18
Ch7.2 Calculus of Residues 講講 講講講 講講 1

講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

Embed Size (px)

Citation preview

Page 1: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

1

Ch7.2 Calculus of Residues講者: 許永昌 老師

Page 2: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

2

ContentsResidue TheoremEvaluation of Definite IntegralsCauchy Principle values

Some poles on the integral path.Pole expansion of Meromorphic FunctionProduct Expansion of Entire function

Page 3: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

3

Residue Theorem( 請預讀 P378~P379)

Laurent expansion

Closed contour

integration

Cauchy’s integral theorem

Residue Theorem

0

n

nn

f z a z z

1

1

2f z dz a

i

10

2for analytic function

except for isolated poles.

f z dzi

STOP TO THINK: How about multivalent function?

1,

1Each around ,

2 ii

i i zCC z f z dz a

i

1,

1

2 izf z dz a

i

Besides, {residue at z} -

S{residues in the finite z-plane}

Page 4: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

4

ResidueResidue:

In some books, e.g. J. Bak and D.J. Newman, Complex Analysis, it denotes by Res(f ; zi).

Exercise: Hint: Homework 7.1.1

a-n.

-a-n. (Q: 為何不是 -a-1*0=0? 所以要搞清楚 Laurent expansion.) 用 ordinary series expansion 比較快找到值。

1

Res ;- n

az a z

1

Res ;0- nz a z

Page 5: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

5

Evaluation of Definite Integrals ( 請預讀 P379~P384)

4 types we will discussed here:

Hint: (1) |z|=1, (2) cosq=(z+z-1)/2, (3)sinq=(z-z-1)/(2i)

Related to Jordan’s Lemma.

2

1 0sin ,cos ,I f d

2 ,

(1) no pole on the path (2) lim 0 for upper (lower) half planez

I f z dz

zf z

3 ,

(1) no pole on the path (2) 0 (3) lim 0 for upper half plane

iax

z

I f z e dz

a f z

4 0

keyhole contour

, Use a multivalent function ln to solve it.

ln , ln 0 when 0 & .2

I f z dz z

iz f z dz z z f z z z

0lim ln 0.zz z

Page 6: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

6

Exercises ( 請預讀 P379~P384)

Step 1: find the singular points.Step 2: find a suitable contour.Step 3:

For branch point, we must consider the branch cut. For poles, find a-1 on each pole.

Step 4: Residue theorem.

2

1 0

2 2

4 30

, 11 cos

,1

,1

dI

dxI

xdx

Ix

Code: quadgk(@(z)(1./(1+z.^2)),-inf,inf)quadgk(@(z)(1./(1+z.^3)),0,inf)

小心, (1) 確定 q 的範圍 (2) 一整圈為 2p 。

Page 7: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

7

Upper half circle whose radius is

iazR

R

I f z e dz

Jordan’s Lemma( 請預讀 P383)

If (1) a>0, aR, (2) lim|z| f (z)=0, 0 arg(z) p,We get limR|IR|=0,

Proof:

cos sin

0

sin

,max 0

22

,max 0

,max

2

1

.

i iaR aR iR

aR

C

aR

C

aR

C

I f R e e e iR e d

R f e d

R f e d

f ea

a

0 pi/2 pi0

0.5

1

1.5

2

Page 8: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

8

Cauchy Principle Value( 請預讀 P384)

Situation:Some singular points are directly on the

contour of integration.We define

When f (x0) is finite, the principle value limit is unnecessary.

For a simple pole, Therefore,

0

00lim

x

xf x dx f x dx P f x dx

semicircle

1

2 circlef z dz f z dz

.C C Semicircle

P f x dx f z dz f z dz f z dz

C

Page 9: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

9

Pole Expansion of Meromorphic Functions ( 請預讀 P390~P391)

Mittag-Leffler theorem: A meromorphic function can be written as

If all the poles of this function are simple poles, we get

,

1

1make the sum converge entire functionpk

k nn

n k

k kk

a

z z

f z S z z E z

STOP TO THINK: 請問與 Taylor and Laurent expansion 有何不同 ?

1

1

1 10 if and ,

where is a radius circle includes ,..., but no other poles.

kk kC

k k k

k k k

f z f b f z R k Nz z z

C R z z

1

11

1

00 ' 0 ...

!

if and .k

pp pk

pk k n

pkC

z f b zf z f zf

p z z z

f z R k N

We need to prove that their remainder converges to zero.

Page 10: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

10

Pole Expansion of Meromorphic Functions (continue)Proof for |f(z)|<eRk case:

The remainder for |f(z)|<eRkp+1 case:

1

1

if is analytic at 0 and z 1. Laurent expansion at ,2. Cauchy's integral formula,3. Simple pole at

1

2

Res ;0 Res ; Res ;

0 1 1 1

k

n

k C

F

k

nn

k

nn n n

f z

fI d

i z

F F z F z

f f zb

z z z z z z

.

.

nz

max on

1 1 12

2 2kkk

k

k kCR zk Cf R

f fI d R

z R z

1

1.

2 kk pC

fI d

i z

記得,是 F(w) 的 residue 。

Page 11: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

11

ExercisesTest the pole expansion for:

Test them with the remainder to understand the meaning of |f(z)|<eRk

p+1.

11 ,

1f z

z

11 ,

1f z z

z

1

1.

2 kk pC

fI d

i z

Page 12: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

12

Example ( 請預讀 P391)

Pole expansion of cotangent: p cotpz=

Method I: Its pole is located at z=n, nZ. We will find that Choose Rk=k+0.5, we get (I did not test it) |f(z)|

<eRk. Therefore, based on Mittag-Leffler theorem, we get

Method II: The product expansion of

cos ln sin.

sin

z d z

z dz

1

coslim 1, they are simple poles whose 1 for all .

sinz n

zz n a n

z

0

1 1 1cos

nn

zz z n n

2

2 21

sin 1 .n

zz z

n

Page 13: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

13

1

,kn

q

kk

f z g z z z

Product Expansion of Entire Functions ( 請預讀 P392~P394)

An entire function with zeros at z1,…, zn can be written as where g(z) is an entire function with no zero.Questions:

How to find the number of zeros in a region? How to do this product expansion for an entire

function?Key concept:

1

entire functionSimple poles

ln ' '.

nk

k k

d f z f z g zq

dz f z z z g z

Page 14: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

14

Product Expansion of Entire Functions (continue)

How to find the number of zero points?

How to do the expansion? From the pole expansion, if |F(z)/Rk|<e, we get

1

entire functionSimple poles

ln ' '.

nk

k k

d f z f z g zq

dz f z z z g z

1

'1

2

1arg . arg ument

2

n

kCk

C

f zdz q

i f z

f z f z

代表繞一圈後 的 的變化。

1

' ' 0 1 1.

0 kk k k

f z fq

f z f z z z

01

' 0

0

1

' ' ' 0' ln ln 1

' 0 0

0 1 .k k

k

zk

kk k k

qf q zz

f z

k k

f z f z f q zzdz z q

f z f f z z

zf z f e e

z

小心:此處要求 '

.kg z

Rg z

'

ln ln argf z

dz f z f z i f zf z

Page 15: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

15

Example

Zeros: mp, m0. f(0)=1 f ’(0)=0

STOP TO THINK: cos(z) ?

sin:z

z

' 0

0

1

0 1 .k k

k

qf q zz

f z

k k

zf z f e e

z

,

0

' 1 1 1cot . 1.k

nn

f zz q

f z z z n n

2

, 10

sin1 1

z

n

n nn

z z zf z e

z n n

Page 16: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

16

Rouché’s theoremIf f(z) and g(z) are analytic inside and on a

closed contour C, and |g(z)|<|f(z)| on C, then f(z) and f(z)+g(z) have the same number of zeros inside C.Proof:

DC arg(1+g(z)/f(z))=0 DC arg f(z)=DC arg [f(z)+g(z)]Z-plane w-plane

1g z

wf z

1

Page 17: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

17

Homework1, 2, 3, 4, 6, 9, 14, 16, 21, 22

Page 18: 講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic

18

NounsResidue of f(z) at z=z0: a-1, the coefficient

of (z-z0)-1 in the Laurent expansion: Res(f ; z0).

Jordan’s Lemma: P383Cauchy Principle Value: P384Pole Expansion: P390Product Expansion: P392