ANALOGNA MIKROELEKTRONIKA 2017mikroelektronika.elfak.ni.ac.rs/analogna/files/...(/(.75216., )$.8/7(7...

Preview:

Citation preview

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

1

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

Univerzitet u Nišu Elektronski fakultet

Katedra za mikroelektroniku

ANALOGNA MIKROELEKTRONIKA

(Semestar V, 2017. godina)

PRATEĆI MATERIJAL ZA LABORATORIJSKE VEŽBE

Danijel Danković

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

2

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

I. LM317

1. Create a new symbol (File->New Symbol...).

2. (File->Save as), name the symbol (for example “LM317”), and choose a safe place for it to be saved.

3. Now build the symbol shown in Fig. 1 (Draw->...). Fig.1

4. Add the pins as shown in Fig. 2 (Edit-> Add Pin/Port...). Fig.2

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

3

5. Now define the attributes as shown in Fig. 3 (Edit->Attributes->Edit Attributes...).

6. Edit the visibility of attributes as shown in Fig. 4 (Edit->Attributes-> Attribute Window...).

Fig.3 Fig.4

7. Add text LM317 (Draw->Add text...) to your symbol.

8. Your symbol is shown in Fig. 5. Fig.5

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

4

9. Edit SPICE Netlist so that it is the same as the one listed below, name it (“LM317.sub”) and choose a safe place for it to be saved. .SUBCKT LM317 in adj out * PEI 08/98 p62 J1 in out 4 JN Q2 5 5 6 QPL .1 Q3 5 8 9 QNL .2 Q4 8 5 7 QPL .1 Q5 81 8 out QNL .2 Q6 out 81 10 QPL .2 Q7 12 81 13 QNL .2 *Q8 10 5 11 QPL .2 Q8 10A 5 11 QPL .2 Q9 14 12 10 QPL .2 Q10 16 5 17 QPL .2 Q11 16 14 15 QNL .2 OFF Q12 out 20 16 QPL .2 Q13 in 19 20 QNL .2 Q14 19 5 18 QPL .2 Q15 out 21 19 QPL .2 Q16 21 22 16 QPL .2 Q17 21 out 24 QNL .2 Q18 22 22 16 QPL .2 Q19 22 out 241 QNL .2 Q20 out 25 16 QPL .2 Q21 25 26 out QNL .2 Q22A 35 35 in QPL .2 Q22B 16 35 in QPL .2 Q23 35 16 30 QNL .2 Q24A 27 40 29 QNL .2 Q24B 27 40 28 QNL .2 Q25 in 31 41 QNL 5 Q26 in 41 32 QNL 50 D1 out 4 DZ D2 33 in DZ D3 29 34 DZ R1 in 6 310 R2 in 7 310 R3 in 11 190 R4 in 17 82 R5 in 18 5.6K R6 4 8 100K R7 8 81 130 *R8 10 12 12.4K R8 10A 12 12.4K R9 9 out 180 R10 13 out 4.1K R11 14 out 5.8K R12 15 out 72 R13 20 out 5.1K R14 adj 24 12K R15 24 241 2.4K R16 16 25 6.7K R17 16 40 12K R18 30 41 130 R19 16 31 370 R20 26 27 13K R21 27 40 400 R22 out 41 160 R23 33 34 18K

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

5

R24 28 29 160 R25 28 32 3 R26 32 out .1 C1 21 out 30PF C2 21 adj 30PF C3 25 26 5PF CBS1 5 out 2PF CBS2 35 out 1PF CBS3 22 out 1PF .MODEL JN NJF (BETA=1E-4 VTO=-7) .MODEL DZ D(BV=6.3) .MODEL QNL NPN (EG=1.22 BF=80 RB=100 CCS=1.5PF TF=.3NS TR=6NS + CJE=2PF CJC=1PF VAF=100 IS=1E-22 NF=1.2) .MODEL QPL PNP (BF=40 RB=20 TF=.6NS TR=10NS CJE=1.5PF CJC=1PF VAF=50 + IS=1E-22 NF=1.2) .ENDS LM317

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

6

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

II. Linearni izvori napajanja

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Linearni izvori napajanja”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 6. Fig.6

4. Run the simulation (Simulate->Run).

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

7

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

III. Linearni izvori napajanja-2

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Linearni izvori napajanja-2”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 7. Fig.7

4. Run the simulation (Simulate->Run).

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

8

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

IV. Linearni izvori napajanja-3

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Linearni izvori napajanja-3”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 8. Fig.8

4. Run the simulation (Simulate->Run).

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

9

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

V. DC/DC pretvarač LM317T

1. Realizovati DC/DC pretvarač.

2. Iza DC konektora postaviti diodu koja služi za zaštitu od suprotne polarizacije.

3. Napraviti DC/DC pretvarač sa promenljivim izlazom u opsegu napona od VOUTmin =3V do VOUTmax =9V (za ulazni napon VIN =12V). Izlaz podešavati trimerom Rp. Primer:

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

10

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

VI. DC/DC pretvarač LM350

1. Realizovati DC/DC pretvarač

2. Napraviti DC/DC pretvarač sa naponom na izlazu VOUT =5V (za ulazni napon VIN =12V). Izlaz podesiti trimerom Rp. Primer:

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

11

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

VII. DC/DC pretvarač TS1086

1. Realizovati DC/DC pretvarač

2. Napraviti DC/DC pretvarač sa naponom na izlazu VOUT =5V (za ulazni napon VIN =12V). Izlaz podesiti trimerom Rp. Primer:

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

12

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

VIII. DC/DC pretvarač LM317T

1. Realizovati DC/DC pretvarač.

2. Napraviti DC/DC pretvarač sa naponom na izlazu VOUT =7.5V (za ulazni napon VIN =12V). Izlaz podesiti trimerom Rp. Umesto trimera 2k koristiti rednu vezu trimera 1k i fiksnog otpornika 1k. Primer:

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

13

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

IX. Step-Down Switching Regulator - 1

1. Start the LTspice IV program (Start->All Programs-> LTspice IV).

2. Create a new schematic (File->New Schematic...).

3. (File->Save as), name the schematic (for example “Step-Down Switching Regulator LT1766”), and choose a safe place for it to be saved.

4. Now build the circuit shown in Fig. 9.

5. Run the simulation (Simulate->Run). Fig.9

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

14

http://www.linear.com/pc/productDetail.jsp?navId=H0,C1,C1003,C1042,C1032,C1064,P2090

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

15

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

X. Step-Down Switching Regulator - 2

1. Start the LTspice IV program (Start->All Programs-> LTspice IV).

2. Create a new schematic (File->New Schematic...).

3. (File->Save as), name the schematic (for example “Step-Down Switching Regulator LT1976”), and choose a safe place for it to be saved.

4. Now build the circuit shown in Fig. 10.

5. Run the simulation (Simulate->Run). Fig.10

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

16

http://www.linear.com/pc/productDetail.jsp?navId=H0,C1,C1003,C1042,C1032,C1063,P2310

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

17

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XI. Step-Down Switching Regulator - 3

1. Start the LTspice IV program (Start->All Programs-> LTspice IV).

2. Create a new schematic (File->New Schematic...).

3. (File->Save as), name the schematic (for example “Step-Down Switching Regulator LT3431”), and choose a safe place for it to be saved.

4. Now build the circuit shown in Fig. 11.

5. Run the simulation (Simulate->Run). Fig.11

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

18

http://www.linear.com/pc/productDetail.jsp?navId=H0,C1,C1003,C1042,C1032,C1064,P2075

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

19

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XII. Step-Down Switching Regulator - 4

1. Start the LTspice IV program (Start->All Programs-> LTspice IV).

2. Create a new schematic (File->New Schematic...).

3. (File->Save as), name the schematic (for example “Step-Down Switching Regulator LT3437”), and choose a safe place for it to be saved.

4. Now build the circuit shown in Fig. 12.

5. Run the simulation (Simulate->Run). Fig.12

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

20

http://www.linear.com/pc/productDetail.jsp?navId=H0,C1,C1003,C1042,C1032,C1063,P12353

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

21

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XIII. Step-Down Voltage Regulator – LM2596 SIMPLE SWITCHER - 1

1. Connect electrical elements on protoboard as shown in Figure 13.

2. Measure voltages DC INPUT and REGULATED OUTPUT. Fig.13

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

22

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XIV. Step-Down Voltage Regulator – LM2596 SIMPLE SWITCHER - 2

1. Connect electrical elements on protoboard as shown in Figure 14.

2. Measure voltages VIN and OUTPUT. Fig.14

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

23

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XV. Step-Down Voltage Regulator – LM2596 SIMPLE SWITCHER - 3

1. Connect electrical elements on protoboard as shown in Figure 15.

2. Measure voltages VIN and OUTPUT. Fig.15

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

24

http://www.national.com/ds/LM/LM2596.pdf

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

25

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XVI. Inverting Amplifier

1. Start the LTspice IV program.

2. Create a new schematic (File->New Schematic...).

3. (File->Save as), name the schematic (for example “Inverting Amplifier”), and choose a safe place for it to be saved. Now build the circuit shown in Fig 16.

4. Run the LTspice IV simulation (Simulate->Run).

5. Change V+, V-, R1 and R2: 1. V+ = 10 V, V- = -10 V, R1=10 kΩ, R2=10 kΩ 2. V+ = 5 V, V- = -5 V, R1=1 kΩ, R2=10 kΩ 3. V+ = 10 V, V- = 0 V (GND), R1=10 kΩ, R2=10 kΩ 4. V+ = 5 V, V- = 0 V (GND), R1=1 kΩ, R2=10 kΩ Fig.16

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

26

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XVII. Non-Inverting Amplifier

1. Start the LTspice IV program.

2. Create a new schematic (File->New Schematic...).

3. (File->Save as), name the schematic (for example “Non-Inverting Amplifier”), and choose a safe place for it to be saved. Now build the circuit shown in Fig 17.

4. Run the LTspice IV simulation (Simulate->Run).

5. Change V+, V-, R1 and R2: 1. V+ = 10 V, V- = -10 V, R1=10 kΩ, R2=10 kΩ 2. V+ = 5 V, V- = -5 V, R1=1 kΩ, R2=10 kΩ 3. V+ = 10 V, V- = 0 V (GND), R1=10 kΩ, R2=10 kΩ 4. V+ = 5 V, V- = 0 V (GND), R1=1 kΩ, R2=10 kΩ Fig.17

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

27

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XVIII. Summing Amplifier

1. Start the LTspice IV program.

2. Create a new schematic (File->New Schematic...).

3. (File->Save as), name the schematic (for example “Summing Amplifier”), and choose a safe place for it to be saved. Now build the circuit shown in Fig 18.

4. Run the LTspice IV simulation (Simulate->Run). Fig.18

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

28

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XIX. Invertujuća konfiguracija

1. Connect electrical elements on protoboard as shown in Figure 19.

2. Set channel 1. CH1: Sine waveform

1 kHz 2 V Amp 0 V offset

3. Measure voltage Vout ( VinR

RVout

1

2 ).

4. Change: V+ = 5 V, V- = -5 V, R1=1 kΩ Fig.19

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

29

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XX. Neinvertujuća konfiguracija

1. Connect electrical elements on protoboard as shown in Figure 20.

2. Set channel 1. CH1: Sine waveform

1 kHz 2 V Amp 0 V offset

3. Measure voltage Vout ( VinR

RVout

1

21 ).

4. Change: V+ = 5 V, V- = -5 V, R1=1 kΩ Fig.20

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

30

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXI. Sabirač

1. Connect electrical elements on protoboard as shown in Figure 21b.

2. Set channels 1 and 2. CH1: Square waveform CH2: Square waveform

1 kHz 1 kHz 1 V Amp 1.5 V Amp 0 V offset 0 V offset

3. Measure voltage V_out ( 213

1

2

1 V

R

RV

R

RoutV ).

Fig.21

Fig.21b

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

31

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXII. Sabirač_sa blokom za invertovanje napona

1. Connect electrical elements on protoboard as shown in Figure 22.

2. Set channels 1 and 2. CH1: Square waveform CH2: Square waveform

1 kHz 1 kHz 1 V Amp 1.5 V Amp 0 V offset 0 V offset

3. Measure voltage V_out ( 213

1

2

1 V

R

RV

R

RoutV ).

Fig.22

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

32

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXIII. Diferencijalni pojačavač

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Diferencijalni pojačavač”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 23. Fig.23

4. Run the simulation (Simulate->Run).

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

33

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXIV. Integrator

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Integrator”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 24. Fig.24

4. Run the simulation (Simulate->Run).

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

34

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXV. Integrator_2

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Integrator_2”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 25. Fig.25

4. Run the simulation (Simulate->Run).

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

35

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXVI. Diferencijator

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Diferencijator”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 26. Fig.26

4. Run the simulation (Simulate->Run).

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

36

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXVII. Diferencijalni pojačavač

1. Connect electrical elements on protoboard as shown in Figure 27.

2. Set channels 1 and 2. CH1: Sine CH2: Sine

1 kHz 1 kHz 1 Vpp Amp 500 mVpp Amp 0 V offset 0 V offset

3. Measure voltage V_out. ( )12(1

2 VV

R

RoutV , ako je

3

4

1

2

R

R

R

R )

Fig.27

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

37

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXVIII. Integrator

1. Connect electrical elements on protoboard as shown in Figure 28.

2. Set channel. CH1: Sine

1 kHz 1 Vpp Amp 0 V offset

3. Measure voltage V_out. ( dttinVCR

VoutV C )(21

12 )

Fig.28

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

38

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXIX. Integrator_2

1. Connect electrical elements on protoboard as shown in Figure 29.

2. Set channel. CH1: Sine

1 kHz 1 Vpp Amp 0 V offset

3. Measure voltage V_out. ( dttinVCR

outV )(21

1 )

Fig.29

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

39

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXX. Diferencijator

1. Connect electrical elements on protoboard as shown in Figure 30.

2. Set channel. CH1: Sine

1 kHz 0.5 Vpp Amp 0 V offset

3. Measure voltage V_out. (dt

tindVCRoutV

)(12

)

Fig.30

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

40

POTREBNO

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

41

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXXI. Instrumentacioni pojačavač

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Instrumentacioni pojačavač”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 31. Fig.31

4. Run the simulation (Simulate->Run).

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

42

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXXII. Eksponencijalni pojačavač

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Eksponencijalni pojačavač”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 32. Fig.32

4. Run the simulation (Simulate->Run).

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

43

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXXIII. Logaritamski pojačavač

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Logaritamski pojačavač”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 33. Fig.33

4. Run the simulation (Simulate->Run).

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

44

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXXIV. Linearno preslikavanje opsega napona

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Linearno preslikavanje opsega napona”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 34. Fig.34

4. Run the simulation (Simulate->Run).

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

45

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXXV. Instrumentacioni pojačavač

1. Connect electrical elements on protoboard as shown in Figure 35.

2. Set channels: CH1: DC 0.75 V

CH2: DC 1 V

3. Measure voltage V_out. ( 122

12

31

VV

R

R

R

RoutV

gain

)

Fig.35

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

46

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXXVI. Eksponencijalni pojačavač

1. Connect electrical elements on protoboard as shown in Figure 36.

2. R = 0.1 k, 1 k and 10 k .

3. Set channel: CH1: DC 0.7 1 V

4. Measure voltage V_out. ( TU

inV

seIRoutV_

)

Fig.36

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

47

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXXVII. Logaritamski pojačavač

1. Connect electrical elements on protoboard as shown in Figure 37.

2. R = 2.2 k, 3.3 k and 4.7 k .

3. Set channel: CH1: DC 1 5 V

4. Measure voltage V_out. (s

T IR

inVUoutV

ln )

Fig.37

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

48

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXXVII. Linearno preslikavanje opsega napona

1. Connect electrical elements on protoboard as shown in Figure 38.

2. Set channel CH1: 2.1. Press ARB button

2.2. Press Edit button (menu) 2.3. Choose Operation 2.4. Choose Line 2.5. Set up From X1 = 1 Y1 = 1

To X2 = 1000 Y2 = 16382 2.6. Choose Execute 2.7. Press ARB button 2.8. Set up -Period 5s

-Amplitude 1V (Low level 0 V, High level 1 V)

3. Measure voltage S_out. ( VsensorR

R

RR

RoutS

2

3

45

5 1 )

Fig.38

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

49

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XXXIX. Superdioda

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Superdioda”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 39. Fig.39

4. Run the simulation (Simulate->Run).

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

50

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XL. Izvor referentnog napona

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Izvor referentnog napona”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 40. Fig.40

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

51

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XLI. Triangular wave oscilattor

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Triangular wave oscillator”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 41. Fig.41

4. Run the simulation.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

52

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XLII. Detektor vrednosti (komparatori)

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Detektor vrednosti (komparatori)”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 42. Fig.42

4. Run the simulation.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

53

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XLIII. Superdioda

1. Connect electrical elements on protoboard as shown in Figure 43.

2. Set channel: CH1: Sine

1 kHz 200 mVpp Amp 0 V offset

3. Measure voltage Vout. Fig.43

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

54

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XLIV. Izvor referentnog napona

1. Connect electrical elements on protoboard as shown in Figure 44.

2. Measure voltage Vout. Fig.44

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

55

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XLV. Triangular wave oscilattor

1. Connect electrical elements on protoboard as shown in Figure 45.

2. Measure voltages V_sq and V_tri. Fig.45

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

56

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XLVI. Detektor vrednosti (komparatori)

1. Connect electrical elements on protoboard as shown in Figure 46.

2. Measure voltages Vref, Vin and Vout. Fig.46

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

57

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XLVII. Šmitovo kolo (komparatori)

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Šmitovo kolo (komparatori)”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 47. Fig.47

4. Run the simulation.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

58

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XLVIII. Schmitt trigger oscillator

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Schmitt_trigger_oscillator”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 48. Fig.48

4. Run the simulation.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

59

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

XLIX. Schmitt trigger oscillator with zener diodes

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Schmitt_trigger_oscillator_zener”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 49. Fig.49

4. Run the simulation.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

60

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

L. Šmitovo kolo (komparatori)

1. Connect electrical elements on protoboard as shown in Figure 50.

2. Measure voltages Vin and Vout. Fig.50

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

61

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LI. Schmitt trigger oscillator

1. Connect electrical elements on protoboard as shown in Figure 51.

2. Measure voltages Vc and V_out. Fig.51

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

62

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LII. Schmitt trigger oscillator with zener diodes

1. Connect electrical elements on protoboard as shown in Figure 52.

2. Measure voltage V_out. Fig.52

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

63

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LIII. Monostable Multivibrator

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Monostable Miltivibrator”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 53. Fig.53

4. Run the simulation.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

64

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LIV. NE555 –Monostable Operation

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Monostable Operation”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 54. Fig.54

4. Run the simulation.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

65

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LV. NE555 – Astable Operation

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Astable Operation”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 55. Fig.55

4. Run the simulation.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

66

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LVI. Monostable Multivibrator

1. Connect electrical elements on protoboard as shown in Figure 569.

2. Measure voltage Vout. Fig.56

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

67

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LVII. NE555 –Monostable Operation

1. Connect electrical elements on protoboard as shown in Figure 57.

2. Measure voltage Vout. Fig.57

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

68

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LVIII. NE555 – Astable Operation

1. Connect electrical elements on protoboard as shown in Figure 58.

2. Measure voltage Vout. Fig.58

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

69

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LIX. NE555 – Missing-Pulse Detector

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Missing-Pulse Detector”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 59. Fig.59

4. Edit Netlist so that it is the same as the one listed below, name it (“PWL_missing.txt”) and choose a safe place for it to be saved. 0m 0 0.001m 3 0.08m 3 0.081m 0

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

70

0.1m 0 0.101m 3 0.18m 3 0.181m 0 0.2m 0 0.2m 0 0.201m 3 0.28m 3 0.281m 0 0.3m 0 0.301m 3 0.38m 3 0.381m 0 0.4m 0 0.4m 0 0.401m 3 0.48m 3 0.481m 0 0.5m 0 0.501m 3 0.6m 3 0.601m 3 0.68m 3 0.681m 0 0.7m 0 0.7m 0 0.701m 3 0.78m 3 0.781m 0 0.8m 0 0.8m 0 0.801m 3 0.88m 3 0.881m 0 0.9m 0 0.9m 0 0.901m 3 0.98m 3 0.981m 0 1m 0

5. Run the simulation.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

71

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LX. NE555 – Frequency Divider

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Frequency Divider”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 60. Fig.60

4. Run the simulation.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

72

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LXI. NE555 – Pulse-Position Modulation

1. Create a new schematic (File->New Schematic...).

2. (File->Save as), name the schematic (for example “Pulse-Position Modulation”), and choose a safe place for it to be saved.

3. Now build the circuit shown in Fig. 61. Fig.61

4. Run the simulation.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

73

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LXII. NE555 –Missing-Pulse Detector

1. Connect electrical elements on protoboard as shown in Figure 62.

2. Set channel 1. CH1: ArbitraryWaveform.arb (Agilent 33521A Function/Arbitrary Waveform Generator)

3. Measure voltage Vout. Fig.62

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

74

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LXIII. NE555 –Frequency Divider

1. Connect electrical elements on protoboard as shown in Figure 63.

2. Set channel 1. CH1: Square waveform Frequency 10 kHz Amplitude (Low Level 0V, High Level 5V)

3. Measure voltage Vout. Fig.63

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

75

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LXIV. NE555 –Pulse Position Modulation

1. Connect electrical elements on protoboard as shown in Figure 64.

2. Set channel 1. CH1: Ramp waveform Frequency 500 Hz Amplitude (Low Level 0V, High Level 5V)

3. Measure voltage Vout. Fig.64

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

76

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LXV. Two-Pole Low-Pass Butterworth filter

1. Start the Start the LTspice IV program (Start->All Programs-> Start the LTspice IV).

2. Create a new schematic (File->New Schematic...).

3. (File->Save as), name the schematic (for example “Low-Pass Butterworth_filter”), and choose a safe place for it to be saved.

4. Now build the circuit shown in Fig. 65. Set up the values of Independent Voltage Source V3, as shown in Fig. 66. Fig.65

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

77

Fig.66

5. Edit Simulation Command (Edit->SPICE Analysis…) as shown in Fig 67.

Fig.67

6. Run the simulation.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

78

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LXVI. Two-Pole High-Pass Butterworth filter

1. Start the Start the LTspice IV program (Start->All Programs-> Start the LTspice IV).

2. Create a new schematic (File->New Schematic...).

3. (File->Save as), name the schematic (for example “High-Pass Butterworth_filter”), and choose a safe place for it to be saved.

4. Now build the circuit shown in Fig. 68. Set up the values of Independent Voltage Source V3, as shown in Fig. 69. Fig.68

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

79

Fig.69

5. Edit Simulation Command (Edit->SPICE Analysis…) as shown in Fig 70. Fig.70

6. Run the simulation.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

80

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LXVII. Two-Pole Low-Pass Butterworth filter_2

1. Start the Start the LTspice IV program (Start->All Programs-> Start the LTspice IV).

2. Create a new schematic (File->New Schematic...).

3. (File->Save as), name the schematic (for example “Low-Pass Butterworth_filter_2”), and choose a safe place for it to be saved.

4. Now build the circuit shown in Fig. 71. Fig.71

5. Edit Simulation Command (Edit->SPICE Analysis…) as shown in Fig 72.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

81

Fig.72

6. Run the simulation.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

82

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LXVIII. Two-Pole High-Pass Butterworth filter_2

1. Start the Start the LTspice IV program (Start->All Programs-> Start the LTspice IV).

2. Create a new schematic (File->New Schematic...).

3. (File->Save as), name the schematic (for example “High-Pass Butterworth_filter_2”), and choose a safe place for it to be saved.

4. Now build the circuit shown in Fig. 73. Fig.73

5. Edit Simulation Command (Edit->SPICE Analysis…) as shown in Fig 74.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

83

Fig.74

6. Run the simulation.

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

84

KOMPONENTE ZA TELEKOMUNIKACIJE Laboratorijske vežbe

LXIX. Two-Pole Low-Pass Butterworth filter_3

1. Connect electrical elements on protoboard as shown in Figure 75.

2. Set channels 1 and 2. CH1: 10 kHz 3 Vpp Amp 0 V offset

CH2: 100 kHz 500 mVpp Amp 0 V offset

3. Measure voltages V3 and Vout. Fig.75

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

85

KOMPONENTE ZA TELEKOMUNIKACIJE Laboratorijske vežbe

LXX. Two-Pole High-Pass Butterworth filter_3

1. Connect electrical elements on protoboard as shown in Figure 76.

2. Set channels 1 and 2. CH1: 10 kHz 3 Vpp Amp 0 V offset

CH2: 100 kHz 500 mVpp Amp 0 V offset

3. Measure voltages V3 and Vout. Fig.76

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

86

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LXXI. Filtriranje telefonskog govornog signala

1. Connect electrical elements on protoboard as shown in Figure 77.

2. Set channel 1 (on Vin+) CH1: Sine waveform

a) b) c) 100 Hz 1 kHz 10 kHz

2 V Amp 2 V Amp 2 V Amp 0 V offset 0 V offset 0 V offset

3. Measure voltage Vout+. Fig.77

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

87

KOMPONENTE ZA TELEKOMUNIKACIJE Laboratorijske vežbe

LXXII. RC High-Pass filter

1. Connect electrical elements on protoboard as shown in Figure 78.

2. Set channel 1 (on Vin+) CH1: Sine waveform

a) b) c) 1 kHz 10 kHz 100 kHz

2 V Amp 2 V Amp 2 V Amp 0 V offset 0 V offset 0 V offset

3. Measure voltage Vout+. Fig.78

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

88

KOMPONENTE ZA TELEKOMUNIKACIJE Laboratorijske vežbe

LXXIII. RC Low-Pass filter

1. Connect electrical elements on protoboard as shown in Figure 79.

2. Set channel 1 (on Vin+) CH1: Sine waveform

a) b) c) 1 kHz 10 kHz 100 kHz

2 V Amp 2 V Amp 2 V Amp 0 V offset 0 V offset 0 V offset

3. Measure voltage Vout+. Fig.79

ELEKTRONSKI FAKULTET Katedra za mikroelektroniku

89

ANALOGNA MIKROELEKTRONIKA Laboratorijske vežbe

LXIV. Filtriranje telefonskog govornog signala_RC filtar

1. Connect electrical elements on protoboard as shown in Figure 80.

2. Set channel 1 (on Vin+) CH1: Sine waveform

a) b) c) 100 Hz 1 kHz 10 kHz

2 V Amp 2 V Amp 2 V Amp 0 V offset 0 V offset 0 V offset

3. Measure voltage Vout+. Fig.80

Recommended