Métodos Iterativos - Gauss-Jacobi - Part I - @professorenan

Preview:

Citation preview

Sistemas Lineares-

- -Métodos Iterativos

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

• Motivação I

o Ocorrência em larga escala de sistemas lineares em

cálculos de Engenharia e modelagem científica

• Exemplos:

o Simulações de processos químicos

o Simulações de dispositivos e circuitos

o Modelagem de processos geocientíficos e

geoambientais

o Análise estrutural

o Biologia estrutural

o Modelagem de processos físicos

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

• Motivação II

o Tendência à existência de matrizes de coeficientes à

grandes e esparsas

• Grandes Comum para n > 100.000

• Esparsas Maioria dos coeficientes nulos

o Resolução de sistemas esparsos por métodos diretos

• Processos de triangularização e fatoração Onerosos,

por não preservarem a esparsidade original, que pode

ser útil por facilitar a resolução do sistema.

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

• Motivação III

o Métodos mais apropriados para a resolução de sistemas de natureza esparsa Métodos

iterativos

• Gauss-Jacobi

• Gauss-Seidel

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

• Vantagem Menos suscetíveis ao acúmulo de erros de arredondamento do que o método de

Eliminação de Gauss.

• Lembretes importantes:

o Como todo processo iterativo, estes métodos

sempre apresentarão um resultado aproximado,

que será tão próximo do resultado real conforme

o número de iterações realizadas.

o Além disto, também é preciso ter cuidado com a

convergência destes métodos.

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

• Em certos casos, métodos diretos não são eficientes, por exemplo, quando a matriz dos coeficientes é uma matriz esparsa (muitos elementos iguais a zero).

• Métodos iterativos são mais econômicos no que tange a memória dos computadores

• Podem ser usados para reduzir os erros de arredondamento na solução obtida por métodos exatos.

• Em alguns casos podem ser aplicados para resolver conjuntos de equações não lineares

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

• Um método é iterativo quando fornece uma sequência de aproximações da solução

• Cada uma das aproximações é obtida das anteriores pela repetição do mesmo processo

• Precisam sempre saber se a sequência obtida está convergindo ou não para a solução desejada.

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

• Para determinar a solução de um sistema linear por métodos iterativos, precisamos transformar o sistema dado em um outro sistema onde possa ser definido um processo iterativo

• A solução obtida para o sistema transformado deve ser também solução do sistema original (sistemas lineares devem ser equivalentes)

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

Prof. Renan Gustavo Pacheco Soares

nnnn x x x x

x x x x

x x x x

x x x x

x x x x

210

4

2

4

1

4

0

4

3

2

3

1

3

0

3

2

2

2

1

2

0

2

1

2

1

1

1

0

1

• Métodos Iterativos: Consistem em encontrar uma seqüência de estimativas xi

k (dada uma estimativa inicial xi0)que após

um número suficientemente grande de iterações convirja para a solução do sistema de equações.

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

• Outra vantagem destes métodos não são tão suscetíveis ao acúmulo de erros de arredondamento como o método de Eliminação de Gauss.

• É importante lembrar que:

o Como todo processo iterativo, estes métodos sempre apresentarão um resultado aproximado, que será tão próximo do resultado real conforme o número de iterações realizadas.

o Além disso, também é preciso ter cuidado com a convergência desses métodos.

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

Métodos Iterativos

• Transforma o sistema linear Ax=b em x = Cx +g

o A: matriz dos coeficientes, n x m

o x: vetor das variáveis, n x 1;

o b: vetor dos termos constantes, n x 1.

• Métodos utilizados:

o Gauss-Jacobi

o Gauss-Seidel

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

Método de Gauss-Jacobi

• Conhecido x(0) (aproximação inicial) obtém-se

consecutivamente os vetores:

De um modo geral, a aproximação x(k+1) é calculadapela fórmula

x(k+1) = C x(k)+g, k=0, 1, ...

etc. o),aproximaçã (segunda ,

o)aproximaçã (primeira ,

)()(

)()(

gCxx

gCxx

12

01

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

Da primeira equação do sistema

a11 x1 + a12 x2 + ... +a1n x2 = b1

obtém-se

x1 = (1/a11) (b1 - a12 x2 - ... -a1n x2)

analogamente

x2 = (1/a22 (b2 - a21 x1 - ... -a2n xn). .

. .

xn = (1/ann) (bn - an1 x1 - ... - an,n-1 xn-1 )

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

Método de Jacobi para se chegar às fórmulas de iterações,na forma matricial:

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

Prof. Renan Gustavo Pacheco Soares

Exemplos

Prof. Renan Gustavo Pacheco Soares

2) Resolva o sistema linear a seguir, pelo método de Jacobi,

tendo como para Xo=0, Yo=0 e Zo=0 e ε=0,04.

Prof. Renan Gustavo Pacheco Soares

3) Resolva o sistema linear a seguir, pelo método de Jacobi,

tendo como para Xo=0, Yo=0 e Zo=0 e ε=0,03.

Prof. Renan Gustavo Pacheco Soares

4) Resolva o sistema linear a seguir, pelo método de Jacobi, tendo

como para Xo=0, Yo=0 e Zo=0 e ε=0,05.

6x + y + 2z = 10

x – 3y + 0,5z = 2,8

0,75x + 3y – 10z = -6,9

Prof. Renan Gustavo Pacheco Soares

10 x1 + 2x2 + 3x3 = 7

x1 + 5x2 + x3 = -8

2x1 + 3x2 + 10x3 = 6

6) Resolva o sistema linear a seguir, pelo método de Jacobi,

tendo como para Xo=0, Yo=0 e Zo=0 e ε=0,05.

Prof. Renan Gustavo Pacheco Soares

Exercícios

Prof. Renan Gustavo Pacheco Soares

1) Resolva o sistema linear a seguir, pelo método de Gauss-

Jacobi, tendo como para Xo=0, Yo=0 e Zo=0 e ε=0,05.

Prof. Renan Gustavo Pacheco Soares

4) Resolva o sistema linear a seguir, pelo método de Jacobi, tendo

como para Xo=0, Yo=0 e Zo=0 e ε=0,03.

Prof. Renan Gustavo Pacheco Soares

5) Resolva o sistema linear a seguir, pelo método de Jacobi,

tendo como para Xo=0, Yo=0 e Zo=0 e ε=0,06.

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

Método de Gauss-Seidel para se chegar às fórmulas deiterações, na forma matricial:

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos – Critério das Linhas para Seidel

Prof. Renan Gustavo Pacheco Soares

• Segundo esse critério, um determinado sistema

irá convergir pelo método de Gauss-Seidel, se:

ii

n

ijj

ij aa 1

, para i=1, 2, 3, ..., n.

Prof. Renan Gustavo Pacheco Soares

Exemplo: O sistema abaixo satisfaz o critério das linhas e essa verificação pode ser feita de

maneira quase imediata, observando-se que:

Métodos Iterativos – Critério das Linhas para Seidel

0.1048.02.14.0

0.12.02.01.0

8.73.06.036.0

4.02.02.02

4321

4321

4321

4321

xxxx

xxxx

xxxx

xxxx

4.28.02.14.04

5.02.02.01.01

5.13.06.06.03

4.12.02.012

43424144

34323133

24232122

14131211

aaaa

aaaa

aaaa

aaaa

ii

n

ijj

ij aa 1

para i=1, 2, 3, 4.

Métodos Iterativos

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

Prof. Renan Gustavo Pacheco Soares

Métodos Iterativos

Prof. Renan Gustavo Pacheco Soares

Exemplos

Prof. Renan Gustavo Pacheco Soares

2) Resolva o sistema linear a seguir, pelo método de Seidel,

tendo como para Xo=0, Yo=0 e Zo=0 e ε=0,04.

Prof. Renan Gustavo Pacheco Soares

3) Resolva o sistema linear a seguir, pelo método de Seidel,

tendo como para Xo=0, Yo=0 e Zo=0 e ε=0,03.

Prof. Renan Gustavo Pacheco Soares

4) Resolva o sistema linear a seguir, pelo método de Seidel, tendo

como para Xo=0, Yo=0 e Zo=0 e ε=0,05.

6x + y + 2z = 10

x – 3y + 0,5z = 2,8

0,75x + 3y – 10z = -6,9

Prof. Renan Gustavo Pacheco Soares

10 x1 + 2x2 + 3x3 = 7

x1 + 5x2 + x3 = -8

2x1 + 3x2 + 10x3 = 6

6) Resolva o sistema linear a seguir, pelo método de Seidel,

tendo como para Xo=0, Yo=0 e Zo=0 e ε=0,05.

Prof. Renan Gustavo Pacheco Soares

Exercícios

Prof. Renan Gustavo Pacheco Soares

1) Resolva o sistema linear a seguir, pelo método de Seidel,

tendo como para Xo=0, Yo=0 e Zo=0 e ε=0,05.

Prof. Renan Gustavo Pacheco Soares

4) Resolva o sistema linear a seguir, pelo método de Seidel, tendo

como para Xo=0, Yo=0 e Zo=0 e ε=0,03.

Prof. Renan Gustavo Pacheco Soares

5) Resolva o sistema linear a seguir, pelo método de Seidel,

tendo como para Xo=0, Yo=0 e Zo=0 e ε=0,06.

Prof. Renan Gustavo Pacheco Soares

Recommended