor y de utilidad que espera el cliente en relación al producto a diseñar. Se identifican los requerimientos de producción y el flujo del diseño del producto. El diseño debe incluir desde la obtención de los materiales, el abastecimiento al proceso productivo, los procesos, distribución y el uso por el usuario final. Se identifican las áreas de mayor sensibilidad para establecer los mecanismos de control.

Permite documentar el modo de efecto o falla que se han identificado y los errores en la fase de diseño.

Facilita la incorporación de las iniciativas de los clientes, priorizando las mejoras al diseño, desarrollo, validación, prueba y análisis

Facilita la evaluación objetiva de diseño, sus requerimientos funcionales y alternativas.

Facilita la identificación de los requerimientos de manufactura, ensamble, servicio y reciclado para la etapa de producción.

Facilita información relevante para la planeación de nuevos diseños, su desarrollo y validación.

AMEF de Proceso (PAMEF) Permiten analizar cómo afectan al proceso los modos de Efecto y Falla en la ejecución del proceso productivo. Es de uso permanente en los análisis de calidad. Es la fuente de referencia para resolver situaciones de incapacidad para producir los requerimientos establecidos en las características del producto, o en

Page 20: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

20

situaciones en las cuales se hayan identificado fallas que no han sido detectadas en el AMEF de diseño.

Analizar nuevos procesos Identificar deficiencias en el plan de control del proceso. Establecer la prioridad de las acciones. Evaluar el riesgo de cambios en el proceso Identificar variables potenciales a considerar en la mejora de procesos

3.4 Modos de Fallas, Efectos y Causas

Modo de Falla Es la forma en que un producto o proceso puede fallar para cumplir con las especificaciones o requerimientos en cada una de las áreas sensibles que se ha determinado. Usualmente responde a la siguiente pregunta:

¿De qué forma podría fallar el producto?

Fallas en la forma de entradas a un proceso Los detalles ocultos que no han sido adecuadamente cumplidos que un

trabajador observa en el proceso y que no los informa. Los incumplimientos de las especificaciones que no son detectados,

corregidos o removidos. Diseño Proceso

No satisface expectativas No conformidades (roto, flojo, fugas, dimensiones erradas, deformaciones, etc.) Omisiones

Excesivas consideraciones Producción innecesaria,

mermas, reprocesos

Resultados inesperados Mayor Tiempo Respuesta

Efecto Es el impacto en el Cliente como consecuencia de que un Modo de Falla, que no se ha identificado y corregido.

¿Cuáles fueron los impactos de la falla en las salidas? Diseño Proceso Rechazos Producto deficiente Errores en la producción Interrupción del proceso Altos costos Pedida de recursos

Page 21: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

21

Causa Es la variable que genera el Modo de Falla. Son las fuentes de variación donde ocurre el Modo de Falla. Es la clave que incide en las variabilidades del proceso, se les conoce como Variables de Entrada (KPIVs) ¿Cuáles son las causas potenciales de la falla? Diseño Proceso Materia Prima inadecuada Error de desempeño Tolerancias erradas No cumple requerimientos Configuraciones Mecanismos con fallas

Error tipográfico en documentos Número incorrecto de órdenes de compra, producción, etc. Pérdida de llamadas en hora pico

3.5 Número de Prioridad del Riesgo (RPN) El RPN es una salida del AMEF El RPN se utiliza para la priorización de los elementos del AMEF Se determina sobre la base de tres características

Ocurrencia de las Causas Severidad de los Efectos Habilidades de detección con los controles actuales

La escala para medir la Severidad, Ocurrencia y Detención puede ser desarrollada en equipo

Ocurrencia (de la Causa) Frecuencia por la cual una causa o falla ocurre (1=No Posible, 10= Muy Posible)

Severidad (del Efecto)

Importancia del efecto en los requerimientos del cliente, riesgos por la ocurrencia de la falla (1 = No Severa, 10 = Muy Severa)

Detección (Habilidad del control actual) Habilidad del sistema de control actual para detectar o prevenir causas o fallas (1=Posible detectar, 10=Nunca se podrá detectar)

Page 22: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

22

3.6 Procedimiento para la elaboración del AMEF (Diseño o Proceso)

AMEF Entradas y Salidas Se listan los flujos del proceso, Entradas, Salidas y Características / artículos, diagrama de bloque de referencia, QFD. Entradas

Análisis Murphy Mapas y gráficos del proceso Matriz C&E Historia del proceso o servicio Procedimiento del proceso

Salidas

Listado inicial de defectos a ser medidos Lista de acciones priorizadas Elementos iniciales para el plan de control del proceso

Se evalúan las entradas y características de la función requerida para producir la salida. Se identifican las interfaces entre las funciones y las actividades. Se determinan todas las necesidades de análisis para cumplir con el diseño establecido, incluido los abastecimientos de los materiales, el proceso de transformación y la entrega al proceso siguiente

Identifica potenciales modos de falla del proceso Evalúa los efectos de las fallas potenciales Identifica las causas potenciales en el proceso Focaliza las fallas Identificar las variables del proceso en base a las ocurrencias Lista de manera ordenada y clasificada las fallas, estableciendo las

prioridades Establece los riesgos de las acciones preventivas y correctivas Documentar los resultados del proceso Identifica deficiencias del proceso para las acciones de la fase controlar Identifica características críticas de los productos y facilita los planes de

control

Teniendo en cuenta la teoría, se pueden formular diversos formatos para el AMEF. El modelo utilizado por el CDI es el siguiente:

Page 23: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

23

a. Establecer los modos potenciales de falla.

Page 24: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

24

b. Describir las condiciones actuales:

Anotar los controles actuales que estén dirigidos a prevenir o detectar la causa de la falla.

Cálculos Análisis de elementos limitados Revisiones de Diseño Prototipo de Prueba Prueba Acelerada

c. Determinar el grado de ocurrencia:

Es necesario estimar el grado de ocurrencia de la causa de la falla potencial. Se utiliza una escala de evaluación del 1 al 10. El “1” indica remota probabilidad de ocurrencia, el “10” indica muy alta probabilidad de ocurrencia.

Ocurrencia Calificación Probabilidad

de Falla Criterios

Remota FALLAS ESCASAS

1 Menor a 1 en 1 millón

Falla improbable. No EXISTEN ANTECEDENTES, No se conocen fallas que se hayan producido en procesos semejantes.

Muy Poca 2 1 en 100,000 Fallas aisladas, notado por clientes especiales que desarrollan productos especiales

Poca 3 1 en 25,000 Fallas aisladas, notado por clientes que interactúan con productos con procesos semejantes.

Moderada

4 1 en 5,000

Fallas ocasionales, notados por los clientes con experiencia en nuestros productos 5 1 en 500

6 1 en 100

Alta 7 1 en 50

Fallas repentinas, notado por clientes, generan inconvenientes de mayor grado para el cliente.

8 1 en 10

Muy Alta 9 1 en 5 Es casi inevitable, genera un impacto serio

en el Proceso y en el Poder del Cliente

10 >1 en 3

Tablas weps/julio 2013

Page 25: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

25

d. Determinar el grado de severidad:

Para estimar el grado de severidad, se debe de tomar en cuenta el efecto de la falla en el cliente. Se utiliza una escala del 1 al 10: el ‘1’ indica una consecuencia sin efecto. El 10 indica una consecuencia grave.

Efecto Calificación Criterio

No 1 Falla no es Notable. No afecta al proceso, al producto y al cliente

Muy poco 2 Falla Perceptible con evaluación simple. Cliente no molesto. No afecta en el desempeño del artículo o sistema.

Poco 3 Falla Perceptible sin evaluación. Cliente algo molesto. Poco efecto en el desempeño del artículo o sistema.

Menor 4 Falla Perceptible sin evaluación. Cliente algo insatisfecho. Efecto moderado en el desempeño del artículo o sistema.

Moderado 5 Falla Perceptible sin evaluación. Cliente algo insatisfecho. Afecta el desempeño del artículo o sistema. Necesita correcciones

Significativo 6 Cliente inconforme. El desempeño del artículo se ve afectado, pero es operable y está a salvo. Se puede recuperar.

Alto 7,8 El cliente está insatisfecho. El desempeño del artículo se ve seriamente afectado, aun se puede considerar funcional, posibilidad de reproceso. No recomendable para ser usado

Muy Alto 9 El cliente muy insatisfecho. Daña al Cliente, Artículo inoperable, Alto costo de recuperación. Alto Riesgo en el empleo. Reproceso del 90% del producto

Extremo 10 Efecto Muy Riesgoso. Expone al operador y al proceso, daña al cliente, Producto desechado.

Tablas weps/julio 2013

Informacion

Incompleta

Desconcierto en los

postulantes

No indica fecha

de examen de

ingreso

Fe de Erratas 3

S

E

V

E

D

E

T

E

NPR

Proceso Admision

en la Universidad

1. Etapa de

Convocatoria

Acciones

RecomendadasResponsable

Situación Actual

Acciones

Actuales

O

C

U

R

S

E

V

E

D

E

T

E

NPRAcciones

Adoptadas

O

C

U

R

Descripción del

Diseño/Proceso

Función del

Diseño/ProcesoModo de Falla Efecto de la Falla

Causa de la

Falla

Situación Actual

Diseño/Proceso Descripción Nombre del Diseño/proceso: Número:

Departamentos involucrados: Fecha:

Modelo: Hoja 1 de 1

CENTRO DE DESARROLLO INDUSTRIAL

AMEF AMEF DE:

Proceso Diseño

ANALISIS DEL MODO Y EFECTO DE LA FALLA Gerencia: Formulado por:

AMEF No. FECHA DE JUNTA DE REVISION: Departamento:

Ocurrencia de la causa de la falla potencial. Se utiliza una escala de evaluación del 1 al 10

CARACTERISTICA CRITICA DE CALIDAD

CTQ

Page 26: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

26

e. Determinar el grado de detección: Se estimará la probabilidad de que el modo de falla potencial sea detectado antes de que llegue al cliente. El ‘1’ indicará alta probabilidad de que la falla se pueda detectar. El ‘10’ indica que es improbable ser detectada.

Probabilidad Calificación Criterio

Muy Alta 1 Defecto Obvio. Es una característica funcional. Controles seguros para detectar

Muy Alta 2 Defecto es una característica funcional inmediatamente percibida por los operarios y clientes

Alta 3 Defecto es una característica funcional percibida con facilidad por operarios y clientes

Alta 4 Defecto es una característica del producto. Muy probable a ser detectados durante el proceso de producción, mediante los mecanismos de control

Moderada 5

Defecto es una característica del producto. Muy probable a ser detectados durante el proceso de producción, mediante los mecanismos de control y con supervisión directa

Moderada 6

Defecto es una característica de los procesos y actividades del producto. Muy probable a ser detectados durante la revisión de los procesos y actividades con el apoyo de especialistas

CENTRO DE DESARROLLO INDUSTRIAL

AMEF AMEF DE:

Proceso Diseño

ANALISIS DEL MODO Y EFECTO DE LA FALLA Gerencia: Formulado por:

AMEF No. FECHA DE JUNTA DE REVISION: Departamento:

Diseño/Proceso Descripción Nombre del Diseño/proceso: Número:

Departamentos involucrados: Fecha:

Modelo: Hoja 1 de 1

Descripción del

Diseño/Proceso

Función del

Diseño/ProcesoModo de Falla Efecto de la Falla

Causa de la

Falla

Situación Actual

Acciones

RecomendadasResponsable

Situación Actual

Acciones

Actuales

O

C

U

R

S

E

V

E

D

E

T

E

NPRAcciones

Adoptadas

O

C

U

R

S

E

V

E

D

E

T

E

NPR

Proceso Admision

en la Universidad

1. Etapa de

Convocatoria

Informacion

Incompleta

Desconcierto en los

postulantes

No indica fecha

de examen de

ingreso

Fe de Erratas 3 10

Para estimar el grado de severidad, se debe de tomar en cuenta el efecto de la falla en el daño al cliente. Se utiliza una escala del 1 al 10

Page 27: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

27

Baja 7

Defecto es una característica de los procesos y actividades del producto. Muy probable a ser detectados durante la revisión de los procesos y actividades mediante ensayos de laboratorio

Muy Baja 8 Defecto es una característica de los materiales que no han sido considerados en las especificaciones técnicas de diseño.

Remota 9

No se puede detectar el defecto en el diseño y en el proceso. Se requiere instrumentos y personal especializado en las características propias de los materiales o del servicio. Usualmente servicios de terceros

Casi Imposible 10

No se puede detectar el defecto en el diseño y en el proceso. Esta relacionada con la naturaleza propia de la durabilidad de los materiales o del servicio. Necesita Trabajos de Investigación.

Tablas weps/julio 2013

CENTRO DE DESARROLLO INDUSTRIAL

AMEF AMEF DE:

Proceso Diseño

ANALISIS DEL MODO Y EFECTO DE LA FALLA Gerencia: Formulado por:

AMEF No. FECHA DE JUNTA DE REVISION: Departamento:

Diseño/Proceso Descripción Nombre del Diseño/proceso: Número:

Departamentos involucrados: Fecha:

Modelo: Hoja 1 de 1

Descripción del

Diseño/Proceso

Función del

Diseño/ProcesoModo de Falla Efecto de la Falla

Causa de la

Falla

Situación Actual

Acciones

RecomendadasResponsable

Situación Actual

Acciones

Actuales

O

C

U

R

S

E

V

E

D

E

T

E

NPRAcciones

Adoptadas

O

C

U

R

S

E

V

E

D

E

T

E

NPR

Proceso Admision

en la Universidad

1. Etapa de

Convocatoria

Informacion

Incompleta

Desconcierto en los

postulantes

No indica fecha

de examen de

ingreso

Fe de Erratas 3 10 2

Se estimará la probabilidad de que el modo de falla potencial sea detectado antes de que llegue al cliente. El ‘1’ indicará alta probabilidad de que la falla se pueda detectar. El ‘10’ indica que es improbable ser detectada

CARACTERISTICA CRITICA DE CALIDAD

CTQ

DEL DIAGRAMA DE ISHIKAWA, DIAGRAMA ARBOL, DIAGRAMA

RELACIONES

Page 28: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

28

f. Calcular el número de prioridad de riesgo (NPR):

Es un valor que establece una jerarquización de los problemas a través de la multiplicación del grado de ocurrencia, severidad y detección, éste provee la prioridad con la que debe de atacarse cada modo de falla, identificando ítems críticos.

NPR = Grado de Ocurrencia * Severidad * Detección. Prioridad de NPR: 500 – 1000 Alto riesgo de falla 125 – 499 Riesgo de falla medio 1 – 124 Riesgo de falla bajo 0 No existe riesgo de falla

Se deben atacar los problemas con NPR alto, así como aquellos que tengan un alto grado de ocurrencia no importando si el NPR es alto o bajo.

Severidad Ocurrencia Detección RPN Resultado

1 1 1 1 Proceso Exitoso

1 1 10 10 Rediseñar el Sistema de Control

1 10 10 100 Rediseñar el Proceso y el Sistema de Control

10 1 1 10 No entregar al cliente

10 1 10 100 No entregar al cliente

1 10 1 10 Rediseñar el Proceso

10 10 1 100 No entregar al cliente

10 10 10 1000 Rediseñar el Sistema Tablas weps/julio 2013

CENTRO DE DESARROLLO INDUSTRIAL

AMEF AMEF DE:

Proceso Diseño

ANALISIS DEL MODO Y EFECTO DE LA FALLA Gerencia: Formulado por:

AMEF No. FECHA DE JUNTA DE REVISION: Departamento:

Diseño/Proceso Descripción Nombre del Diseño/proceso: Número:

Departamentos involucrados: Fecha:

Modelo: Hoja 1 de 1

Descripción del

Diseño/Proceso

Función del

Diseño/ProcesoModo de Falla Efecto de la Falla

Causa de la

Falla

Situación Actual

Acciones

RecomendadasResponsable

Situación Actual

Acciones

Actuales

O

C

U

R

S

E

V

E

D

E

T

E

NPRAcciones

Adoptadas

O

C

U

R

S

E

V

E

D

E

T

E

NPR

Proceso Admision

en la Universidad

1. Etapa de

Convocatoria

Informacion

Incompleta

Desconcierto en los

postulantes

No indica fecha

de examen de

ingreso

Fe de Erratas 3 10 2 60

establece una jerarquización de los problemas a través de la multiplicación del grado de ocurrencia, severidad y detección, éste provee la prioridad con la que debe de atacarse cada modo de falla, identificando ítems críticos

CARACTERISTICA CRITICA DE CALIDAD

CTQ

Page 29: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

29

g. Acciones recomendadas:

Anotar la descripción de las acciones preventivas o correctivas recomendadas, incluyendo responsables de las mismas. Anotando la fecha compromiso de implantación. Se pueden recomendar acciones encaminadas hacia:

Eliminar o disminuir la OCURRENCIA de la causa del modo de

falla. (modificaciones al diseño o al proceso, Implementación de métodos estadísticos, ajuste a herramental, etc.

Reducir la SEVERIDAD del modo de falla. (Modificaciones en el diseño del producto o proceso).

Incrementar la probabilidad de DETECCIÓN. (Modificaciones en el diseño del producto o proceso para ayudar a la detección).

h. Una vez realizadas las acciones correctivas o preventivas, se

recalcula el grado de ocurrencia, severidad, detección y el NPR.

i. Cada vez que haya alguna modificación en el proceso o en el producto se debe de actualizar el A.M.E.F.

Actualización del AMEF El AMEF se actualiza siempre que se considere un cambio en el diseño, aplicación, ambiente, material del producto, o en los procesos de manufactura o ensamble.

Page 30: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

30

4 Pruebas de Hipótesis

4.1 Pruebas de hipótesis En cada prueba estadística, se comparan algunos valores observados con relación a los esperados, comparando estimaciones de parámetros (media, desviación estándar, varianza) Estas estimaciones de los verdaderos parámetros son obtenidos usando una muestra de datos y calculando los estadísticos correspondientes. La prueba de Hipótesis tiene la capacidad para detectar una diferencia entre lo que es observado y lo que es esperado. Hipótesis nula Ho

Identificación de hipótesis

Hipótesis nula Ho

La que contrastamos Los datos pueden refutarla No debería ser rechazada

sin una buena razón.

Hip. Alternativa Ha Niega a H

0

Los datos pueden mostrar evidencia a favor

No debería ser aceptada sin una gran evidencia a favor.

4020X

¿Qué hacer: La teoría

no coincide con sus

predicciones?

Page 31: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

31

4.2 Estadístico de prueba Para probar la hipótesis nula se calcula un estadístico de prueba con la información de la muestra el cual se compara a un valor crítico apropiado. De esta forma se toma una decisión sobre rechazar o no rechazar la Ho

Page 32: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

32

Es la probabilidad que tendría una región crítica que comenzase exactamente en el valor del estadístico obtenido de la muestra.

Es la probabilidad de tener una muestra que discrepe aún más que la nuestra de H

0.

Es la probabilidad de que por puro azar obtengamos una muestra “más extraña” que la obtenida.

p es conocido después de realizar el experimento aleatorio El contraste es no significativo cuando p>a

El contraste es estadísticamente significativo cuando p<a Es decir, si el resultado experimental discrepa más de “lo tolerado” a priori.

Page 33: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

33

4.3 Tipos de errores .

Decisión realizada Ho en realidad es Verdadera

Ho en realidad es falsa

No hay evidencia para rechazar Ho

p = 1-

Decisión correcta

p =

Error tipo II

Rechazar Ho p =

Error tipo I

p = 1 -

Decisión correcta

Page 34: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

34

4.4 Resumen de Pruebas de Hipótesis

Page 35: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

35

Resumen de Pruebas de Hipótesis

Pruebas de PROMEDIOS

Data Normal Data No Normal

Prueba t de 1 muestra

Permite contrastar hipótesis referidas a una media poblacional. Si tenemos una muestra, a través de esta prueba podemos contrastar la hipótesis nula de igualdad de la muestra con respecto a la población de la que se extrae. Para esto, tendríamos que conocer la media de la población

Prueba de Signos o Wilcoxon

Comparar la media de dos muestras relacionadas y determinar si existen diferencias entre ellas. Se utiliza como alternativa a la prueba t de Student cuando no se puede suponer la normalidad de dichas muestras

Prueba t de 2 muestras

Para comparar las medias de dos muestras independientes (muestras no relacionadas). Se usa para diseños experimentales en los cuales se estudia una variable independiente bajo dos condiciones. Idealmente los sujetos se deben de asignar aleatoriamente a dos grupos, de forma que cualquier diferencia en las respuestas sea debido al tratamiento y no a otros factores

Prueba de Mann Whitney

Esta prueba estadística es útil cuando las mediciones se pueden ordenar en escala ordinal (es decir, cuando los valores tienden a una variable continua, pero no tienen una distribución normal) y resulta aplicable cuando las muestras son independientes.

ANOVA 1 Factor

Se utiliza cuando queremos contrastar más de dos medias, por lo que puede verse como una extensión de la prueba t para diferencias de dos medias

Prueba de Kruskal-Wallis

La prueba de Kruskal-Wallis, es una alternativa a la prueba F del análisis de varianza para diseños de clasificación simple. En este caso se comparan varios grupos pero usando la mediana de cada uno de ellos, en lugar de las medias.

Pruebas de VARIANZA

Data Normal Data No Normal

F

probar la igualdad entre dos varianzas poblacionales que provienen de poblaciones que tiene una distribución normal

Homogeneidad de Varianza de Levene

Esta prueba se utiliza para probar hipótesis acerca de la igualdad de varianza de una variable. La hipótesis nula para la prueba de homogeneidad de varianza es que la variable exhibe igual varianza dada frente a la alternativa de que la variable no exhibe igual varianza

Homogeneidad de Varianza de

Barlett

si se cumple la condición de homogeneidad de varianzas o homoscedasticidad, de esta condición dependerá la formulación del contraste de medias.

Page 36: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

36

ANOVA 2 Factores

Se utiliza con datos separados en categorías formadas de acuerdo con dos factores. Primero se requiere una prueba de interacción entre los dos factores. Después una prueba para determinar si el factor de renglón tiene algún efecto, y también para determinar si el factor de columna tiene algún efecto.

Prueba de la Mediana Mood

En estadística, prueba de la mediana de Mood es un caso especial de la prueba de chi-cuadrado de Pearson. Es una prueba no paramétrica que pone a prueba la hipótesis nula de que las medias de las poblaciones de las que se extraen dos muestras son idénticas.

Correlación Se utiliza para ver si las variables s X y Y están correlacionadas dado que, de no ser así, la correlación sería 0. Es cero es decir, no existe.

Prueba de Friednan

Esta prueba puede utilizarse en aquellas situaciones en las que se seleccionan n grupos de k elementos de forma que los elementos de cada grupo sean lo más parecidos posible entre sí, y a cada uno de los elementos del grupo se le aplica uno de entre k ''tratamientos'', o bien cuando a cada uno de los elementos de una muestra de tamaño n se le aplican los k ''tratamientos''

Regresión

Investigar si existe una asociación entre las dos variables testeando la hipótesis de independencia estadística. La fuerza de la asociación y de relación entre las variables y a partir de ella será posible predecir el valor de una variable a partir de la otra.

El Coeficiente de Correlación de Spearman

La correlación de Spearman mide el grado de asociación entre dos variables cuantitativas que siguen una tendencia siempre creciente o siempre decreciente. es más general que el Coeficiente de correlación de Pearson, la correlación de Spearman, en cambio se puede calcular para relaciones exponenciales o logarítmicas entre las variables

Page 37: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

37

5 Análisis de Regresión y Correlación

5.1 Relaciones entre Variables

Facilita el estudio de las posibles relaciones entre las variables y siempre que estos sean de naturaleza cuantitativa. Es importante tener en cuenta que estas observaciones deben pertenecer a un mismo grupo de unidades observadas

Expresa matemáticamente la relación existente entre las variables de estudio siempre en cuando ésta sea posible.

Permite la predicción de resultados teniendo como supuesto básico una de las variables con un valor determinado.

Las variables que determinan una razón de comportamiento se determinan variables explicativas, usualmente es el Eje X y a las variables se les conoce como las Xs

La variable resultante se le conoce como la Y, o también f(x) La Ecuación final es Y = F(x) Se usa con variables continuas

5.2 Metodología del Análisis de Regresión

a. Representar los datos en un gráfico b. Identificar su aspecto y sus desviaciones c. Ingresar la Información numéricas de los datos y su posible

relación al MINITAB d. Interpretación de los resultados

5.3 Diagrama de Dispersión

Se pueden desarrollar diversas graficas de dispersión:

Page 38: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

38

Identificación del aspecto del diagrama de dispersión

El aspecto general del gráfico viene dado por la dirección, forma y fuerza del mismo:

Dirección: positiva o negativa Forma: disposición de los puntos (rectilínea o curvilínea) Fuerza: cuanta más amorfa sea la disposición de los puntos

en el gráfico, menor su relación Es importante en este primer ejercicio tener una idea aproximada de la tendencia de los puntos del diagrama, porque nos orientará el modelo al cual podemos ajustar, así mismo de los elementos atípicos que requieren un particular análisis. El diagrama de dispersión sólo muestra el aspecto general de la relación entre las dos variables. En situaciones no muy evidentes, un simple cambio de escala puede hacernos cambiar la forma de pensar

5.4 Coeficiente de Correlación de Pearson

Se necesita una medida numérica que complemente al gráfico y que, independientemente de las dimensiones de los valores de las variables, nos informe sobre la fuerza de la relación existente.

Una medida es el Coeficiente de Correlación.- Establece si existe una relación entre las variables y responde a la pregunta, ”¿Qué tan evidente es esta relación?"

“r” es el Coeficiente de Correlación Utiliza valores estandarizados, por lo tanto es adimensional Es afectada por las observaciones atípicas Una “r” positiva o negativa, solo indica una relación positiva o

negativa entre las variables.

Los valores que puede tomar el coeficiente de correlación "r" son: -1 < r < 1

Si "r" > 0, la correlación lineal es positiva (si sube el valor de una variable sube el de la otra). La correlación es tanto más fuerte cuanto más se aproxime a 1. Por ejemplo en las personas a mayor altura habría mayor peso.

Si "r" < 0, la correlación lineal es negativa (si sube el valor de una variable disminuye el de la otra). La correlación negativa es tanto más fuerte cuanto más se aproxime a -1.Poe ejemplo en las personas a mayores niveles de gordura menor capacidad de velocidad en los deportes.

Page 39: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

39

Si "r" = 0, no existe correlación lineal entre las variables. Aunque podría existir otro tipo de correlación (parabólica, exponencial, etc.)

De todos modos, aunque el valor de "r" fuera próximo a 1 o -1, tampoco esto quiere decir obligatoriamente que existe una relación de causa-efecto entre las dos variables, ya que este resultado podría haberse debido al puro azar.

El coeficiente de correlación de Pearson sólo mide relación LINEAL

5.5 Regresión Simple

Si la correlación entre las dos variables indica una relación fuerte, sería muy interesante poder “resumir” el gráfico en forma de una ecuación matemática.

Si la nube de puntos se asemeja a una forma lineal, la recta que ajusta se le llama recta de regresión.

Describe un cambio en la respuesta a medida que cambia la otra variable, se necesita tener presente las condiciones en las cuales se hicieron la toma de muestras.

Ninguna recta puede pasar exactamente por todos los puntos, se necesita una manera de construirla que asegure su paso tan cerca de todos los puntos como sea posible

El Coeficiente de Determinación.

Es una medida de la bondad de ajuste del modelo de regresión hallado.

El coeficiente de determinación es simplemente el cuadrado del coeficiente de correlación.

El coeficiente de Determinación varía entre 0 y 1.

R2

indica qué porcentaje de la variabilidad de la variable de respuesta Y

es explicada por su relación lineal con X.

Page 40: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

40

La parte de la variable Y que no es explicada por el modelo se llama residual. Una vez dibujada la recta de regresión, existe un valor residual para cada dato: e = y – y

Y X 10 20 15 30 14 28 17 34 20 40 18 36 14 28 12 24

(p < 0.05).

La relación entre Y y X es estadísticamente significativa

> 0.50.10.050

NoSí

P = 0.000

variación en Y.

El modelo de regresión puede explicar 100.00% de la

100%0%

R-cuad (aj) = 100.00%

aumenta, Y también tiende a aumentar.

La correlación positiva (r = 1.00) indica que cuando X

10-1

1.00

4035302520

20

15

10

X

Y

se la causa de Y.

Una relación estadísticamente significativa no implica que X

valor o rango de valores deseados para Y.

X, o hallar la configuración de X que corresponda a un

ecuación se puede utilizar para predecir Y para un valor de

Si el modelo se ajusta adecuadamente a los datos, esta

Y = - 0.000000 + 0.5000 X

relación entre Y y X es:

La ecuación ajustada para el modelo lineal que describe la

Y: Y

X: X

¿Existe una relación entre Y y X?

Gráfica de línea ajustada para modelo lineal

Y = - 0.000000 + 0.5000 X

Comentarios

Regresión para Y vs. X

Informe de resumen

% de variación explicado por el modelo

Correlación entre Y y X

Negativo Sin correlación Positivo

4035302520

20

18

16

14

12

10

X

Y

Estadísticas

R-cuadrado (ajustado)

Valor p, modelo

Valor p, término lineal

Valor p, término cuadrático

Valor p, término cúbico

Desviación estándar de los residuos

100.00%

0.000*

0.000*

-

-

0.000

Lineal

Modelo seleccionado

100.00% 100.00%

0.000* 0.000*

- -

- -

- -

0.000 0.000

Cuadrática Cúbico

Modelos alternativos

Y: Y

X: X

* Estadísticamente significativo (p < 0.05)

Regresión para Y vs. X

Informe de selección de modelo

Gráfica de línea ajustada para modelo lineal

Y = - 0.000000 + 0.5000 X

Page 41: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

41

Análisis de los residuos La disposición de los residuos sirve para comprobar si la recta sirve para ajustar los datos Dibujando sus valores en el eje de ordenadas frente a las predicciones deben presentar una forma uniforme, centrada en el valor 0, a lo largo de toda la recta, sin que aparezca ningún valor extraño Y X 10 24 15 22 14 30 17 30 20 44 18 36 14 24 12 15

45403530252015

25

20

15

10

5

X

Y

S 1.97646

R-cuad. 68.3%

R-cuad.(ajustado) 63.0%

Regresión

IC de 95%

IP de 95%

Gráfica de línea ajustadaY = 6.586 + 0.2992 X

10/07

El intervalo de confianza es una banda con un 95% de confianza de encontrar la Y media estimada para cada valor de X [Líneas rojas]

5.02.50.0-2.5-5.0

99

90

50

10

1

Residuo

Po

rce

nta

je

20.017.515.012.510.0

2

0

-2

-4

Valor ajustado

Re

sid

uo

210-1-2-3-4

3

2

1

0

Residuo

Fre

cu

en

cia

87654321

2

0

-2

-4

Orden de observación

Re

sid

uo

Gráfica de probabilidad normal vs. ajustes

Histograma vs. orden

Gráficas de residuos para Y

10/07

Page 42: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

42

El intervalo de predicción es el grado de certidumbre de la difusión de la Y estimada para puntos individuales X. En general, 95% de los puntos individuales (provenientes de la población sobre la que se basa la línea de regresión), se encontrarán dentro de la banda [Líneas azules]

5.6 Regresión múltiple

Cuando se usa más de una variable independiente para predecir los valores de una variable dependiente, el proceso se llama análisis de regresión múltiple, incluye el uso de ecuaciones lineales.

La regresión múltiple expresa el valor de la variable dependiente Y, como función de las variables independientes X1, X2, ...,Xk La más simple es la regresión lineal y el modelo al que se debieran ajustar los datos es:

Yi = α + β1X1i + β2X2i + ...+ +βkXki + εi

Coeficiente de correlación múltiple R2 (ajustada) es el porcentaje de variación explicado por la regresión, ajustado por el número de términos en el modelo y por el número de puntos de información.

(p < 0.05).

La relación entre Y y X es estadísticamente significativa

> 0.50.10.050

NoSí

P = 0.011

variación en Y.

El modelo de regresión puede explicar 63.05% de la

100%0%

R-cuad (aj) = 63.05%

aumenta, Y también tiende a aumentar.

La correlación positiva (r = 0.83) indica que cuando X

10-1

0.83

403020

20

15

10

X

Y

se la causa de Y.

Una relación estadísticamente significativa no implica que X

valor o rango de valores deseados para Y.

X, o hallar la configuración de X que corresponda a un

ecuación se puede utilizar para predecir Y para un valor de

Si el modelo se ajusta adecuadamente a los datos, esta

Y = 6.586 + 0.2992 X

relación entre Y y X es:

La ecuación ajustada para el modelo lineal que describe la

Y: Y

X: X

¿Existe una relación entre Y y X?

Gráfica de línea ajustada para modelo lineal

Y = 6.586 + 0.2992 X

Comentarios

Regresión para Y vs. X

Informe de resumen

% de variación explicado por el modelo

Correlación entre Y y X

Negativo Sin correlación Positivo

Page 43: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

43

respiración Potasio (ppm)

71 388 2414

53 258 10693

55 292 11682

48 205 12560

69 449 2464

84 331 2607

21 114 16205

68 580 2005

68 622 1825

Ecuación de regresión Respiración = 101.088 - 0.0403421 Potasio - 0.00387683 (ppm) S = 8.17212 R-cuad. = 84.84% R-cuad.(ajustado) = 79.79%

Supuestos de la regresión lineal

Los principales supuestos que se hacen en el análisis de regresión lineal son los siguientes:

La relación entre las variables Y y X es lineal, o al menos bien aproximada por una línea recta.

El término de error tiene media cero. El término de error tiene varianza constante. Los errores no están correlacionados. Los errores están normalmente distribuidos.

El valor “p” para la regresión se usa para ver si el modelo completo de regresión es significativo. Ho: El modelo no es significativo en la predicción de la respuesta. Ha: El modelo es significativo en la predicción de la respuesta.

.Relaciones no Lineales

La relación entre x e y no tiene porqué ser lineal. Los software informáticos ajustan los datos a curvas no lineales (exponenciales, parabólicas, etc.) y calculan el valor de Rr2 para medir la fuerza de esa relación

600

20 400

40

60

0

80

2005000

1000015000

respiración

Potasio

(ppm)

Gráfica de superficie de respiración vs. Potasio, (ppm)

24/07

Page 44: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

44

Y X 10 12 15 14 45 15 44 16 46 18 44 20 14 22 12 24

24222018161412

50

40

30

20

10

0

X

Y

Estadísticas

R-cuadrado (ajustado)

Valor p, modelo

Valor p, término lineal

Valor p, término cuadrático

Valor p, término cúbico

Desviación estándar de los residuos

65.26%

0.031*

0.012*

0.012*

-

10.125

Cuadrática

Modelo seleccionado

0.00% 58.93%

0.847 0.095

0.847 0.400

- 0.519

- 0.657

18.492 11.009

Lineal Cúbico

Modelos alternativos

Y: Y

X: X

* Estadísticamente significativo (p < 0.05)

Regresión para Y vs. X

Informe de selección de modelo

Gráfica de línea ajustada para modelo cuadrático

Y = - 293.8 + 37.78 X - 1.055 X**2

(p < 0.05).

La relación entre Y y X es estadísticamente significativa

> 0.50.10.050

NoSí

P = 0.031

variación en Y.

El modelo de regresión puede explicar 65.26% de la

100%0%

R-cuad (aj) = 65.26%

2421181512

45

30

15

0

X

Y

sea la causa de Y.

Una relación estadísticamente significativa no implica que X

Y.

correspondan a un valor o rango de valores deseado para

X, o hallar los valores de configuración para X que

ecuación se puede utilizar para predecir Y para un valor de

Si el modelo se ajusta adecuadamente a los datos, esta

Y = - 293.8 + 37.78 X - 1.055 X**2

describe la relación entre Y y X es:

La ecuación ajustada para el modelo cuadrático que

Y: Y

X: X

¿Existe una relación entre Y y X?

Gráfica de línea ajustada para modelo cuadrático

Y = - 293.8 + 37.78 X - 1.055 X**2

Comentarios

Regresión para Y vs. X

Informe de resumen

% de variación explicado por el modelo

Page 45: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

45

6 Análisis de Varianzas

ANÁLISIS DE LA VARIANZA (ANOVA), compara la variabilidad de las medias muestrales (a través de la varianza muestral) con la variabilidad de los elementos dentro de la muestra. Descompone la variabilidad total en componentes independientes que puedan asignarse a causas distintas Se usa ANOVA, para comparar 2 o más medias poblaciones al mismo tiempo, El método ANOVA tiene los siguientes supuestos: La varianza es la misma para todos los tratamientos del factor en todos sus niveles Las mediciones individuales dentro de cada tratamiento se distribuyen normalmente. El término de error tiene un efecto distribuido normalmente e independiente

ANOVA de un factor o dirección ANOVA de un factor y una variable de bloqueo ANOVA de un factor y dos variables de bloqueo – CUADRADO

LATINO ANOVA de un factor y tres variables de bloqueo – CUADRADO

GRECOLATINO

6.1 ANOVA de un Factor o Dirección o de una Vía Permite contrastar la hipótesis de que las medias de dos o más grupos no son diferentes significativamente. El ANOVA de una vía también ofrece:

Estadísticos a nivel de grupo para la variable dependiente. Un contraste de igualdad de varianzas Un gráfico de medias de grupo. Contrastes de rango, comparaciones de pares múltiple, y contrastes, para

describir la naturaleza de la diferencia entre los grupos.

Page 46: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

46

Un primer paso importante en el análisis de la varianza es establecer la validez de los supuestos. Un supuesto del ANOVA es que las varianzas de los grupos sean equivalentes. Que sean una data Normal

Page 47: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

47

ANOVA – Prueba de hipótesis para probar la igualdad de medias de varias poblaciones para un factor Lecturas Presión 1 Presión 2 Presión 3 Presión 4

Lectura 1 184.0 183.0 181.5 183.5

Lectura 2 185.0 182.5 182.0 184.0

Lectura 3 184.5 184.0 182.5 181.5

Lectura 4 183.5 183.5 183.0 183.5

Lectura 5 184.5 183.5 183.5 182.0

Grafica de Puntos

Pruebas de Normalidad y de Homogeneidad de Varianzas

ANOVA – Condiciones

Todas las poblaciones son normales Todas las poblaciones tiene la misma varianza Los errores son independientes con distribución normal de media cero La varianza se mantiene constante para todos los niveles del factor

Fuente GL SC CM F P Presiones 3 8.950 2.983 4.87 0.014 Error 16 9.800 0.613 Total 19 18.750 S = 0.7826 R-cuad. = 47.73% R-cuad.(ajustado) = 37.93% ICs de 95% individuales para la media basados en Desv.Est. agrupada

ntesson.difere . Algunas:Ha

Ho 321

aμ.........μμ:μ

Presion 4

Presion 3

Presion 2

Presion 1

543210

Pre

sio

ne

s

Intervalos de confianza de Bonferroni de 95% para Desv.Est.

Estadística de prueba 2.16

Valor P 0.540

Estadística de prueba 0.54

Valor P 0.660

Prueba de Bartlett

Prueba de Levene

Prueba de igualdad de varianzas para mediciones

24

185184183182

Mediana

Media

184.0183.5183.0182.5

1er cuartil 182.50

Mediana 183.50

3er cuartil 184.00

Máximo 185.00

182.79 183.71

182.62 183.88

0.76 1.45

A -cuadrado 0.46

V alor P 0.239

Media 183.25

Desv .Est. 0.99

V arianza 0.99

A simetría -0.290808

Kurtosis -0.608000

N 20

Mínimo 181.50

Prueba de normalidad de A nderson-Darling

Interv alo de confianza de 95% para la media

Interv alo de confianza de 95% para la mediana

Interv alo de confianza de 95% para la desv iación estándarIntervalos de confianza de 95%

Resumen para mediciones

24

Page 48: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

48

Nivel N Media Desv.Est. --+---------+---------+---------+------- Presion 1 5 184.300 0.570 (------*------) Presion 2 5 183.300 0.570 (------*------) Presion 3 5 182.500 0.791 (------*------) Presion 4 5 182.900 1.084 (------*------) --+---------+---------+---------+------- 182.0 183.0 184.0 185.0

Agrupar información utilizando el método de Tukey Presiones N Media Agrupación Presión 1 5 184.3000 A Presión 2 5 183.3000 A B Presión 4 5 182.9000 A B Presión 3 5 182.5000 B Las medias que no comparten una letra son significativamente diferentes. Intervalos de confianza simultáneos de Tukey del 95% Todas las comparaciones de dos a dos entre los niveles de Presiones Nivel de confianza individual = 98.87% Presiones = Presion 1 restado de: Presiones Inferior Centro Superior Presión 2 -2.4175 -1.0000 0.4175 Presión 3 -3.2175 -1.8000 -0.3825 Presión 4 -2.8175 -1.4000 0.0175 Presiones -+---------+---------+---------+-------- Presión 2 (--------*---------) Presión 3 (--------*--------) Presión 4 (---------*--------) -+---------+---------+---------+-------- -3.0 -1.5 0.0 1.5 Presiones = Presión 2 restado de: Presiones Inferior Centro Superior Presión 3 -2.2175 -0.8000 0.6175 Presión 4 -1.8175 -0.4000 1.0175 Presiones -+---------+---------+---------+--------

210-1-2

99

90

50

10

1

Residuo

Po

rce

nta

je

184.5184.0183.5183.0182.5

1

0

-1

Valor ajustado

Re

sid

uo

1.00.50.0-0.5-1.0-1.5

4.5

3.0

1.5

0.0

Residuo

Fre

cu

en

cia

2018161412108642

1

0

-1

Orden de observación

Re

sid

uo

Gráfica de probabilidad normal vs. ajustes

Histograma vs. orden

Gráficas de residuos para mediciones

24

Presion 4Presion 3Presion 2Presion 1

185

184

183

182

181

Presiones

me

dic

ion

es

Gráfica de caja de mediciones

24

Page 49: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

49

Presión 3 (---------*--------) Presión 4 (--------*---------) -+---------+---------+---------+-------- -3.0 -1.5 0.0 1.5 Presiones = Presión 3 restado de: Presiones Inferior Centro Superior Presión 4 -1.0175 0.4000 1.8175 Presiones -+---------+---------+---------+-------- Presión 4 (---------*--------) -+---------+---------+---------+-------- -3.0 -1.5 0.0 1.5 Agrupar información utilizando el método de Fisher Presiones N Media Agrupación Presión 1 5 184.3000 A Presión 2 5 183.3000 A B Presión 4 5 182.9000 B Presión 3 5 182.5000 B Las medias que no comparten una letra son significativamente diferentes. Intervalos de confianza individuales de Fisher del 95% Todas las comparaciones de dos a dos entre los niveles de Presiones Nivel de confianza simultánea = 81.11% Presiones = Presión 1 restado de: Presiones Inferior Centro Superior Presión 2 -2.0493 -1.0000 0.0493 Presión 3 -2.8493 -1.8000 -0.7507 Presión 4 -2.4493 -1.4000 -0.3507 Presiones ----+---------+---------+---------+----- Presión 2 (--------*-------) Presión 3 (--------*--------) Presión 4 (-------*--------) ----+---------+---------+---------+----- -2.4 -1.2 0.0 1.2 Presiones = Presión 2 restado de: Presiones Inferior Centro Superior Presión 3 -1.8493 -0.8000 0.2493 Presión 4 -1.4493 -0.4000 0.6493 Presiones ----+---------+---------+---------+----- Presión 3 (-------*--------) Presión 4 (--------*-------) ----+---------+---------+---------+----- -2.4 -1.2 0.0 1.2 Presiones = Presión 3 restado de: Presiones Inferior Centro Superior ----+---------+---------+---------+----- Presión 4 -0.6493 0.4000 1.4493 (-------*--------) ----+---------+---------+---------+----- -2.4 -1.2 0.0 1.2

Page 50: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

50

6.2 ANOVA Diseño en Cuadrado Latino En el Diseño en cuadro latino (DCL) se controlan dos factores de bloque y uno de tratamientos; los tres factores tienen la misma cantidad de niveles En el Diseño en cuadro Grecolatino (DCGL) se controlan tres factores de bloque y un factor de tratamiento, los cuatro factores utilizan la misma cantidad de niveles Situación Esquemática

Tipo Terreno CR 1 CR 2 CR 3 CR 4

1 A=17 D=11 C=10 B=11

2 B=11 C=11 D=11 A=15

3 C=15 B=15 C=10 D=8

4 D=15 A=17 B=11 C=11

Resultados Recorrido del Vehículo en Kilómetros Tipo Aditivo Combustible A,B,C,D Clase de Vehículos Camionetas Rurales CR1, CR2, CR3, CR4 Tipo de Terreno Tipo 1, Tipo 2, Tipo 3, Tipo 4

Aditivo Tipo

Terreno Camioneta Rendimien

to

A 1 1 17

D 1 2 11

C 1 3 10

B 1 4 11

B 2 1 11

C 2 2 11

D 2 3 11

A 2 4 15

C 3 1 15

B 3 2 10

C 3 3 10

D 3 4 8

D 4 1 15

A 4 2 17

B 4 3 11

C 4 4 11

El efecto significativo se encuentra en el factor de bloque “Aditivo” ya que su valor-p 0.022 es menor que α=0.05 y los otros dos no, por lo tanto se concluye que al aceptar la Hipótesis nula en estos dos factores, se consideran estadísticamente iguales

Gráfica de efectos principales para Rendimiento Modelo lineal general: Rendimiento vs. Aditivo, Tipo Terreno, Camioneta Factor Tipo Niveles Valores Aditivo fijo 4 A, B, C, D Tipo Terreno fijo 4 1, 2, 3, 4 Camioneta fijo 4 1, 2, 3, 4 Análisis de varianza para Rendimiento, utilizando SC ajustada para pruebas Fuente GL SC Sec. SC Ajust. CM Ajust. F P Aditivo 3 66.383 46.792 15.597 6.95 0.022 Tipo Terreno 3 6.367 6.838 2.279 1.02 0.449 Camioneta 3 25.542 25.542 8.514 3.80 0.077 Error 6 13.458 13.458 2.243 Total 15 111.750 S = 1.49768 R-cuad. = 87.96% R-cuad.(ajustado) = 69.89%

DCBA

16

15

14

13

12

11

Aditivo

Me

dia

Gráfica de efectos principales para RendimientoMedias ajustadas

26/07

Page 51: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

51

210-1-2

99

90

50

10

1

Residuo

Po

rce

nta

je

1816141210

2

1

0

-1

Valor ajustado

Re

sid

uo

2.01.51.00.50.0-0.5-1.0-1.5

6

4

2

0

Residuo

Fre

cu

en

cia

16151413121110987654321

2

1

0

-1

Orden de observación

Re

sid

uo

Gráfica de probabilidad normal vs. ajustes

Histograma vs. orden

Gráficas de residuos para Rendimiento

26/07

Page 52: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

52

7 Tablas de Contingencia

7.1 Tablas de contingencia Permite el estudio de variables cualitativas o cuantitativas cuyos datos están recogidos en forma de tabla de frecuencias. El denominador común es que tienen una misma clase de distribución teórica: la distribución χ2 (chi-cuadrado ó ji-cuadrado). En esencia se van a abordar tres tipos de problemas:

Prueba de Bondad de Ajuste, Consiste en determinar si los datos de cierta muestra corresponden a cierta distribución poblacional.

Prueba de Homogeneidad de varias muestras cualitativas,

Consiste en comprobar si varias muestras de un carácter cualitativo proceden de la misma población.

Prueba de Independencia,

Consiste en comprobar si dos características cualitativas están relacionadas entre sí.

7.2 Prueba Chi2

Prueba de Bondad de Ajuste, Permite validar las hipótesis sobre la distribución teórica en la población que se realiza en la estadística paramétrica, por ejemplo los contrastes de hipótesis, intervalos de confianza, regresión lineal, etc. Se desea probar si un “dado” de una casa de juegos tiene perfección en su construcción o está cargado. Los resultados obtenidos en 100 lanzamientos son como sigue

Page 53: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

53

Valor del dado Veces que aparece

1 12

2 22

3 25

4 20

5 16

6 5

Función de distribución acumulada Chi-cuadrada con 5 GL x P( X <= x ) 16.1 0.993436 Calculando el valor d P (1-0.993436) = 0.006564

Por tanto, podemos considerar que el p-valor es significativo (menor a 0.05). Concluiremos, que las evidencias que había en un principio, permiten aceptar que el dado no es correcto.

Prueba de Homogeneidad de varias muestras cualitativas Estamos interesados en determinar si los datos correspondientes a dos o más muestras aleatorias provienen de la misma población

valor veces Probabilidad Frecuencia Esperada

Chi cuadrada

1 12 0.166 16.6 1.27470

2 22 0.166 16.6 1.75663

3 25 0.166 16.6 4.25060

4 20 0.166 16.6 0.69639

5 16 0.166 16.6 0.02169

6 5 0.166 16.6 8.10602

valor Desarrollan Enfermedad

No desarrollan Enfermedad

Fumadores 20 60

No fumadores 45 15

Desarrollando los cálculos respectivos obtenemos la frecuencia esperada (1/6)*100 Calculamos Chi cuadrada (Veces-Frecuencia Esperada)2/Frecuencia Esperada

Suma Chi Cuadrada= 16.10603

Page 54: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

54

En los resultados aparecen las frecuencias esperadas bajo el supuesto de homogeneidad. Con un p-valor de 0,000 hay suficiente evidencia en contra de que la hipótesis nula sea cierta. Por tanto, la rechazaríamos; parece evidente que los fumadores no provienen de la misma población y están más propensos a desarrollar enfermedad.

Prueba de Independencia Mide relaciones entre variables:

Mide relaciones entre variables categóricas, donde no es posible aplicar los métodos clásicos de Inferencia Estadística como la Regresión Lineal.

También es aplicable a variables cuantitativas si no se verifican los supuestos necesarios a satisfacer por otras técnicas estadísticas.

Establecer la relación entre grupos etéreos y el nivel de violencia que se ve en los programa de televisión

Prueba Chi-cuadrada: Grupo1, Grupo 2, Grupo 3 Los conteos esperados se imprimen debajo de los conteos observados Las contribuciones Chi-cuadradas se imprimen debajo de los conteos esperados Grupo1 Grupo 2 Grupo 3 Total 1 12 15 25 52 16.64 17.16 18.20 1.294 0.272 2.541 2 20 18 10 48 15.36 15.84 16.80 1.402 0.295 2.752 Total 32 33 35 100 Chi-cuadrada = 8.555, GL = 2, Valor P = 0.014

El valor del estadístico del contraste es 8.555. El p-valor asociado a este valor es 0,014. Al ser menor a 0.05 deberemos rechazar la hipótesis nula de independencia, y por lo tanto concluir que existen diferencias entre el tipo de televisión observada y el grupo etario.

valor Niños Jóvenes Adultos

Violencia Moderada 12 15 25

Gran Violencia 20 18 10

Prueba Chi-cuadrada: Des Enfermedad, No Des Enfermedad

Des No Des Enfermedad Enfermedad Total 1 20 60 80 37.14 42.86 7.912 6.857 2 45 15 60 27.86 32.14 10.549 9.143 Total 65 75 140 Chi-cuadrada = 34.462, GL = 1, Valor P = 0.000

Page 55: 3 guia imp lss iii  analizar weps 02 ago 13 1

Manual de Intervención País. Lean Six Sigma. Fase ANALIZAR

Ed

ició

n 2

01

3

55

Carta de Gestión de la Fase Analizar

ETAPA 3

FECHA

h formación

FECHA h asesoría

h auditoría

No. COMPROMISOS RESPONSABLES FECHA% AVANCE

COMPROMISOS

1

Examinar los procesos e

identificar los potenciales

"cuellos de botella", así como las

desconexiones y redundancias

que puedan contribuir al

problema.

2

Analizar el tiempo de ciclo y de

valor, localizando áreas en las

que se dedican tiempo y recursos

a tareas no críticas para el cliente.

3

Analizar los datos del proceso y

su rendimiento actual,

comprender las razones de la

variación del proceso e identificar

las causas potenciales.

4Desarrollar hipótesis de causa-

efecto para explicar el problema.

5

Investigar y verificar la hipótesis

causa-efecto, con el fin de

certificar que se han puesto al

descubierto los factores que

explican directamente la relación

causa / efecto de la salida del

proceso, en relación a las

entradas que impulsan al mismo.

NOMBRE DEL PROYECTO:

NOMBRE DE LA EMPRESA:

AVANCE TERCERA FASE ANALIZAR