178
1 ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ Государственная корпорация по атомной энергии «Росатом» 2009 СЕРИЯ: Обеспечение безопасности АЭС ВЫПУСК 25 Реакторные установки с ВВЭР

Выпуск №25 (pdf, 7.9Mb)

  • Upload
    hadat

  • View
    233

  • Download
    4

Embed Size (px)

Citation preview

  • 1

    2009

    :

    25

  • ( )

    -

    . .. ( )

    2009

    :

    -

    25

    c

  • :.. ( ), .. ( ), .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , .. , ..

    :.. ( ), .. , .. , ..

    :.. , ..

    ISBN 978-5-94883-109-1

    , 2009 . , 2009 . , 2009 .

    - - - , .

    621.039

    OAO

  • .., .., .., .., .., .., .., .., .., .. (-) ....................................................................................................................................5

    .., .., .., .. - . ..................................................................................................................15

    .., .., .., .., .., .., .., .. . .................................................................................28

    .., .., .. -1200. .....................................................................................................44

    .., .. -440 ...........50

    .., .., .., .. .., .. -: ......................................................62

    .., .., .. BEPU -1000 ................................................................................................................................................................78

    .., .., .., .. . ............................................................................................................96

    .., .. - ( ) .....................................................................................................................................................106

    .., .., .., .. . ............................................................................................................................ 113

    .. - -50 ....................................................................................................................................126

    .., .., .., .. .............. 135

    .., .. .................................................................. 141

    .. -1000 .............................................................................................................................................................. 145

    .., .., .., .., .., .., .., .. -440 x ....................................................................................................................................................................161

    3

  • 4

    CONTENTS

    S.B. Ryzhov, V.A.Mokhov, I.N.Vasilchenko, M.P.Nikitenko, V.M.Makhin,A.V.Lapin, A.E.Chetverikov, A.N.Churkin, Yu.A.Anikeev, S.V.Shmelev.Problems in the core of supercritical water-cooled water-moderated power reactor (VVER-SCP). ........................5

    G.A.Philippov, L.E.Melamed, L.N.Falkovskey, A.I.Tropkina.Experimental study of one- and two-phase fl ow hydrodynamics in the distributed resistance structures. ............15

    G.A.Philippov, V.P.Deniskin, S.D.Kurbatov, E.I.Grishanin, L.N.Falkovskey, B.I.Fonarev,V.M.Trubachev, G.V.Momot.Study of corrosion resistance and integrity of claddings of the micro-spherical fuel elements with silicon carbide and pyrocarbon layer in the operational environment of LWR nuclear power plants under normal and accident conditions . ...............................................................................................................................................................28

    I.N.Vasilchenko, S.A.Kushmanov, V.M.Makhin.Research tasks for VVER-1200 absorbing rods. ......................................................................................................44

    V.V.Perevezentsev, V.I.Solonin.Hydrodynamic and hydromechanical vibration excitation of VVER-440 fuel rod bundles ...................................50

    A.N.Churkin, V.A.Mokhov, I.N.Vasilchenko, I.G.Schekin,I.D.Ryabov, V.S.Kharitonov.Computer code TEMPA-DFS: description of calculation procedure .......................................................................62

    G.L.Ponomarenko, M.A.Bykov, A.M.Moskalev.Application of BEPU method for beyond design accidents with VVER-1000 cooldown .......................................78

    T.N.Aliev, I.A.Evdokimov, V.V.Likhanskey,V.M.Makhin.Evaluation of radiolysis infl uence on corrosion resistance of VVER fuel rod claddings under coolant surface boiling conditions .....................................................................................................................................................96

    A.S.Zubchenko, G.F.Banyuk.Advanced austenite-ferritic chrome-nickel steels for heat-exchange equipment (a brief review) .........................106

    E.B.Yurchevskey, A.G.Pervov, A.P.Andriyanov, M.A.Pichugina. Advanced equipment for NPP water-treatment facilities . ..................................................................................... 113

    V.P.Sadulin. Turbine-neutron method for coolant fl ow rate measurement in fuel assemblies of vessel-type boiling reactor VK-50 ....................................................................................................................................................................126

    V.M.Makhin, V.I.Tsofi n, V.M.Komolov, A.D. DzhalandinovEvaluation of damage dose under different irradiation conditions of structural materials ................................... 135

    E.A.Zhurbenko, V.I.Tsofi n.Radioactive wastes from VVER reactor plant decommissioning ......................................................................... 141

    A.N.Razygraev.Procedure for ultrasonic examination of header-to-steam generator welded joints of VVER-1000 reactor plant 145

    V.V.Pazhetnov, V.P.Semishkin, A.N.Churkin, V.D.Loktionov, K.S.Dolganov, D.Yu.Tomaschik, A.S.Philippov, N.I.Drobyshevskey.Consideration of long-term corium effect on VVER-440 reactor vessel under severe accidents ......................... 161

  • - - . , - ( .. , 1956.) [1]. - .. 20 , 21 .

    - , PWR BWR - , , 2030-2050. . - [2]:

    - 7 73 / U;

    2004-2006. 110-52,410-5.

    60 - 80 .

    . - - 2006 36%. - , - . - - 600 M

    ( RPP NRW, 2008.), : 28,5 , 600 =46% [3]. - Ni- 700 - 37,5 - 6% [3]. , - . 33% 36% ( -2006) 45% - - , -, , -, , -, .. - - .

    . () -1000 - , 2, - 0,30,5. -600 0,43 [4,5]. , - - =1,4...1,7 [6]., - , ..

    621.039.51

    .., .., .., .., .., .., .., .., .., ..

    ( )

    (-)

    -, , .

    5

  • [7]. - -800, [4,5]. , (=0,81) - (>1) - - , .

    , -: , - , -1000, -1200 . 21 ? - .

    - 0,8. - 0,8 ( , , - - ..).

    ( - -) 0,30,4 0,81,0 - (), c 23 , , , - ( ). , - -. , - ( ).

    , - 21 :

    3+;

    45%; 0,8; -

    ; -

    ; -

    - - ().

    , -, , - .

    LWHCR ( PWR)

    80- - LWHCR () 0,9-0,96 [8]. - - 7- 8%, .. 22,5 , PWR. - . LWHCR 5 -. PWR. -, , , : , -, - .

    PWR LWHCR (3782 ) -. : RPWR=1,82 RLWHCR= 1,87 LWHCR =2,3 ( PWR =3,9 ).

    6

  • PWR - .

    LWHCR - ( PWR), c - 0,53 ( PWR =2,00). 1.105 ( PWR - 1,33 -1000 - 1,40). SS-304 9,5 0,4 . 6 1 . - LWHCR 0,9-0,96. , , PWR ( 37%). :

    - ;

    - ( ).

    PWR BWR c

    90- - : - [9]? - PWR - 14-18% , =0,98-1,05 - 55 / .. 2900-3800 , -34%. 32-34 /. LWHCR, - 9,5 , - , - - 0,53. 2,3- 2,6 , 1,6-2,0 . , - . , PWR - 1 ( )

    , 1, - . , - .

    - 1,01,1 BWR - (reduced-moderation water reactors- RMWR). 1,3 , .. 30%, . : - (=1,03, , 26 / .., - 13 ); - (=1,1, , 45 / .., - 14 ), (=1,01, - . , - 57 . / .., 22 ). - -. 7-18%. 40-65 /.

    - - [9]:

    , - ( - - -);

    / - , - . , , , , -. 1,21 , 0,2-0,3 ;

    - .

    7

  • , - PWR BWR 0,81,0 34-35 %.

    , PWR BWR, - - - ( 0,8). - BWR , 30%, PWR. . , ( 33-37%). - , . (1 2 , ).

    1 2 -, , [10]. .

    ( )

    ( 200 , =3,7 - 4,3 ) : - - - : - 441 3,7 [10]. - . - . ( ). - . - . - .

    , - ,

    .

    ( 30)

    , - - ( -) [11-14].

    1 - - ( 30 ).

    - , -1000 107 /, 160 /. , , -,- 730.

    - - 300 (.1), - - .

    .1. -:

    ( - , )

    8

  • , - - - : ( ), ( ), ( - ), - . : , , .. .

    -

    (.1-3) [11-20]:

    - ( , - )

    ;

    HPLWR ().

    - -- .

    , ( , BWR -50) -. - - - / ( , ).

    - - - . [13, 14]:

    ;

    .

    , - - .

    - , 80, 40, - 70 (. 3) [16-19].

    1 [12]

    -

    (), (1984 .)

    -(1990 .)

    -

    (2007 .) ,

    3450 1350 3830

    , 300, 500, 800, 1200 1700, % 35 37 42-45 UO2 + PuO2 UO2 UO2 + PuO2*)

    - (=23,5 )

    (=25 ) /: ./., 347/360

    365-345/381-378 290/540

    1,20 (

    )

    0,78

    0,95

    : *) 10,70,55 12,0; / , - 4,05/3,38

    9

  • [13, 14, 17, 18]. , ( ). - . , - - ( ). , -, .

    - .

    , -, . .

    -

    - [17]:

    , - 2-4 . - - - ;

    - - ;

    - 1 2 ;

    , - - ();

    , - - ( ), ( -);

    - ( -- ) - .

    - , , - - , , .

    - 1- 2- (-

    .2. -:

    (- , )

    .3. HPLWR.

    10

  • );

    - 3 4 -.

    :

    - ;

    - ;

    ;

    4- .

    - - - .

    - . - - . - ( ), 30 - , , 0,1 . , . - -50 BWR, - . , , . -50 BWR, - - .

    - , , [21, 22]. -

    -.

    , , [23-25]. [23-25]. - -, - [26].

    - . . - - [27-29]. - -.

    , -, - - 300 (. 1 2), - .

    - - [12-15, 20, 26]:

    - , - - ;

    ( ) ( -) ;

    - : ;

    - (, )

    11

  • ( );

    ( ) ( -).

    . 4 . -1000. - . 18 . .

    -. 42-45%. - 0,8.

    , - -. , - .

    - - , - .

    1. , .1, : , 2001, .73.

    2. .. , .. , .. , .. . - . , - 2007 , - 8, , 2008, . 31.

    3. .. . 600 . , 2005. 3., . 67-71.

    4. .. , .. , .. . - - - , 10- , , , 2007, .85-86.

    5. .. , .., .. - - - , , . 104, .2, 2008, . 94-99.

    6. .. . - - , -39(333), , 1977, .19.

    .4. : 1 - , 2 - ; 3 - ; 4 - (

    10,70,55); 5 -

    12

  • 7. .. , - -2, , , 2005, .77

    8. .. . : - , ,: , 1990.-264.

    9. . . - ?, -, 2001, 12, . 25-29.

    10. .. . - - , :, , 1990.- 368 .

    11. .. . - - . , .95, .4, 2003, . 243-248.

    12. .. . -- 4- . -2007. ..., 17. : . .8. . 34-35.

    13. .. , .. , .. . - - - , -3110, , 2007, .36.

    14. .. , .. - , .- , 2006, .100, .5, .349-355.

    15. .. . - : . -2008. ..., : . .1. . 14.

    16. B. de Marsac, D. Bittermann, J. Starfl inger 1), T. Schulenberg CONTAINMENT DESIGN PROPOSAL WITH ACTIVE AND PASSIVE SAFETY SYSTEMS FOR A HIGH PERFORMANCE LIGHT WATER REACTOR. 4th International Symposium on Supercritical Water-Cooled Reactors March 8-11, 2009, Heidelberg, Germany, Paper No. 10.

    17. V.M.Makhin, A.V.Lapin, V.A.Mokhov, I.N.Vasilchenko, M.P.Nikitenko, S.N.Kobelev, A.E.Chetverikov, A.N.Churkin, S.V.Shmelev. CORE PROBLEMS OF VVER-SCP VESSEL-

    TYPE REACTOR, 4th International Symposium on Supercritical Water-Cooled Reactors March 8-11, 2009, Heidelberg, Germany, Paper No. 42

    18. T. Schulenberg, J. Starfl inger, J. Heinecke, Three pass core design proposal for a High Performance Light Water Reactor, 2nd COE-INES-2 International Conference on Innovative Nuclear Energy Systems, INES-2, Yokohama, Japan, November 26-30, 2006

    19. Marc Schlagenhaufer, Jrg Starfl inger, Thomas Schulenberg No. 38 STEAM CYCLE ANALYSES AND CONTROL OF THE HPLWR PLANT 4th International Symposium on Supercritical Water-Cooled Reactors March 8-11, 2009, Heidelberg, Germany Paper No. 38.

    20. .. , .. , .. , .. , .. , .. . -. , - 2007, - 8, , 2008, . 60-61.

    21. .. , .. . , . , . 1977, .26-33.

    22. .. , .. , .. . / . ... .: 1990.

    23. .. . ., , 1990, .368.

    24. .. , .. . - - . , 8, 2005, .2-8.

    25. .. , .. . - , , , 2008, -96.

    26. .. , .. , .. ., -; - , , - 2007, - 8, , . 42-44.

    13

  • 27. .. . - - , , ., 1983, .240.

    28. - . . .. , ., , 1969, .222.

    29. .. , .. , .. - . ., , 1972, .176.

    Information on the reactor core designs of advanced pressurized water reactors is presented, advantages of the reactors with supercritical water parameters are shown, engineering solutions of the reactor pressure vessel and reactor core problems are stated.

    14

  • 532.546+532.55

    .. ( )

    .. , .. , .. ()

    -

    - , . , - . , - - . . , - , . . , , , .

    - () - () - [1]. ( 1600) - 20 - . - - -. , - .

    - () - . - .

    - - - .

    - - , - -, . - [2, 3]. [4-7] , . , - , , - . , - - , . , .

    15

  • . , , . , . , - .

    - - . - , - .

    - , .1, , , - . : - - 40 , 32 , - - - 3232 . . , - . - 100. 6,7 . ( ) - , 36 - . - 1,1, 2,12 3,175 ( 7850 /3)

    3,55 1,18 ( 2220 /3); 50 150 . , - , : 1 /, 0,55 /. 0 0,98, - - 0 0,2. , , . - - .

    [8,9]. -, , -. . , , - [10] - ,

    .1. C .1 - , 2, 5, 6, 17, 18, 20, 21, 23, 32 , 3 - , 4 , 7, 15, 26, 27, 31 - ,

    8, 14, 30 - , 9, 13 - , 10 - , 11 - ,

    12 - , 16, 25 , 19 - , 24 - , 25 , 28 , 29

    .

    16

  • , - .

    (). - , , [2, 3], - . , . - , .

    , , - . 70 100 Re, -

    w30, 45Re

    (1 )

    d

    =

    (1)

    - , w , /, , - , 2/c, d3 , . 20 70 110-6 0,41510-6 2/c , 2,5 Re. - , Re=10000, , Re=15000.

    . , .. - , - -

    . . - , , - , . . 500 .

    . 2 , p Re =50 . .3 - ,

    w2

    32

    p

    ld

    =

    p - , , l - , , p - , /3.

    , , , [3],

    w

    3

    2

    ,

    ,(Re)

    2p

    d

    4 21 53

    = (2)

    (Re)

    0,7

    30 3(Re) 0, 3

    Re Re= + +

    Re (1).

    (2) , - Re -. Re=01500 - (2) 10 35%.

    85(Re) 0, 3

    Re= + (3)

    17

  • Re=01500 - 7 14%. ( Re> 1500) (2) (3) - - 7%.

    (3) -

    w w2

    4,23 3

    189(1 )0,765( 0, 3 )l

    pd d

    = + (4)

    - , .

    ( ) - ( ). (4) , - ,

    , ANSYS Flotran ANSYS CFX.

    . - , - (- 20 30 ). - , .

    .

    , . - , , . - - - , , . . : . - var, , 3,5 d. - 2. F , F1 F2 - , . - . , 40 1,1, 2,12 3,175 - - 0,53, 1,53 4,05 . , [11], - () - var . .4

    .2. Re .

    .3. Re

    .

    18

  • var=2+1,125sin(8n-n0,5+1,3)/(n1,3+0,2) (5)

    2 - () , n=x/d3 , - , .

    - [7], - - .

    - 1 var

    3,5

    1 var

    0

    1

    3,5= dn (6)

    . w=G/ (*F), G- , 3/. -, : - w1, w2.

    w1 w2 - (7-8):

    w1F1+w2F2=wF (7)

    w w2 21 2

    1 2, ,3 31 2

    , ,(Re ) (Re )

    2 2( ) ( )d d

    4 2 4 21 53 1 53

    = (8)

    (7)

    w w w w1 2

    1 2 1 2

    ,F F k

    F kF F kF= =

    + + (9)

    ww2

    1

    k =

    k (8), - :

    2.12 2

    1 1

    ( )( )

    (Re )=

    Rek

    (R) (3), , , Re, . ,

    850.3

    Re>>

    Re

  • , . - 1,1, 2,12 3,175 . , , - . , . - 0 0,20. - , . . 5

    w

    w

    mP P

    mP

    =

    ( ),

    , - Rew Reg. Rew Reg - (1) , .

    0

  • Vw Vg , 3/.

    .w w0.8 0.60.3(20 Re ) Re

    1 1g

    = +

    - [4].

    w wg gp p p C p p = + + , (12)

    w g , , - . (12) =4,4.

    (11) (12) - - - .

    - , . , - - . , - - .

    - - , - wmds,

    w wwww 222

    2 2 2g gm mds

    = + , (13)

    m

    w w

    w

    w w

    w wg g

    mg

    +=

    +, (14)

    ww, wg , /c, w, g - - , /3.

    w w( )m gx = + , (15)

    x

    w/ ( )g gx G G G= + , (16)

    Gw Gg - , /.

    - (2), (13), (14). , - (2) g, - ( (11) (12)).

    ( ) - - , - . -. , , . - . - ( ), , - ,

    21

  • . - ( , ), , , -. - .

    [2,7]. , . [9] ( , ). , - 32 . - - . - . - (50 100 ), ( 3,55 1,12 , - 3,55 1,18 ). , , . - , . ( ), ( -, ). - , . , ( ), - . ( ), - - , . 0,2 .

    ( ). - .

    ( ) () , .6. . - ( ) - .

    20 0,44

    0,7 4, 4(Re Re ) (Re Re )= +

    kp kpArAr , (17)

    0 , - , Re=wd/ , Re Re , w=w, w , -, /c.

    Re

    Re1400 5.22

    =+

    kp

    Ar

    Ar ,

    Ar

    33

    2

    g( )m

    dAr

    = ,

    g=9,8 /c2 , m, - , /3, v - , 2/.

    , - - .

    - () () -, , , () ,

    22

  • . , . - . - , , - , -. .

    - ( - ) , - .

    3 - . (17), - , . - wmds m,

    vm, - (15), ( - ). Re Arm

    Re m=6106Arm, (18)

    (14-16).

    , - , (, ). - .

    , - , (17) (18), -, (14) - (16).

    - , [11].

    - , , , - . , - . :

    ) ( ),

    ) (- ),

    ) (

    .6. Re .

    1-5 , 6-8 ; 1 =50 , d3-3.175; 2 100, 3.175; 3 50, 1.12; 4 100, 1.12; 5 100, 3.55;

    6 50, 3.55; 7 100, 1.18; 8 50, 1.18.

    23

  • ).

    - 15,9 47 . 4,4 / 20 / , , 16 48 , . , , , .

    - . , - . ( ), - 2-3 . , . . , , , . , .

    - - . .7 - , , Re ( , - ). - , Re .

    . - (. .8), . .8 - , . -

    F - G - F , (19)

    F , - , G

    ( ), F - .

    .7 ( ) , (19) . - ,

    F= ( - G),

    = 0,60 = 0,13 .

    , , ,

    F=(1 - A)( - G)

    40% ( - G), , . - 87%. , - ,

    .7. Re ( ).

    .8. , .

    24

  • , - - . [6]. , - .

    , - , , - , . -, . , - - .

    - , -. .9 - - wg ww , ( )

    w

    w

    w

    0,415

    2, 87 g =

    wg ww .

    , - . 0,41. , - [7]. , - . . -, -, .

    , , , .

    , - , -. , , [6]. [8] , . - 3,55 - 3232 . - , 19 . , - , - , , , . , - . - , - 3035% , .

    .9.

    wg ww.

    25

  • - - , , . - - . - . , , - . - . , . , - .

    - -, . - - - , - . , , , .

    - .

    - (), 08-08-00284- 08-08-00448-.

    1. .. , .. , .. -

    // . 2002. 1. . 7-11.

    2. .. , .. . - . .: , 1968. 510 .

    3. .. . . .: , 1975. 326 .

    4. Lockhart R.W., Martinelli R.G. // Chem. Eng. Progr. 1949. V. 45. 1. P.39-48.

    5. .. , .. . // . 2000. . 73. 6. . 1125-1132.

    6. Naik A.S and Dhir V.K. Forced Flow Evaporative Cooling of a Volumetrically Heated Porous Layer// Int. J. Heat Mass Transfer. 1982. V. 25. 4. P. 541552.

    7. .. . . -. . , 2005. 358 .

    8. .. , .. , .. , .. , .. . - ( ) - // . 2004. .42. 6. .954-960.

    9. .. , .. , .. , .. , .. . - - // . 2005. .43. 3. .452-458.

    10. .. , .. , .. , .. , .. . - // . 2003. . 41. 3. . 432-438.

    11. E.Achenbach. Heat and Flow Characteristics of Packed Beds. Experimental Thermal and Fluid Science. 1995; 10:17-27. Elsevier Science Inc.

    26

  • The work presents results of the authors experimental research in hydrodynamics of one- and two-phase fl ows in the distributed resistance structures (including pebble-bed facilities). A study of one- and two-phase medium and gas jet injection into the water was conducted. Expansion and fl uidization of free pebble-beds and loaded pebble-bed movement by one- and two-phase medium was studied. Conditions for retention of pebbled-bed fl uidization were developed. A new approach to the form of experimental result processing is proposed that makes possible to present the results uniformly both for one-phase and two-phase fl ows. The approach is checked and confi rmed by experimental data. The results of work are mainly meant for development of pebble-bed reactors that are directly surrounded by one- and two-phase coolant.

    27

  • () (12 ) - - - (). - 1600 0 ( 15 %) [1]. , ( ~ 60 ) . , - - . - [2, 3].

    , , - , , , -. [4],

    2030 . - - , , - [5] - .

    , - , - , (- 2 ) . ( 0,03 ), - , ( - ~10 5 , , ). , -, - .

    620.19:621.039.52

    .. ( )

    .. , .. ( )

    .. , .. , .. , .. , .. ()

    , , , , , .

    28

  • , , - . - - . , -. ( ). - ( ) () .

    , , - , - -, - . - , . , - , - , - -, .

    - , (SiC) (C) . -,

    PWR, BWR , , [6-9].

    , , - , , . , - , - .

    - . 0,9 1 (.1).

    , - , ~ 1 / 3, 1,8 /3 SiC - 3,2 /3. - 1,8 /3.

    . , , , - . - (.1) SiC. 1,2 1,4 , 0,9 1,0 , 800 0.

    ) ) ) . 1. : PyC () SiC () ; SiC 10500 550 0 ()

    29

  • ( ) 18 - 350 0 16,3 - (11800 ) (.2) -. - , .

    ~ 1000 / , 0,1-0,15 / . .

    1400, 2800, 4200, 6300, 9400 11800 -. - 5 ,

    (.2) . 6 10 . - 10000 . - , - - . . - ~ 25 / 25 . - . -. . - - 081810.

    - . . (2, 4) - , (1, 3) . 5 10. - -4.

    50. - 1 - 3 0,1 .

    , - , , , . - 10 5500 14,5 . (10500 ). - . ~ 8 / N2H4OH. (Cl) (SiO2)

  • - - SiC . 700, 1400, 2100, 8000, 10500 .

    - , , - . , SiC , 350 0 550 0, - 11800 10500 - : , , , - . , , , - . NEOFONT-2 65 250. - . SiC - . , , . 1 - 550 0 10500 . - SiC , , - . -, SiO2, . , , , , SiC. , - , SiO2. , .

    -

    () - (m) :

    =M1-M2, (1) m=/M1 (2) 1 2 - -

    . m

    -, .. , (, - ). h - m, :

    h R r = , (3)

    g33

    3

    4

    mr R

    = , (4)

    R r -; g , ; , /3. SiC 3,2 /3, 1,8 /3.

    h ( , ) (.3) SiC .

    , SiC - ( ).

    -, . - [10,11]. , , 11800 ~ 0,07 %, SiC 0,1 .

    10500 1,3 %, .. 20 , . - SiC .

    31

  • 2 . , , ~ 50 , - -. SiC 350 550 0 SiC - . SiC SiO2 , - . - SiC. , 11800 350 0 - 0,02 , SiC ~ 0,1 . 10500 550 0 - 0,95 , SiC 1,85 .

    - - , . - - ( , .3)

    650, 725, 800, 850, 900 950 0. 5- - ~ 300, 6- 6 . - 650850 0 1,5-5,0 , 900 950 0 0,3-0,4 .

    SiC - 650 900 0 3,5 35 . - 650 0 SiC (.4 ).

    900 0 - SiC (.4 ). , , -, 30 % SiC. - () .

    , , , , . - 650 950 0 0,5 35 . , ~ 900 0, - . , 850 0 6 ,

    3. SiC (1) PyC (2) : - 550 0 () 350 0 ().

    32

  • 900 0 25 (.4 ).

    - - () - SiC . . - , - [12], () SiC , .. , - 350 550 0 , .

    - , :

    (exp / )nh A Q RT = (5)

    h , ; n - , - (- ), Q - , /; R - , - 1,9858 /; T - , ; - , .

    -

    lg (lg ) /h A P n = (6)

    0, 434 / lgP Q RT = (7).

    - - [13]. , , , - . , - , , . - . - , (350 950 0), , SiC . - SiC .

    , - 350 550 0, - lgh=f(lg), . : n=2,7; Q=43000; A=7,95108. - :

    2,7 8 37,95 10 ( exp 43 10 / )h RT = (8).

    . 4. : SiC 336 650 0C (); 298 900 0C (); PyC

    336 , 900 0C ().

    33

  • (7) (8)

    9374 / lgP T = (9)

    , 350 550 0, - 650 950 0. , -

    ,iK = (10)

    1 1exp / [( ) / .

    p pK Q RT T T TT= (11)

    i - Ti, , , , -, - , . , - ,

    (12).

    . 5, , h SiC 650 950 0, - 1, ( 11800 ) 350 0 550 0.

    - 2.

    350 800 0 SiC 5 6 -, . 900 950 0 25-30 . - .

    -

    , - .

    , ~ 1 , 10000 , ~ 10 % , 25000 ~ 20 %. , SiC -, ~50 , 600 0. 10000 - 5,5 , 25000 9,5 . , 25 , 2,5 10000 5 25000 650 0.

    - SiC , , - 950 0 50 ~ 10 .

    , - . 5, - - -

    .5. - SiC (1) PyC (2) .

    , 0:

    34

  • - .

    - - , .

    - , . - 1600 0 - . (. 1 1). 500 - . - 800 0. 860 . SiC.

    21 . , - .6.

    U- - . 15 . - - - -1, - -64-02 0 1600 0. 10 0 .

    , - 800 0. - .

    3 . SiC - (. 7).

    -, SiC - . (0,17 %) .

    800 0. , , - -, -

    . 6. .1 ; 2 ; 3

    ; 4 ; 5 ; 6 ; 7 ; 8

    .

    .7. 1- SiC

    : , - 1400 1600 0,

    .

    35

  • C, SiC. . 1 .

    , ( ) SiC C, . - - . - (UO2)

    ++ 3 . . .

    / ,D G g n= % (13)

    G UO2 , ; g - , , n .

    - SiC , 0,08%, . - UO2 (0,14 ) - .

    , - -, , . , . - .8. - .

    1 2 3. ( , .)

    4, 5. 6 13 . 12 . - , , -. .

    , , 10 11, - , . - , .

    , . 9.

    1 21910 20.

    . 8. .

    1-, 2- , 3 - , 4- , 5 ,

    6, 7 - , 8, 9 , , 10, 11- ,

    12 , 13 - .

    36

  • - 2 -. - 3, 4, - 5 6 . 7, -, - 8 9, . 10 . , , - , - - 081810 ( 141,5 ).

    - , - , - 1800, , 1800 , - , .

    - , - -, - - -. . - 100.

    - :

    3 8+ 52 = 32 + 4 2;3 8+3,52 = 3 + 4 2 (13)

    43 % 2+ 57 % 2. - 38, 4, 2. - , , , , , %:

    . 9. .1 - , 2 - , 3 - , 4 - , 5,6 - , 7 - , 8 -

    , 9 , 10 - .

    . 10. ; 1 5

    .

    37

  • 40 45, 2 + 30 35, 15 20 ( ).

    - , , . , - . 21 .

    - . 10.

    . 900, 17500. - 5800 , 1220 0. 730 1670 0. - 2,5 6 .

    , , - , .

    - 2 5 . . - , -, -, . - , - ,

    .

    , - SiC ( , 1670 0), (. 11).

    , - 930 1430 0 , - . , , .

    - - 7301590 0 0,26 %. 0,98 1,22 % , - . - . , - , . , - .

    - - . 12 ( 1).

    , .12, , , 1020 1590 0, 0,13 %, 0,4 %.

    - 1670 0 - , .

    . 11 SiC :) 2 980 0; ), ) 1 - 1265 1445 0, .

    38

  • . SiC , - 25 % (. 13).

    , -, SiC , - 1600 0.

    () - .

    - - (- ) .

    [14] , -. , - SiC, -, , , . 18000 , - , , UO2, AG-In-Cd, HfO2, Gd2O3, Sm2O3, B4C. - , - , SiC.

    - ~ 1450 0. , , -. 45 /.

    - - SiC, 081810 847 (0515163) - 1100 1450 0. , (.8), . - , . - 5 . - .

    -. (. 14 ) , - Al2O3, 18,5

    . 12. (1, 2)

    (3) : 1,3 SiC; 2 PyC.

    . 13. 1- 1670 0

    39

  • 081810 . - ~ 0.5 . 3 0,5 081810 6,5 0,5 847, (. 14 ). , - .

    -, 17 . 1-

    1150 1450 0 . 2- 1140-1340 0 - , - . , .

    ,

    . 14. () ().1 , 2 , 3 , 4 , 5 , 6 , 7 - . .

    . 15. (1 ) (2 ) .

    40

  • - SiC.

    -, , - ( ) . , . 1- ( 1 8) 2- (9 17) - .15.

    - - , , .

    , - 1450 0 ( 1 7) .

    - 1300-1390 0 2,3,9,10,15, , - - . 12601270 0 ( 4 11) . . , 11401220 0

    ( 5,8,12,13,14,16,17), -. , - . , 1180 1220 0 , 0,2 0,7 , - - 0,1 0,3 %. , -, (- SiO2) . 1270 1450 0 , .. - , .

    . 16 - (D) .

    D - . -, , - ( ).

    , , D , 100 %. - - , .

    . 16. (D) .

    41

  • , .16, . - 1220 () - . 1260-1270: 4 ( 1) 11 ( 2) 75 80 %. - 13001450 ( 1, 2, 3, 7, 9, 10, 15), , 100%- .

    - SiC 13001450 0. 30 / (- - ~ 2 , SiC 51 ).

    - [11]. Cr-Ni-Mo ISI 316 (0518132) SiC -, (1450 0). 1 - .

    1- - , 12100 , - 3500 18 9,4 ., SiC ( 5). . , - 1210 0 .

    , SiC , - , , - 1200 .

    - 081810 847 (0515163), - , . 081810, 13001450 1,2,3,7 (1- ), 9,10,15 (2- ),

    . - . 1,1 , 081810 0,55 . - 847.

    1210 0 24 - 0,150,20 . SiC.

    , - , -, - SiC - 350 550 0.

    SiC - - 600 650 0 . - .

    - 350950 0 - - .

    , 350850 0 - , SiC.

    - SiC - 1600 0 .

    - 24 - - 1600 0. 1670 0 -

    42

  • 24 %, 25 %.

    , < 1200 0 - - 081810 847 - - SiC. 12601450 0 75 100 % . SiC .

    13001450 0 081810 847 - . 2 0,5 . 1100 1210 0 4 0,2 .

    12000 - - . . 081810 847 .

    - .

    1. . . - .: , 1975, . 224.

    2. .. . . , , 1978, 86-94.

    3. .. , .. , .. -. , 1977, . 145, . 107-119.

    4. .. , .. , .. . - - - . , 1993, . 75, . 6, . 418423.

    5. .., .. , .. . . , 1999, . 86, .6. . 443449.

    6. W. Kim, H. Hwang, J. Park, W. Ryu Corrosion behaviours of sintered and chemically vapor deposited silicon carbide ceramics in water to 360 C.-J. Mat. Sci. Let., 2003, 22, p. 581-584.

    7. .., .., .. . PyC . . .101, .4, 2006.

    8. .., .., .. . - - . . .103, .5, 2007.

    9. .., .. , .. . - . , . 104, . 3, 2008 189192.

    10. M.A. Mayers. The rate of oxidation graphite by steam. Pittsburgh Pa, USA, J. Carnegie Inst of technical research, 1964.

    11. .. . -. .: , 1979.

    12. .. -. .: , 1977.

    13. .. . . .: , 1976.

    14. W. Lippman, J. Knorr, R. Nring, M. Umbreit Investigation of the use of ceramic materials in innovative light water reactor fuel rod concepts Nuclear Engineering and Design, 2001, 205, .p. 13 22.

    The paper presents generalized research data on corrosion resistance and integrity of protective coating of the non-irradiated micro-spherical fuel elements with silicon carbide and pyrocarbon layer. The data have been obtained during operational-life proof tests with coolant parameters similar to normal operating conditions of VVER-type light water reactors, boiling reactors and superheated steam reactors and also under the conditions simulating the accident.

    43

  • - , - () [1]. - , - , , - -2006 - . , - - -1200, -600 ., -1000.

    - , - -1200.

    -1000 90- .

    -1000 - (), . [2] - : - - 0 100%; 1- 0 100%;

    - ; - ; .

    - (: , -, ). ( ) - .

    - : 100-50-100% [2]. - , , - .

    1995 , -1000 , - (.1). 90- , . - , , . .

    621.039.524.441

    .., .., ..( )

    -1200

    : , () -1200 .

    44

  • - n-f ( ) . [3,4]. 42, .

    () 0,7-0,9 , - () .

    - 10 , 3- - .

    - .

    8 57360 . - - . 2010 , 2011 .

    (.1) - -1000. - -1000 (), :

    - ;

    - 10 , 3 ;

    - 4- ;

    - - - .

    -

    - - . , - -. . , 25% [3], .. - [3]. - , - [1, 3]. 4 2-3 [3].

    . 1. -1000

    45

  • . - 50 % 10 [3].

    - [4]. - 1 2 , 0,1 - .

    - , 2004 . 2 (- 18- ) - 14- 4- : . .

    -2006

    -1200

    - -1200 -1000 :

    15,7 16,2 ;

    - 3200 3300;

    - :

    , -1000. , - - -1200;

    :

    - 100-75-100%, 100-50-100% 100-25-100%;

    20-30 .

    -1200 :

    ( -1000);

    - .

    - ( ) (- ) . - 20-30 . -, , , - .

    , -1200 - 121 , - . - , - () ().

    10 20 30. - 2-5 /. - , [1-6]. , 17- - - [7]. 2,2 1022 -2 (>0,1 ), 9,5 1022 -2 (

  • , . :

    - 20- 30- ;

    - - 20- 30- , -, - , - 20- 30- , .

    1-4

    - :

    - ;

    - () , ;

    - ;

    ;

    - - ;

    - ;

    - - .

    ( 2- ) (,

    3 4- ). . 3 4 . , , (, ). , - , . - .

    , -, . , 850 -2006, 2008 . , . - 19- .

    :

    - ;

    - , ;

    - .

    , - .

    - 5-7 (2008 2017 ).

    47

  • . - , - . - - . , - ( ) .

    , - . , , - .

    - -1200 .

    - - , . - [8]. - .

    1. - ( - ). - -2006.

    2. -1200 :

    , - ;

    -1200;

    - .

    3. .

    1. .. , .. , .. . -1000 PWR. , -: , : , 1998.-54 .

    2. .. , .. . , 3.3. , .: , 1988, .85-92.

    3. .. . -1000/ . . : , 1999, .1, .20-30.

    4. .. . - - / . . : , 1999, .1, .31-37.

    5. .. . - /. . : , 2002, .4, .45-49.

    6. .. . - -60/. . : , 2005, . 3, .62-69.

    7. .. . - - -, 17 /. . : , 2005, . 3, .46-53.

    8. .. . - /

    48

  • . . : , 2005, . 3, .54-61.

    The paper presents a design of the VVER-1200 absorbing rod, conditions and main results of its operation, tasks for its improvement and development of advanced designs of absorbing rods both for operating VVER and newly designed ones.

    49

  • 621.039.546

    .. , .. .( ..)

    -440

    () -440. - 7 / ( 7104). . , - . . , .

    - - . - - (). , - , (). -440 (.1) () 4, - 3, - 1 2. 126 - 5 - , 9, 7, .

    7 - 5 6 . , /1/.

    :

    - , - -, - ;

    - - ;

    - , - - .

    50

  • - , . - -: ; - ; -. . - . -, (.2).

    .1 -440

    1-; 2-; 3-; 4- ; 5- ; 6- ; 7- ; 8-

    ; 9- ; 10- ; 11- ; 12-

    .2.

    -4401- ; 2-

    ; 3-

    51

  • - - . - .

    , - , - (). - , . - . , - /2/. , - - . - - .

    -

    - - , , - . -. - - .

    - - , - . - :

    [M]{}+[C]{}+[K]{u}={F} (1)

    {u} - ( ); [M], [C], [K]- , - ; {F}-

    - ANSYS 5.5. : - - - . , , , . - . 4,9 5,2 , 3,7 3,9 . -, /3/.

    - - ( ) , - . (x, y) (z) Ax, Ay, Az - fx, fy, fz. q(t)=Asin((t)t), (t)-- (), 1=2(f-f) 2=2(f+f), , - f. f- . - - . fx fy, Ax ,Ay

    52

  • . x , y . , - - . , - : , - - . - , .

    - - Az 1 5 1 20 . -, . , - , - .

    ( ) -. ,

    ( - ) - . - . .3 ( ) - 1 , 5 , 10 . , 0 - , , . . , . - , . , - - , . , - - - . - , .

    . 3. ( - )

    53

  • - -440, - (. ) - . - . 10...500C 0,3 - 223 3/ ( 7 /, 7,1104). - , . - ~6,8 , - 0,7 . - ( ) - , . - 0,5 , 13,5 .

    - /4/ , -. - - . - - . - - 30 100 7 . , 1,5

    - (11,5)10-4 /2, - 23 . , - - 1,5 - . - - 500 2000 1,5200 6%. -, , -, - 1,5200 1012% .

    , - (.4). - ,

    . 4.

    (1,2) (3,4)

    0,7 6,8 1, 3- 72 ( ); 2, 4 -

    1294 ( )

    54

  • . , - , - . - , - . - - . - , - . , .

    - - ( - ) (. 5). , -

    . - - - . , - . - ~0,5 - 1 . - . - .

    - , , - - . . ,

    .5. -440 (1) (2) (

    0,5 ; 12,7 )

    55

  • , , - - , -, .

    - , - - , -. - /5/. - - . - , , .

    . , , -. - , . - - , .

    - - - . - . , , , , - . . . - -

    .6. z=72 () (z= -109 ) ()

    1- ; 2- 52 ; 3- 48,5 ; 4- 45

    56

  • -440 .

    .6 - - z=72 . , - . - - . .5 - ( ). , - , - .

    - - , - . , - , - . - , -. - . , - . - . ,

    -. - - (.7). - , z - - , .. - -

    ( , ) ( , , )g

    P

    F z p z P dP = (1)

    ( , , )p z P - - ; P - .

    - - (. 8)

    6

    16

    1

    ( , ) ( , ) cos ;

    ( , ) ( , ) sin

    x

    y

    g ii

    g ii

    f z p z B

    f z p z B

    =

    =

    =

    =

    (2)

    - ; - - .

    - - z=72 ( ) z=1527 ( ).

    57

  • (2) - ( ) - (.9). .

    - - , , .

    . - -. , .

    - - :

    1/22 ngxF C V= .

    - ( - ) 1,7 2,3 , 45 . 1,6

    . 7. -440

    1- ; 2- ; 3- ; 4- ; 5-; 6- ; 7- ; 8- ; 9-; 10-

    58

  • 2,0 45 .

    (.10). - - . f

  • ( 10 ) - 10%. , - - , - , . - - 40% (.11). , , - 45 . - . - .

    , - - .

    . - - . - , - , . ,

    .10. , z=72 () z=1527 ()

    3,14 /1- ( ); 2- 52 ; 3-

    48,5 ; 4- 45

    .11.

    3,14 / ( z=72 )1- (

    ); 2- 52 ; 3- 48,5 ;

    4- 45

    60

  • ( -) - , , , . : - - ; - , .

    1. / .., .., .., .. .: , 2004.- 220 .

    2. -440/.., .., .. .// - - ,

    .- ., 2006.- .78-86.

    3. - - - - -/ .., .., .., ..// - (ICOVP-2001).-.: , 2001.-.433-437.

    4. -440/ .., .., .. .// .- 2006.- 10.- .23-29.

    5. - / .., .., .. .- .:, 2002.- 397 .

    Calculation and experimental investigation was conducted regarding hydrodynamic and hydromechanical excitation of fuel rod bundle vibrations in the VVER-440 fuel assembles (FA). Numerous experimental data on the rod bundle displacement due to vibration under the conditions of signifi cant change in fl ow hydrodynamics at the FA inlet as a result of application of throttle washers of various diameters at the water fl ow rate in the bundle up to 7 m/s (Re numbers up to 7104) are obtained at the hydrodynamic bench using full-scale models of the standard and second generation FA. Hydrodynamic forces affecting the unit of length of the bundle are determined by pressure pulsations measured along the fuel rod bundle perimeter, and two representative domains of infl uence of hydro-dynamic loads on vibration intensity are obtained. Signifi cant infl uence of the vertical and pendular horizontal mechanical vibrations of FA are observed simulating vibrations of the reactor core barrel and basket with FA positioned in them. The vertical mechanical vibrations result in increase of the fuel rod bundle displacement due to vibration in the horizontal plane by more than ten times in comparison with the conditions of hydrodynamic excita-tion. The forced pendular vibrations excite fuel rod bundle vibrations with intensity which exceeds the amplitude of the pendular vibrations by more than two times.

    61

  • () -2006 - 3200 -1000, - , . , - , . - - 1,39. - 10 11%. -1000 - 1,30 5 %.

    -2006 3300 . - () . .

    - , - , -1000, .

    , - . . - .

    -, .

    - () .

    , -, , - [1]. , , - (, , ), , ,

    001.1

    .. , .. , .. , ..

    .. , ..

    -:

    -, - . () .

    62

  • , - .

    - , :

    -1000 ( ); (); SC-1 ( ); - ( ).

    - . , . , ( ). - ( - 2) [1]. - .

    .1 .

    , - , - .

    - - [2]. -. , - , ( -1000 [3, 4], - [5], THINC-II [6] .). - . , - :

    , (1)

    pik i k; p1k k.

    (1) - - -. , , , - , ,

    .1. ( ): , ; .

    63

  • , , - .

    , - (- COBRA [7], - [8]):

    pik i k; pjk j k; ijk i j k; gijk - i j k, ; - ; ij .

    [9]. [10] - ijk, - :

    - (v/w ); ; vijk ; wijk - .

    - HAMBO [11, 12].

    - . , - (. 2), - - . , - . (. 2).

    COBRA-III [13] SC-1 [14]

    :

    z ; lij i j; Fijk , .

    THINC-IV [15] - - :

    x . ,

    - , - - ( COBRA-IV [16], COBRA-TF [17], FLICA-4 [18] .).

    - - [19].

    -, -

    . 2.

    64

  • () (). - ( , ).

    - - - , . - -, , [1]. - . , - .

    - , . -, 6 10 . , - - [20].

    - , Fs [21] ( - [20]).

    , , , , - . :

    ; ; .

    - -, .

    - . - ... . , - -, [1]. - , , , - , , - .

    . - - , - .

    - - ( - ), - . - - [22]. , , - .

    - .

    - m'ij (/()), . . m'ij :

    (2/) [23]:

    65

  • ( ) -;

    - - .

    - [28]. COBRA - . - 0,005, 0,04. . .3. - .

    x - 0,1 [23, 29] (.4), , x .

    , ( )

    - (1/) [1]:

    St [23]:

    ij, - Rowe D.S. [24]:

    (2)

    i j. ij .

    - , 60- .

    - . (, ) [1].

    , - , . 80 %. , - [25-27].

    . - :

    x;

    .3.

    [29] - ; ------ -

    .

    66

  • -, .5.

    - [28, 30] (.6). - [31 34].

    - , - , , . - (),

    .4.

    [23]

    .5. [29] [35] ( St)

    (, ) (, )

    67

  • - . - - - , - , .

    - , - . , , - , - . , , - , , . - . .7.

    , , . , - ( ), - , .

    (). , - :

    .7.

    .6. [28] hij - xi .

    68

  • , , . . 8.

    {Vik} - - .

    - , - - .

    - :

    Vik ; ;

    .

    - , - -, , :

    . 8.

    69

  • (3)

    (4)

    (5)

    (6)

    (7)

    (8)

    Sik Vik; ;

    ijk . (3) (8)

    ( ) m , x, y, z. . - .

    - , , . , Sik Vik i k , , - (. 9):

    sik () ;

    sik-1 () ;

    sijk , - j;

    sikn , n.

    , - Sik Vik :

    :

    -, (3) (8) . - , .

    , - :

    . 9.

    70

  • () - ; Z -; 0 Z. , - , - .

    - Vik, Vijk, ik, ijk, -. Vijk, - , .

    - vz - , w. , - - x y , x - , . , , y (

    ) , (7), (8) , , .

    - , -

    G = (1-)ws ,

    G=ws ,

    G=G+G ,

    , -

    g = (1-)v ,

    g= v ,

    g = g + g ,

    :

    (9)

    (10)

    (11)

    (12)

    (13)

    71

  • (9) (13) , - . (9), (10) - , - . (13) - .

    (9) (13) - , , - , , .

    (9) (10) ik , . ( - x, ) [36, 37]. , - .

    , - () (/()), - , - .

    - 1 16 , 500 3500 /(), 0,5 2,5 / [38] , [36]:

    C = 17 1; x -

    ,

    x = (h h')/r , - - ; h - , t=ts-q/, -, .

    (11) . [36]:

    =0,023 - =0,0165+0,02[10,91/(s/d)2](s/d)0,15 .

    - ( ..) [36]

    p 1 200 .

    .. [36]

    - [36].

    ts>tf >t - [36]

    [36]

    72

  • .

    - . [4].

    - [39, 40].

    (11) (12) , -

    - . - - - :

    (14)

    (15)

    , -1 [41], (14) (15) -, , -

    (16)

    (16) (14) (15)

    (. (2)) [29]. [35]

    - :

    (17)

    (18)

    l, r, , [35]; -, , , -, [42]:

    - . , (17), (18) 10 .

    . 10.

    73

  • C , 1/;D , ;cf ; D , ;d , ;i, j ;f , /;F -

    , ;g , /;G , /;h ,

    /;H

    , ;k ;l

    , ;M -

    , /;m'

    , /();n , ;p , , ;Pr ;Q' -

    , /;q , /;ql ,

    /;r , /;Re ;s

    , ; , , , ;

    S - , ;

    St ;t , ;V , ;v

    , /;w , /;x , ; -

    ;X ;y , ;z , ; , ; , /();

    ; , /; , /(); , ;

    -, - .

    , - , - Ftijk (13), .

    - - . 10.

    , , - CFD.

    - , - () .

    - , - :

    -;

    - ;

    - - .

    - Ftijk - .

    - , - - - [43, 44].

    A ;

    74

  • , /; , /();h

    , ;

    G - , ;

    - (1/)

    , ; -

    , /; ; -

    ; , /; , /; , /.

    :

    ;

    ; ; ; ; ; ; ; ;h ;i, j ;k ;m ;n ;s ;t ;x x

    ( );y y

    ( );z z

    ( ).

    1. .., .., .. :

    . : , 1989. 184 .

    2. Sha W.T. An owerview on rod-bundle thermal-hydraulic analysis // Nuclear Engineering and Design, 1980. V.62. P.1 24.

    3. - - / .. , .. , .. . // -74. . : . .. , 1974. .201 208.

    4. - / .. , .. , .. . .: , 2004. 340 .

    5. .., .. - // 2- - , , 2001. .5. .125 131.

    6. Chelemer H., Weisman J., Tong L. S. Subchannel thermal analysis of rod bundle cores // Nuclear Engineering and Design, 1972. V.21. P. 35 45.

    7. Rowe D.S. Cross-fl ow mixing between parallel fl ow channels during boiling. Part I. COBRA computer program for coolant boiling in rod arrays, Report BNWL-371 (Pt.1) / Battelle Pacifi c Northwest Laboratories. Richland, WA (USA), 1967. 112 p.

    8. .., .. - , // -, 1980. .48. .303 308.

    9. Weisman J., Bowring R.W. Methods for detailed thermal and hydraulic analysis of water-cooled reactors // Nuclear Science and Engineering, 1975. V.57. P.255 276.

    10. Chelemer H. , Weisman J., Tong L.S. Subchannel thermal analysis of rod bundle cores // Nuclear Engineering and Design, 1972. V.21. P.35 45.

    11. Bowring R.W. HAMBO: a computer programme for the subchannel analysis of the hydraulic and burnout characteristics of rod-clusters. Part 1. General description. Report

    75

  • AEEW-R-524 / Atomic Energy Establishment. Winfrith (England), 1967. 24 p.

    12. Bowring R.W. HAMBO: a computer programme for the subchannel analysis of the hydraulic and burnout characteristics of rod clusters. Part 2. The equations. Report AEEW-R-582 / Atomic Energy Establishment. Winfrith (England), 1968. 60 p.

    13. Rowe D.S. COBRA IIIC: digital computer program for steady state and transient thermal-hydraulic analysis of rod bundle nuclear fuel elements, Report BNWL-1695. / Battelle Pacifi c Northwest Laboratories. Richland, WA (USA), 1973. 104 p.

    14. .., .. SC-1, - // 2- - - , , 2001. .3. .22 40.

    15. An improved thermal-hydraulic analysis method for rod bundle cores / H. Chelemer, L.E. Hochreiter, L.H. Boman, P.T. Chu // Nuclear Engineering and Design, 1977. V.41. P.219 229.

    16. COBRA-IV-I: An interim version of COBRA for thermal-hydraulic analysis of rod bundle nuclear fuel elements and cores, Report BNWL-1962 / C.L. Wheeler, C.W. Stewart, R.J. Cena et al. / Battelle Pacifi c Northwest Laboratories. Richland, WA (USA), 1976. 267 p.

    17. Analysis of FLECHT-SEASET 163-rod blocked bundle data using COBRA-TF. Report NUREG/CR-4166, EPRI-NP-4111, WCAP-10375 / C.Y. Paik, L.E. Hochreiter, J.M. Kelly, R.J. Kohrt / Westinghouse Electric Corp. Pittsburgh, PA (USA), 1985. 692 p.

    18. FLICA-4: a three-dimensional two-phase fl ow computer code with advanced numerical methods for nuclear applications / I. Toumi, A. Bergeronb, D. Gallob et al. // Nuclear Engineering and Design, 2000. V.200. P.139 155.

    19. .., .., .. - ( , , ). .: , 1990. 360 .

    20. .., .. . . -11, -23. : - , 1976. 219 .

    21. . . . . .:, 1976. 100 .

    22. Ramm H., Johannsen K., Todreas N.E. Single phase transport within bare rod arrays at laminar, transition and turbulent fl ow conditions // Nuclear Engineering and Design, 1974. V.30. P.186 204.

    23. Castellana F.S., Adams W.T., Casterline J.E. Single-phase subchannel mixing in a simulated nuclear fuel assembly // Nuclear Engineering and Design, 1974. V.26. P.242 249.

    24. Rowe D.S. Cross-fl ow mixing between parallel fl ow channels during boiling. Part II. Measurement of fl ow and enthalpy in two parallel channels, Report BNWL-371 (Pt.2) / Battelle Pacifi c Northwest Laboratories. Richland, WA (USA), 1967. 63 p.

    25. .., .. - - . . 11, -64. : - , 1976. 53 .

    26. Rehme K. The structure of turbulence in rod bundles and the implications on natural mixing between the subchannels // Int. Journal of Heat and Mass Transfer, 1992. V.35. P.567 581.

    27. .. - DNS. . . , 2005. .144 154.

    28. Lahey R.T., Jr., Shiralkar B.S., Radcliffe D.W. Mass fl ux and enthalpy distribution in a rod bundle for single- and two-phase fl ow conditions // Journal of Heat Transfer, 1971. V.93. P.197 209. ( .. ., .., .. - - // - -. , 1971. . . 2. .64 78).

    29. - / .., .., .., .., ... 1870. : - , 1987. 19 .

    30. .., .. - - .

    76

  • -10 (304). : , 1977. 22 .

    31. Sadatomi M., Kawahara A., Sato Y. Flow redistribution due to void drift in two-phase fl ow in a multiple channel consisting of two subchannels // Nuclear Engineering and Design, 1994. V.148. P.463 474.

    32. A modifi ed equilibrium void distribution model applicable to subchannel-scale vapor-liquid cross fl ow model for conventional square and tight lattice BWR fuel bundles / A. Hotta, H. Shirai, M. Azuma, M. Sadatomi, A. Kawahara, H. Ninokata // Nuclear Engineering and Design, 2005. V.235. P.983 999.

    33. Single- and two-phase turbulent mixing rate between adjacent subchannels in a vertical 2f 3 rod array channel/ M. Sadatomi, A. Kawahara, K. Kano, Y. Sumi // International Journal of Multiphase Flow, 2004. V.30. P.481 498.

    34. Flow characteristics in hydraulically equilibrium two-phase fl ows in a vertical 23 rod bundle channel / M. Sadatomi, A. Kawahara, K. Kano, S. Tanoue // International Journal of Multiphase Flow, 2004. V.30. P.1093 1119.

    35. .., .., .. - // , 1983. 2. .25 28.

    36. .., .., .. - . .: , 1980.

    37. .., .. : . .: , 2009.

    38. .., .. . .: - -. ., 1973.

    39. Mishima K., Ishii M., Flow regime transition criteria for upward two-phase fl ow in vertical tubes // Int. J. Heat and Mass Transfer. 1984. V.27. 5. P.723 737.

    40. .., .., .. -, . : , 1991. 44 .

    41. .. - : . . . . . . . 2006.

    42. Elder J.W. The dispersion of marked fl uid in turbulent shear fl ow // The Journal of Fluid Mechanics, 1959. Vol.5. P.544 560.

    43. . . .: , 1972. 440 .

    44. .. - - , - // -98. , , 1998. .418 429.

    The paper presents a description of mathematical model and calculation procedure of the TEMPA-DFS code intended for calculation of the coolant local parameters under steady-state conditions in the fuel assemblies with mixing vanes during nucleate boiling of coolant. The calculation procedure is based on an improved channel-by-channel (cell-by-cell) procedure.

    77

  • - , . (.. - ) - , . - ( - ). . . - , . - .

    (, )

    . , ATWS. -, , EUR (European Utility Requirements), ATWS , 2 ( - 10-2 1/) BE .

    (-, ) , . , - . (, 85 . ) - , - . -1000 (-320) 61 , - . - .

    621.039.586

    .., ...; .., ...; ..( )

    BEPU -1000

    -1000 - . , - , . : ATWS, . . /. , BEPU. BE , -, . BEPU .

    78

  • , - , .

    - ATWS, - .

    -, , , - BEPU (Best Estimate Plus Uncertainty). ( ) , , . , , .

    - . , . 2.2.2 (-082-07) , - . - . 1.7.2. ( -1-036-95), , - - .

    - , - BEPU ATWS, . - , , , - . ATWS

    , 2.

    , , - .

    , , - , :

    - ATWS. ATWS - - , -, -. 2 - EUR ( 4 ).

    , - - 1, , . , , - . , - . , [1], , - - 10-20 . - . 40 , - .

    1 3 4 (ATWS) . , , 4 ( 10-410-6 1/).

    79

  • ATWS 40 ;

    . - ( ) . (. [1]), , . EUR. , - . - . ( ) - ATWS. - , - , , . - BEPU.

    -. , , - . - , . - . , - . .

    - ,

    (). - - . - . - - , . , , - , -, ( 10-12 1/).

    , , -2 (.. 2) , . - 40 ( ATWS). -2 -, . -2 -2, .

    , 40 ( ) - , . -, . .

    , 115 -2 ( ), 130 . , -, -2, .

    EUR - DEC (Design Extension Conditions), - .

    80

  • - (.. ), . - - ( ) .

    1 2 61 -1000, - 600, .

    20 .

    - . - BE ,

    , , - . 1 .

    1, - : , , , - , , - . 30 .

    9 : (Nt), (Qlhot), (Power offset), - (React), 2 (Tin_2),

    1

    ( ) (Nt), .. [0.96, 1.04] , -2 (t_cool), 0 [-20., 0.]

    (CHF), .. (=1., =0.11) , (K_kan), .. [0.9, 1.0] , .. [0.95, 1.05] -2, [6.0, 8.0] 1), % [85., 95.] 1) 135Xe, . . [-0.7, +0.5] , 2), 2 (TOP2), . [3., 13.]

    2)

    , 2), 2, . [3., 13.]

    2)

    , 2), 2, [33., 68.]

    2)

    , . . [0.95, 1.05]1) 135Xe (OFF0 = [-]/[+] 100%) [-24., +12.] %, Qlhot.2) 29 26 , [33., 68.] , . , , .

    81

  • (DNBR), - (Tcl), (Tf) - (Hf) . , .

    - :

    Tf < 2840

    0C, Tcl < 1200

    0C Hf < 837 J/g;

    ;

    .

    BEPU ( /), . ... [8] , SUSA ( GRS) - .

    - . :

    .1. 61 -1000

    82

  • . 100 - - ( 0,05) |r| > 0,2043.

    |r|. , 122, 62 42 - ( 0,05) |r| > 0,1779, |r| > 0,2500 |r| > 0,3042 . , - .

    , - .

    - , , , - - . -

    / [2-4], .

    - - -RC [5-7].

    ,

    .

    - ATWS, - .

    - - (- 3, 4), , , ( 5-7). - - , - . - (Pow_sect_1 Pow_sect_4), (OFF_1 OFF_4) (Tin_1 Tin_4).

    a b.2. 600,

    a , . .; b , MWd/kg

    83

  • () () , . 1.

    Qmax . 3b, Tf_max Hmax . 4 .

    ATWS ( 0-40 ) - . - ( -2) ( 2) (. 3e), 2, - 2 (. 3a) (. 3b, 5a), - (. 4, 5b). 107%, 3, . -2 (7,5 ). . 2 40 -, . - , -. - .

    - ATWS, - ( - -2) .

    - 8-11 (

    ) 14 (). - 18-19 . , - , - . 5.

    . 5 600 2 . 1.

    40 80%, ( 20 ) -, . , 40 - ATWS.

    3-5 , , - . , - (DNBR ~ 1,1), Tf_hot 2580 0 ( 250 0, H_hot 640 / ( - 190 /).

    ATWS, - .

    ( 40-115 ) . 40 , , , ( ) 24, 46, 47, 59, 74 ( 1). - , . (. 3e), - ( ) -2 115 13 ef 1 ef (. 3d).

    2 , -2 . . . , 4 , , 2% (. 3a). . 3 -2.

    84

  • , 2 (. 3a, 3b, 4). , - ( (6-7) ef) , - .

    - , - . . - 115 ,

    .3.

    85

  • , , - (. . 3d . 9, ). , 115 - - .

    3, 4 , -4. , (DNBR > 10.), Tf_hot 700 0 ( 2000 0, H_hot 175 / ( - 660 /).

    - , - , (.. - ) - (.. ), . , , , , , .

    , - . ( ) - . - .

    , - BEPU.

    ( 115-160 ) .

    115 -2 , 130 . (. . 3e), ,

    -2, -. 6 2,4 ef ( - ). , , 1,5 ef . 3d ( 0,5 ef . 9, ).

    , , ATWS . - .

    160 -, ( 135 )

    3, 4 , . , - (DNBR > 1,8), Tf_hot 2200 0 ( 600 0, H_hot 520 / ( - 300 /).

    , , , , - .

    , - [14-30] [130-142] ATWS . .

    BEPU - . /

    4 , (. . 2), .

    86

  • 20 20 - 4 (3 ).

    - , . - 6

    ( 10 . 1) ( ) 29 , . 26 33 68 (

    a b

    . 4. a ; b

    \

    a b

    . 5. , . .

    ATWSa [W/cm] 2 14 ( 600 );

    b [0C] 2 19 ( 600 )

    87

  • a b

    . 6. , . .

    a [W/cm] 19 128,45 ( 600 );

    b , (a) 1200

    a b. 7. ,

    . .

    a [0C] 19 - 133,7 ( 600 );b , (a) 2

    88

  • ), . - - , .

    , , - [14-30] [130-142] ATWS .

    8 - (Tf) .

    . 8a , - Tf OFF0 ( 135Xe). - ATWS ( |r| > 0,65 ) ( |r| > 0,3 ). , - OFF0, Tf . , - , OFF0 < -17%,

    .

    . 8b , - ( |r| > 0,55 ) Tf - . , , -, .

    . 8c , (r > 0,23) , - Tf , - 2 (TOP2). , , Tf. - TOP2 (TOP2 > 7 ) , , TOP2, - .

    . 8. - . .

    89

  • - , BEPU, .

    ( 91 .) - -, :

    .9. . 1 (91 ). OFF0 >-17% TOP2

  • OFF0 , 17%. - , OFF0 - 5% ;

    , - 2 7 . , 29 , - .

    9.

    ( 53 .) -, . 10, 11 "Excess".

    10 Tf Hf ( -) 5. , , .

    5 (2-3 .) , Tcl 1200 0C ( ). DNBR > 1 Tcl .

    .10. ( ) ( ) (Excess, ) .

    .11. 1 (ATWS) 3 ( ) - (Excess)

    .

    91

  • , . 9 10 , - .

    11 - .

    .12. ,

    92

  • - . 9 . - , .. , . , - 11 , - :

    ATWS - 1 ( 200 0 100 /), 2 ( 1 % - );

    80 % 1 25-30 % 2.

    , , , , . , (DNBR > 2,2), Tf_hot 1500 0 ( 1300 0, H_hot 320 / ( 500 /). 9 10 . 4 , , . - - [-5.8, -3.8] ef ~44 94-110 . , - - .

    - 12.

    1. -1000, - / , - -. ( ATWS, ),

    - , - .

    .

    2. - -, - : ATWS, . - , - BEPU . .

    3. - . , , -1000 . - .

    BEPU BE - , , . - - . , , , :

    BEPU , - ;

    - , . , - - (DNBR > 10,0), 2000 0, - 660 /. ,

    93

  • - (DNBR > 2,2), 1300 0, - 500 /;

    ( ) - 80% .

    , - .

    4. , - . 2.2.2 (-082-07) , . . 1.7.2. ( -1-036-95), - - , .

    5. -320 - .

    - ; ;ATWS

    (Anticipated Transients Without Scram)BE (Best Estimate)

    BEPU - (Best Estimate Plus Uncertainty)

    DNBR , .. (rel.units)

    EUR (European Utility Requirements)

    Hf - , / (J/g)

    H_hot , , / (J/g)

    Nt , % NOFF

    (TOP-BOT)/(TOP+BOT)100, %P , .., %Pow_sect_i ,

    , i, i=1,,4, %

    Tcl , 0

    Tf , 0Tf_hot

    , 0Tf_max ,

    , 0CTcold_i

    i, i=1,,4, 0Tin_i ,

    , i, i=1,,4, 0

    Ql_hot , , / (W/cm)

    Qmax , , / (W/cm)

    React , beta_ef, ef

    r , ..

    1. .. , .. , .. , .. . . - , , . 13. , 2006 ., . 27-41.

    2. V.Artjomov, V.Gusev, A.Gudoshnikov et al. Development, testing and validation of

    94

  • the second basic version of code KORSAR with spatial neutron kinetics for safety substantiation of WWER type reactors. The 4th Scientifi c and Technical Conference on Safety assurance of NPP with WWER, CD Proceedings, May 23-26, 2005, Podolsk, Russia.

    3. V.Vasilenko, Yu.Migrov, S.Volkova et al. Experience of development and basic character-istics of new generation thermo-hydraulic code KORSAR. In Russian periodical Heat-and-Power Engineering, 2002, Number 11, p. 11-16.

    4. V.Vasilenko, Yu.Migrov, Yu.Dragunov et al. Thermo-hydraulic code KORSAR. The state of development and operational experience. The 3th Scientifi c and Technical Conference on Safety assurance of NPP with WWER, CD Proceedings, May 26-30, 2003, Podolsk, Russia.

    5. Tebin V.V., Butts ., Sergeev V.K., Ivanov A.S. et al. The Project of the software package SAPFIR for calculation of a reactor cell. In periodical Questions of Atomic Science and Engineering (VANT), series: Physics and

    Technics of Nuclear reactors, issue 4, 1985, pp. 68-71.

    6. Tebin V.V., Judkevitch M.S. Generalized sub-group approach to calculation of resonance absorption. In periodical Atomic Energy, Vol. 59, issue 2, 1985, p. 96.

    7. Ivanov A.S. Annotation of the code for FCP calculation. In periodical Questions of Atomic Science and Engineering (VANT), series: Physics and Technics of Nuclear reactors, issue 6 (43), 1984, pp. 55-56.

    8. .., . , .., .., .., .., ... /. -2008 (15-17 2008 , ., ), .160.

    Postulated conditions with deep cooling of coolant are analyzed for a commercial VVER-1000 reactor plant. The beyond-design basis scenarios are specially chosen to reveal the effi ciency of infl uence on the internal proper-ties of nuclear fuel and reactor emergency protection (EP) under conditions when criterial parameters are close to the acceptance criteria or violate them. The following stages of the accident were considered: ATWS, recriticality and cold slug. Multiple failures of control rods of the control and protection system were simulated at scram. The analysis was carried out using a KORSAR/GP code. At the fi rst stage of investigation a single conservative variant was considered, that showed the expediency to use the BEPU method. Then a PANDA code was used at the second stage of investigation for analysis of a set of variants to a BE approximation with uncertainty estimate by a set of statistically variable parameters: neutron, thermo-physical, thermo-hydraulic and hydrodynamic. The advantages of BEPU method for determination of safety margins are demonstrated.

    95

  • .

    - -1000 - 104-108 % . -1200, - . -. -2006 11% [1]. - . -. - . , -50 - 110 (Zr-1%Nb) . , - ( ) -, .

    110 - [1-3]. 6-

    12 , 5 - . . , ( , , - ) - , . , - .

    - - . . , -50 ( ) 10-20 / - 200 / [4].

    - . -, - . -, [5] - [2,6].

    621.039.534

    . . , . . , .. ( )

    .. ( )

    . . , - , 110.

    96

  • - ( , - ). - 2.2-4.5 /, , . - , - .

    - , -, . , [6,7] , - 110 - ( ) [6,7]. - .

    - .

    , [3], - ~ 2-3 110 ~ 200 . - 15 / 110 - [8]. 15 / . 1 - 110 [3].

    - c - - . , 110.

    - - .

    1 110 [3]

    1)

    , / O2 , /

    NH3 H2

    1) : :

    - -200 ()4103 ()

    300 ()(1-8)103 () (**)

    ~1.5 10-5 ~2.2 10-5 * 5-20 7-40

    ~1.5 10-5 ~2.2 10-5 * 5-20 3 (1-4) 10-4 (2-6) 10-4 * 10-15 10-30 (**) ( )

    -1000 >1.5 10-4 (1.1-2.2) 10-3

  • - , , , - [9].

    - [14]. -. .

    - - . , -, - .

    - [10-13, 16, 20, 28, 30]. 2 [10,12,13]. - ( ) ( 10-7 ), [10]. - Gi2) i, 100 . - - . , .

    - ,

    - - , -. - - . -1000 ~ 9 / - , 1 / [1].

    a b ni n n s t

    s

    dc =(I G +I G +I G )+ ()k c c cdt

    (1)

    I ; i ; , n, -, -; s ; a b s ( + i ); ; t ( ) - ( - - ); n = 1 n = 0 .

    , , - [9]. [10, 12], - - : H+, OH-, H, OH, e-, O2

    -, HO2, H2, O2, H2O2, HO2

    -.

    NH3, NH2, N2H4 - , . , pH , :

    2) , , . , 100 .

    98

  • 3 2 4NH H O NH OH+ + + .

    - [25]. pH ,

    .

    pH - . KOH OH- K+. - [28]. pH - - e-, HO2

    -, O2- H+.

    H2, O2 H2O2 - ( 100 0) - [15-18]. [18] - pH (014). - 100-250 0 [19,20]. - [21,22], MIT (). - - [23,24] 30 0C 260 20 0C. - [26, 27], - 2 22 - 25 0C 200 0C.

    - : H, OH, HO2, O, H2, O2, H2O2 [12,13].

    [14]. - - [10], - 1 100-400 0 3).

    - ~ 4-16 400 [29]. [11], 4-10 250-300 [29]. [11,29] , - .

    - . , - - ( ) H2 H2O2, [30]. - ~ 160 . , - , - - , . O2 H2O2. : (1) ; (2) . - - - (1) (2).

    - - . - - 2.

    3) [10] 0,1-1 .

    99

  • - - .

    x -, -1000 [35-36]. - In=2000 / (1 =1 /), - I =1000 /, 61013 -2-1, - - I = 1500 / 9 /. KOH pH (300 0C) = 7.0. - pH -1000 [2]. - 350 0, 163

    . - l = 0.57 /

    3 g = 0.11 /3, -

    . , - 5).

    , , - . , - -, .. , - -, - [31,32]. -

    2

    (/100 ) ,

    - -

    4)

    [10](1) H2O2, [29] (160 , 4000)

    (2) O2, [29] (160 , 4000)

    GH2 0.55 12 12GO2 0 0 6GH2O2 0 12 0GHO2 0 0 0GH 7.4 0 0GOH 6.3 0 0GO 1.1 0 0

    4) [11] , [11] . ( 4) , [11]. [11] a- , (1) (2). 5) , (, , ), - . .

    100

  • . .

    ) , - . - ,

    2 2 2 2, ,gH O H O

    g ll

    c c

    = (2)

    ) , , :

    2 2 2 2H ,O H ,O

    sat l1c = cH

    (3)

    H . 350 0C H ~ 0.4, 300 0 H ~ 0.2 [5].

    - ( -), ( - ). . , - [21]:

    2 2 2 22 2H O H O O + (4)

    2 2 2 2

    1[ ] [ ] [ ]2

    effO O H O= + (5)

    - - .

    . 1, 2 - - .

    ( 350 0C). - -1000.

    . 1 , - -1000 ( ) - 15 / , . .2 9 / (- ). . 2 - , - -.

    - -. , (15 /) 1-2 ( -, ) - , - - -.

    - , - . , - , - .

    3 10%. - ( 100 /) , , - .

    , - 110 ([3], .1). [3]

    101

  • , - . [3], 3500C. , - 10 %.

    - , -1000. , 1 , ( - -)

    .1. 350 0 (

    ).: ;

    ; . .

    .2. 350 0 9 /

    ( ).: , 1 (1) (.2),

    2 (2) (.2); -, . .

    102

  • . .

    , - 15 / 110.

    -, - 15 /. , . , - - , (borate phases), , (chimney morphology of crud) [37].

    110 - -. - - .

    - . -

    - 1.5 . . - - . - .

    1. Vasilchenko I.N., Fuel for new Russian reactor VVER-1200, Proc. Int. Conf. TopFuel 2009, Paris, 6-11 Sept. 2009.

    2. ox B, Kritsky V.G., Waterside corrosion of zirconium alloys in nuclear water plants, IAEA-TECDOC-996, 1998.

    3. .., .., , , 1996.

    4. .. ., - -50, , , , 10-16 , 1968, . 72-78.

    5. .. , .. , .., , 1, , 1961.

    6. .., , Proceedings of the third international conference on the peaceful uses of atomic energy, vol. 15, Geneva, 1971.

    7. .. , - , -, 6 . 261-286, , 1978.

    8. .. , .. , .. , .. , - 110 635 , . -2008, , 30 , 2008.

    3

    (/) -1000 10 %

    ( )

    9 / ( )

    0.1 35 1 100

    103

  • 9. .. , .. , .. , - , 140-, , 2009.

    10. .. , .. , .. , , ., , 1998.

    11. Chaoyang Li, Olander D.R., Steam radiolysis by alpha-particle irradiation, Radiation Physics and Chemistry, 54, p. 361-371, 1999.

    12. .. , - . , ., , 1986.

    13. Dixon R.S.,Radiation Research Review, vol 2, p.237-296, 1970.

    14. NIST http://kinetics.nist.gov/kinetics/index.jsp

    15. C.J. Hochanadel, Effects of Cobalt -irradiation on Water and Aqueous Solutions, Journal of Physical Chemistry, vol. 56, 5, pp. 587-594, 1952.

    16. H.A. Shwartz, Determination of Some Rate Constants for the Radical Processes in the Radiation Chemistry of Water, J. Phys. Chem., 66, 255, 1962.

    17. N.F. Barr, A.O. Allen, J. Phys. Chem., 56, 587, 1952.

    18. .. , .. , .. , , 1, 127, 1967.

    19. C.J. Hochanadel, The radiation induced reaction of hydrogen and oxygen in water at 25oC to 250oC, Proc. Int. Conf., Peaceful Uses of Atomic Energy, Geneva, vol. 7, p. 739. New York, 1956.

    20. .. , .. , H2 O2 - , - , , , 1955.

    21. Lin-Wen Hu Radiolysis calculations and hydrogen peroxide measurements for the MIT BWR Coolant Chemistry Loop, Massachusetts Institute of Technology, 1993.

    22. Bronislav Guimpelson BWR coolant chemistry studies using a recirculating in-pile loop, Massachusetts Institute of Technology, 1995.

    23. .. , .. , .. .

    , , . 88 (2000), . 5.

    24. A. Habersbergerova, B. Bartonicek, Radiolysis of Aqueous Ammonia Solutions by Gamma and Mixed Reactor Radiation, Nukleonika, vol.26, n 7-8, 1981.

    25. G.V. Buxton, R.M. Sellers, Radiat. Phys. Chem. 29, 137-140, 1987.

    26. B. Pastina, J. Isabey and B. Hickel, The Infl uence of Water Chemistry on Radiolysis of the Primary Coolant Water in Pressurised Water Reactors, J. Nuclear Materials, 309, 264, 1999.

    27. E.J. Hart, W.R. McDonell, S. Gordon, The Decomposition of Light and Heavy Water Boric Acid Solutions By Nuclear Reactor Radiations, Proceedings of International Conference on the Peaceful Uses of Atomic Energy, Geneva, vol. 7 p 593, New York, 1956.

    28. .., .., , , , ., 1991.

    29. .. , .. ., - , , . 69, . 1, . 17-21, 1990.

    30. Christensen H, Fundamental aspects of water coolant radiolysis, SKI Report 2006:16, 2006.

    31. Shcherbakov S.I., Sergeev V.V., Computational Analysis of Mixing Properties of Mixing Grids in WWER Fuel Assemblies, Proc. 8th Int. Conf. on WWER Fuel Performance, Modelling and Experimental Support, Helena Resort, Bulgaria, 27 Sept. 02 Oct. 2009.

    32. Shcherbakov S.I., Sergeev V.V., Computational Analysis of the Effect of Fuel Assembly Features on the Core Thermohydraulics at Elevated Parameters, Proc. 8th Int. Conf. on WWER Fuel Performance , Modelling and Experimental Support, Helena Resort, Bulgaria, 27 Sept. 02 Oct. 2009.

    33. .. ., - , , - , 1983, 2 (15), . 11-12.

    34. .. , .. , .. , ,

    104

  • , , 72, . 1, . 47-53, 1992.

    35. .. , .. , , , 1997.

    36. .. , .. , .. , -1000.

    , , 29, 4, 284-288, 1995.

    37. Bennet P., Demonstration of the PWR AOA in the Halden Reactor, EPRI, 2005.

    The paper presents evaluation of oxygen concentration in a liquid and gas phase of the primary coolant of a high-power VVER under the surface boiling conditions. Numerical radiolysis models were developed and used for this evaluation. It was shown that specifi c concentration of oxygen in coolant can exceed the threshold concentra-tion determined experimentally when nodular corrosion of the fuel rod claddings made of E110 steel is observed.

    105

  • 081810. - 250 -440 -1000. 2 . .

    - , - . - 4800 [1, 2].

    - 081810 - . - .

    - -, (- , ) , II .

    - , - I (). , - , , (- ) , . , .

    , 081810, . , - - , - . 081810 - -, .

    -

    -

    66

    .., ..(OAO )

    - ( )

    - - . - , , .

    106

  • - -. - - , , , - , .

    - , - . 40-60%. - . - . - , 20%.

    - . - -.

    , - .

    - (, , , ..).

    - 1.

    , -, - - - ( 2).

    - , - , -, .

    - , - - .

    1 - , %

    , C Si Mn Cr Ni Mo Ti S P N03236 0,030 0,4 1,0-2,0 22,0-24,0 5,3-6,3 - - 0,020 0,035 -

    032262 0,030 0,4 1,0-2,0 21,0-23,0 5,5-6,5 1,8-2,5 - 0,020 0,035 -

    08226( 53) 0,08 0,8 0,8 21,0-23,0 5,3-6,3 - 5,6-0,65 0,025 0,035 -

    12215( 811)

    0,09-0,14 0,8 0,8 20,0-22,0 4,8-5,8 - 0,28-0,50 0,025 0,035 -

    082162( 54) 0,08 0,8 0,8 20,0-22,0 5,5-6,5

    1,8-2,5 0,20-0,40 0,025 0,035 -

    032463( 130) 0,030 0,4 2,0 23,5-25,0 5,8-6,8

    2,5-3,5 - 0,020 0,035

    0,05-0,15

    DMV 18.5(UNS S31500) 0,030 1,4-2,0 1,2-2,0 18,0-19,0

    4,25-5,25

    2,5-3,0 - 0,030 0,030

    0,05-0,10

    SAF 2304(UNS S32304) 0,030 1,0 2,5 21,5-24,5 3,0-5,5 - - 0,040 0,040

    0,05-0,20

    SAF 2205(UNS S31803) 0,030 1,0 2,0 21,5-23,0 4,5-6,5

    3,0-3,5 - 0,015 0,035

    0,14-0,20

    SAF 2507(UNS S32750) 0,030 0,5 1,2 24,0-26,0 6,0-8,0

    3,0-5,0 - 0,015 0,030

    0,24-0,32

    107

  • . , - , - - [3]. .1 - - (+) Fe-Cr-Ni 20 ~1250. 1200 - -, . 1250 - . -

    . .

    - - - . , .

    - 03236, 032262, 08226, 12215, 082162 - 30 . -, , - . - . .

    - , . - (DMV 18.5, SAF 2304, SAF 2205, SAF 2507) +a , , 0,150,30% . - - - 1100.

    2

    - ,

    , Rp0,2, Rm, 5, % KCV, /2

    03236 350 5