9
24 2D · 2004 3 - 1 - Jeon, Joo-Yong Lee, Kwan-Ho ····························································································································································································································· Abstract The purpose of this research was to evaluate and suggest the permanent deformation properties of asphalt paving materials with recycled waste materials, like waste foundry sand and various slags. Couple of laboratory tests with various loadings and confining pressure were conducted on for evaluation of permanent deformation of hot mix asphalt. Judging from the creep test, hot mix asphalt with steel slag or furnace slag as coarse aggregates showed the lower permanent deformation than common aggregates. Those were reduced up to more than 50% of permanent deformation of hot mix asphalt. The permanent defor- mation by static creep test was lower than by repeated creep test. Type of loading, testing temperature, and confining pressure should be considered as important factors for evaluation of permanent deformation of hot mix asphalt. VESYS method was employed and its results were similar to static or repeated creep tests. From the prediction of rutting potential by VESYS, the steel slag mixtures showed better performance than the common aggregate mixtures. Keywords : waste foundry sand, slag, recycled mateials, rutting, creep, VESYS ····························································································································································································································· , . , , . , ( / , / ) . 50% . , , , , (40 ) . , VESYS , , . , . : , , , , , VESYS ····························································································································································································································· 1. 1998 12 90,000km , 75% . , 95% . 1993 30% , 1998 7 . 10 100 . , . 1997 10 1 . 3 (permanent deformation), (fatigue), (low temperature cracking) . 70% , . , , , ? , ([email protected])

 · 2006-11-09 · Judging from the creep test, hot mix asphalt with steel slag or furnace slag as coarse aggregates showed the lower permanent …

  • Upload
    dinhtu

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

� � � �� � � � � � � �

���� ���������� ��

���

····················

terials and test,mmondefor-essure was, the

····················

····················

������ �� ��� ��� ���� ������

��������� ��������� �������������� � ��� ��� ������� �� ������� ���� �����

����������

Jeon, Joo-Yong�Lee, Kwan-Ho

·········································································································································································································

Abstract

The purpose of this research was to evaluate and suggest the permanent deformation properties of asphalt paving mawith recycled waste materials, like waste foundry sand and various slags. Couple of laboratory tests with various loadingsconfining pressure were conducted on for evaluation of permanent deformation of hot mix asphalt. Judging from the creephot mix asphalt with steel slag or furnace slag as coarse aggregates showed the lower permanent deformation than coaggregates. Those were reduced up to more than 50% of permanent deformation of hot mix asphalt. The permanent mation by static creep test was lower than by repeated creep test. Type of loading, testing temperature, and confining prshould be considered as important factors for evaluation of permanent deformation of hot mix asphalt. VESYS methodemployed and its results were similar to static or repeated creep tests. From the prediction of rutting potential by VESYSsteel slag mixtures showed better performance than the common aggregate mixtures.

Keywords : waste foundry sand, slag, recycled mateials, rutting, creep, VESYS

·········································································································································································································

� �

� ��� ���� �� ������ ��� ���� � ���� ��� �� !"#$ �� % &��'�( %& �)*+ ,-�� ./0 1234, %� !" 56� �0 7& 8��9( :;3� <%=. .>, ?@ �)*+ ,-�� ABC� DEFG� H/IF./0 1234, H/IF� JK/% L ��'�( �&�)*+ ,-�0 :;34� &=. ��'�( %& �)*+ ,-� ;MN �" H/IF./12� �OP0 Q4,=R& �S(T3U/V3U, W�X/�XYZ)� [\];M0 %3^=. [\];M _� :`��� � 4"��� '�(%& �)*+ ,-�� H/IF% �a'� ,-�� Wb c 50% %d ef ghi=. j&, T3U [\];M� Wb V3U[\] ;M; ;k� H/IFT!2 lm [f ghi4, %( 8n" op, H/IF 12( 7b � V3U,4q(40!%d) � �X3U0 %& ;M0 %3� <% rstu <v" wxy=. j&, �)*+ ,-�� H/IF./0 1238 7b VESYS� zM{|( C3} [\];M0 ~�3^4, %( %& b�_�, ��'��0 %& �)*+ ,-�� �� H/IF% �a'�( %& �)*+ ,-�� Wb dACv" ef ghi=. .>, :`���( %& ,-�N H/IF �H� d�& ��2 ��0 ��3^=.

���� : ����, ���, ��'�, H/IF, [\];M, VESYS

·········································································································································································································

1. ���� � ��

������ 1998� 12� � �� �� ���

���� � 90,000km��, ���� ���� � 75%�

�� . �!�� " #$��, %&'�(� )* ����

�� � 95%��� . ����+, -.� 1993��/ 0

� � 30%�� 12�3�, 1998� 456� � 778 �

�2 ����-.6� 9:;< . => ?@ 10�A� �

�� ��+, �-.� � 10078 �B� C D6� E

��� F . ��G H IJB K4 ��L� LM� 0N

OPQ, 'A� PR� ST U@;G ��� VP+WL &

' OX 12�� FG EY� . 1997� ��� � �

� ?@ 10�A ��� VPZ[� \];G -.^ �

178 ��� E.�� F . _`ab ����� cd��

ef� 3c Vg�G hijg(permanent deformation), k

�*l(fatigue), mn*l(low temperature cracking)� F .

�� _`ab ��ef� op gqG hijg6� ��

ef� � 70%�B^ rP�� F�, U@p ��� op

ef� gq� k�*l &' Bs> �t^ rP�� F .

�u> ef� v�� wN ��9�x Vy��, 9z�6

�G ��� J{m�� �> |}L:^ 12'~�, =>

��x ��, VP +W�G o�� �� L:� 1cx 2

���������� ��� �� �������������� ��� �?�� ��, ��([email protected])

�24� �2D� · 2004� 3� − 1 −

�n .

� �i��G ��:��(��H " �o|9)x �:>

_`ab ��|� \JjgIJ^ )2�4 �� �> 7

��� OW�'� [���, ���/ \JjgIJ -��

�]> j[�^ ��> . =>, ��p ��j[x �:�

� KENLAYER ��J ��H�^ �:> ��� ��^

[��� v� _`ab ��|� \JjgIJ )2��,

���6�G \Jjg� m J� ¡ ��:�� �: _

`ab ��|^ ¢'�G D� .

2. �� � �� ����

2.1 ������

OW� '�� _`ab ��|� \JjgIJ^ )2�

G 2� cd�� '�6� �M-jg+£� �> ��|�

¤�JIJ^ ¥¦§ (Hick, 1988; Khedr, 1986; van de

Loo, 1974; SHRP, 1994). �n��� _`ab ��|�

_`ab� ¤J� n�� 12� ST ¨©�X ª\�«

�, o� ��� ¬|­ ®B� �� ��|� IJ� ��

;�, �¯� °±� o� L²g°±IJ^ Z�5 . ST

�, ��|� IJ^ �³´ )2�4 ���G �MO4, '

A, n� (^ ¢µ��¶ �·, I´, i!¸�(confining

pressure)� �:��� ST, H IJ� OX j> . _`

ab2 2� ¹� w��G n�(10-50oC)c&��G 9:p

_`ab º�»� IJ� 0N ¼ª�X j> . Hu¥, �

�|� &½� IJ¾ j¿�G HW ¡ h?^ oP À�

G D6� ¥¦Á . �G ��|� IJ� 9:p ���

IJ� �> ?^ ¹� ÂG D^ �Ã> .

_`ab ��|� jgIJ� Ä ��� IJ)2Å

G ÆW #�> O4� �M� $Ç ���G ÈÉ^ �:

�·, �¯ yÊ�G jgIJ^ H­ 2.1Ë Ì� 42P ]

\, Í �J, \J, ¤�J " ¤\J h&6� it�� Î

[ F . �JjgË \Jjg� �M^ ��> DË ±'�

yÊ�G jgIJ6� �M��'AËG B+Ï . �� $

� ¤�J " ¤\J jg� Ì� O4� �M� P!Ð�

ST y�G 'A�� jg� . Uzan(1996)� �� ,

�n " ÒÄ �M��G \Jjg� o] ]\��, ¤\J

IJ� Bs´ ÃÃ� � yd�3 .

²g-¤�JIJ^ �:> _`ab ��|� IJ)2G

'�n� " �M��'A� ÓËx MÔ� 8Wx �:�

� _`ab ��|� �V> �M-jgIJ^ )2Õ [ F

G �¤^ 2Ö . �u> ²g-¤�J IJ^ ���G e

TÃ/G '�ÈÉ� ST creep modulusÅ relaxation

modulus, complex modulus, resilient modulus(MR)(6�

d®p . creep modulus, creep compliance " relaxation

modulus� ��G ×Ë Ì .

ØÙ�G _`ab ��|� °±IJ^ hi(\J)jgIJ

^ $h> ÚÛ^ vy�� �:�G EY� . �� cd�

� gq2 \J(plastic), �\J(Elasto-Plastic)Úg, ¤\J

(Visco-Plastic)Úg(� F . \J(plastic deformaion)� _

`ab ��|� ef =G ��|�� ��� ÜÝÞ (�

�� yÊ�G jg^ �Ã> . plastic flowG ¤J(visco)

IJ6� �� P!�� jg� Ê4G IJ^ �Ã> . �

u> \JjgIJ^ ßà�4�� iJÈ�á(constitutive

model)� �:;·, iJÈ�á� o] iJ]\G eâß5

(yield function), ãäIJ(flow rule) " w¿IJ(hardening

rule) (� F .

2.2 ����� �� ��

ØÙ� �� rå6� �> cd�� Iæ6�G cgrå

^ o] [ç[è6� �:�Gé� yÊ> . Í, ê�M�

12, ¦µµ ¸�� 12 " ��å� ¨!> 12x Z�

o� F . ST�, 'ë@ yÊ�G ��� \Jjg� c

> �³> -�� �[���, => �G Ë�> \Jjg6

� �> �� 9�� -� 0N M]> ]\� . \Jj

g� -��G ���� ì�-jg+£, rå�M� �> \

Jjgå (� �:;�, ��ÈÉ�G �í� ��É, &½

� ��É, w�^ Ù°�> &½� ��É (� F . \J

jg )2 " -�^ �� ®� Zî�6� 9:�G ÈÉ

6�G �jg�í =G ¤�J�í^ �:> ��É� .

\JjgË +,p ¹� �i2 ��ï�� [�;<�, =

> ¹� \Jjg mªcð� ¢ñ;< . �u> mªcð

� ÙA� òm \Jjg IJ^ �³´ )2�G D� .

I´, \Jjg� �³> -�^ �� 9:;G ÈÉ�¥

�í� oµÖ �M� �> ���� °±IJ^ �³´ )

2Õ [ Fµ¶��, => �� IJ^ �³´ $hÕ [

Fµ¶> . \Jjg IJ )2� �:;G ÈÉ� OX 3

2P� ¥óµ Î [ F . Í, zôt�^ �:> w��

ÈÉ, iJÈ�á^ �:> \Jjg �:É, õ��Ëx �

:> È�á6� it� Î [ F . �u> �> ��È

É^ �:> hijgIJ)2 �Ë, hijg� Bs> h

?^ oG ]\�G n�, �M$Çö[ " ��'A, ��

|IJ " ì�Bq (� F . #�t� ÚÛ� hijg

IJ )2' #ê¸êì�(σ1)Ë [)ì�(σ2)x �:�3 .

S t( )σ0

ε t( )--------=

D t( ) 1S t( )--------- ε t( )

σ0--------= =

Er t( ) σ t( )ε0

---------=

�� 2.1. �� �� ����� ��

− 2 − ����� �

�u> '�÷^ �:> ¹� �i�Ëx d 2.1� �W�

3 .

3. ����

3.1 ���

� �i��G ���� Zî�6� �:;� FG AP-3

Å AP-5 M P&� IJ, Í n¿> 4@x Z�G �.P

&^ �ø�� ��OO9� AP-5 _`ab 'ùb(AC,

Asphalt Cement)x ²ú�� õ�^ õ'�3 . � �i�

�:p _`ab� 4� |J¾G LM� 1.034 g/cm3, �

¿¤� 348oC, û� 150cm, ü�'� @ ý}|� 0.1%�

�� .

3.2 ��

� �i��G þ���� ¢ÿ��H " ����Hx �

:�3�, ý��� �o|9, ¢ÿ��H " ����Hx

�:�3 . 2l_`ab ��|: ����� IJ^ )2

�4 �� ��, LM " �[å'�, ±���� c> ñ�

J'�, ���Ú'�, Y�L'� ( õ'�3 . =>, #

$��x �:�� IJ^ )2�3�, � �i� 9:p �

Ê��� IJË B� L��3 . õ��ËG �o: (

(2002)� ��� yd�3 .

3.3 ����

_`ab ��|� ���£G \] �� �x 9:�

� ñ�JË �iJ, Ã� m J� ��, ��, "

d ��W (� � ��� :�> ��|� �µP�� �

4 ��� ��PG '�ÈÉ� . �� '�ÈÉ� ASTM

d5'�É� �ú;<�, '��rG ASTM D 1559, “�

� '��¾x �:> &� ��|� \Jãä m ”6� ß

��� F (ASTM, 1994). � '���G #$��, º Ú

�, ��H, �o|9� 7�� ST d 3.1Ë Ì�, OX

� 2P� ��gq� ¥óµ� õ'�36·, ��� _

`ab ��|� ��IJ� �� ��;µÖ Ø�_`ab

�å� 7.2%~7.5%� ���� ��;< . ��� _`ab

��|� zÇ�J£[ " A���ÿ� IJ� �o: (

(2003)� ¢'�3 .

4. ������� � ��

4.1 ��� ���

� �i��G Li! ��M OW�'�, i! ��M O

� 2.1. ���� �� �����

��� ���� �� � �� ��� ��

Kirwan,Snaith,Glynn(1977)

DEFPAVNonlinea FEM, layer strain

ε: ����A: ��-����∆:��� !

"���#$%&'��

MonismithInkabi FreemeMcLean (1977)

ELSYM Layered elastic, layer strain

εzp :()����

δ(T): *+N:$%,-.�

,-/�����

�$% 0 $%12�3

Brown Bell(1979)

DEFPAV Nonlinea FEM, layer strain

q: �4 !a, b: 5�N:$%,-.�

(),-$%

��+6789 :; 5<<=

Meyer Haas(1977)

FEPAVE II FiniteElement

Layer Strain

AV: air voidT: temperatureE: error

,-/�$%

>?9 �?5<<=:@

van de Loo(1976)

BISAR elasticlayer theo.

σ : () !(103.5kPa)

��A&'��

SHELL ��BC

Kenis (1977)VESYS probabilitic

linear viselastic

e:DE$%� ��α:1-Sµ=IS/e

"�,-$%

VESYS ��BC

Francken(1977)

A,B,C,D: F!�� t: ��

/�#�$��

����GAHI

VerstraetenRomain

Veverka (1982)

Elastic layer Layer strain

Theory

A, B : F!5�C=f(Vb, Vv)E* : modulus

/�#�$��

16J ��+6KC78 :

LMN LO �P

MahboubLittle (1988)

εvp/N : visco. plasticdeform. σ: E,- !

"�&'��

εn A b∆=

εzp δ T( )Nασn 1– t[ ] σz

12--- σx σy+( )–=

επaq--- N( )b=

εp f σ1 σ3 T AV N, , , ,( ) E±=

εp CσNa=

εp N( ) εµN α–=

εp t( ) AtB C expDt 1–( )+=εp t( ) AtB=

εp t( ) At

10003--------------

B C σ1 σ3–( )

E* t1000------------

B----------------------------= =

εvp

N------- aσb=

� 3.1. �� �� � !

Q1 RSTUV

W�XY1 2 3 4 5

Z;W�

",[\] O

^\_`a O O

�6_`a O O

bW�

cd` O O O

�eO \_`a O

�eO �6_`a O

fgTh O O O O

*ij� : k lSm _`a1no #"$p BC

�24� �2D� · 2004� 3� − 3 −

W� '�, Li! $�M OW�'�, i! $�M O

W�'�, 1t�M OW�'�^ [��3�, �x ٰ�

��:��(��H " �o|9)� �}� \JjgIJ )

2�3 . � �i� �:p OW�'�44G H­ 4.1Ë

�, OW� '�� �}, '�n� " '�7�� d 4.1

� ¥¦�< .

4.2 ��� ����

� �i��G ���}� SÄ \Jjg IJ^ �4 �

� �M, n�, i!�M (^ j¿'�, �> 7�� O

W� '�^ [��3 . H­ 4.2G ��M OW�'��Ë

x Z�5 . H­ 4.2�� Z�� �M� �[�, n�2 �� 4.1. ��� ��""

� 4.1. ������ ��# $% �����&'

&qr�� XY

Qs$%tu

��*+ ����vwx ��vw

$%�$/ $�� $%&y

>$%&qr��

�Qs37.8oC

z��$% 0 �� 0.1kN, 300{

z$%�$, $�� :3600{, 1200{(|})

1.12kN, 3.36kN

54.4oC 0.56kN, 1.12kN

Qs37.8oC 3.36kN, 6.73kN

54.4oC 3.36kN, 6.73kN

#$%&qr��

�Qs37.8oC

z$%�$, $�� : 3600{, 1200{(|})z�$ 0 $�� : 0.2{, 0.8{

1.12kN, 3.36kN

54.4oC 0.56kN, 1.12kN

Qs37.8oC 3.36kN, 6.73kN

54.4oC 3.36kN, 6.73kN

~1$%&qr��

�Qs37.8oC

0.1kN� $% 101�$ 0 $ 2� ,-

z�$�� : 0.1, 1, 10, 100, 1000{z^$�� : 120, 120, 120, 240, 480{

1.12kN, 3.36kN

54.4oC 0.56kN, 1.12kN

Qs37.8oC 3.36kN, 6.73kN

54.4oC 3.36kN, 6.73kN

*����Ko �3O $%8 !<= : 1.12kN→ 142kPa, 3.36kN→ 428kPa, 6.73kN→ 856kPa

�� 4.2. (), *+, ,-./0 12 3�4 ��� 56

− 4 − ����� �

�^[�, Li! Bq# wN hijgå� ^ � [ F

. =>, ��HÅ º Ú�x ��> �� 3Ë �� 52

���P !� �� 2Å �� 4Z hijgå� O� e

â� �"G 'A� �×^ � [ F . �G e#> ý�

�� 9:� hijgå� O4� h?^ $^ �Ã> . �

M7�� wN cgb%#u �M7�^ i®> 6.73kN�M

� wN c�t� ë'�2 eâBq� �"& . I´,

54.4oC��� '�� '� \Jjg eâIJ^ è�6�

Z�5 .

d 4.2G �� �}� SÄ 3600K �M��Bq " �M

¢° @ 1200K(ó£ 4800K)��� OW� jgå^ Z�

5 . 'v� jgå� r�2 _`ab� ¤�JJ� �

�� zÇp jgå� O4x �Ã> .

d 4.3� �i�� �Wp \Jjg ÈPx �> �£4

56� Ø\ OW� £[x ¢ñ> ���, d 4.4G ��å

7�� SÄ \JjgÈPx �> Ø\ OW�£[ ��

(Little & Button, 1993). d 4.5G \Jjg IJ ��

OW� £[x ¥¦�< . d 4.5�� Z�� ��HÅ º

Ú�x 7��P !� _`ab ��|� OW�£[2 2

� O� OW� 4(4G 2� �) . ��HÅ º Ú�x

7�> _`ab ��|� OW� £[G Bc�6� 2�

��, OW� 4(4G 2� ¡ D^ � [ F . I´, �

� 2Š��4� wN 37.8oC '�n��� L�� �� �

�å7�� Ø\ OW�£[ �� Ù��^ � [ F . �

G ��HÅ º Ú�x ���P !� _`ab ��|�

\Jjg m J� 2� N[� G D^ �Ã�� #$ _

`ab ��|Ë L� Õ ¯ \Jjg m J� F×^ *

> .

4.3 �� ����

H­ 4.3� n�, �M, i!7�� SÄ �� �}� ±�

M OW� °±^ ¥¦§ . ±�M OW� '��Ë eâp

+,� ¹_ ���}� SÄ \Jjg IJ^ L��4 µ

ø- ¤� F6¥, c��6� OW� 4(4� wN ��H

Å º Ú�x 7��P !G �� 2Å �� 4� 4(42

2� �X ¥¦Á . => �� �M6� �> +,� eâ

'A� ��HÅ º Ú�x 7��P !G ��� 7�^

> ��Z .X ¥¦Á . HW� ±�M OW� '� '

yÊ�G jgå� ±# 7�6� [�> ��M OW� '

� �Ë� ¥n jgå� 110%~180%� �� �� Ñ��

3Gé �G $Ç�M6� �� �2 ÂG k�2 �PB

q� ¸/;µ FG ��M� L� 0 � SÄ �Ë� .

� 4.2. 3� !0 12 ��� ��7

Qstu *+ $%lS1 lS2

���( 3600{) ���( 4800{) ���( 3600{) ���( 4800{)

�Qs

37.8oC1.12kN 634.00 521.47 475.08 299.22

3.36kN 2004.82(2601{)-�� 832.88 644.75

54.4oC0.56kN 443.88 323.60 470.35 389.70

1.12kN 691.38 559.26 455.58 337.90

Qs(1.41kg/cm2)

37.8oC3.36kN 855.17 736.81 683.07 598.02

6.73kN 1881.08(1300{)-�� 1098.84 936.48

54.4oC3.36kN 1253.25(1400{)-�� 877.42 775.49

6.73kN 1859.86(148{)-�� 1788.44(926{)-��

Qstu *+ $%lS3 lS4 lS5

���(3600{) ���(4800{) ���(3600{) ���(4800{) ���(3600{) ���(4800{)

�Qs

37.8oC1.12kN 497.71 348.49 389.19 247.62 505.63 340.95

3.36kN 1963.05(1202{)-�� 896.73 617.77 1271.46 981.96

54.4oC0.56kN 285.71 240.55 193.67 112.71 283.50 210.74

1.12kN 964.80 896.06 385.62 382.21 605.24 454.23

Qs(1.41kg/cm2)

37.8oC3.36kN 1033.24 911.66 528.48 426.78 1179.13 1058.74

6.73kN 2091.98(1500{)-�� 839.47 700.24 1516.41(700{)-��

54.4oC3.36kN 1000.95(480{)-�� 384.57 304.85 996.0(178{)-��

6.73kN 2174.43(84{)-�� 1082.30 904.14 1628.0(34{)-��

� 4.3. 8� ���9: ;

(Q����+

��*+

$%�$��

!(kPa)

yP�

Viljeon and meadows 1981 40oC 100 min. 207 82.7 MPa

Khedr 1986 40oC 60 min. 207 137.9 MPa

Kronfuss et al. 1984 40oC 60 min. 103 max 45.3

Lee & Lovell 1996 50oC 60 min. 827 70 MPa

� 4.4. <=7 &'0 12 8����9:

�}���

�}�>+ ESALD�&qr=�(MPa)

I �� �; �}� > 106 ESAL 51.7

II �; �}� 5*105~106 ESAL 48.3

III %� �}� 105~5*105 ESAL 34.5

IV �; �}� < 105 ESAL 20.7

�24� �2D� · 2004� 3� − 5 −

4.4 !"�� ��� �

1t�M OW� '�ÈÉ� wN, ë'�� 2�PG �

Mgq 7�� x 1 ��M OW� '�Ë ±#> 7�

�� '��X p . �MgqG VESYS(FHWA, 1978)�

�> ÈÉ^ 4K� �3 . òm, 37.8oCÅ 54.4oC� n�

�� '� ë'�� 0.1kN� ê�M6� 10t� ��MË

10t� ¢�M gq� 2z $Ç��, �@ õ�6� 0.1,

1, 10, 100, HW� 1000K ±ñ O42 Ä 42P� �

�M(0.56kN ,1.12kN, 3.36kN, 6.73kN) ����, H 9

�� 2, 2, 2, 4, HW� 8t� 'A±ñ �M^ ¢�> .

� 4.5. 3� !0 12 >*+ ���9:

lS

�Qs Qs

37.8oC 54.4oC 37.8 oC 54.4oC

1.12kN 3.36kN 0.56kN 1.12kN 3.36kN 6.73kN 3.36kN 6.73kN

1 15 - 11 14 34 - - -

2 18 30 9 18 36 45 28 -

3 18 - 16 9 25 - - -

4 25 32 25 25 55 69 74 54

5 19 23 17 16 25 - - -

- : ��� ���6 �B �@

�� 4.3. 6*+ �����?@

�� 4.4. A,��B(Cp)@ *+�D

�� 4.5. EF*+ ����� ?@

− 6 − ����� �

HW� ¥� ��� �M ¢�2 2¥G �t�� hijg

�(εp) ���X p . �3X i> hijg�(εp)Ë �M

'A(sec) �H`4#� �W��, H­ 4.4Å Ì� �]>

j[�^ ��> . \Jjg -�� εp(N) = µεN−α á^ �

:�3 . �4�, hijg�(εp), rå��$Ç ö[(N), µÅ αG hijg�� j[� . HW� ε� 10K� P!�

M� '�;G ¤�� 0.03K ±ñ� jg�� . � á�

hijg� j[x �:�� rå��$Ç ö[� SÄ h

ijg�^ iÕ [ FG �[� iJ;µF . H­ 4.5G

1t�M OW� '�6��/ ¥n 'A-jgå +£x Z

�o�, d 4.6� VESYSÈÉ� �� ��;µÖ \Jjg

IJ� +,p ��j[÷^ ¥¦�< . d 4.5�� �µÖ�� 4.6. G7HIJ:0 12 3�4 A,��B

� 4.6. VESYS K�0 �% LM �:

F!�� I S � � �

lS1

37.8+

�Qs1.12kN 0.00053 0.233 27.62259 0.767 0.0000044

3.36kN 0.00234 0.210 56.98042 0.790 0.0000086

Qs3.36kN 0.00353 0.143 63.18239 0.857 0.0000080

6.73kN 0.00592 0.136 93.46843 0.864 0.0000086

54.4+

�Qs0.56kN 0.00052 0.191 12.30671 0.809 0.0000080

1.12kN 0.00213 0.119 80.20590 0.881 0.0000032

Qs3.36kN 0.00374 0.134 45.58127 0.866 0.0000110

6.73kN 0.00623 0.160 150.88447 0.840 0.0000066

lS2

37.8+

�Qs1.12kN 0.00137 0.165 52.26783 0.835 0.0000043

3.36kN 0.00279 0.145 45.39070 0.855 0.0000089

Qs3.36kN 0.00303 0.120 39.95807 0.880 0.0000091

6.73kN 0.00470 0.120 94.64638 0.880 0.0000060

54.4+

�Qs0.56kN 0.00056 0.158 18.21648 0.842 0.0000048

1.12kN 0.00218 0.094 61.96675 0.906 0.0000033

Qs3.36kN 0.00472 0.089 98.89195 0.911 0.0000043

6.73kN 0.00704 0.102 57.69245 0.898 0.0000124

lS3

37.8+

�Qs1.12kN 0.00097 0.190 35.23493 0.810 0.0000052

3.36kN 0.00258 0.179 64.35776 0.821 0.0000072

Qs3.36kN 0.00426 0.134 59.74638 0.866 0.0000096

6.73kN 0.00550 0.157 78.09262 0.843 0.0000111

54.4+

�Qs0.56kN 0.00073 0.175 25.92017 0.825 0.0000050

1.12kN 0.00249 0.122 76.56680 0.878 0.0000040

Qs3.36kN 0.00482 0.162 53.18612 0.838 0.0000147

6.73kN 0.00758 0.196 94.98157 0.804 0.0000156

lS4

37.8+

�Qs1.12kN 0.00108 0.112 54.16030 0.888 0.0000022

3.36kN 0.00380 0.083 60.79231 0.918 0.0000052

Qs3.36kN 0.00338 0.074 97.62604 0.926 0.0000025

6.73kN 0.00289 0.108 111.45137 0.892 0.0000028

54.4+

�Qs0.56kN 0.00020 0.172 3.94627 0.828 0.0000088

1.12kN 0.00189 0.085 60.52618 0.915 0.0000027

Qs3.36kN 0.00302 0.064 60.07252 0.936 0.0000032

6.73kN 0.00409 0.105 50.43760 0.895 0.0000085

lS5

37.8+

�Qs1.12kN 0.00097 0.161 40.70184 0.839 0.0000038

3.36kN 0.00202 0.187 58.93161 0.813 0.0000064

Qs3.36kN 0.00215 0.159 71.31754 0.841 0.0000048

6.73kN 0.00290 0.181 91.50962 0.819 0.0000057

54.4+

�Qs0.56kN 0.00026 0.185 11.09791 0.815 0.0000044

1.12kN 0.00166 0.123 88.99729 0.877 0.0000023

Qs3.36kN 0.00301 0.155 59.19253 0.845 0.0000079

6.73kN 0.00617 0.169 114.79560 0.831 0.0000091

�24� �2D� · 2004� 3� − 7 −

4

4

4

4

4

4

4

4

4

3

3

4

4

4

4

4

4

��j[÷^ 5� á� c��� £.p rå$Çö[� c

> hijg�^ H­ 4.6� ¥¦�< . ��HÅ º Ú�

� 7�� ÏG �� 2Å �� 4� hijg�� 2� �

X ¥66·, H M��� ����H _`ab ��|� \

Jjg m J� 2� N[> D6� ¥¦Á .

5. KENLAYER !"# $%&��

5.1 #$%& �'()

Burmister� ��J�í� 0b7 4É6� �8;� 9

:/� yÆË �; ��J�í� º<^ = �.��H

�� ¹� vy;µ _`ab ��i7�� i7��� 9

:;� F . ��J�í^ 2� òm �.¿�� ��i

7��� 9:p �.��H�� 1963� Chevron �i\�

� vyp CHEV ��H�� . 1973�� Shell �V9��

vyp BISAR ��H�� 2� Zî�6� 9:;G ��

J�� �.��H�6� ��i7��� ì�Ë jg>^

2� �³�X iÕ [ FG Ç?> [½� ÚÛ^ ���

� Fµ Ä ��J��H�^ L��G 456� 9:;

� F . Ãë@è�� vyp WESLEA ��H�� \g9

:/�� Z Ó��6� 9:;·, Ä ��H�� L�

û!�X [�p . 1986�� Finn (� _`ab ��i7

��� k�*lË ºA�BÞ(rutting) -�Õ [ F�

� ��J�í� �� ì�[5� SÄ |J(Stress-

dependent Property)� L²g^ �:> �.��H��

PDMAP vy�3 . => Kenturky c½�� vyp

KENLAYER ��H�� ���� c�� ²g�J, L²

g�J, =G ¤�J��� 2{�·, ��M =G �±�M

� c��� ��� 2{> ��i7����H�� . �G

k�*lË ºACBÞ� c> fB��(Damage Analysis)

� [�Õ [ F�� ;µ F . ��i7���^ ���

��J�í� º<^ = �.��H�÷� ¹� vy;µ

9:;� F (���, 2002).

5.2 KENLAYER #$ ��

� �i��G �J��� _`ab ���� �£[à -

� 4É� Damage Analysis ÈÉ^ [��3� 1t�M

OW� '� �Ë��/ �µÖ OW� £[� &[�

Creep compliancex �� �� 7�� $h�3 . => 1

t�M OW� '�� jgåË L��4 �� _`ab d

�� ';x 65mm� �# 'D6·, d�� ';� SÄ

[à ��+£x ßà�4 �� 65mm�� 203mmEP ¥

óµ� õ'�3 . HW� UB " 4�� |J¾ j¿�

SÄ h?� � �� 7�� $h�3 .

F ��� iJ : 3� i7(_`ab d�, 4�, UB)

F ��� ��n� : 37.8oC(100F)

F �A ��� )*n� : 25oC(77F)

F '; : 1t�M OW� '�: ë'� ';� 65mm

�/ 203.2mmEP

F �M(�P¸) 7� : 3.36kN(i!)(=60.15psi), $w

- 154mm

F �J£[ : 4�(206,850kPa), UB(103,425kPa)

F ��å : 500z/#, 182500z/�

F �� �} : 5v

5.3 KENLAYER #$*+

d 5.1� KENLAYER ��H���� �:p _`ab

��| �}� �M'A� SÄ creep compliancex Z�5

. VESYS ���ËÅ� L�x �� 1t�M OW�'�

���/ creep compliancex ���3 . d 5.2G _`

ab ��| �}� ��� d� '; j¿� �> G å

� 5.1. ��0 NOP �� �� 4 Creep Compliance

��({)Creep Compliance (kPa)

lS 1 lS 2 lS 3 lS 4 lS 5

0.001 2.058E-04 1.806E-04 2.452E-04 2.903E-04 1.152E-0

0.003 2.408E-04 2.060E-04 2.843E-04 3.147E-04 1.371E-0

0.01 2.859E-04 2.381E-04 3.342E-04 3.439E-04 1.660E-0

0.03 3.344E-04 2.716E-04 3.873E-04 3.729E-04 1.976E-0

0.1 3.971E-04 3.138E-04 4.554E-04 4.074E-04 2.392E-0

1 5.516E-04 4.137E-04 6.206E-04 4.827E-04 3.448E-0

10 7.662E-04 5.454E-04 8.456E-04 5.718E-04 4.968E-0

100 1.064E-03 7.189E-04 1.152E-03 6.774E-04 7.160E-0

500 1.339E-03 8.721E-04 1.431E-03 7.626E-04 9.243E-0

1000 1.478E-03 9.477E-04 1.570E-03 8.025E-04 1.032E-0

1600 1.581E-03 1.003E-03 1.673E-03 8.307E-04 1.112E-0

� 5.2. QRST0 12 �� 4 UV7(m), WR��B X YZ:[(\)

��(mm)37.8 oC (���))

lS 1 lS 2 lS 3 lS 4 lS 5

65.0 0.566 0.564 0.569 0.569 0.556

101.6 0.513 0.505 0.516 0.518 0.493

127.0 0.475 0.465 0.480 0.483 0.455

152.4 0.439 0.429 0.447 0.447 0.417

177.8 0.409 0.399 0.414 0.417 0.384

203.2 0.381 0.371 0.386 0.386 0.356

��(mm)37.8 oC (�����,strain)

lS 1 lS 2 lS 3 lS 4 lS 5

65.0 -2.12E-04 -2.22E-04 -2.01E-04 -1.96E-04 -2.53E-0

101.6 -3.52E-04 -3.58E-04 -3.46E-04 -3.45E-04 -3.64E-0

127.0 -3.80E-04 -3.79E-04 -3.79E-04 -3.79E-04 -3.75E-0

152.4 -3.74E-04 -3.69E-04 -3.76E-04 -3.77E-04 -3.60E-0

177.8 -3.51E-04 -3.44E-04 -3.55E-04 -3.56E-04 -3.32E-0

203.2 -3.22E-04 -3.14E-04 -3.25E-04 -3.27E-04 -3.00E-0

��(mm)37.8 oC (���, �)

lS 1 lS 2 lS 3 lS 4 lS 5

65.0 4.38 4.49 4.25 4.19 4.93

101.6 7.93 8.55 7.57 7.49 9.48

127.0 11.8 10.68 11.15 11.01 8.84

152.4 13.41 11.66 14.86 15.27 10.15

177.8 16.49 14.69 18.03 18.45 13.22

203.2 22.12 20.02 23.93 24.42 18.4

− 8 − ����� �

n,

-

a-

te,

e

lt

m,

d

ge

Ë ��� ��� yÊ�G ��jg�^ Z�5 . ���

Ë��/ ��p G å " ��jg��� ���� ';

� ST \ ¼ª�X j�3 . Q, KENLAYER�

Damage Analysis �� ' -�[à� ���� �:�G

G åË ��� ����/ yÊ�G ��ì�Ë H:�Ë

� L��� .Ip . ST�, èü´ hijgå� O4�

ST _`ab ��|� IJ^ Jè�4G \ µø- D

6� Jèp . ��H�� ���� Î [ F��, ��p

�Ë��/ �µPG ���� G å, ��jg� " -�

[à� creep compliance� ¼ª�X j�^ � [ F .

�D� ��H� ��^ �> ���� ���� ��j[

� M]J^ �Ã�G D6�, OW� '�� d5¿ ���

7!´ ��W;µ¶ Õ D� .

6. �' � ()��

PKEP [�p ��:��x �:> _`ab ��|�

\Jjg IJ)2'��Ë��/ ×Ë Ì� �í^ �I

�3 .

•_`ab ��|� \JjgIJ^ )2�4 �� �

> �}� OW�'�^ [��3 . '�7�� i!�M�

��, n�j¿, �M� �} (^ ��´ 7��� �:�

3 . ��MOW�'�� wN �� 2(¢ÿ��H ��|),

�� 4(����H ��|)� hijgå� Ä ��|�

L� �X ¥¦Á . �u> ÓËG 54oC��� '��Ë�

� L» à³�X ¥¦Á .

•PKEP ydp '�7�� SÄ Ø\OW�£[x L

�> �Ë, '�7��� �A� r�2 Fµ Ý��� L�

G Õ [ ÏPQ, A��� L�x �3 . i!�M^ 2�

P !� ��|� wN �u �i2 ¢'> 45��

\ ÃÆ�G D6� )2;<�, i!�M^ �:> wN ¢

ÿ��H ��|Ë ����H ��|� 45� Ù�> �

^ ¥¦�< . õ�� n�, �M�} " �M��'A� r

�� �> ��� ��J��x ���4�G \ �W

2 F6¥, )2p x Ù°� JèÕ ¯, ¢ÿ��H �

�|� Mt> \Jjgm J^ 2PG D6� Jèp .

•rå�M^ Ú9> ±�M OW�'�^ [��3 . '

��Ë, ¢ÿ��H ��| " ����H ��|^ ¢ï>

¥NP ��|� \Jjg =G eâBq� �"& . I´,

��M��' µG �� \Jjg� c> m J^ Z�5

��| &' ¡ \Jjg " eâBq� �Æ> D6� Î

¯, \Jjg IJ)2' ±�M^ �:�G D� ®�7�

^ L» �®Õ [ FG ÈÉ�«�, �x $h> '�^

��¶ Õ D� . =>, i!�M� SÄ \JjgIJ� O

X ÆTP«�, ®�7�^ �®�G i!�M� $O' '

�� �:;µ¶ Õ D� .

• VESYS ÈÉ^ �:> 1t�MOW� '�^ [��3

�, '��Ë��/ rå$Çö[� SÄ ���� hijg

å^ -��3 . -�p hijgå^ 456� Î ¯, ¢

ÿ��H ��|Ë ����H ��|� hijgå� �X

¥¦Á�, Ä ��|� �Z \ OX ¥¦Á . �u

> r�G �� '�n� " i!�M^ �:> wN� O

X yÊ> D6� ÃPµ Î ¯, ���� hijgå -�

� Fµ� �� |J^ ���G '�n� " i!�M�

0N M]> �� Jè;�, $O' �:��¶ Õ D� .

• KENLAYER ��J ��H�^ �:�� ì�-jgI

J^ )2�3�, Damage Analysisx �:�� ����

ýÑ[à^ )2�3 . ����G ��� \JjgË d�

� ��� y�G ��*l� M]> ]\��, ��

�� èü \JjgQ^ �ø> ��� �ËÅG \ B�

> �Ë2 ¥¦Á . �G ��*l� �> ÓË2 $hp

D^ �Ã> . ���Ëx 4K� Î ¯, ����H ��

|� ¢ÿ��H ��|� L� \ ��> �Ëx ¥¦�

< .

*+� ,

� �iG >�˽�è Q�4K�i(Ë¢R� 2000-2-

31100-001-2) P86� [�;<�, �� ª9O8S .

-./0

w��}u(2002) ��� ����� � ��� �����(���� ����� ), 1�= 14�+ DX���,KPRP-G-02.

�� , ¡¢£, ¤�/(2002) ,-&qr��o BCO ¥¦§¨2�� ���� �© �=yP J�, ������ ���,22ª, 1-DV, pp. 71-80

¡¢£, B<V(1997) �(�+6«� f�¬(Waste Material) ­C �¢, �������, ",yh, pp. 76-86.

®gC, v�¯, B<V(2003) _`a9 fgTh° BCO ¥¦§¨ RST� ����±�m <O (Q, �� !"��,Vol. 20, No. 2, pp. 186-192

®gC, B<V, v�¯(2002) ¥¦§¨ 2�C �²W�6� _`a9 fgTh� T�HI (Q, �� !"���, 19ª 5V, pp. 511-517

Emery, J. J. (1982) Slag Utilization in Pavement ConstructioExtending Aggregate Resources, ASTM STP 774, AmericanSociety for Testing Materials, pp. 95-118.

Hicks, R. G. (1988) State-of-the-Art on Rutting in Asphalt Concrete, Proceedings, Third IRF Middle East Regional Meeting,Vol. 6, 6.119-6.144

Little, D.N. and J.W. Button (1993) Development of Criteria toEvaluate Unaxial Creep Date and Asphalt Concrete Permnent Deformation Potential, TRR, No. 1416, pp. 1-10

Khedr, S. A. (1986) Deformation Mechanism in Asphalt ConcreJournal of Transportation Engineering, ASCE, Vol. 112, No. 1,pp. 29-45

Lee, K. (1996) The Use of Waste Materials (Air-Cooled FurnacSlag and Pyrolyzed Carbon Black) in Hot Mix Asphalt, Ph.DThesis, Purdue University, W. Lafayette, Indiana.

SHRP (1994) Stage I Validation of Relationship Between AsphaProperties and Asphalt Aggregate Mix Performance, ReportNo. SHRP-A-398, Strategic Highway Reseach PrograNational Research Council, Washington, D. C.

Uzan, J. (1982) Permanent Deformation in Pavement Design anEvaluation, Technion, Israel Institute of Technology.

van de Loo, P. J. (1974) Creep Testing : A Simple Tool to JudAsphalt Mix Stability, Proceedings, AAPT, Vol. 43, pp. 253-284

(³�": / h": / hµ�": )

�24� �2D� · 2004� 3� − 9 −