Control System Part 3

Preview:

DESCRIPTION

This is a control system lecture note that was taught at University of Melbourne, Australia in 2014. This is the third part of its series.

Citation preview

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 1/29

Lecture slides for ELEN90055 prepared by Michael Cantoni (c) 2011, 2012, 2013

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

 

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 2/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

 

 

C s

E sR s   Y s

Di(s)

U s

Do(s)

Dm   sY  m

  s

 

 

C (s)

G0   s

Y  (s)

Do(s) =

  1

1 + G0(s)C (s)Y  (s)

R(s)  =

  G0(s)C (s)

1 + G0(s)C (s)

wit on y   o = 0wit on y   r = 0

G0(s) =  B0(s)

A0(s)  nominal  plant transfer function,  C (s) =

  P (s)

L(s)  controller transfer function

B0(s), A0(s)} and  P (s), L(s)}  coprime (no common roots) polynomial pairs

  Di(s), Do(s), Dm(s)  plant input, plant output and measurement noise uncertainty

  R(s), U (s), Y (s)  reference, control, and plant output signals

Y  (s) = D0(s) + G0(s)U (s) + Di(s)

U (s) = C (s)R(s)−Dm(s)− Y  (s)

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

 

 

E sR s   Y s

Di   s

U s

Do   s

Dm   sY  m   s

80

60

40

20

0

20

   M  a  g  n   i   t  u   d  e   (   d   B   )

100

102

104

106

90

45

0

45

90

   P   h

  a  s  e   (   d  e  g   )

Frequency response

Frequency (rad/sec)

K   100

0.01 s + 1

K   = 1

K   = 10

K   = 1K   = 10

1

1 + G0C 

G0C 

1 + G0C 

G0(s) =  100

0.01 s + 1  C (s) = K 

 

  

 

 

 

K   = 1

K   = 10

K   = 1K   = 10

K   K 

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 3/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

 

 

C s

E sR s   Y s

Di(s)

U s

Do(s)

Dm   sY  m

  s

G0   sH s

Y  (s) = G0(s)C (s)H (s)

1 + G0(s)C (s) R(s) +

  1

1 + G0(s)C (s)Do(s) +

  G0(s)

1 + G0(s)C (s)Di(s)−

  G0(s)C (s)

1 + G0(s)C (s)Dm(s)

C s

U (s) =  C (s)H (s)

1 + G0(s)C (s)R(s)−

  C (s)

1 + G0(s)C (s)Do(s)−

  G0(s)C (s)

1 + G0(s)C (s)Di(s)−

  C (s)

1 + G0(s)C (s)Dm(s)

H (s)   is a   stable   transfer function (reference filter)

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

S 0   s   + T 0   s   = 1, S i0   s   = G0   s S 0   s   = T 0   s /C s , S  u0   s   = S 0   s C s   = T 0   s /G0   s

Y  (s) =  T 0(s)H (s)R(s) + S 0(s)Do(s) + S i0(s)Di(s)− T 0(s)Dm(s)

U (s) =  S u0

H (s)R(s)−Dm(s)−Do(s)−G0(s)Di(s)

For a nominal plant  G0(s) =   B0(s)A0(s)

 and controller  C (s) =   P (s)L(s)

:

T 0(s)  .=

  G0(s)C (s)

1 + G0(s)C (s) =

  B0(s)P (s)

A0(s)L(s) + B0(s)P (s)  complementary sensitivity

S 0(s)  .=

  1

1 + G0(s)C (s)  =

  A0(s)L(s)

A0(s)L(s) + B0(s)P (s)  (output) sensitivity

S i0(s)  .=

  G0(s)

1 + G0(s)C (s) =

  B0(s)L(s)

A0(s)L(s) + B0(s)P (s)  input-disturbance sensitivity

S u0(s)  .=

  C (s)

1 + G0(s)C (s) =

  A0(s)P (s)

A0(s)L(s) + B0(s)P (s)  control sensitivity

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 4/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

The problem spec. translates to |S 0   jω   = 1−T 0   jω   | <<  1  for  ω  ∈ [0, 4   rad sec

Given a

 nominal plant model  G0(s) =   4(s+1)(s+2)2   and

 output disturbance model  do(t) = k + dv(t), where  k  is a constant and  dv(t)has energy confined to the frequency band  (0, 4)  rad/sec,

design a feedback controller that  desensitizes  the plant output to the disturbance

 

 

 

 

 

Choosing

T 0(s) =  G0(s)C (s)

1 + G0(s)C (s) =

  1

(τ 1s + 1)2(τ 2s + 1)2

with   τ 1   = 0.1   and   τ 2   = 0.01, achieves   |S 0( jω)|   <<   1   for   ω   ∈   [0, 4)   and the

corresponding controller is

C (s) =  T 0(s)

(1 − T 0(s))  ·

  1

G0(s) =

  106(s + 1)(s + 2)2

4((s + 10)2(s + 100)2 − 106)

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

10

100

10

104

0

100

   M  a  g  n   i   t  u   d  e   (   d   B   )

Bode Diagram

Frequency (rad/s)

10

100

10

104

0

100

   M  a  g  n   i   t  u   d  e   (   d   B   )

Bode Diagram

Frequency (rad/s)

10

100

10

104

0

100

   M  a

  g  n   i   t  u   d  e   (   d   B   )

Bode Diagram

Frequency (rad/s)

10

100

10

104

0

100

   M  a

  g  n   i   t  u   d  e   (   d   B   )

Bode Diagram

Frequency (rad/s)

C   jω

G0( jω)

S 0( jω)S i0   jω

S u0   jω

T  0   jω

S u0(s) =   T 0(s)G0(s)

 =   (s+1)(s+2)2

4(0.1s+1)2(0.01s+1)2   =⇒   |S u0( j3)| ≈ 20  dB!

 

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 5/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

|Λ0( jω)|

|T 0( jω)|   S 0( jω)|

good tracking of low-

frequency reference

low sensitivity to high-frequency

measurement noise

good rejection of low-frequency

output disturbance

|Λ0   jω.= G0   jω   C jω   |

large low-frequency loop-gain

small high-frequency loop-gain

   M  a  g  n   i   t  u   d  e   (   d   B   )

Frequency response

Frequency (rad/sec)

NOTE:   T 0( jω) =  Λ0( jω)

1 + Λ0( jω);   S 0( jω) =

  1

1 + Λ0( jω)

loop-gain bandwidth   ωb   :   |Λ0( jωb)|  = 1

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

If   |Λ0( jω)|   ≈  1, then both   |S 0( jω)|  and   |T 0( jω)|  could be large – all depends on

∠Λ0( jω)  at these frequencies

Similarly, using 1− |Λ0| ≤ |1 + Λ0( jω)|, for frequencies where  |Λ0( jω)| <<  1,

|S 0( jω)| ≈ 1,   |T 0( jω)| <<  1,   |S i0( jω)| ≈   |G0( jω)|,   |S u0( jω)| ≈   |C ( jω)|.

Consider the inequalities   |Λ0( jω)| − 1 ≤ |1 + Λ0( jω)| ≤ 1 + |Λ0( jω)|.For any frequency such that   |Λ0( jω)| >  1,

1|Λ0(jω)|+1

 ≤ |S 0( jω)| ≤   1|Λ0(jω)|−1

|Λ0(jω)||Λ0(jω)|+1  ≤ |T 0( jω)| ≤   |Λ0(jω)|

|Λ0(jω)|−1

1|C (jω)|   ·

  |Λ0(jω)||Λ0(jω)|+1  ≤ |S i0( jω)| ≤   1

|C (jω)|   ·  |Λ0(jω)||Λ0(jω)|−1

1

|G0(jω)|   ·

  |Λ0(jω)|

|Λ0(jω)|+1 ≤

|S u0( jω

)|≤   1

|G0(jω)|   ·

  |Λ0(jω)|

|Λ0(jω)|−1 .

As such, for frequencies where   |Λ0( jω)| >>  1,

|S 0( jω)| <<  1,   |T 0( jω)| ≈ 1,   |S i0( jω)| ≈1

|C ( jω)|,   |S u0( jω)| ≈

1

|G0( jω)|.

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 6/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

 

 

 

C s

E sR s   Y s

Di(s)

U s

Do(s)

Dm   sY  m

  s

G0   s

ess.

= limt→∞

e(t) = lims→0

sE (s) = lims→0

sS 0(s)R(s) = lims→0

s  1

1 + Λ0(s)R(s) = 0

ess   = 0

ess  = lims→0 s

  1

1 + Λ0(s)

1

s   =

  1

1 + Λ0(0)  =  S 0(0)

S 0   s

Λ0(0) =∞   =⇒   S 0(0) = 0

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

  

 

  

r(t), di(t), do(t), dm(t)

G0(s) = 1s

, C (s) = K    =⇒   T 0(s) =   K s + K 

, S 0(s) =   ss + K 

,

S i0(s) =  1

s + K , S u0(s) =

  Ks

s + K 

Λ0(s) = G0(s)C (s)

e t , u t , y t , ym   t

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 7/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

   

 

G0(s) =  s− 1

s + 3 , C (s) =  1

s− 1   =⇒   S 0(s) =  s + 3

s + 4 , T 0(s) =  1

s + 4 ,

S i0(s) =  s− 1

s + 4, S u0(s) =

  s + 3

(s− 1)(s + 4)

A0(s)L(s) + B0(s)P (s) = (s + 3)(s− 1) + (s− 1) = (s− 1)(s + 4)

{A0, B0},   {L,P }

Given a strictly proper nominal plant model  G0(s) =   B0(s)A0(s)

  and proper controller

C (s) =   P (s)L(s)   the closed-loop is internally stable if, and only if, all zeros of the

nominal characteristic polynomial

A0(s

)L

(s

) +B

0(s

)P 

(s

)

have strictly negative real part.

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

S 0.

=1

1 + G0C ;   T 0

.=

G0C 

1 + G0C ;   S i0

.=

G0

1 + G0C ;   S u0

.=

1 + G0C 

Λ0

.= G0C 

G0(s)

C s

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 8/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

  as2+ bs+ c   has zeros at   s =

 −b±√ b2−4ac

2a

 

 

n   = 2

an   = 1

for p(s) = s2 + ks + (1 − k)

if   [ p(s0) = 0 =⇒ (s0) <  0 ]

then 0  < k < 1

s3 + s2 + s+ 1

has zeros at

s = −1,± j

given a degree   n >  0   polynomial   p(s) =   sn + an−1sn−1 + · · · +  a1s +  a0, if the

zeros of  p(s)  all have negative real part, then  ai  > 0  for  i = 0, 1, . . . , n

follows by factorizing   p(s)   into product of first and second order polynomials with

positive coefficients, which is possible because all zeros have negative real part

so if any of the polynomial co-efficients is zero or negative we know there must be

a zero with non-negative real partthe condition is sufficient when  n = 1, 2, but not in general

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

  

G0(s) =   1s(s+1.5)

  and  C (s) = K  +   s

0.1s+1

0.1s3 + 1.15s2 + (0.1K  + 2.5)s +  K 

K > 0 and (0.1K  + 2.5) > 0 (i.e.   K > 0)

so stable if   K > 0 and   3K 

230  + 2.5 > 0

(i.e. for all   K > 0)

s3 0.1 (0.1K  + 2.5)

s2 1.15   K 

s1   3K 

230 + 2.5   0

s0

For p(s) =4

k=0

aksk, a4  > 0,

s4 a4   a2   a0s3 a3   a1   0

s2

b0.

=−

a4a1−a2a3

a3 b1.

=−

a4·0−a0a3

a3 = a0   0s1 c

  .= −

a3b1−a1b0

b00

s0 −

b0·0−b1c

c  = b1

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 9/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

G0(s) =   1s(s+1.5)

  and  C (s) = K  +   s

0.1s+1

0.1s3 + 1.15s2 + (0.1K  + 2.5)s +  K 

w = s+ 1

w3 0.1 0.1K  + 0.5

w2 0.85 0.9K − 1.45

w1   1

170(−K  + 114)

w0 0.9K −

1.45

0.1(w − 1)3 + 1.15(w − 1)2 + (0.1K  + 2.5)(w − 1) + K 

= 0.1w3 + 0.85w2 + (0.1K  + 0.5)w + (0.9K − 1.45)

so all closed-loop poles have real part less than  −1   if   2918

  < K < 114

so zeros lie in left-half plane if  0.9K − 1.45 > 0  and   1

170(114−K ) > 0

−1

(w) < 0   ⇔ (s) < −1

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

K > 0

1 + K  · F s0   = 0

F (s)   :

s0

K   =1

|F (s0)|

1 + K  · F (s) = 0   where   F (s) = M (s)

D(s)  =

m

k=1(s− β k)

n

k=1(s− αk)

e.g.   0.1s3 + 1.15s2 + (0.1K  + 2.5)s + K  = 0⇔ 1 +  K   0.1s+1

s(0.1s2+1.15s+2.5)  = 0

lim|ω|→∞

∠F ( jω) = (m− n)π

2

if this is not the case

(e.g.  F (s) = −1/s(s + 1)) then

analysis must be modified to

handle additional   π  rad phase

(2l + 1)π = ∠F (s0) =m

k=1∠(s0−β k)−

n

k=1∠(s0−αk)   for l  = 0,±1,±2, . . .

magnitude condition:   |K  ·  F s0   | = 1

phase condition:   ∠K  ·  F (s0) = (2l + 1)π   for  l = 0, ±1, ±2, . . .

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 10/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

  

F s

F s

1 + K  · F (s) = D(s) + KM (s)

D(s)

1 + K  · F (s) = K  ·

1

K D(s) + M (s)

D(s)

s   s   s

 

 

s− γ 

(s− γ )

∠(s− γ ) =

−∠(s− γ )

γ ∠   s− γ    = 0

γ 

γ 

s− γ    s− γ 

∠   s− γ    =  π

γ 

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

n m

K →∞

K → 0

n−m

m− n

s = σ   ηk

ηk

 

 

n > m

s = −σ

σ  .=

n

k=1αk −

m

k=1β k

n−m  and   ηk

.=

  (2k − 1)π

n−m  for k = 1, . . . , n−m

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 11/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

F (s)   n > m

|F s   |→ 0   |s|→∞   n > m

|s|

K    1 + KF s   1 +  K   1

sn−m

σ

s0

 

σ = −

(an−1 − bm−1)

n−m

  =

n

k=1αk −

m

k=1β k

n−m

F (s) =  sm + bm−1s

m−1 + · · · +  b1s +  b0

sn +  an−1sn−1 + · · ·a1s +  a0

=

m

k=1(s− β k)

n

k=1(s− αk)

=  1

sn−m + (an−1 − bm−1)sn−m−1 + · · · +  d1s +  d0 +   cm−1sm−1+···+c1s+c0

sm+bm−1sm−1+···+b1s+b0

1

(s− σ)n−m  =

  1

sn−m − σ(n−m)sn−m−1 + · · · + (n−m)(−σ)n−m−1s + (−σ)n−m

(n−m)∠ 1

s0= ∠− 1 = (2l + 1)π, l = 0,±1, . . . ,

∠s0  = 2k − 1   π/ n−m , k  = 1, 2, . . . , n−m

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

0.1s3 + 1.15s2 + (0.1K  + 2.5)s +  K  = 0 ⇔ 1 +  K   0.1s+1

s(0.1s2+1.15s+2.5) = 0

i.e.   F (s) =   (s+10)s(s+8.5895)(s+2.9105)

Root Locus

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

>> z = [-10];

>> r = roots([0.1,1.15,2.5])

r =

-8.5895

-2.9105

>> p = [0 r(1) r(2)];

>> g = 1;

>> F = zpk(z,p,g)

Zero/pole/gain:

(s+10)

---------------------

s (s+8.589) (s+2.911)

>> rlocus(F);

 

as  K →∞ two  (n−m = 2)

roots approach ∞ along asymptotes

that intersect the real axis at

σ = 0− 8.5895− 2.9105 + 10

2

with angles   η1  =  π

2,   η2  =

 3π

2

as  K →∞ one root approac es

the zero of  F (s)

at  s = −10

as  K  → 0  the locus of roots

approaches the poles of  F (s)at  s = 0,−2.9105,−8.5895

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 12/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

Λ0   jω   = G0   jω   C jω

2  

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

s

s

 

s + 1

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

0   3 4 5 6 7 8

0

3

4

5

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

s   →   (s + 1)2

two clockwise

encirclements

of the origin

when two zerosare encircled

s   →

1

s + 1

one  anti -clockwise

encirclement

of the origin

when one  pole 

is encircled

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 13/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

0  

0

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

s   →

s + 1

(s + 1.25)2

N  =  Z − P 

N  = number of clockwise encirclements of the origin made by

F (s)  as   s  traverses a closed contour in clockwise direction

Z  = number of zeros of  F (s)  inside the contour

P  =  number of poles of  F (s)  inside the contour

 

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

Λ0   jω   = −1   for   −∞ <  ω  <∞

  s

  s

ε

→∞

→ 0

 

|Λ0   jω p   | = ∞

 jω p

− jω p

x

x

1 + Λ0(s) = 1 + G0(s)C (s)

# encirclements of  0  made by 1 +Λ0   s   =  # encirclements of  −1  made by  Λ0   s

 

Nyquist stability criterion:

By Cauchy’s principle of the argument

the closed-loop has  Z  =  N  + P 

unstable poles where

P  =  # RHP poles of  Λ0(s)

N  =  # clockwise encirclements of 

− 1  made by  Λ0(s)  as   s  traverses  N ;

The closed-loop is stable if, and only if,

N  = −P   (i.e.   Λ0(s)  makes  P   anti-

clockwise encirclements of   − 1.)

 N (, ε)

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 14/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

 

limω→0

Λ0   jω

lim→∞

Λ0(ejθ)s

0 ≤ ω  <∞

Λ0   s

ε→ 0

−nπΛ0(s)

n

2

−1 + j0

{Λ0(s) | s  ∈ N (, ε)  for sufficiently large    and sufficiently small   ε}

lim|s|→∞

Λ0(s) = 0

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

1

Nyquist Diagram

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

2   3  

2

Nyquist Diagram

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

Λ0(s) =  1

(s + 1)2

Λ0(s) =  20

(s + 1)(s + 2)(s + 3)

ω   = 0ω  = +∞

ω   = −∞

ω   = 0

ω  = +∞

ω   = −∞

Λ0( jω) =  1 − ω

2

(1 + ω2)2

 − j2ω

(1 + ω2)2

ω   = 1

ω  = −1

Λ0(s)

>> lambda = tf(1,[1 2 1]);

>> nyquist(lambda);

 

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 15/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

Nyquist Diagram

Real Axis

   I  m  a  g

   i  n  a  r  y   A  x   i  s

Nyquist Diagram

Real Axis

   I  m  a  g   i  n  a  r  y   A

  x   i  s

Λ0(s) =  5

(s + 1)(s− 2)(s + 3)

Λ0(s) =  1

s(s + 1)

ω   = 0ω  = +∞

ω   = −∞

ω   = −∞

ω  = +∞

Λ0(s)

ω   = 0+

ω   = 0−

s   = 0

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

Nyquist Diagram

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

Λ0(s) = 1.5(s + 1)

s(s− 4)

Λ0(s) =  e−2s

(s + 1)2

ω  = +∞

ω   = −∞

ω   = 0

ω   = 0+

ω   = 0−

 

Λ0(s)

                                                               

                                                                                                                                             

Nyquist Diagram

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

Λ0(s)

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 16/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

1 + j0

−1 + j0

Nyquist Diagram

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

0 5 10 15 20 25 30 35 40 45 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7Step Response

Time (sec)

     A    m    p     l     i     t    u     d    e

L−1[

  Λ0

1 + Λ0

· 1

s](t)

ω   = 0

ω  = +∞

 

 

closed-loop poles:   s = −0.9393;

s = −0.0304± j1.3936

Λ0(s) =  0.825

s3 +  s

2 + 2s + 1

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 17/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

Λ0(s) = G0(s)C (s)

Nyquist Diagram

Real Axis

   I  m  a  g   i  n  a  r

  y   A  x   i  s

|a|

η

Λ0(s) =  30

(s + 1)(s + 2)(s + 3)

|1 + Λ0|  =  dist. from   − 1 + j0   to  Λ0

cross-over frequency

|Λ0( jω)| = 1

> 30◦

good

> 15   goo

< 4  goo

PM:  M f   = φ   (degrees or radians)

GM:  M g  = 20 log10

(  1

|a|) = −20log

10 |a|  (dB)

SP:  1

η  =

  1

minω |1 + Λ0( jω)| = max

ω

|S 0( jω)|

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

maxω

|Λ0   jω   | <  1

   M  a  g  n   i   t  u   d  e   (   d   B   )

   P   h  a  s  e   (   d

  e  g   )

Bode Diagram

Frequency (rad/sec)

M f 

M g

Λ0(s) =

(s + 1)(s + 2)(s + 3) S 0  =1

1 + Λ0

20log10

  1

minω |1 + Λ0( jω)|

 

Λ0(s)

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 18/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013

G s   =   G0   s   + Gε   s

G0   s

G0   s

G0(s)

G∆   s

Gε(s)

G s   =  G0   s   1 +  G∆   s

Note:   Gε   s   =  G∆   s G0   s

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

G0(s) =  1

s(s2 + s + 1)(0.3s + 1)

G1(s) =   1s(s2 + s + 1)(0.2s + 1)

G2(s) =  1

s(s2 + s + 1)(0.5s + 1)

Gε2

G∆2

Gε1

G∆1

G0

10

100

101

0

10

   M  a  g  n   i   t  u   d  e   (   d   B   )

Frequency (rad/sec)

G0

G0(s) =s(0.5s + 1)

Gε2

Gε1

G∆2

G∆1

G0

G0(s) =  11

(10s + 1)(s2 + s + 1)

10

10

100

101

0

10

   M  a  g  n   i   t  u   d  e   (   d   B   )

Frequency (rad/sec)

10

100

101

102

0

10

20

   M  a  g  n   i   t  u   d  e   (   d   B   )

Frequency (rad/sec)

Gε2

G∆2

Gε1

G∆1

G2(s) =  e−0

.2s

s(0.5s + 1)

G1(s) =  11

(20s + 1)(s2 + s + 1)

G2(s) =(5s + 1)(s2 + s + 1)

G1(s) =  e−0

.4s

s(0.5s + 1)

Note: perturbations

Gε  and  G∆

are all stable for the

examples shown; may

not always be the case

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 19/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 Suppose  G0(s)   is the nominal transfer function model of a transfer function  G(s)

 Suppose C (s) is a strictly proper feedback controller transfer function that internally

stabilizes  G0(s)

 Suppose  Λ0

.= G0C   and  Λ

  .= GC  have same number of RHP poles

e.g.   G =  G0 + Gε  or  G =  G0(1 + G∆)  with  Gε, G∆   stable

 

Nyquist Diagram

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

|1 + Λ0( jω)|

Λ0   jωΛ   jω

|GεC jω   | =  |G∆Λ0   jω   |

|G( jω)| ·  |C ( jω)|

|1 + Λ0( jω)| < 1   or   |G∆( jω)| ·

  |Λ0( jω)|

|1 + Λ0( jω)| < 1   for all frequencies

Then  C (s)  also internally stabilizes  G(s)   if   

The condition ensures the number of encirclements

of the critical point does not change

The condition is only sufficient (i.e. potentially conservative)

In practice may only have frequency dependent bound on

|G∆( jω)|  with no phase information and so hard to do better

Result can be extended to unstable perturbations - just

need to account for appropriate number of encirclements

as required to satisfy Nyquist stability criterion

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 Suppose  G0(s)   is the nominal transfer function model of a transfer function  G(s)

  Let  G∆(s) =   G(s)−G0(s)G0(s)

  be the multiplicative modelling error

 Nominal and achieved performance similar if  S ∆   jω   ≈ 1 + j0  for all frequencies

his is roughly the case provided   |T 0( jω)|   is sufficiently small where   |G∆( jω)|  be-comes significant (often high frequency) so that  |T 0( jω)G∆( jω)| <<  1.

For a controller  C (s)  that achieves the nominal closed-loop sensitivity functions

S 0(s), T 0(s), S i0(s)   and   S u0(s)

we have by direct calculation the following perturbed sensitivity functions:

S (s) = S 0(s)S ∆(s)

T (s) = T 0(s)(1 + G∆(s))S ∆(s)

S i(s) = S i0(s)(1 + G∆(s))S ∆(s)

S u(s) = S u0(s)S ∆(s)

where  S ∆(s)  .=   1

1+T 0(s)G∆(s)

Model uncertainty typically limits loop-gain bandwidth 

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 20/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

   M  a  g  n   i   t  u   d  e   (   d   B   )

2

3

   P   h  a  s  e   (   d  e  g   )

Frequency (rad/sec)

G0S i0

T 0

C Λ0

Consider a feedback control loop with:

nominal plant model  G0(s) =  2

(s + 1)(s + 2),   unit step reference  r(t) = ς (t),

input disturbance di(t) = A sin(t + φ),   stable MME s.t.   |G∆( jω)| ≤ ω√ ω2 + 400

and controller  C (s) = 600 (s + 1)(s + 2)(s + 3)(s + 5)s(s2 + 1)(s + 100)

T 0   jω   ≈ 1  over the range  0 ≤ ω ≤ 1,

by virtue of high gain of controller; as such,

reference tracking performance is good

gain of input sensitivity function is  0  at

1  rad/sec, by virtue of controller poles at   ±  j;

as such, input disturbance rejection is achieved

the LHP zeros of controller add phase to achieve

good phase margin; sensitivity peak also small

loop-gain bandwidth is maximized for fast response

while accounting for modelling uncertainty which

becomes of size  1√ 

2≈ 0.7  at  20  rad/sec

high gain of controller at high frequency could

be problem in the presence of measurement noise

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

1 + j0

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 21/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

  

    

  

  

ωb   :   |Λ0   jωb   | = 1

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013

 

 

 

0  s   = 1− e

−τ s

0 (s) =  e

−τ s1

10

100

101

102

0

10

   M  a  g  n   i   t  u   d  e   (   d   B   )

Bode Diagram

Frequency (rad/sec)

0 (s)

0  s

Given a plant model  G(s) =  e−τ s

G0(s)

the muliplicative modelling error is

G∆(s) =  e−τ s

− 1

which has same magnitude plot as  S 0(s)

1

τ =

  1

0.02  = 5

e−τ s

e−τ s

Do

Y  

+ ++

+

+

1

1− e−τ s

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 22/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

    

  

Given a nominal plant  G0(s) =   B0(s)A0(s)

  and any controller  C (s) =   P (s)L(s) , suppose

s  =  z   is a zero and   s  =  p  a pole of  Λ0(s) =  G0(s)C (s)   (i.e.   z   is an uncancelledero and  p an uncancelled pole of the plant or controller):

T 0(z) =   B0(z)P (z)A0(z)L(z) + B0(z)P (z)

 = 0   S 0(z) = 1 − T 0(z) = 1

S 0( p) =  A0( p)L( p)

A0( p)L( p) + B0( p)P ( p) = 0   T 0( p) = 1− S 0( p) = 1

If  s  =  p   is an uncancelled pole of  C (s)  then

S i0( p) =  B0( p)L( p)

A0( p)L( p) + B0( p)P ( p) = 0

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

α > 0

z   p     z > −α   and     p > −α

z   and   p

   ∞

0

h(t)e−ztdt = lim

s→z

H (s)   for any   z   in region of convergence for  H (s)  .=  L[h](s)

 

S 0   z   = 1, T 0   z   = 0, S 0   p   = 0, T 0   p   = 1, S 0   0 = 0, T 0   0 = 1

s   = 0

E (s) = S 0(s)(R(s)−D(s))

For  R(s) =  1

s  and  D(s) = 0   OR   R(s) = 0  and  D(s) = −

1

s

(i)    ∞

0

e(t)e−zt dt =  E (z) = S 0(z)1

z

  = 1

z

  and

(ii)

   ∞

0

e(t)e− pt dt =  E ( p) = S 0( p)1

 p = 0

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 23/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

  

 

 

z

 p   α

s   = 0

s =  p

ii

i

y t > r t

s = z

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

ln |S 0   s   | = − ln |1 + Λ0   s   |

   ∞

0

ln |S 0( jω)|dω = 0

 

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 24/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

X (s) = X (s)Γ(s)

  where  X (s)   is an order  q − 1  polynomial depending on the initial

conditions and  Γ(s) = sq +

q−1

n=0

cnsn

Γ   s

x = 0   with  x(0) = x;   x(t) = x   for  t ≥ 0

x = 0   with  x(0) = 0,  x(0) = x;   x(t) = xt   for  t ≥ 0

x + ω2x = 0   with  x(0) = x,  x(0) = 0;   x(t) = x cos(ωt)   for  t ≥ 0

x + ω2x = 0   with  x(0) = 0,  x(0) = x;   x(t) = x sin(ωt)   for t ≥ 0

and more generally  dqx

dtq+

q−1

n=0

cndnx

dtn= 0  with

  dnx

dtn= xn   for n = 0, . . . , q  − 1

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013

Λ0   s   = G0   s C s

 

 

Γ(s) =

q−1

n=0

(s− γ n) (with  (γ n) ≥ 0)

γ n

S 0   γ n   = 0   and   T 0   γ n   = 1

limt→∞

e(t) = 0

Y  (s) =  T 0(s)R(s)

E (s) =  R(s)− Y  (s) = (1− T 0(s))R(s) =  S 0(s)R(s)

U (s) =  S u0(s)R(s)

E s   =  S 0   s R s

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 25/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

 

C s

E sR s   Y sU s

D(s)

Gi0   s   Go0   s

Gi0(s) = 1   and  Go0(s) =  G0(s)

G0   = Go0Gi0

Γ(s) =   s

2

+ 1

 

Γ(s) =

q−1

n=0

(s− γ n) (with  (γ n) ≥ 0)

γ n   Gi0   s

Y s

Y  (s) =  S 0(s)Go0(s)D(s)   U (s) = −S u0(s)Go0(s)D(s) = −

 T 0(s)

Gi0(s)D(s)

Gi0   s   =  G0   s   and  Go0   s   = 1

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

  

Gi0(s) = 1

S   = S 0S ∆

S 0   =1

1+G0C 

T 0   γ n   = 1

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 26/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

     

  

H (s)   T 0(s)

T 0   s H s   = 1

H s

s = γ n

Y s   =  T 0   s H s R s   ;   E s   = 1− T 0   s H s R s   ;   U s   =   S u0   s H s R s

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

 

r t   =   K 1 sin   t   + K 2 +  ra   t

K 1   K 2   ra   t

[0, 5]rad/sec   3 rad/sec

T 0   s   3 rad sec

T 0   s H s   5 rad sec

s  = 0   s = ± j

C (s) =  (s2+3s+2)(5s2+3s+2)

s(s2+1)(s+5)

T 0(s) =   10s2+6s+4(s2+3s+4)(s+1)2

G(s) =   2

s2+3s+2

H s

0   s   2   T 0   s H s

H (s) =   (s2+3s+4)(s+1)2

(10s2+6s+4)(0.01s+1)2   T 0(s)H (s) =   1(0.01s+1)2

ra(t)

5 rad sec

 

  

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 27/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

10

10

100

101

10

103

0

60

   M  a  g  n   i   t  u   d  e   (   d   B   )

Bode Diagram

Frequency (rad/sec)

H (s)

T 0   s

S 0   s

T 0   s H s

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

 

C (s)E sR s   Y sU s

D s

Gi0(s)   Go0(s)

G0   = Go0Gi0

Gf    s

Gf (s) = −Gi0(s)−1

 

Gi0

Y  (s) =  T 0(s)R(s) + S 0(s)Go0(s)(1 + Gi0(s)Gf (s))D(s)

U (s) =  S u0(s)R(s)− (S u0(s)Go0(s)− S 0(s)Gf (s))D(s)

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 28/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

G0   = Go0Gi0   Gi0(s) =  2

s− 2  Go0(s) =

  1

s + 1

C (s) =  3(s2 + 2s + 2)

s(0.1s + 1)(0.05s + 1)

10

100

101

102

103

0

10

20

30

   M  a  g

  n   i   t  u   d  e   (   d   B   )

Frequency (rad/sec)

Gi0   Go0

C s

S 0   s

0(s)

Λ0   s

Go0   s S 0   s

peaking of sensitivity is a result of limiting

loop-gain bandwidth to be not much more

than the bandwidth of the unstable pole

for robustness to MME above 10  rad/sec

correspondingly, injected disturbances with

frequencies in the range [2, 7]  rad/sec

are not attenuated by much at plant output

if these components of the disturbance were

measurable, then feedforward could be used

to improve the level of attenuation ...

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

10

100

101

102

103

0

   M  a  g  n   i   t  u   d  e   (   d   B   )

Frequency (rad/sec)

Go0(s)S 0(s)

Go0(s)S 0(s)(1 + Gi0(s)Gf (s))

1 +  Gi0(s)Gf (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5

Time (sec)

 

 

Gf (s) = −

s− 2

2(0.01s + 1)  ≈ −Gi0(s)−1

7/21/2019 Control System Part 3

http://slidepdf.com/reader/full/control-system-part-3 29/29

ELEN90055 Control Systems: Part IIIM.Cantoni (c) 2011, 2012, 2013  

 

−1 + j0