24
Механика жидкости и газа Проф. Кудряшова О.Б. Лекция 1 2015

мжг лекция 1

Embed Size (px)

Citation preview

Page 1: мжг лекция 1

Механика жидкости и газа

Проф Кудряшова ОБ

Лекция 1

2015

Гидравлика (8 лекций 5

практик)

Газодинамика (6 лекций 4 практики)

2 контрольных

опроса экзамен

Структура курса литература

2

Литература1 Козлов СН Лукин ВВ Механика жидкости и газа Ч I laquoГидравликаraquo ч II laquoГазовая динамикаraquo Учебное пособие БТИ при АлтГТУ г Бийск 2014 г2 Альтшуль А Д Животовский ЛС Иванов ЛП Гидравлика и аэродинамика М Стройиздат 1987г 3 Абрамович ГН Прикладная газовая динамика М Наука 1991 г

Определения и термины История гидравлики

Физические свойства жидкостей

Плотность и удельный вес жидкостей

Сжимаемость и температурное расширение жидкостей

Вязкость жидкостей

Поверхностное натяжение жидкостей Капиллярные явления

Аномальные жидкости Невязкая жидкость

Гидравлика (1) ndash содержание лекции

3

Гидравликой называется прикладной раздел механики изучающий законы равновесия и движения жидкостей для решения технических задач

Слово laquoгидравликаraquo (греч) = хюдор (вода)+аулос (труба) Жидкость в понимании гидравлики ndash не только собственно

жидкости (капельные жидкости) но и газы (газообразные жидкости)

Гидравлика занимается изучением законов движения капельных жидкостей в трубах

Внутренняя задача гидравлики ndash задача о потоках ограниченных твердыми стенками В отличие от внешних задач возникающих при внешнем обтекании твердых тел сплошной средой которые изучаются в аэрогидромеханике

4

Определения и термины

Вода труба рыбаГидравлический арт (вектор)

Внимание вопросЧем отличается жидкость от газа или твердого телаА что между ними общего

5

Жидкость ndash это физическое тело представляющее собой сплошную (непрерывную) среду агрегатное состояние которой сочетает в себе черты твердого тела ndash сохранение объема определенная прочность на разрыв и газообразного ndash изменчивость формы

Жидкости отличаются от твердых тел легкой подвижностью частиц В то время как для изменения формы твердого тела к нему нужно приложить конечные иногда большие силы изменение формы жидкости может происходить под действием самых малых сил так жидкость течет под действием собственного веса Вместе с тем жидкости обладают определенным объемом который не изменяется под действием сил то есть они практически несжимаемы

С учетом этих свойств под жидкостью будем понимать всякую среду обладающую свойствами текучести несжимаемости

Основными свойствами жидкости влияющими на возможность их использования в технических устройствах являются плотность и вязкость а также поверхностное натяжение жидкости

6

Физические свойства жидкостей

Гидравлика зародилась в цивилизациях Древнего мира при создании систем водоснабжения и канализации

Такие системы построены за сотни лет до нашей эры Система водоснабжения обеспечивала подачу воды из горных источников к дворцу и слив сточных вод по трубам в канализацию

Трубопроводы были сделаны из глиняных стандартных участков конструкция которых подобна современным системам такого типа

7

История ndash гидравлика в древнем мире

Гидравлические системы были обнаружены при раскопках Кносского дворца на острове Крит

Греческий ученый Архимед (3 в до нэ) известен открытием закона плавания тел и изобретением винтового насоса

Как наука гидравлика оформилась при переходе к промышленному производству это произошло в 17-18 столетиях

8

История гидравлики - Архимед

Тело

всу

нуто

е в

воду

выпи

рает

на

своб

оду

С сил

ой в

ыперт

ой

воды

Тела

впе

ртог

о

туды

Плотностью жидкости ρ называется ее масса M заключенная в единице объема V

Вес жидкости G приходящийся на единицу объема V называется удельным весом

Плотность воды при температуре 4ordmC составляет 1000 кгм3 а удельный вес ndash 9800 Нм3

Плотность и удельный вес связаны между собой соотношением

Относительным удельным весом жидкости (или относительным весом) δ называется отношение удельного веса данной жидкости к удельному весу воды при температуре 4degC

δ- относительная безразмерная величина не зависящая от выбранной системы единиц измерения

9

Плотность и удельный вес жидкостей

M

V

G

V

g

ж в

Сжимаемость жидкости под действием давления характеризуется коэффициентом объемного сжатия который представляет собой относительное изменение объема жидкости на единицу изменения давления

где V- первоначальный объем жидкости ΔV- изменение этого объема при увеличении давления на величину Δp

Коэффициент объёмного сжатия имеет размерность Па-1 Величина обратная коэффициенту объемного сжатия называется

модулем упругости жидкости (при сжатии) При повышении давления на объем воды уменьшается на 120 000

часть от первоначальной величины

10

Сжимаемость жидкостей

Почему в формуле стоит минусПочему же жидкость считают несжимаемой

1v

V

V p

0

1

v

E

Температурное расширение жидкостей характеризуется коэффициентом температурного расширения βt выражающим относительное увеличение объема жидкости при увеличении температуры на 1 град то есть

где ΔV- изменение объема при повышении температуры на величину Δt При температуре от 10 до 20ordmC и давлении можно приближенно

принимать βt~00001 C-1 Можно считать что плотность не зависит от давления а только от

температуры где ndash температура жидкости при нормальных условияхСпособность жидкости менять плотность (удельный вес) при изменении температуры широко используется для создания естественной циркуляции в котлах отопительных системах

11

Температурное расширение жидкостей

1t

V

V t

00

1

1 ( )t t t

Вязкость жидкостиВязкостью жидкости называется свойство жидкости оказывать сопротивление сдвигу Все реальные жидкости обладают определенной вязкостью которая проявляется при относительном перемещении смешанных частиц жидкости Наряду с легкоподвижными жидкостями (например вода) существуют очень вязкие жидкости сопротивление сдвигу которых весьма значительно (глицерин тяжелые масла) Таким образом вязкость характеризует степень текучести жидкости или подвижности ее частиц

12

Закон вязкости Ньютона

13

Профиль скоростей при течении вязкой

жидкости вдоль стенки

Согласно гипотезе Ньютона (1687 г) касательные напряжения при слоистом течении

где ndash μ модуль поперечного градиента скорости

Величина μ характеризует сопротивляемость жидкости сдвигу и называется динамической или абсолютной вязкостью (Пас)

Кроме Паtimesс используют такую единицу измерения как Пуаз 1П = 01 Паtimesс

Кроме коэффициента динамической вязкости в технике широко используют коэффициент кинематической вязкости (м2с)

du

dy

Вискозиметр

14

На практике вязкость жидкостей определяется вискозиметрами наиболее широко используется вискозиметр Энглера Вискозиметр Энглера предназначен для определения условной вязкости (времени истечения) жидких сред дающих непрерывную струю в течение всего времени истечения

В ротационном вискозиметре исследуемая вязкая среда помещается в зазор между двумя соосными телами правильной геометрической формы Одно из тел называемое ротором приводится во вращение с постоянной скоростью другое остаётся неподвижным Момент вращения передаваемый от одной поверхности к другой является мерой вязкости жидкости

От явления смачивания зависит поведение жидкости в тонких (капиллярных) трубках погруженных в жидкость

При смачивании жидкость в трубке радиуса r поднимается над уровнем свободной поверхности при не смачивании опускается

Высота капиллярного поднятия (опускания) жидкости h находится по формуле

15

Капиллярные явления

2cosпh gr

Сила внутреннего трения в жидкости

16

Сила внутреннего трения в жидкости прямо пропорциональна градиенту скорости площади трущихся слоев S и динамической вязкости

Тем самым трение в жидкости отличается от трения в твердых телах где сила трения не зависит от площади трущихся поверхностей

С ростом температуры вязкость жидкостей очень сильно падает (по экспоненте) а газов ndash растет по линейному закону

Например при нагревании пресной воды от 0 до 100degС коэффициент кинематической вязкости падает от 179times10-6 до 029times10-6 м2с то есть в 6 с лишним раз В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз При отрицательных температурах вязкость масел резко возрастает

Зависимость кинематической вязкости от температуры

duR S

dy

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 2: мжг лекция 1

Гидравлика (8 лекций 5

практик)

Газодинамика (6 лекций 4 практики)

2 контрольных

опроса экзамен

Структура курса литература

2

Литература1 Козлов СН Лукин ВВ Механика жидкости и газа Ч I laquoГидравликаraquo ч II laquoГазовая динамикаraquo Учебное пособие БТИ при АлтГТУ г Бийск 2014 г2 Альтшуль А Д Животовский ЛС Иванов ЛП Гидравлика и аэродинамика М Стройиздат 1987г 3 Абрамович ГН Прикладная газовая динамика М Наука 1991 г

Определения и термины История гидравлики

Физические свойства жидкостей

Плотность и удельный вес жидкостей

Сжимаемость и температурное расширение жидкостей

Вязкость жидкостей

Поверхностное натяжение жидкостей Капиллярные явления

Аномальные жидкости Невязкая жидкость

Гидравлика (1) ndash содержание лекции

3

Гидравликой называется прикладной раздел механики изучающий законы равновесия и движения жидкостей для решения технических задач

Слово laquoгидравликаraquo (греч) = хюдор (вода)+аулос (труба) Жидкость в понимании гидравлики ndash не только собственно

жидкости (капельные жидкости) но и газы (газообразные жидкости)

Гидравлика занимается изучением законов движения капельных жидкостей в трубах

Внутренняя задача гидравлики ndash задача о потоках ограниченных твердыми стенками В отличие от внешних задач возникающих при внешнем обтекании твердых тел сплошной средой которые изучаются в аэрогидромеханике

4

Определения и термины

Вода труба рыбаГидравлический арт (вектор)

Внимание вопросЧем отличается жидкость от газа или твердого телаА что между ними общего

5

Жидкость ndash это физическое тело представляющее собой сплошную (непрерывную) среду агрегатное состояние которой сочетает в себе черты твердого тела ndash сохранение объема определенная прочность на разрыв и газообразного ndash изменчивость формы

Жидкости отличаются от твердых тел легкой подвижностью частиц В то время как для изменения формы твердого тела к нему нужно приложить конечные иногда большие силы изменение формы жидкости может происходить под действием самых малых сил так жидкость течет под действием собственного веса Вместе с тем жидкости обладают определенным объемом который не изменяется под действием сил то есть они практически несжимаемы

С учетом этих свойств под жидкостью будем понимать всякую среду обладающую свойствами текучести несжимаемости

Основными свойствами жидкости влияющими на возможность их использования в технических устройствах являются плотность и вязкость а также поверхностное натяжение жидкости

6

Физические свойства жидкостей

Гидравлика зародилась в цивилизациях Древнего мира при создании систем водоснабжения и канализации

Такие системы построены за сотни лет до нашей эры Система водоснабжения обеспечивала подачу воды из горных источников к дворцу и слив сточных вод по трубам в канализацию

Трубопроводы были сделаны из глиняных стандартных участков конструкция которых подобна современным системам такого типа

7

История ndash гидравлика в древнем мире

Гидравлические системы были обнаружены при раскопках Кносского дворца на острове Крит

Греческий ученый Архимед (3 в до нэ) известен открытием закона плавания тел и изобретением винтового насоса

Как наука гидравлика оформилась при переходе к промышленному производству это произошло в 17-18 столетиях

8

История гидравлики - Архимед

Тело

всу

нуто

е в

воду

выпи

рает

на

своб

оду

С сил

ой в

ыперт

ой

воды

Тела

впе

ртог

о

туды

Плотностью жидкости ρ называется ее масса M заключенная в единице объема V

Вес жидкости G приходящийся на единицу объема V называется удельным весом

Плотность воды при температуре 4ordmC составляет 1000 кгм3 а удельный вес ndash 9800 Нм3

Плотность и удельный вес связаны между собой соотношением

Относительным удельным весом жидкости (или относительным весом) δ называется отношение удельного веса данной жидкости к удельному весу воды при температуре 4degC

δ- относительная безразмерная величина не зависящая от выбранной системы единиц измерения

9

Плотность и удельный вес жидкостей

M

V

G

V

g

ж в

Сжимаемость жидкости под действием давления характеризуется коэффициентом объемного сжатия который представляет собой относительное изменение объема жидкости на единицу изменения давления

где V- первоначальный объем жидкости ΔV- изменение этого объема при увеличении давления на величину Δp

Коэффициент объёмного сжатия имеет размерность Па-1 Величина обратная коэффициенту объемного сжатия называется

модулем упругости жидкости (при сжатии) При повышении давления на объем воды уменьшается на 120 000

часть от первоначальной величины

10

Сжимаемость жидкостей

Почему в формуле стоит минусПочему же жидкость считают несжимаемой

1v

V

V p

0

1

v

E

Температурное расширение жидкостей характеризуется коэффициентом температурного расширения βt выражающим относительное увеличение объема жидкости при увеличении температуры на 1 град то есть

где ΔV- изменение объема при повышении температуры на величину Δt При температуре от 10 до 20ordmC и давлении можно приближенно

принимать βt~00001 C-1 Можно считать что плотность не зависит от давления а только от

температуры где ndash температура жидкости при нормальных условияхСпособность жидкости менять плотность (удельный вес) при изменении температуры широко используется для создания естественной циркуляции в котлах отопительных системах

11

Температурное расширение жидкостей

1t

V

V t

00

1

1 ( )t t t

Вязкость жидкостиВязкостью жидкости называется свойство жидкости оказывать сопротивление сдвигу Все реальные жидкости обладают определенной вязкостью которая проявляется при относительном перемещении смешанных частиц жидкости Наряду с легкоподвижными жидкостями (например вода) существуют очень вязкие жидкости сопротивление сдвигу которых весьма значительно (глицерин тяжелые масла) Таким образом вязкость характеризует степень текучести жидкости или подвижности ее частиц

12

Закон вязкости Ньютона

13

Профиль скоростей при течении вязкой

жидкости вдоль стенки

Согласно гипотезе Ньютона (1687 г) касательные напряжения при слоистом течении

где ndash μ модуль поперечного градиента скорости

Величина μ характеризует сопротивляемость жидкости сдвигу и называется динамической или абсолютной вязкостью (Пас)

Кроме Паtimesс используют такую единицу измерения как Пуаз 1П = 01 Паtimesс

Кроме коэффициента динамической вязкости в технике широко используют коэффициент кинематической вязкости (м2с)

du

dy

Вискозиметр

14

На практике вязкость жидкостей определяется вискозиметрами наиболее широко используется вискозиметр Энглера Вискозиметр Энглера предназначен для определения условной вязкости (времени истечения) жидких сред дающих непрерывную струю в течение всего времени истечения

В ротационном вискозиметре исследуемая вязкая среда помещается в зазор между двумя соосными телами правильной геометрической формы Одно из тел называемое ротором приводится во вращение с постоянной скоростью другое остаётся неподвижным Момент вращения передаваемый от одной поверхности к другой является мерой вязкости жидкости

От явления смачивания зависит поведение жидкости в тонких (капиллярных) трубках погруженных в жидкость

При смачивании жидкость в трубке радиуса r поднимается над уровнем свободной поверхности при не смачивании опускается

Высота капиллярного поднятия (опускания) жидкости h находится по формуле

15

Капиллярные явления

2cosпh gr

Сила внутреннего трения в жидкости

16

Сила внутреннего трения в жидкости прямо пропорциональна градиенту скорости площади трущихся слоев S и динамической вязкости

Тем самым трение в жидкости отличается от трения в твердых телах где сила трения не зависит от площади трущихся поверхностей

С ростом температуры вязкость жидкостей очень сильно падает (по экспоненте) а газов ndash растет по линейному закону

Например при нагревании пресной воды от 0 до 100degС коэффициент кинематической вязкости падает от 179times10-6 до 029times10-6 м2с то есть в 6 с лишним раз В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз При отрицательных температурах вязкость масел резко возрастает

Зависимость кинематической вязкости от температуры

duR S

dy

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 3: мжг лекция 1

Определения и термины История гидравлики

Физические свойства жидкостей

Плотность и удельный вес жидкостей

Сжимаемость и температурное расширение жидкостей

Вязкость жидкостей

Поверхностное натяжение жидкостей Капиллярные явления

Аномальные жидкости Невязкая жидкость

Гидравлика (1) ndash содержание лекции

3

Гидравликой называется прикладной раздел механики изучающий законы равновесия и движения жидкостей для решения технических задач

Слово laquoгидравликаraquo (греч) = хюдор (вода)+аулос (труба) Жидкость в понимании гидравлики ndash не только собственно

жидкости (капельные жидкости) но и газы (газообразные жидкости)

Гидравлика занимается изучением законов движения капельных жидкостей в трубах

Внутренняя задача гидравлики ndash задача о потоках ограниченных твердыми стенками В отличие от внешних задач возникающих при внешнем обтекании твердых тел сплошной средой которые изучаются в аэрогидромеханике

4

Определения и термины

Вода труба рыбаГидравлический арт (вектор)

Внимание вопросЧем отличается жидкость от газа или твердого телаА что между ними общего

5

Жидкость ndash это физическое тело представляющее собой сплошную (непрерывную) среду агрегатное состояние которой сочетает в себе черты твердого тела ndash сохранение объема определенная прочность на разрыв и газообразного ndash изменчивость формы

Жидкости отличаются от твердых тел легкой подвижностью частиц В то время как для изменения формы твердого тела к нему нужно приложить конечные иногда большие силы изменение формы жидкости может происходить под действием самых малых сил так жидкость течет под действием собственного веса Вместе с тем жидкости обладают определенным объемом который не изменяется под действием сил то есть они практически несжимаемы

С учетом этих свойств под жидкостью будем понимать всякую среду обладающую свойствами текучести несжимаемости

Основными свойствами жидкости влияющими на возможность их использования в технических устройствах являются плотность и вязкость а также поверхностное натяжение жидкости

6

Физические свойства жидкостей

Гидравлика зародилась в цивилизациях Древнего мира при создании систем водоснабжения и канализации

Такие системы построены за сотни лет до нашей эры Система водоснабжения обеспечивала подачу воды из горных источников к дворцу и слив сточных вод по трубам в канализацию

Трубопроводы были сделаны из глиняных стандартных участков конструкция которых подобна современным системам такого типа

7

История ndash гидравлика в древнем мире

Гидравлические системы были обнаружены при раскопках Кносского дворца на острове Крит

Греческий ученый Архимед (3 в до нэ) известен открытием закона плавания тел и изобретением винтового насоса

Как наука гидравлика оформилась при переходе к промышленному производству это произошло в 17-18 столетиях

8

История гидравлики - Архимед

Тело

всу

нуто

е в

воду

выпи

рает

на

своб

оду

С сил

ой в

ыперт

ой

воды

Тела

впе

ртог

о

туды

Плотностью жидкости ρ называется ее масса M заключенная в единице объема V

Вес жидкости G приходящийся на единицу объема V называется удельным весом

Плотность воды при температуре 4ordmC составляет 1000 кгм3 а удельный вес ndash 9800 Нм3

Плотность и удельный вес связаны между собой соотношением

Относительным удельным весом жидкости (или относительным весом) δ называется отношение удельного веса данной жидкости к удельному весу воды при температуре 4degC

δ- относительная безразмерная величина не зависящая от выбранной системы единиц измерения

9

Плотность и удельный вес жидкостей

M

V

G

V

g

ж в

Сжимаемость жидкости под действием давления характеризуется коэффициентом объемного сжатия который представляет собой относительное изменение объема жидкости на единицу изменения давления

где V- первоначальный объем жидкости ΔV- изменение этого объема при увеличении давления на величину Δp

Коэффициент объёмного сжатия имеет размерность Па-1 Величина обратная коэффициенту объемного сжатия называется

модулем упругости жидкости (при сжатии) При повышении давления на объем воды уменьшается на 120 000

часть от первоначальной величины

10

Сжимаемость жидкостей

Почему в формуле стоит минусПочему же жидкость считают несжимаемой

1v

V

V p

0

1

v

E

Температурное расширение жидкостей характеризуется коэффициентом температурного расширения βt выражающим относительное увеличение объема жидкости при увеличении температуры на 1 град то есть

где ΔV- изменение объема при повышении температуры на величину Δt При температуре от 10 до 20ordmC и давлении можно приближенно

принимать βt~00001 C-1 Можно считать что плотность не зависит от давления а только от

температуры где ndash температура жидкости при нормальных условияхСпособность жидкости менять плотность (удельный вес) при изменении температуры широко используется для создания естественной циркуляции в котлах отопительных системах

11

Температурное расширение жидкостей

1t

V

V t

00

1

1 ( )t t t

Вязкость жидкостиВязкостью жидкости называется свойство жидкости оказывать сопротивление сдвигу Все реальные жидкости обладают определенной вязкостью которая проявляется при относительном перемещении смешанных частиц жидкости Наряду с легкоподвижными жидкостями (например вода) существуют очень вязкие жидкости сопротивление сдвигу которых весьма значительно (глицерин тяжелые масла) Таким образом вязкость характеризует степень текучести жидкости или подвижности ее частиц

12

Закон вязкости Ньютона

13

Профиль скоростей при течении вязкой

жидкости вдоль стенки

Согласно гипотезе Ньютона (1687 г) касательные напряжения при слоистом течении

где ndash μ модуль поперечного градиента скорости

Величина μ характеризует сопротивляемость жидкости сдвигу и называется динамической или абсолютной вязкостью (Пас)

Кроме Паtimesс используют такую единицу измерения как Пуаз 1П = 01 Паtimesс

Кроме коэффициента динамической вязкости в технике широко используют коэффициент кинематической вязкости (м2с)

du

dy

Вискозиметр

14

На практике вязкость жидкостей определяется вискозиметрами наиболее широко используется вискозиметр Энглера Вискозиметр Энглера предназначен для определения условной вязкости (времени истечения) жидких сред дающих непрерывную струю в течение всего времени истечения

В ротационном вискозиметре исследуемая вязкая среда помещается в зазор между двумя соосными телами правильной геометрической формы Одно из тел называемое ротором приводится во вращение с постоянной скоростью другое остаётся неподвижным Момент вращения передаваемый от одной поверхности к другой является мерой вязкости жидкости

От явления смачивания зависит поведение жидкости в тонких (капиллярных) трубках погруженных в жидкость

При смачивании жидкость в трубке радиуса r поднимается над уровнем свободной поверхности при не смачивании опускается

Высота капиллярного поднятия (опускания) жидкости h находится по формуле

15

Капиллярные явления

2cosпh gr

Сила внутреннего трения в жидкости

16

Сила внутреннего трения в жидкости прямо пропорциональна градиенту скорости площади трущихся слоев S и динамической вязкости

Тем самым трение в жидкости отличается от трения в твердых телах где сила трения не зависит от площади трущихся поверхностей

С ростом температуры вязкость жидкостей очень сильно падает (по экспоненте) а газов ndash растет по линейному закону

Например при нагревании пресной воды от 0 до 100degС коэффициент кинематической вязкости падает от 179times10-6 до 029times10-6 м2с то есть в 6 с лишним раз В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз При отрицательных температурах вязкость масел резко возрастает

Зависимость кинематической вязкости от температуры

duR S

dy

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 4: мжг лекция 1

Гидравликой называется прикладной раздел механики изучающий законы равновесия и движения жидкостей для решения технических задач

Слово laquoгидравликаraquo (греч) = хюдор (вода)+аулос (труба) Жидкость в понимании гидравлики ndash не только собственно

жидкости (капельные жидкости) но и газы (газообразные жидкости)

Гидравлика занимается изучением законов движения капельных жидкостей в трубах

Внутренняя задача гидравлики ndash задача о потоках ограниченных твердыми стенками В отличие от внешних задач возникающих при внешнем обтекании твердых тел сплошной средой которые изучаются в аэрогидромеханике

4

Определения и термины

Вода труба рыбаГидравлический арт (вектор)

Внимание вопросЧем отличается жидкость от газа или твердого телаА что между ними общего

5

Жидкость ndash это физическое тело представляющее собой сплошную (непрерывную) среду агрегатное состояние которой сочетает в себе черты твердого тела ndash сохранение объема определенная прочность на разрыв и газообразного ndash изменчивость формы

Жидкости отличаются от твердых тел легкой подвижностью частиц В то время как для изменения формы твердого тела к нему нужно приложить конечные иногда большие силы изменение формы жидкости может происходить под действием самых малых сил так жидкость течет под действием собственного веса Вместе с тем жидкости обладают определенным объемом который не изменяется под действием сил то есть они практически несжимаемы

С учетом этих свойств под жидкостью будем понимать всякую среду обладающую свойствами текучести несжимаемости

Основными свойствами жидкости влияющими на возможность их использования в технических устройствах являются плотность и вязкость а также поверхностное натяжение жидкости

6

Физические свойства жидкостей

Гидравлика зародилась в цивилизациях Древнего мира при создании систем водоснабжения и канализации

Такие системы построены за сотни лет до нашей эры Система водоснабжения обеспечивала подачу воды из горных источников к дворцу и слив сточных вод по трубам в канализацию

Трубопроводы были сделаны из глиняных стандартных участков конструкция которых подобна современным системам такого типа

7

История ndash гидравлика в древнем мире

Гидравлические системы были обнаружены при раскопках Кносского дворца на острове Крит

Греческий ученый Архимед (3 в до нэ) известен открытием закона плавания тел и изобретением винтового насоса

Как наука гидравлика оформилась при переходе к промышленному производству это произошло в 17-18 столетиях

8

История гидравлики - Архимед

Тело

всу

нуто

е в

воду

выпи

рает

на

своб

оду

С сил

ой в

ыперт

ой

воды

Тела

впе

ртог

о

туды

Плотностью жидкости ρ называется ее масса M заключенная в единице объема V

Вес жидкости G приходящийся на единицу объема V называется удельным весом

Плотность воды при температуре 4ordmC составляет 1000 кгм3 а удельный вес ndash 9800 Нм3

Плотность и удельный вес связаны между собой соотношением

Относительным удельным весом жидкости (или относительным весом) δ называется отношение удельного веса данной жидкости к удельному весу воды при температуре 4degC

δ- относительная безразмерная величина не зависящая от выбранной системы единиц измерения

9

Плотность и удельный вес жидкостей

M

V

G

V

g

ж в

Сжимаемость жидкости под действием давления характеризуется коэффициентом объемного сжатия который представляет собой относительное изменение объема жидкости на единицу изменения давления

где V- первоначальный объем жидкости ΔV- изменение этого объема при увеличении давления на величину Δp

Коэффициент объёмного сжатия имеет размерность Па-1 Величина обратная коэффициенту объемного сжатия называется

модулем упругости жидкости (при сжатии) При повышении давления на объем воды уменьшается на 120 000

часть от первоначальной величины

10

Сжимаемость жидкостей

Почему в формуле стоит минусПочему же жидкость считают несжимаемой

1v

V

V p

0

1

v

E

Температурное расширение жидкостей характеризуется коэффициентом температурного расширения βt выражающим относительное увеличение объема жидкости при увеличении температуры на 1 град то есть

где ΔV- изменение объема при повышении температуры на величину Δt При температуре от 10 до 20ordmC и давлении можно приближенно

принимать βt~00001 C-1 Можно считать что плотность не зависит от давления а только от

температуры где ndash температура жидкости при нормальных условияхСпособность жидкости менять плотность (удельный вес) при изменении температуры широко используется для создания естественной циркуляции в котлах отопительных системах

11

Температурное расширение жидкостей

1t

V

V t

00

1

1 ( )t t t

Вязкость жидкостиВязкостью жидкости называется свойство жидкости оказывать сопротивление сдвигу Все реальные жидкости обладают определенной вязкостью которая проявляется при относительном перемещении смешанных частиц жидкости Наряду с легкоподвижными жидкостями (например вода) существуют очень вязкие жидкости сопротивление сдвигу которых весьма значительно (глицерин тяжелые масла) Таким образом вязкость характеризует степень текучести жидкости или подвижности ее частиц

12

Закон вязкости Ньютона

13

Профиль скоростей при течении вязкой

жидкости вдоль стенки

Согласно гипотезе Ньютона (1687 г) касательные напряжения при слоистом течении

где ndash μ модуль поперечного градиента скорости

Величина μ характеризует сопротивляемость жидкости сдвигу и называется динамической или абсолютной вязкостью (Пас)

Кроме Паtimesс используют такую единицу измерения как Пуаз 1П = 01 Паtimesс

Кроме коэффициента динамической вязкости в технике широко используют коэффициент кинематической вязкости (м2с)

du

dy

Вискозиметр

14

На практике вязкость жидкостей определяется вискозиметрами наиболее широко используется вискозиметр Энглера Вискозиметр Энглера предназначен для определения условной вязкости (времени истечения) жидких сред дающих непрерывную струю в течение всего времени истечения

В ротационном вискозиметре исследуемая вязкая среда помещается в зазор между двумя соосными телами правильной геометрической формы Одно из тел называемое ротором приводится во вращение с постоянной скоростью другое остаётся неподвижным Момент вращения передаваемый от одной поверхности к другой является мерой вязкости жидкости

От явления смачивания зависит поведение жидкости в тонких (капиллярных) трубках погруженных в жидкость

При смачивании жидкость в трубке радиуса r поднимается над уровнем свободной поверхности при не смачивании опускается

Высота капиллярного поднятия (опускания) жидкости h находится по формуле

15

Капиллярные явления

2cosпh gr

Сила внутреннего трения в жидкости

16

Сила внутреннего трения в жидкости прямо пропорциональна градиенту скорости площади трущихся слоев S и динамической вязкости

Тем самым трение в жидкости отличается от трения в твердых телах где сила трения не зависит от площади трущихся поверхностей

С ростом температуры вязкость жидкостей очень сильно падает (по экспоненте) а газов ndash растет по линейному закону

Например при нагревании пресной воды от 0 до 100degС коэффициент кинематической вязкости падает от 179times10-6 до 029times10-6 м2с то есть в 6 с лишним раз В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз При отрицательных температурах вязкость масел резко возрастает

Зависимость кинематической вязкости от температуры

duR S

dy

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 5: мжг лекция 1

Вода труба рыбаГидравлический арт (вектор)

Внимание вопросЧем отличается жидкость от газа или твердого телаА что между ними общего

5

Жидкость ndash это физическое тело представляющее собой сплошную (непрерывную) среду агрегатное состояние которой сочетает в себе черты твердого тела ndash сохранение объема определенная прочность на разрыв и газообразного ndash изменчивость формы

Жидкости отличаются от твердых тел легкой подвижностью частиц В то время как для изменения формы твердого тела к нему нужно приложить конечные иногда большие силы изменение формы жидкости может происходить под действием самых малых сил так жидкость течет под действием собственного веса Вместе с тем жидкости обладают определенным объемом который не изменяется под действием сил то есть они практически несжимаемы

С учетом этих свойств под жидкостью будем понимать всякую среду обладающую свойствами текучести несжимаемости

Основными свойствами жидкости влияющими на возможность их использования в технических устройствах являются плотность и вязкость а также поверхностное натяжение жидкости

6

Физические свойства жидкостей

Гидравлика зародилась в цивилизациях Древнего мира при создании систем водоснабжения и канализации

Такие системы построены за сотни лет до нашей эры Система водоснабжения обеспечивала подачу воды из горных источников к дворцу и слив сточных вод по трубам в канализацию

Трубопроводы были сделаны из глиняных стандартных участков конструкция которых подобна современным системам такого типа

7

История ndash гидравлика в древнем мире

Гидравлические системы были обнаружены при раскопках Кносского дворца на острове Крит

Греческий ученый Архимед (3 в до нэ) известен открытием закона плавания тел и изобретением винтового насоса

Как наука гидравлика оформилась при переходе к промышленному производству это произошло в 17-18 столетиях

8

История гидравлики - Архимед

Тело

всу

нуто

е в

воду

выпи

рает

на

своб

оду

С сил

ой в

ыперт

ой

воды

Тела

впе

ртог

о

туды

Плотностью жидкости ρ называется ее масса M заключенная в единице объема V

Вес жидкости G приходящийся на единицу объема V называется удельным весом

Плотность воды при температуре 4ordmC составляет 1000 кгм3 а удельный вес ndash 9800 Нм3

Плотность и удельный вес связаны между собой соотношением

Относительным удельным весом жидкости (или относительным весом) δ называется отношение удельного веса данной жидкости к удельному весу воды при температуре 4degC

δ- относительная безразмерная величина не зависящая от выбранной системы единиц измерения

9

Плотность и удельный вес жидкостей

M

V

G

V

g

ж в

Сжимаемость жидкости под действием давления характеризуется коэффициентом объемного сжатия который представляет собой относительное изменение объема жидкости на единицу изменения давления

где V- первоначальный объем жидкости ΔV- изменение этого объема при увеличении давления на величину Δp

Коэффициент объёмного сжатия имеет размерность Па-1 Величина обратная коэффициенту объемного сжатия называется

модулем упругости жидкости (при сжатии) При повышении давления на объем воды уменьшается на 120 000

часть от первоначальной величины

10

Сжимаемость жидкостей

Почему в формуле стоит минусПочему же жидкость считают несжимаемой

1v

V

V p

0

1

v

E

Температурное расширение жидкостей характеризуется коэффициентом температурного расширения βt выражающим относительное увеличение объема жидкости при увеличении температуры на 1 град то есть

где ΔV- изменение объема при повышении температуры на величину Δt При температуре от 10 до 20ordmC и давлении можно приближенно

принимать βt~00001 C-1 Можно считать что плотность не зависит от давления а только от

температуры где ndash температура жидкости при нормальных условияхСпособность жидкости менять плотность (удельный вес) при изменении температуры широко используется для создания естественной циркуляции в котлах отопительных системах

11

Температурное расширение жидкостей

1t

V

V t

00

1

1 ( )t t t

Вязкость жидкостиВязкостью жидкости называется свойство жидкости оказывать сопротивление сдвигу Все реальные жидкости обладают определенной вязкостью которая проявляется при относительном перемещении смешанных частиц жидкости Наряду с легкоподвижными жидкостями (например вода) существуют очень вязкие жидкости сопротивление сдвигу которых весьма значительно (глицерин тяжелые масла) Таким образом вязкость характеризует степень текучести жидкости или подвижности ее частиц

12

Закон вязкости Ньютона

13

Профиль скоростей при течении вязкой

жидкости вдоль стенки

Согласно гипотезе Ньютона (1687 г) касательные напряжения при слоистом течении

где ndash μ модуль поперечного градиента скорости

Величина μ характеризует сопротивляемость жидкости сдвигу и называется динамической или абсолютной вязкостью (Пас)

Кроме Паtimesс используют такую единицу измерения как Пуаз 1П = 01 Паtimesс

Кроме коэффициента динамической вязкости в технике широко используют коэффициент кинематической вязкости (м2с)

du

dy

Вискозиметр

14

На практике вязкость жидкостей определяется вискозиметрами наиболее широко используется вискозиметр Энглера Вискозиметр Энглера предназначен для определения условной вязкости (времени истечения) жидких сред дающих непрерывную струю в течение всего времени истечения

В ротационном вискозиметре исследуемая вязкая среда помещается в зазор между двумя соосными телами правильной геометрической формы Одно из тел называемое ротором приводится во вращение с постоянной скоростью другое остаётся неподвижным Момент вращения передаваемый от одной поверхности к другой является мерой вязкости жидкости

От явления смачивания зависит поведение жидкости в тонких (капиллярных) трубках погруженных в жидкость

При смачивании жидкость в трубке радиуса r поднимается над уровнем свободной поверхности при не смачивании опускается

Высота капиллярного поднятия (опускания) жидкости h находится по формуле

15

Капиллярные явления

2cosпh gr

Сила внутреннего трения в жидкости

16

Сила внутреннего трения в жидкости прямо пропорциональна градиенту скорости площади трущихся слоев S и динамической вязкости

Тем самым трение в жидкости отличается от трения в твердых телах где сила трения не зависит от площади трущихся поверхностей

С ростом температуры вязкость жидкостей очень сильно падает (по экспоненте) а газов ndash растет по линейному закону

Например при нагревании пресной воды от 0 до 100degС коэффициент кинематической вязкости падает от 179times10-6 до 029times10-6 м2с то есть в 6 с лишним раз В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз При отрицательных температурах вязкость масел резко возрастает

Зависимость кинематической вязкости от температуры

duR S

dy

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 6: мжг лекция 1

Жидкость ndash это физическое тело представляющее собой сплошную (непрерывную) среду агрегатное состояние которой сочетает в себе черты твердого тела ndash сохранение объема определенная прочность на разрыв и газообразного ndash изменчивость формы

Жидкости отличаются от твердых тел легкой подвижностью частиц В то время как для изменения формы твердого тела к нему нужно приложить конечные иногда большие силы изменение формы жидкости может происходить под действием самых малых сил так жидкость течет под действием собственного веса Вместе с тем жидкости обладают определенным объемом который не изменяется под действием сил то есть они практически несжимаемы

С учетом этих свойств под жидкостью будем понимать всякую среду обладающую свойствами текучести несжимаемости

Основными свойствами жидкости влияющими на возможность их использования в технических устройствах являются плотность и вязкость а также поверхностное натяжение жидкости

6

Физические свойства жидкостей

Гидравлика зародилась в цивилизациях Древнего мира при создании систем водоснабжения и канализации

Такие системы построены за сотни лет до нашей эры Система водоснабжения обеспечивала подачу воды из горных источников к дворцу и слив сточных вод по трубам в канализацию

Трубопроводы были сделаны из глиняных стандартных участков конструкция которых подобна современным системам такого типа

7

История ndash гидравлика в древнем мире

Гидравлические системы были обнаружены при раскопках Кносского дворца на острове Крит

Греческий ученый Архимед (3 в до нэ) известен открытием закона плавания тел и изобретением винтового насоса

Как наука гидравлика оформилась при переходе к промышленному производству это произошло в 17-18 столетиях

8

История гидравлики - Архимед

Тело

всу

нуто

е в

воду

выпи

рает

на

своб

оду

С сил

ой в

ыперт

ой

воды

Тела

впе

ртог

о

туды

Плотностью жидкости ρ называется ее масса M заключенная в единице объема V

Вес жидкости G приходящийся на единицу объема V называется удельным весом

Плотность воды при температуре 4ordmC составляет 1000 кгм3 а удельный вес ndash 9800 Нм3

Плотность и удельный вес связаны между собой соотношением

Относительным удельным весом жидкости (или относительным весом) δ называется отношение удельного веса данной жидкости к удельному весу воды при температуре 4degC

δ- относительная безразмерная величина не зависящая от выбранной системы единиц измерения

9

Плотность и удельный вес жидкостей

M

V

G

V

g

ж в

Сжимаемость жидкости под действием давления характеризуется коэффициентом объемного сжатия который представляет собой относительное изменение объема жидкости на единицу изменения давления

где V- первоначальный объем жидкости ΔV- изменение этого объема при увеличении давления на величину Δp

Коэффициент объёмного сжатия имеет размерность Па-1 Величина обратная коэффициенту объемного сжатия называется

модулем упругости жидкости (при сжатии) При повышении давления на объем воды уменьшается на 120 000

часть от первоначальной величины

10

Сжимаемость жидкостей

Почему в формуле стоит минусПочему же жидкость считают несжимаемой

1v

V

V p

0

1

v

E

Температурное расширение жидкостей характеризуется коэффициентом температурного расширения βt выражающим относительное увеличение объема жидкости при увеличении температуры на 1 град то есть

где ΔV- изменение объема при повышении температуры на величину Δt При температуре от 10 до 20ordmC и давлении можно приближенно

принимать βt~00001 C-1 Можно считать что плотность не зависит от давления а только от

температуры где ndash температура жидкости при нормальных условияхСпособность жидкости менять плотность (удельный вес) при изменении температуры широко используется для создания естественной циркуляции в котлах отопительных системах

11

Температурное расширение жидкостей

1t

V

V t

00

1

1 ( )t t t

Вязкость жидкостиВязкостью жидкости называется свойство жидкости оказывать сопротивление сдвигу Все реальные жидкости обладают определенной вязкостью которая проявляется при относительном перемещении смешанных частиц жидкости Наряду с легкоподвижными жидкостями (например вода) существуют очень вязкие жидкости сопротивление сдвигу которых весьма значительно (глицерин тяжелые масла) Таким образом вязкость характеризует степень текучести жидкости или подвижности ее частиц

12

Закон вязкости Ньютона

13

Профиль скоростей при течении вязкой

жидкости вдоль стенки

Согласно гипотезе Ньютона (1687 г) касательные напряжения при слоистом течении

где ndash μ модуль поперечного градиента скорости

Величина μ характеризует сопротивляемость жидкости сдвигу и называется динамической или абсолютной вязкостью (Пас)

Кроме Паtimesс используют такую единицу измерения как Пуаз 1П = 01 Паtimesс

Кроме коэффициента динамической вязкости в технике широко используют коэффициент кинематической вязкости (м2с)

du

dy

Вискозиметр

14

На практике вязкость жидкостей определяется вискозиметрами наиболее широко используется вискозиметр Энглера Вискозиметр Энглера предназначен для определения условной вязкости (времени истечения) жидких сред дающих непрерывную струю в течение всего времени истечения

В ротационном вискозиметре исследуемая вязкая среда помещается в зазор между двумя соосными телами правильной геометрической формы Одно из тел называемое ротором приводится во вращение с постоянной скоростью другое остаётся неподвижным Момент вращения передаваемый от одной поверхности к другой является мерой вязкости жидкости

От явления смачивания зависит поведение жидкости в тонких (капиллярных) трубках погруженных в жидкость

При смачивании жидкость в трубке радиуса r поднимается над уровнем свободной поверхности при не смачивании опускается

Высота капиллярного поднятия (опускания) жидкости h находится по формуле

15

Капиллярные явления

2cosпh gr

Сила внутреннего трения в жидкости

16

Сила внутреннего трения в жидкости прямо пропорциональна градиенту скорости площади трущихся слоев S и динамической вязкости

Тем самым трение в жидкости отличается от трения в твердых телах где сила трения не зависит от площади трущихся поверхностей

С ростом температуры вязкость жидкостей очень сильно падает (по экспоненте) а газов ndash растет по линейному закону

Например при нагревании пресной воды от 0 до 100degС коэффициент кинематической вязкости падает от 179times10-6 до 029times10-6 м2с то есть в 6 с лишним раз В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз При отрицательных температурах вязкость масел резко возрастает

Зависимость кинематической вязкости от температуры

duR S

dy

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 7: мжг лекция 1

Гидравлика зародилась в цивилизациях Древнего мира при создании систем водоснабжения и канализации

Такие системы построены за сотни лет до нашей эры Система водоснабжения обеспечивала подачу воды из горных источников к дворцу и слив сточных вод по трубам в канализацию

Трубопроводы были сделаны из глиняных стандартных участков конструкция которых подобна современным системам такого типа

7

История ndash гидравлика в древнем мире

Гидравлические системы были обнаружены при раскопках Кносского дворца на острове Крит

Греческий ученый Архимед (3 в до нэ) известен открытием закона плавания тел и изобретением винтового насоса

Как наука гидравлика оформилась при переходе к промышленному производству это произошло в 17-18 столетиях

8

История гидравлики - Архимед

Тело

всу

нуто

е в

воду

выпи

рает

на

своб

оду

С сил

ой в

ыперт

ой

воды

Тела

впе

ртог

о

туды

Плотностью жидкости ρ называется ее масса M заключенная в единице объема V

Вес жидкости G приходящийся на единицу объема V называется удельным весом

Плотность воды при температуре 4ordmC составляет 1000 кгм3 а удельный вес ndash 9800 Нм3

Плотность и удельный вес связаны между собой соотношением

Относительным удельным весом жидкости (или относительным весом) δ называется отношение удельного веса данной жидкости к удельному весу воды при температуре 4degC

δ- относительная безразмерная величина не зависящая от выбранной системы единиц измерения

9

Плотность и удельный вес жидкостей

M

V

G

V

g

ж в

Сжимаемость жидкости под действием давления характеризуется коэффициентом объемного сжатия который представляет собой относительное изменение объема жидкости на единицу изменения давления

где V- первоначальный объем жидкости ΔV- изменение этого объема при увеличении давления на величину Δp

Коэффициент объёмного сжатия имеет размерность Па-1 Величина обратная коэффициенту объемного сжатия называется

модулем упругости жидкости (при сжатии) При повышении давления на объем воды уменьшается на 120 000

часть от первоначальной величины

10

Сжимаемость жидкостей

Почему в формуле стоит минусПочему же жидкость считают несжимаемой

1v

V

V p

0

1

v

E

Температурное расширение жидкостей характеризуется коэффициентом температурного расширения βt выражающим относительное увеличение объема жидкости при увеличении температуры на 1 град то есть

где ΔV- изменение объема при повышении температуры на величину Δt При температуре от 10 до 20ordmC и давлении можно приближенно

принимать βt~00001 C-1 Можно считать что плотность не зависит от давления а только от

температуры где ndash температура жидкости при нормальных условияхСпособность жидкости менять плотность (удельный вес) при изменении температуры широко используется для создания естественной циркуляции в котлах отопительных системах

11

Температурное расширение жидкостей

1t

V

V t

00

1

1 ( )t t t

Вязкость жидкостиВязкостью жидкости называется свойство жидкости оказывать сопротивление сдвигу Все реальные жидкости обладают определенной вязкостью которая проявляется при относительном перемещении смешанных частиц жидкости Наряду с легкоподвижными жидкостями (например вода) существуют очень вязкие жидкости сопротивление сдвигу которых весьма значительно (глицерин тяжелые масла) Таким образом вязкость характеризует степень текучести жидкости или подвижности ее частиц

12

Закон вязкости Ньютона

13

Профиль скоростей при течении вязкой

жидкости вдоль стенки

Согласно гипотезе Ньютона (1687 г) касательные напряжения при слоистом течении

где ndash μ модуль поперечного градиента скорости

Величина μ характеризует сопротивляемость жидкости сдвигу и называется динамической или абсолютной вязкостью (Пас)

Кроме Паtimesс используют такую единицу измерения как Пуаз 1П = 01 Паtimesс

Кроме коэффициента динамической вязкости в технике широко используют коэффициент кинематической вязкости (м2с)

du

dy

Вискозиметр

14

На практике вязкость жидкостей определяется вискозиметрами наиболее широко используется вискозиметр Энглера Вискозиметр Энглера предназначен для определения условной вязкости (времени истечения) жидких сред дающих непрерывную струю в течение всего времени истечения

В ротационном вискозиметре исследуемая вязкая среда помещается в зазор между двумя соосными телами правильной геометрической формы Одно из тел называемое ротором приводится во вращение с постоянной скоростью другое остаётся неподвижным Момент вращения передаваемый от одной поверхности к другой является мерой вязкости жидкости

От явления смачивания зависит поведение жидкости в тонких (капиллярных) трубках погруженных в жидкость

При смачивании жидкость в трубке радиуса r поднимается над уровнем свободной поверхности при не смачивании опускается

Высота капиллярного поднятия (опускания) жидкости h находится по формуле

15

Капиллярные явления

2cosпh gr

Сила внутреннего трения в жидкости

16

Сила внутреннего трения в жидкости прямо пропорциональна градиенту скорости площади трущихся слоев S и динамической вязкости

Тем самым трение в жидкости отличается от трения в твердых телах где сила трения не зависит от площади трущихся поверхностей

С ростом температуры вязкость жидкостей очень сильно падает (по экспоненте) а газов ndash растет по линейному закону

Например при нагревании пресной воды от 0 до 100degС коэффициент кинематической вязкости падает от 179times10-6 до 029times10-6 м2с то есть в 6 с лишним раз В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз При отрицательных температурах вязкость масел резко возрастает

Зависимость кинематической вязкости от температуры

duR S

dy

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 8: мжг лекция 1

Греческий ученый Архимед (3 в до нэ) известен открытием закона плавания тел и изобретением винтового насоса

Как наука гидравлика оформилась при переходе к промышленному производству это произошло в 17-18 столетиях

8

История гидравлики - Архимед

Тело

всу

нуто

е в

воду

выпи

рает

на

своб

оду

С сил

ой в

ыперт

ой

воды

Тела

впе

ртог

о

туды

Плотностью жидкости ρ называется ее масса M заключенная в единице объема V

Вес жидкости G приходящийся на единицу объема V называется удельным весом

Плотность воды при температуре 4ordmC составляет 1000 кгм3 а удельный вес ndash 9800 Нм3

Плотность и удельный вес связаны между собой соотношением

Относительным удельным весом жидкости (или относительным весом) δ называется отношение удельного веса данной жидкости к удельному весу воды при температуре 4degC

δ- относительная безразмерная величина не зависящая от выбранной системы единиц измерения

9

Плотность и удельный вес жидкостей

M

V

G

V

g

ж в

Сжимаемость жидкости под действием давления характеризуется коэффициентом объемного сжатия который представляет собой относительное изменение объема жидкости на единицу изменения давления

где V- первоначальный объем жидкости ΔV- изменение этого объема при увеличении давления на величину Δp

Коэффициент объёмного сжатия имеет размерность Па-1 Величина обратная коэффициенту объемного сжатия называется

модулем упругости жидкости (при сжатии) При повышении давления на объем воды уменьшается на 120 000

часть от первоначальной величины

10

Сжимаемость жидкостей

Почему в формуле стоит минусПочему же жидкость считают несжимаемой

1v

V

V p

0

1

v

E

Температурное расширение жидкостей характеризуется коэффициентом температурного расширения βt выражающим относительное увеличение объема жидкости при увеличении температуры на 1 град то есть

где ΔV- изменение объема при повышении температуры на величину Δt При температуре от 10 до 20ordmC и давлении можно приближенно

принимать βt~00001 C-1 Можно считать что плотность не зависит от давления а только от

температуры где ndash температура жидкости при нормальных условияхСпособность жидкости менять плотность (удельный вес) при изменении температуры широко используется для создания естественной циркуляции в котлах отопительных системах

11

Температурное расширение жидкостей

1t

V

V t

00

1

1 ( )t t t

Вязкость жидкостиВязкостью жидкости называется свойство жидкости оказывать сопротивление сдвигу Все реальные жидкости обладают определенной вязкостью которая проявляется при относительном перемещении смешанных частиц жидкости Наряду с легкоподвижными жидкостями (например вода) существуют очень вязкие жидкости сопротивление сдвигу которых весьма значительно (глицерин тяжелые масла) Таким образом вязкость характеризует степень текучести жидкости или подвижности ее частиц

12

Закон вязкости Ньютона

13

Профиль скоростей при течении вязкой

жидкости вдоль стенки

Согласно гипотезе Ньютона (1687 г) касательные напряжения при слоистом течении

где ndash μ модуль поперечного градиента скорости

Величина μ характеризует сопротивляемость жидкости сдвигу и называется динамической или абсолютной вязкостью (Пас)

Кроме Паtimesс используют такую единицу измерения как Пуаз 1П = 01 Паtimesс

Кроме коэффициента динамической вязкости в технике широко используют коэффициент кинематической вязкости (м2с)

du

dy

Вискозиметр

14

На практике вязкость жидкостей определяется вискозиметрами наиболее широко используется вискозиметр Энглера Вискозиметр Энглера предназначен для определения условной вязкости (времени истечения) жидких сред дающих непрерывную струю в течение всего времени истечения

В ротационном вискозиметре исследуемая вязкая среда помещается в зазор между двумя соосными телами правильной геометрической формы Одно из тел называемое ротором приводится во вращение с постоянной скоростью другое остаётся неподвижным Момент вращения передаваемый от одной поверхности к другой является мерой вязкости жидкости

От явления смачивания зависит поведение жидкости в тонких (капиллярных) трубках погруженных в жидкость

При смачивании жидкость в трубке радиуса r поднимается над уровнем свободной поверхности при не смачивании опускается

Высота капиллярного поднятия (опускания) жидкости h находится по формуле

15

Капиллярные явления

2cosпh gr

Сила внутреннего трения в жидкости

16

Сила внутреннего трения в жидкости прямо пропорциональна градиенту скорости площади трущихся слоев S и динамической вязкости

Тем самым трение в жидкости отличается от трения в твердых телах где сила трения не зависит от площади трущихся поверхностей

С ростом температуры вязкость жидкостей очень сильно падает (по экспоненте) а газов ndash растет по линейному закону

Например при нагревании пресной воды от 0 до 100degС коэффициент кинематической вязкости падает от 179times10-6 до 029times10-6 м2с то есть в 6 с лишним раз В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз При отрицательных температурах вязкость масел резко возрастает

Зависимость кинематической вязкости от температуры

duR S

dy

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 9: мжг лекция 1

Плотностью жидкости ρ называется ее масса M заключенная в единице объема V

Вес жидкости G приходящийся на единицу объема V называется удельным весом

Плотность воды при температуре 4ordmC составляет 1000 кгм3 а удельный вес ndash 9800 Нм3

Плотность и удельный вес связаны между собой соотношением

Относительным удельным весом жидкости (или относительным весом) δ называется отношение удельного веса данной жидкости к удельному весу воды при температуре 4degC

δ- относительная безразмерная величина не зависящая от выбранной системы единиц измерения

9

Плотность и удельный вес жидкостей

M

V

G

V

g

ж в

Сжимаемость жидкости под действием давления характеризуется коэффициентом объемного сжатия который представляет собой относительное изменение объема жидкости на единицу изменения давления

где V- первоначальный объем жидкости ΔV- изменение этого объема при увеличении давления на величину Δp

Коэффициент объёмного сжатия имеет размерность Па-1 Величина обратная коэффициенту объемного сжатия называется

модулем упругости жидкости (при сжатии) При повышении давления на объем воды уменьшается на 120 000

часть от первоначальной величины

10

Сжимаемость жидкостей

Почему в формуле стоит минусПочему же жидкость считают несжимаемой

1v

V

V p

0

1

v

E

Температурное расширение жидкостей характеризуется коэффициентом температурного расширения βt выражающим относительное увеличение объема жидкости при увеличении температуры на 1 град то есть

где ΔV- изменение объема при повышении температуры на величину Δt При температуре от 10 до 20ordmC и давлении можно приближенно

принимать βt~00001 C-1 Можно считать что плотность не зависит от давления а только от

температуры где ndash температура жидкости при нормальных условияхСпособность жидкости менять плотность (удельный вес) при изменении температуры широко используется для создания естественной циркуляции в котлах отопительных системах

11

Температурное расширение жидкостей

1t

V

V t

00

1

1 ( )t t t

Вязкость жидкостиВязкостью жидкости называется свойство жидкости оказывать сопротивление сдвигу Все реальные жидкости обладают определенной вязкостью которая проявляется при относительном перемещении смешанных частиц жидкости Наряду с легкоподвижными жидкостями (например вода) существуют очень вязкие жидкости сопротивление сдвигу которых весьма значительно (глицерин тяжелые масла) Таким образом вязкость характеризует степень текучести жидкости или подвижности ее частиц

12

Закон вязкости Ньютона

13

Профиль скоростей при течении вязкой

жидкости вдоль стенки

Согласно гипотезе Ньютона (1687 г) касательные напряжения при слоистом течении

где ndash μ модуль поперечного градиента скорости

Величина μ характеризует сопротивляемость жидкости сдвигу и называется динамической или абсолютной вязкостью (Пас)

Кроме Паtimesс используют такую единицу измерения как Пуаз 1П = 01 Паtimesс

Кроме коэффициента динамической вязкости в технике широко используют коэффициент кинематической вязкости (м2с)

du

dy

Вискозиметр

14

На практике вязкость жидкостей определяется вискозиметрами наиболее широко используется вискозиметр Энглера Вискозиметр Энглера предназначен для определения условной вязкости (времени истечения) жидких сред дающих непрерывную струю в течение всего времени истечения

В ротационном вискозиметре исследуемая вязкая среда помещается в зазор между двумя соосными телами правильной геометрической формы Одно из тел называемое ротором приводится во вращение с постоянной скоростью другое остаётся неподвижным Момент вращения передаваемый от одной поверхности к другой является мерой вязкости жидкости

От явления смачивания зависит поведение жидкости в тонких (капиллярных) трубках погруженных в жидкость

При смачивании жидкость в трубке радиуса r поднимается над уровнем свободной поверхности при не смачивании опускается

Высота капиллярного поднятия (опускания) жидкости h находится по формуле

15

Капиллярные явления

2cosпh gr

Сила внутреннего трения в жидкости

16

Сила внутреннего трения в жидкости прямо пропорциональна градиенту скорости площади трущихся слоев S и динамической вязкости

Тем самым трение в жидкости отличается от трения в твердых телах где сила трения не зависит от площади трущихся поверхностей

С ростом температуры вязкость жидкостей очень сильно падает (по экспоненте) а газов ndash растет по линейному закону

Например при нагревании пресной воды от 0 до 100degС коэффициент кинематической вязкости падает от 179times10-6 до 029times10-6 м2с то есть в 6 с лишним раз В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз При отрицательных температурах вязкость масел резко возрастает

Зависимость кинематической вязкости от температуры

duR S

dy

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 10: мжг лекция 1

Сжимаемость жидкости под действием давления характеризуется коэффициентом объемного сжатия который представляет собой относительное изменение объема жидкости на единицу изменения давления

где V- первоначальный объем жидкости ΔV- изменение этого объема при увеличении давления на величину Δp

Коэффициент объёмного сжатия имеет размерность Па-1 Величина обратная коэффициенту объемного сжатия называется

модулем упругости жидкости (при сжатии) При повышении давления на объем воды уменьшается на 120 000

часть от первоначальной величины

10

Сжимаемость жидкостей

Почему в формуле стоит минусПочему же жидкость считают несжимаемой

1v

V

V p

0

1

v

E

Температурное расширение жидкостей характеризуется коэффициентом температурного расширения βt выражающим относительное увеличение объема жидкости при увеличении температуры на 1 град то есть

где ΔV- изменение объема при повышении температуры на величину Δt При температуре от 10 до 20ordmC и давлении можно приближенно

принимать βt~00001 C-1 Можно считать что плотность не зависит от давления а только от

температуры где ndash температура жидкости при нормальных условияхСпособность жидкости менять плотность (удельный вес) при изменении температуры широко используется для создания естественной циркуляции в котлах отопительных системах

11

Температурное расширение жидкостей

1t

V

V t

00

1

1 ( )t t t

Вязкость жидкостиВязкостью жидкости называется свойство жидкости оказывать сопротивление сдвигу Все реальные жидкости обладают определенной вязкостью которая проявляется при относительном перемещении смешанных частиц жидкости Наряду с легкоподвижными жидкостями (например вода) существуют очень вязкие жидкости сопротивление сдвигу которых весьма значительно (глицерин тяжелые масла) Таким образом вязкость характеризует степень текучести жидкости или подвижности ее частиц

12

Закон вязкости Ньютона

13

Профиль скоростей при течении вязкой

жидкости вдоль стенки

Согласно гипотезе Ньютона (1687 г) касательные напряжения при слоистом течении

где ndash μ модуль поперечного градиента скорости

Величина μ характеризует сопротивляемость жидкости сдвигу и называется динамической или абсолютной вязкостью (Пас)

Кроме Паtimesс используют такую единицу измерения как Пуаз 1П = 01 Паtimesс

Кроме коэффициента динамической вязкости в технике широко используют коэффициент кинематической вязкости (м2с)

du

dy

Вискозиметр

14

На практике вязкость жидкостей определяется вискозиметрами наиболее широко используется вискозиметр Энглера Вискозиметр Энглера предназначен для определения условной вязкости (времени истечения) жидких сред дающих непрерывную струю в течение всего времени истечения

В ротационном вискозиметре исследуемая вязкая среда помещается в зазор между двумя соосными телами правильной геометрической формы Одно из тел называемое ротором приводится во вращение с постоянной скоростью другое остаётся неподвижным Момент вращения передаваемый от одной поверхности к другой является мерой вязкости жидкости

От явления смачивания зависит поведение жидкости в тонких (капиллярных) трубках погруженных в жидкость

При смачивании жидкость в трубке радиуса r поднимается над уровнем свободной поверхности при не смачивании опускается

Высота капиллярного поднятия (опускания) жидкости h находится по формуле

15

Капиллярные явления

2cosпh gr

Сила внутреннего трения в жидкости

16

Сила внутреннего трения в жидкости прямо пропорциональна градиенту скорости площади трущихся слоев S и динамической вязкости

Тем самым трение в жидкости отличается от трения в твердых телах где сила трения не зависит от площади трущихся поверхностей

С ростом температуры вязкость жидкостей очень сильно падает (по экспоненте) а газов ndash растет по линейному закону

Например при нагревании пресной воды от 0 до 100degС коэффициент кинематической вязкости падает от 179times10-6 до 029times10-6 м2с то есть в 6 с лишним раз В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз При отрицательных температурах вязкость масел резко возрастает

Зависимость кинематической вязкости от температуры

duR S

dy

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 11: мжг лекция 1

Температурное расширение жидкостей характеризуется коэффициентом температурного расширения βt выражающим относительное увеличение объема жидкости при увеличении температуры на 1 град то есть

где ΔV- изменение объема при повышении температуры на величину Δt При температуре от 10 до 20ordmC и давлении можно приближенно

принимать βt~00001 C-1 Можно считать что плотность не зависит от давления а только от

температуры где ndash температура жидкости при нормальных условияхСпособность жидкости менять плотность (удельный вес) при изменении температуры широко используется для создания естественной циркуляции в котлах отопительных системах

11

Температурное расширение жидкостей

1t

V

V t

00

1

1 ( )t t t

Вязкость жидкостиВязкостью жидкости называется свойство жидкости оказывать сопротивление сдвигу Все реальные жидкости обладают определенной вязкостью которая проявляется при относительном перемещении смешанных частиц жидкости Наряду с легкоподвижными жидкостями (например вода) существуют очень вязкие жидкости сопротивление сдвигу которых весьма значительно (глицерин тяжелые масла) Таким образом вязкость характеризует степень текучести жидкости или подвижности ее частиц

12

Закон вязкости Ньютона

13

Профиль скоростей при течении вязкой

жидкости вдоль стенки

Согласно гипотезе Ньютона (1687 г) касательные напряжения при слоистом течении

где ndash μ модуль поперечного градиента скорости

Величина μ характеризует сопротивляемость жидкости сдвигу и называется динамической или абсолютной вязкостью (Пас)

Кроме Паtimesс используют такую единицу измерения как Пуаз 1П = 01 Паtimesс

Кроме коэффициента динамической вязкости в технике широко используют коэффициент кинематической вязкости (м2с)

du

dy

Вискозиметр

14

На практике вязкость жидкостей определяется вискозиметрами наиболее широко используется вискозиметр Энглера Вискозиметр Энглера предназначен для определения условной вязкости (времени истечения) жидких сред дающих непрерывную струю в течение всего времени истечения

В ротационном вискозиметре исследуемая вязкая среда помещается в зазор между двумя соосными телами правильной геометрической формы Одно из тел называемое ротором приводится во вращение с постоянной скоростью другое остаётся неподвижным Момент вращения передаваемый от одной поверхности к другой является мерой вязкости жидкости

От явления смачивания зависит поведение жидкости в тонких (капиллярных) трубках погруженных в жидкость

При смачивании жидкость в трубке радиуса r поднимается над уровнем свободной поверхности при не смачивании опускается

Высота капиллярного поднятия (опускания) жидкости h находится по формуле

15

Капиллярные явления

2cosпh gr

Сила внутреннего трения в жидкости

16

Сила внутреннего трения в жидкости прямо пропорциональна градиенту скорости площади трущихся слоев S и динамической вязкости

Тем самым трение в жидкости отличается от трения в твердых телах где сила трения не зависит от площади трущихся поверхностей

С ростом температуры вязкость жидкостей очень сильно падает (по экспоненте) а газов ndash растет по линейному закону

Например при нагревании пресной воды от 0 до 100degС коэффициент кинематической вязкости падает от 179times10-6 до 029times10-6 м2с то есть в 6 с лишним раз В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз При отрицательных температурах вязкость масел резко возрастает

Зависимость кинематической вязкости от температуры

duR S

dy

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 12: мжг лекция 1

Вязкость жидкостиВязкостью жидкости называется свойство жидкости оказывать сопротивление сдвигу Все реальные жидкости обладают определенной вязкостью которая проявляется при относительном перемещении смешанных частиц жидкости Наряду с легкоподвижными жидкостями (например вода) существуют очень вязкие жидкости сопротивление сдвигу которых весьма значительно (глицерин тяжелые масла) Таким образом вязкость характеризует степень текучести жидкости или подвижности ее частиц

12

Закон вязкости Ньютона

13

Профиль скоростей при течении вязкой

жидкости вдоль стенки

Согласно гипотезе Ньютона (1687 г) касательные напряжения при слоистом течении

где ndash μ модуль поперечного градиента скорости

Величина μ характеризует сопротивляемость жидкости сдвигу и называется динамической или абсолютной вязкостью (Пас)

Кроме Паtimesс используют такую единицу измерения как Пуаз 1П = 01 Паtimesс

Кроме коэффициента динамической вязкости в технике широко используют коэффициент кинематической вязкости (м2с)

du

dy

Вискозиметр

14

На практике вязкость жидкостей определяется вискозиметрами наиболее широко используется вискозиметр Энглера Вискозиметр Энглера предназначен для определения условной вязкости (времени истечения) жидких сред дающих непрерывную струю в течение всего времени истечения

В ротационном вискозиметре исследуемая вязкая среда помещается в зазор между двумя соосными телами правильной геометрической формы Одно из тел называемое ротором приводится во вращение с постоянной скоростью другое остаётся неподвижным Момент вращения передаваемый от одной поверхности к другой является мерой вязкости жидкости

От явления смачивания зависит поведение жидкости в тонких (капиллярных) трубках погруженных в жидкость

При смачивании жидкость в трубке радиуса r поднимается над уровнем свободной поверхности при не смачивании опускается

Высота капиллярного поднятия (опускания) жидкости h находится по формуле

15

Капиллярные явления

2cosпh gr

Сила внутреннего трения в жидкости

16

Сила внутреннего трения в жидкости прямо пропорциональна градиенту скорости площади трущихся слоев S и динамической вязкости

Тем самым трение в жидкости отличается от трения в твердых телах где сила трения не зависит от площади трущихся поверхностей

С ростом температуры вязкость жидкостей очень сильно падает (по экспоненте) а газов ndash растет по линейному закону

Например при нагревании пресной воды от 0 до 100degС коэффициент кинематической вязкости падает от 179times10-6 до 029times10-6 м2с то есть в 6 с лишним раз В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз При отрицательных температурах вязкость масел резко возрастает

Зависимость кинематической вязкости от температуры

duR S

dy

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 13: мжг лекция 1

Закон вязкости Ньютона

13

Профиль скоростей при течении вязкой

жидкости вдоль стенки

Согласно гипотезе Ньютона (1687 г) касательные напряжения при слоистом течении

где ndash μ модуль поперечного градиента скорости

Величина μ характеризует сопротивляемость жидкости сдвигу и называется динамической или абсолютной вязкостью (Пас)

Кроме Паtimesс используют такую единицу измерения как Пуаз 1П = 01 Паtimesс

Кроме коэффициента динамической вязкости в технике широко используют коэффициент кинематической вязкости (м2с)

du

dy

Вискозиметр

14

На практике вязкость жидкостей определяется вискозиметрами наиболее широко используется вискозиметр Энглера Вискозиметр Энглера предназначен для определения условной вязкости (времени истечения) жидких сред дающих непрерывную струю в течение всего времени истечения

В ротационном вискозиметре исследуемая вязкая среда помещается в зазор между двумя соосными телами правильной геометрической формы Одно из тел называемое ротором приводится во вращение с постоянной скоростью другое остаётся неподвижным Момент вращения передаваемый от одной поверхности к другой является мерой вязкости жидкости

От явления смачивания зависит поведение жидкости в тонких (капиллярных) трубках погруженных в жидкость

При смачивании жидкость в трубке радиуса r поднимается над уровнем свободной поверхности при не смачивании опускается

Высота капиллярного поднятия (опускания) жидкости h находится по формуле

15

Капиллярные явления

2cosпh gr

Сила внутреннего трения в жидкости

16

Сила внутреннего трения в жидкости прямо пропорциональна градиенту скорости площади трущихся слоев S и динамической вязкости

Тем самым трение в жидкости отличается от трения в твердых телах где сила трения не зависит от площади трущихся поверхностей

С ростом температуры вязкость жидкостей очень сильно падает (по экспоненте) а газов ndash растет по линейному закону

Например при нагревании пресной воды от 0 до 100degС коэффициент кинематической вязкости падает от 179times10-6 до 029times10-6 м2с то есть в 6 с лишним раз В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз При отрицательных температурах вязкость масел резко возрастает

Зависимость кинематической вязкости от температуры

duR S

dy

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 14: мжг лекция 1

Вискозиметр

14

На практике вязкость жидкостей определяется вискозиметрами наиболее широко используется вискозиметр Энглера Вискозиметр Энглера предназначен для определения условной вязкости (времени истечения) жидких сред дающих непрерывную струю в течение всего времени истечения

В ротационном вискозиметре исследуемая вязкая среда помещается в зазор между двумя соосными телами правильной геометрической формы Одно из тел называемое ротором приводится во вращение с постоянной скоростью другое остаётся неподвижным Момент вращения передаваемый от одной поверхности к другой является мерой вязкости жидкости

От явления смачивания зависит поведение жидкости в тонких (капиллярных) трубках погруженных в жидкость

При смачивании жидкость в трубке радиуса r поднимается над уровнем свободной поверхности при не смачивании опускается

Высота капиллярного поднятия (опускания) жидкости h находится по формуле

15

Капиллярные явления

2cosпh gr

Сила внутреннего трения в жидкости

16

Сила внутреннего трения в жидкости прямо пропорциональна градиенту скорости площади трущихся слоев S и динамической вязкости

Тем самым трение в жидкости отличается от трения в твердых телах где сила трения не зависит от площади трущихся поверхностей

С ростом температуры вязкость жидкостей очень сильно падает (по экспоненте) а газов ndash растет по линейному закону

Например при нагревании пресной воды от 0 до 100degС коэффициент кинематической вязкости падает от 179times10-6 до 029times10-6 м2с то есть в 6 с лишним раз В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз При отрицательных температурах вязкость масел резко возрастает

Зависимость кинематической вязкости от температуры

duR S

dy

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 15: мжг лекция 1

От явления смачивания зависит поведение жидкости в тонких (капиллярных) трубках погруженных в жидкость

При смачивании жидкость в трубке радиуса r поднимается над уровнем свободной поверхности при не смачивании опускается

Высота капиллярного поднятия (опускания) жидкости h находится по формуле

15

Капиллярные явления

2cosпh gr

Сила внутреннего трения в жидкости

16

Сила внутреннего трения в жидкости прямо пропорциональна градиенту скорости площади трущихся слоев S и динамической вязкости

Тем самым трение в жидкости отличается от трения в твердых телах где сила трения не зависит от площади трущихся поверхностей

С ростом температуры вязкость жидкостей очень сильно падает (по экспоненте) а газов ndash растет по линейному закону

Например при нагревании пресной воды от 0 до 100degС коэффициент кинематической вязкости падает от 179times10-6 до 029times10-6 м2с то есть в 6 с лишним раз В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз При отрицательных температурах вязкость масел резко возрастает

Зависимость кинематической вязкости от температуры

duR S

dy

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 16: мжг лекция 1

Сила внутреннего трения в жидкости

16

Сила внутреннего трения в жидкости прямо пропорциональна градиенту скорости площади трущихся слоев S и динамической вязкости

Тем самым трение в жидкости отличается от трения в твердых телах где сила трения не зависит от площади трущихся поверхностей

С ростом температуры вязкость жидкостей очень сильно падает (по экспоненте) а газов ndash растет по линейному закону

Например при нагревании пресной воды от 0 до 100degС коэффициент кинематической вязкости падает от 179times10-6 до 029times10-6 м2с то есть в 6 с лишним раз В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз При отрицательных температурах вязкость масел резко возрастает

Зависимость кинематической вязкости от температуры

duR S

dy

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 17: мжг лекция 1

Поверхностное натяжениеМолекулы жидкости расположенные у поверхности контакта с другой жидкостью газом или твердым телом находятся в условиях отличных от условий молекул находящихся внутри некоторого объема жидкости Внутри объема молекулы окружены со всех сторон такими же молекулами а вблизи поверхности - лишь с одной стороны поэтому энергия поверхностных молекул отличается от энергии внутренних молекул на некоторую величину называемую поверхностной энергией Эта энергия пропорциональна площади поверхности раздела S Эп=σS

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред

17

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 18: мжг лекция 1

Поверхностное натяжениеσ имеет размерность энергии на единицу площади или силы на единицу длины Для границы раздела вода-воздух при t=20degC коэффициент поверхностного натяжения σ=00073 Нм для границы раздела ртуть-воздух σ=048 НмПоверхностное натяжение жидкости чувствительно к ее чистоте и температуре При повышении температуры поверхностное натяжение уменьшается а в критической точке перехода жидкости в пар обращается в нуль В общем случае σ= σ0-βt

где σ0 ndash поверхностное натяжение при t=20degC

18

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 19: мжг лекция 1

На поверхности раздела трех фаз например твердой стенки 1 жидкости 2 и газа 3 между поверхностью жидкости и твердой стенкой образуется так называемый краевой угол Ɵ который зависит от природы соприкасающихся сред (от поверхностных натяжений на их границах) и не зависит ни от формы сосуда ни от силы тяжести

Если край жидкости приподнят ее поверхность имеет вогнутую форму и краевой угол ndash острый В этом случае жидкость смачивает твердую поверхность

Чем хуже смачивающая способность жидкости тем больше краевой угол При ϴgt90deg жидкость считается не смачивающей

При полном не смачивании (ϴgt180degC) капли жидкости как бы поджимаются стараясь уменьшить площадь контакта с твердой поверхностью

19

Краевой угол

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 20: мжг лекция 1

Чтобы привести такие жидкости в движение необходимо приложить некоторое начальное усилие Движение неньютоновских жидкостей начинается только после того как касательные напряжения в них достигнут некоторого предельного значения ndash начального напряжения сдвига при меньших касательных напряжениях эти жидкости не текут а испытывают только упругие деформации как твердые тела

20

Аномальные жидкости

Трение в некоторых жидкостях не подчиняется закону вязкости Ньютона Такие жидкости при некоторых воздействиях ведут себя как твердое телоК этим так называемым неньютоновским жидкостям можно отнести например литой бетон строительный раствор топливную массу при формировании зарядов РДТТ

Почему кисель на динамике так себя ведет

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 21: мжг лекция 1

Касательные напряжения в неньютоновских жидкостях

21

Зависимость касательного напряжения от градиента

скорости для нормальных 1 и аномальных 2 напряжений

В неньютоновских жидкостях касательные напряжения определяются по формуле Бингема

где 0 ndash начальное предельное напряжение сдвига Таким образом в аномальных

жидкостях сила трения возникает ещё в покоящихся но уже стремящихся прийти в движение жидкостях

Для ньютоновских жидкостей τ0=0

0

du

dy

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 22: мжг лекция 1

Примеры неньютоновских жидкостей

22

Цельная кровь (суспензия эритроцитов в белковом растворе ndash плазме крови) в отличие от плазмы крови является неньютоновской жидкостью Как видно на рисунке ниже вязкость крови η уменьшается с увеличением скорости v (или градиента скорости dvdx) течения крови

Для некоторых неньютоновских жидкостей вязкость η увеличивается с увеличением градиента скорости Такие жидкости называют дилатантными (например растворы бетона крахмала ил и др) Дилатантные жидкости применяют при изготовлении бронежилетов Такая система обеспечивает достаточную гибкость для нормального движения но дает жесткость при попадании пули колющих ударов ножом и тп

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 23: мжг лекция 1

Невязкая жидкостьПонятие невязкой жидкости используется в гидромеханике для облегчения решения некоторых задачПод невязкой жидкостью понимают воображаемую жидкость обладающую абсолютной подвижностью те лишенную вязкости а также абсолютно несжимаемую не расширяющуюся с изменением температуры абсолютно не способную сопротивляться разрыву То есть невязкая жидкость представляет собой некоторую модель реальной жидкости

23

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24
Page 24: мжг лекция 1

24

  • Механика жидкости и газа
  • Структура курса литература
  • Гидравлика (1) ndash содержание лекции
  • Определения и термины
  • Вода труба рыба Гидравлический арт (вектор)
  • Физические свойства жидкостей
  • История ndash гидравлика в древнем мире
  • История гидравлики - Архимед
  • Плотность и удельный вес жидкостей
  • Сжимаемость жидкостей
  • Температурное расширение жидкостей
  • Вязкость жидкости
  • Закон вязкости Ньютона
  • Вискозиметр
  • Капиллярные явления
  • Сила внутреннего трения в жидкости
  • Поверхностное натяжение
  • Поверхностное натяжение (2)
  • Краевой угол
  • Аномальные жидкости
  • Касательные напряжения в неньютоновских жидкостях
  • Примеры неньютоновских жидкостей
  • Невязкая жидкость
  • Slide 24