Cost Model and Estimating Result Sizes

Preview:

DESCRIPTION

Cost Model and Estimating Result Sizes. מודל המחיר Cost Model. בהרצאה הראנו איך לחשב את המחיר של כל שיטה (join) כדי לעשות זאת צריך לדעת את גודל היחסים, שחלקם מתקבלים כתוצאות ביניים לפיכך, יש צורך לחשב את הגודל של תוצאות ביניים עכשיו נסביר איך מעריכים את גודל התוצאה. - PowerPoint PPT Presentation

Citation preview

Cost ModelCost Modelandand

Estimating Result Sizes Estimating Result Sizes

המחיר המחיר מודל מודלCost ModelCost Model

כל • של המחיר את לחשב איך הראנו בהרצאה

( join)שיטה

• , היחסים גודל את לדעת צריך זאת לעשות כדי

ביניים כתוצאות מתקבלים שחלקם

תוצאות, • של הגודל את לחשב צורך יש לפיכך

ביניים

התוצאה • גודל את מעריכים איך נסביר עכשיו

בחירת תוכנית לחישובבחירת תוכנית לחישוב צירוף של שלושה יחסים צירוף של שלושה יחסים

• : היחסים שלושת של צירוף לחשב - Reserves , Sailorsרוצים ו Boats

הצירוף ) • בפעולת היחסים מסדר התעלמות תוך האפשרויות שתי

: הנן( הראשונה

(Sailors Reserves) Boats

Sailors (Reserves Boats)

איזה • בשאלה היתר בין תלויה יותר הזולה התוכנית מהי ההחלטה

יותר קטנה הנה ביניים תוצאת

התוצאות גודל של התוצאות אנליזה גודל של אנליזה

הצירוף • של התוצאה גודל את להעריך צריך

( Sailors Reserves) גודל לעומת

הצירוף של Reserves )התוצאה

Boats)

היחסים DBMSה- • לגבי סטטיסטיקות שומר

והאינדקסים

Statistics Maintained by Statistics Maintained by DBMSDBMS

• Cardinality: Number of tuples NTuples(R) in each relation R

• Size: Number of pages NPages(R) in each relation R

• Index Cardinality: Number of distinct key values NKeys(I) for each index I

• Index Size: Number of pages INPages(I) in each index I

• Index Height: Number of non-leaf levels IHeight(I) in each B+ Tree index I

• Index Range: The minimum value ILow(I) and maximum value IHigh(I) for each index I

NNoteote

• The statistics are updated periodically

(not every time the underlying

relations are modified).

• We cannot use the cardinality for

computing

select count(*)

from R

Estimating Result SizesEstimating Result Sizes

• Consider

• The maximum number of tuples is the product of the cardinalities of the relations in the FROM clause

• The WHERE clause is associating a reduction factor with each term. It reflects the impact of the term in reducing result size.

SELECT attribute-list

FROM relation-list

WHERE term1 and ... and termn

Result SizeResult Size

• Estimated result size:

maximum size

X

the product of the reduction factors

AssumptionsAssumptions

• There is an index I1 on R.Y and index

I2 on S.Y

• Containment of value sets: if

NKeys(I1)<NKeys(I2) for attribute Y,

then every Y-value of R will be a Y-

value of S

Estimating Reduction Estimating Reduction FactorsFactors

• column = value: 1/NKeys(I) – There is an index I on column.

– This assumes a uniform distribution.

– Otherwise, use 1/10.

• column1 = column2: 1/Max(NKeys(I1),NKeys(I2)) – There is an index I1 on column1 and an index I2 on column2.

– Containment of value sets assumption

– If only one column has an index, we use it to estimate the value.

– Otherwise, use 1/10.

Estimating Reduction Estimating Reduction FactorsFactors

• column > value:

(High(I)-value)/(High(I)-Low(I)) if there

is an index I on column.

ExampleExample

• Cardinality(R) = 100,000

• Cardinality(S) = 40,000

• NKeys(Index on R.agent) = 100

• High(Index on Rating) = 10, Low = 0

Reserves (sid, agent), Sailors(sid, rating)

SELECT *

FROM Reserves R, Sailors S

WHERE R.sid = S.sid and S.rating > 3 and

R.agent = ‘Joe’

Example (cont.)Example (cont.)

• Maximum cardinality: 100,000 * 40,000

• Reduction factor of R.sid = S.sid: 1/40,000 – sid is a primary key of S

• Reduction factor of S.rating > 3: (10–3)/(10-0) = 7/10

• Reduction factor of R.agent = ‘Joe’: 1/100

• Total Estimated size: 700

Database TuningDatabase Tuning

Database TuningDatabase Tuning

• Problem: Make database run efficiently

• 80/20 Rule: 80% of the time, the

database is running 20% of the queries

– find what is taking all the time, and tune

these queries

SolutionsSolutions

• Indexing

– this can sometimes degrade performance.

why?

• Tuning queries

• Reorganization of tables; perhaps

"denormalization"

• Changes in physical data storage

DenormalizationDenormalization

• Suppose you have tables:– emp(eid, ename, salary, did)

– dept(did, budget, address, manager)

• Suppose you often ask queries which require finding the manager of an employee. You might consider changing the tables to:– emp(eid, ename, salary, did, manager)

– dept(did, budget, address, manager)

- in emp, there is an fd did -> manager. It is not 3NF!

Denormalization (cont’d)Denormalization (cont’d)

• How will you ensure that the

redundancy does not introduce errors

into the database?

Creating Indexes Using Creating Indexes Using OracleOracle

IndexIndex

• Map between

– a key of a row

– the location of the data on the row

• Oracle has two kinds of indexes

– B+ tree

– Bitmap

• Sorted

B+ treeB+ tree

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Creating an IndexCreating an Index

• Syntax:

create [bitmap] [unique] index index on

table(column [,column] . . .)

Unique IndexesUnique Indexes

• Create an index that will guarantee the

uniqueness of the key. Fail if any duplicate

already exists.

• When you create a table with a

– primary key constraint or

– unique constraint

a "unique" index is created automatically

create unique index rating_bit on Sailors(rating);

Bitmap IndexesBitmap Indexes

• Appropriate for columns that may have very

few possible values

• For each value c that appears in the column,

a vector v of bits is created, with a 1 in v[i]

if the i-th row has the value c

– Vector length = number of rows

• Oracle can automatically convert bitmap

entries to RowIDs during query processing

Bitmap Indexes: ExampleBitmap Indexes: Example

create bitmap index rating_bit on Sailors(rating);

• Corresponding bitmaps:– 3: <1 0 0 1>

– 7: <0 1 0 0>

– 10: <0 0 1 0>

SidSnameagerating

12Jim553

13John467

14Jane4610

15Sam373

When to Create an IndexWhen to Create an Index

• Large tables, on columns that are likely

to appear in where clauses as a

simple equality

• where s.sname = ‘John’ and s.age = 50

• where s.age = r.age

Function-Based IndexesFunction-Based Indexes

• You can't use an index on sname for the

following query:

select *

from Sailors

where UPPER(sname) = 'SAM';

• You can create a function-based index to

speed up the query:

create index upp_sname on Sailors(UPPER(sname));

Index-Organized TablesIndex-Organized Tables• An index organized table keeps its data sorted by the

primary key

• Rows do not have RowIDs

• They store their data as if they were an index

create table Sailors(

sid number primary key,

sname varchar2(30),

age number,

rating number)

organization index;

Index-Organized Tables (2)Index-Organized Tables (2)

• What advantages does this have?

– Enforce uniqueness: primary key

– Improve performance

• What disadvantages?

– expensive to add column, dynamic data

• When to use?

– where clause on the primary key

– static data

Clustering Tables TogetherClustering Tables Together

• You can ask Oracle to store several tables

close together on the disk

• This is useful if you usually join these tables

together

• Cluster: area in the disk where the rows of

the tables are stored

• Cluster key: the columns by which the

tables are usually joined in a query

Clustering Tables Clustering Tables Together: SyntaxTogether: Syntax

• create cluster sailor_reserves (X number);– Create a cluster with nothing in it

• create table Sailors(

sid number primary key,

sname varchar2(30),

age number,

rating number)

cluster sailor_reserves(sid);

– create the table in the cluster

Clustering Tables Clustering Tables Together: Syntax (cont.)Together: Syntax (cont.)

• create index sailor_reserves_index on cluster sailor_reserves– Create an index on the cluster

• create table Reserves(

sid number,

bid number,

day date,

primary key(sid, bid, day) )

cluster sailor_reserves(sid);

– A second table is added to the cluster

Reserves

sidbidday

221027/7/97

2210110/10/96

5810311/12/96

Sailors

sidsnameratingage

22Dustin745.0

31Lubber855.5

58Rusty1035.0

Stored

sidsnameratingagebidday

22Dustin745.010

27/7/97

10

110/10/96

31Lubber855.5

58Rusty1035.010

311/12/96

The Oracle OptimizerThe Oracle Optimizer

Types of OptimizersTypes of Optimizers

• There are different modes for the optimizer

• RULE: Rule-based optimizer (RBO)– deprecated

• CHOOSE: Cost-based optimizer (CBO); picks a plan based on statistics (e.g. number of rows in a table, number of distinct keys in an index) – Need to analyze the data in the database using

analyze command

ALTER SESSION SET optimizer_mode = {choose|rule|first_rows(_n)|all_rows}

Types of OptimizersTypes of Optimizers

• ALL_ROWS: execute the query so that all of

the rows are returned as quickly as possible

– Merge join

• FIRST_ROWS(n): execute the query so that

all of the first n rows are returned as quickly

as possible

– Block nested loop join

analyze table | index

<table_name> | <index_name>

compute statistics |

estimate statistics [sample <integer>

rows | percent] |

delete statistics;

analyze table Sailors estimate statistics sample 25 percent;

Analyzing the DataAnalyzing the Data

Viewing the Execution PlanViewing the Execution Plan(Option 1)(Option 1)

• You need a PLAN_TABLE table. So, the first

time that you want to see execution plans,

run the command:

• Set autotrace on to see all plans

– Display the execution path for each query, after

being executed

@$ORACLE_HOME/rdbms/admin/utlxplan.sql

Viewing the Execution Plan Viewing the Execution Plan (Option 2)(Option 2)

• Another option:

explain planset statement_id='test'for SELECT *FROM Sailors SWHERE sname='Joe';

explain plan set statement_id=‘<name>’ for <statement>

Select Plan_Table

Operations that Access Operations that Access TablesTables

• TABLE ACCESS FULL: sequential table scan

– Oracle optimizes by reading multiple blocks

– Used whenever there is no where clause on a

query

select * from Sailors

• TABLE ACCESS BY ROWID: access rows by

their RowID values.

– How do you get the rowid? From an index!

select * from Sailors where sid > 10

Types of IndexesTypes of Indexes

• Unique: each row of the indexed table

contains a unique value for the

indexed column

• Nonunique: the row’s indexed values

can repeat

Operations that Use Operations that Use IndexesIndexes

• INDEX UNIQUE SCAN: Access of an

index that is defined to be unique

• INDEX RANGE SCAN: Access of an

index that is not unique or access of a

unique index for a range of values

When are Indexes Used/Not When are Indexes Used/Not Used?Used?

• If you set an indexed column equal to a value, e.g., sname = 'Jim'

• If you specify a range of values for an indexed column, e.g., sname like 'J%'– sname like '%m': will not use an index

– UPPER(sname) like 'J%' : will not use an index

– sname is null: will not use an index, since null values are not stored in the index

– sname is not null: will not use an index, since every value in the index would have to be accessed

When are Indexes Used? When are Indexes Used? (cont)(cont)

• 2*age = 20: Index on age will not be used. Index on 2*age will be used.

• sname != 'Jim': Index will not be used.

• MIN and MAX functions: Index will be used

• Equality of a column in a leading column of a multicolumn index. For example, suppose we have a multicolumn index on (sid, bid, day)– sid = 12: Can use the index

– bid = 101: Cannot use the index

When are Indexes Used? When are Indexes Used? (cont)(cont)

• If the index is selective

– A small number of records are associated

with each distinct column value

HintsHints

HintsHints

• You can give the optimizer hints about

how to perform query evaluation

• Hints are written in /*+ */ right after

the select

• Note: These are only hints. The oracle

optimizer can choose to ignore your

hints

HintsHints

• FULL hint: tell the optimizer to perform a

TABLE ACCESS FULL operation on the

specified table

• ROWID hint: tell the optimizer to perform a

TABLE ACCESS BY ROWID operation on the

specified table

• INDEX hint: tells the optimizer to use an

index-based scan on the specified table

ExamplesExamples

Select /*+ FULL (sailors) */ sidFrom sailorsWhere sname=‘Joe’;

Select /*+ INDEX (sailors) */ sidFrom sailorsWhere sname=‘Joe’;

Select /*INDEX (sailors s_ind) */ sidFrom sailors S, reserves RWhere S.sid=R.sid AND sname=‘Joe’;