116
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ _________ МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (государственный технический университет) __________________________________________________ А. А. ЮН, Б. А. КРЫЛОВ РАСЧЕТ И МОДЕЛИРОВАНИЕ ТУРБУЛЕНТНЫХ ТЕЧЕНИЙ С ТЕПЛООБМЕНОМ, СМЕШЕНИЕМ, ХИМИЧЕСКИМИ РЕАКЦИЯМИ И ДВУХФАЗНЫХ ТЕЧЕНИЙ В ПРОГРАММНОМ КОМПЛЕКСЕ FASTEST-3D Допущено Министерством образования и науки Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальности «Авиационные двигатели и энергетические установки» направления подготовки «Двигатели летательных аппаратов» Москва Издательство МАИ 2007

Юн А.А. Крылов Б.А. Расчет и Моделирование Турбулентных Течений с Теплообменом, Смешением

  • Upload
    dinh-le

  • View
    40

  • Download
    10

Embed Size (px)

DESCRIPTION

Расчет и Моделирование Турбулентных Течений с Теплообменом, Смешением

Citation preview

  • _________

    ( ) __________________________________________________

    . . , . .

    , ,

    FASTEST-3D

    ,

    2007

  • 27.5.4 49

    49 .. , .. . , , Fastest-3D: . - .: - , 2007. 116 .: .

    ISBN 978-5-7035-1854-0

    FASTEST-3D.

    , , .

    : Dr.-Ing. . ; Dr.-Ing. . ISBN 978-5-7035-1854-0 ( ) . ., . ., 2007

    . 2007, .

    , ,

    Fastest-3D

    . . 29.08.07

    . . 6084 1/16 . . . . 6,74. .-. . 7,25. 250 .

    . 3736/2239. .629.

    , ., . 4, , -80, -3 125993.

    , ., . 4, , -80, -3 125993.

  • 3

    5 7 1. 13 1.1. 13 1.2. 16 1.3. 17 1.4. 26 2. 28 2.1. (DNS) 28 2.2. (LES) 29 2.3.

    (RANS) 30

    2.3.1. 34 2.3.2. 35 2.3.3.

    37

    2.3.4.

    38

    2.3.5.

    42

    2.3.6.

    48

    2.3.7.

    49

    2.3.8. 51 2.3.9. 56 2.3.10. 58 3. 66 3.1. 66 3.2. 68 3.3. 72 3.4. 73 3.5. 74 3.6. 75 3.7. 76 3.8. 78 3.9. 79

  • 4

    3.10. 82 4. FASTEST-3D 87 4.1. FASTEST-3D 88 4.2. FASTEST-3D 89 4.3. ,

    93

    4.4. , 97 4.5. 102 4.6. 104 106 111

  • 5

    30

    . , , (Computational Fluid Dynamics CFD). CFD , . , - , , . .

    FASTEST-3D (Flow Analysis Solving Transport Equation Simulating Turbulence 3 Dimensional), (TU Darmstadt). FASTEST-3D , , , , , , . FASTEST-3D

  • 6

    SFB, , Siemens, Rolls-Roys, Alstom. . , , Fluent, CFX, ANSYS , .

    FASTEST-3D , Linux, . Pentium 100 (32Mb) .

    Dr.-Ing. ., Dr.-Ing. . (TU Darmstadt) Prof. Dr.-Ing. M. Schafer, Prof. Dr.-Ing. J. Janicka, Prof. Dr.-Ing. A. Sadiki, Dr.-Ing. D. Sternel.

  • 7

    , , , ,I II III IV V , ..

    ija 2

    2

    iC , ic jiC

    pc ( ) pd

    D

    1 2,F F

    iFG

    f , if

    ig 2

    k 22

    k+ , kk U

    + = l

    p kP

    Pr Prt R ( )

    Re

  • 8

    Re p Ret Sc ijS 1

    c -

    T t , iu u

    ,

    u

    , /w w u+ i ju u 2 2

    ju V 3 ix y y+

    , /u y

    , , ,i i i i

    , ij 2

    2

    0 22

  • 9

    + ,

    4U + =

    i k ( ) ij , t ( )

    , t 2

    3

    2

    k

    ij 2

    2

    ij 1c

    k , i 1c

  • 10

    ( ) ( )j ( )div ( )grad

    ( )b ( )F ( )O ( )P ( )u

    AS , BML , , CDS - (Central

    Difference Scheme) CFD

    (Computational Fluid Dynamics) CLS , , CV (Control Volume)

  • 11

    DES (Detached Eddy Simulation)

    DH , DNS

    (Direct Numerical Simulation) EARSM

    (Explicit Algebraic Reynolds Stress Model)

    EASFM (Explicit Algebraic Scalar Flux Model)

    EDC (Eddy-Dissipation Concept)

    EVM (Eddy-Viscosity Model)

    GGDH - (General Gradient-Diffusion Hypothesis)

    GL , GS , IARSM

    (Implicit Algebraic Reynolds Stress Model)

    KM , LES (Large

    Eddy Simulation) LRR , , LU - (Lower-

    Upper decomposition) MPI Message Passing Interface PDF RANS

    (Reynolds Averaging based Numerical Simulations)

    RSM (Reynolds Stress Model)

    RSFM (Reynolds Scalar Flux Model)

  • 12

    RST (Reynolds Stress Tensor)

    SJ , SGS , , SIMPLE

    (Semi Implicit Method for Pressure Linked Equations)

    SIP (Strongly Implicit Procedure)

    SMC (Second Moment Closure)

    SSG , , SST (Shear

    Stress Transport) UDS (Upwind

    Difference Scheme) URANS

    (Unsteady RANS)

    WJ , WWJ , , ZFK --

  • 13

    1.

    : , . 1.1.

    [4]

    N N

    0ii

    I II

    ut x

    + = , (1.1)

    , .

    0ii

    ux = . (1.2)

  • 14

    N N N

    Ni j iji

    ij i j V

    I IIIII IV

    u uu p gt x x x

    + = + +

    , (1.3)

    , - , - ( ), - (). [54]

    23

    i i ij ij

    i j

    u u ux x x

    = + , (1.4)

    ij - ( 1, 0ij iji j i j = = = ).

    23

    i ji i i ij i

    j i i j j

    u uu u u up gt x x x x xx

    + = + + + . (1.5)

    (1.2) (1.5)

    [1]. [4]

    21i i i

    j ij i j j

    u u upu gt x x x x

    + = + + . (1.6)

  • 15

    N N

    Np i p ij iij i j V

    I III IVII

    c T u c T uq St x x x

    + = + +

    , (1.7)

    , - , -

    ii

    Tqx

    = , - , - , ..

    , (, ),

    ii i i

    u D St x x x

    + = + . (1.8) D

    DSc= . (1.9)

    ,

    , , . , : ,

    p RT= . (1.10)

    , , .

  • 16

    . , , (, ) . ( ), . , .

    1.2. . , , - , ().

    : (EulerLagrange) (EulerEuler). . .. , . () (), . . 1.1 . (), ().

  • 17

    . 1.1. (), ()

    , , , , .. [12], [14], [49].

    1.3. , , (). . [63]. [6]: , , . , . : (), .

  • 18

    , (, ).

    F O PF O P + = , (1.11) : F - ; O - ; P - . . N M :

    1 1

    N N

    kj k kj kk k

    = =

    = , 1,j M= , (1.12)

    k - k kj , kj - k j . (1.12)

    1

    0N

    kj kk

    W=

    = , 1,j M= , (1.13) kj kj kj = kW k . kj

    i k j

    :

    kj j k kjr W =i

    , (1.14)

  • 19

    jr - j . ki

    k M :

    1 1

    M m

    k kj k j kjj j

    W r = =

    = = i i . (1.15) (1.15) (1.13)

    1 1 1

    N M Nk j k kj

    j j kr W

    = = =

    = i

    . (1.16)

    jr : , ,j f j b jr r r= , (1.17)

    , , 1kj

    N kf j f j k

    k

    Yr KW

    = =

    ; , , 1kj

    N kb j b j k

    k

    Yr KW

    = =

    .

    ,f jK , ,b jK

    , ,, , expf jn f j

    f j f jE

    K A TRT

    = . (1.18)

    (1.18) :

    ,f jA , ,f jnT

    ,f jE . ,b jK

  • 20

    11

    0 0

    , , exp

    N

    kjk j ja

    b j f jS HpK K

    RT R RT

    =

    = , (1.19)

    ap ;

    0jS , 0jH -

    . (1.12), (1.18). [6]. , . . , , . , . , . . , , . , . , . , . , , . . ,

  • 21

    , xNO . , , xNO . (mixture fraction), :

    ,, ,

    O

    F O

    z zz z

    = , (1.20) z . , (1.19), :

    ii i i

    ut x x x

    + = . (1.21) , , [6]. .

  • 22

    . 1.2. . 1.2

    . , : ( )k kY Y = , ( )T T = , ( ) = , ( ), it x = . [6], [63]. [6]. , , , . . 1.3 . - [6].

  • 23

    T x 0T () maxT . , , : , , , , , ; .

    . 1.3. , , . , , - (ZFK) : - maxT ;

  • 24

    - l fl ; - s

    G.

    (1.18) maxT T= [6]

    2

    max~ exp

    p

    Esc RT

    G

    . (1.22)

    , ; - maxT . , , . . [40] : , , . .

  • 25

    . 1.4.

    . 1.4 . , . . , . () . , . , : , , .

    , , , . , .

  • 26

    1.4. , , . : , . , , :

    0 0Re l u= . (1.23)

    0l - ; 0u - ; - . . , . . , , . , . . , , , . . ; , , , , . [33] . , . . 1.5 .

  • 27

    . 1.5. , : - , - , - , - , - . [40]. (, , ..) , : DNS, LES, RANS URANS.

  • 28

    2.

    2.1. (DNS)

    (DNS)

    . , , .

    DNS . . :

    13 4

    k =

    , (2.1)

    :

    12

    k = . (2.2)

    , . 2.1,

    [38].

  • 29

    . 2.1. DNS

    .

    Re 5103 5104 5105 5106 5108 200 Mflop/s

    68 . 444 . 610 1 Tflops/s 13 . 88 . 122 , DNS . , , DNS, , .

    2.2. (LES) , . , . , , , . LES , , , , DNS. , LES , DNS. LES . , LES RANS. . LES . , ; , LES, , DNS. C

  • 30

    , , . LES RANS LES-DES. DES RANS, LES. , , , .. . .

    2.3. (RANS) , . : ( ) ( ) ( ),,i i ix t x t x t = + . (2.3) :

    ( ) ( )0

    1lim ,t

    i itx t dt

    t = . (2.4)

    . 2.1

    .

  • 31

    . 2.1. : () ; ()

    , , , () [62].

    :

    0ii

    ux

    = ; (2.5)

    1i j i ji i ij i j i j

    u u u uuu p gt x x x x x

    + = + +

    ; (2.6)

    j jj j j

    u D u St x x x + = +

    , (2.7)

    i ju u - , ju - .

    ; , (). , . .

  • 32

    (2.5) - (2.7) . . (2.5) - (2.7) .

    . , , , . , , 1969 . [62], :

    ff = . (2.8)

    i iu u u= + ; (2.9) i i = + . (2.10)

    :

    0ii

    ut x

    + =

    ; (2.11)

    kj ii i i ijj i j j

    u uu up u u gt x x x x

    + = + +

    ; (2.12)

    kj jj j j

    uD u

    t x x x + = + . (2.13)

  • 33

    (2.11) - (2.13), (turbulence- chemistry interaction). (2.13) . , (1.14) - (1.19) ( 1), : ( ),T Y , (2.14) , ( ),T Y . (2.15) , , , (PDF),

    ( ) ( )P d +

    = , (2.16)

    , , ; ( )P . ( ) ( )P , (2.16). . [35], , . , - . . ,

  • 34

    [35]. , , [6], [40], [63].

    2.3.1.

    , , . 1877 . [13] , .

    23

    jii j t i

    j i

    uuu u kx x

    = + . (2.17)

    , . t . , t . t , . , . , t tu l , (2.18) tu - ; l - . tu l .

  • 35

    . , , , .. :

    23

    i jij ij

    u ua

    k = . (2.19)

    ,

    :

    2 jt iijj i

    uuak x x = +

    . (2.20)

    , , , . , , , xy , . ija ,

    ijS ij , , 2.3.5. 2.3.2.

    , t , ,

  • 36

    . t 1925 . [62].

    2 xt mvlx

    = , (2.21)

    ml - , . , ml y= , (2.22)

    0.39 - ; y - . : [48], [11], [27] .. [62] : , . , ; , . , , , . , . , .

  • 37

    2.3.3.

    , , ( ) tu l . ,

    tu k , k - . (2.18), : *t C k L = , (2.23) C - . ,

    32j jt i

    j t Dj j k j i j i

    u uuk k k ku Ct x x x x x x L

    + = + + +

    , (2.24)

    C , DC , k - . L .

    , , (, , [15]), (, [39]) [62].

    , , , , , . , .

  • 38

    , , , .. .

    2.3.4.

    . (1942) [33]. k .

    k -

    k - , [62]:

    ( )* *ij ij tj j j j

    k k u ku kt x x x x

    + = + + ; (2.25)

    ( )2ij ij tj j j j

    uut x k x x x + = + +

    ; (2.26)

    tk = ; (2.27)

    23

    jiij i j t ij

    j i

    u uu u kx x

    = = . (2.28)

    :

    * *9 /100; 3 / 40; 5 / 9; 1/ 2; 1/ 2 = = = = = .

    k -

    k - , (1945) [17]

  • 39

    (1972) [26].

    i tj ijj j j k j

    k k u kut x x x x

    + = + +

    ; (2.29)

    2

    1 2i tj ij

    j j j j

    uu c ct x k x k x x

    + = + +

    ; (2.30)

    2

    tkC = ; (2.31)

    23

    jiij i j t ij

    j i

    u uu u kx x

    = = . (2.32)

    :

    1 21.44; 1.92; 0.09; 1.0; 1.3kc c C = = = = = .

    k , k .

    , (1993) [37], k k . k k , 1F , k k . , k k , 1F ( )11 F . 1F , . , k , t . (SST),

  • 40

    [15],

    0.31i ju u k = . , SST (shear stress transport), , [16].

    :

    ( )*ij ij k tj j j j

    k k u ku kt x x x x

    + = + + ; (2.33)

    ( )2

    1 212(1 ) ;

    ij ij t

    j j j j

    j j

    uut x k x x x

    kFx x

    + = + + + +

    (2.34)

    tk = ; (2.35)

    23

    jiij i j t ij

    j i

    u uu u kx x

    = = + . (2.36)

    1 k 1 2 k ,

    ( )1 1 1 21F F = + . (2.37) . 1. k ():

    *

    1 1 10.09; 0.075; 0.5; 0.5;k = = = = * 2 *

    1 1 10.41; / / = = .

    2. k :

    *2 2 20.09; 0.0828; 1; 0.856;k = = = =

    * 2 *2 2 20.41; / / = = .

  • 41

    :

    21 * 2 24500arg min max ; ;

    k

    kky y CD y

    = ; (2.38)

    2021max 2 ,10k

    j j

    kCDx x

    =

    ; (2.39)

    41 1tanh(arg )F = . (2.40)

    ,

    1a k = (2.41) 1a [15]. , :

    tH = , (2.42)

    uy

    = . , :

    1ta k = . (2.43)

    , , , SST- . 2F :

  • 42

    ( )11 1 2maxta ka w F

    = , (2.44)

    2F (2.40).

    ( )22 2tanh argF = ; (2.45) 2 2

    500arg max 2 / 0,09 ;k yy

    =

    . (2.46)

    :

    * 1 1 10.09; 0.075; 0.85; 0.5;k = = = = * 2 *

    1 1 1 10.41; / / ; 0.31a = = = .

    .

    , . , , .

    2.3.5. , , . [41], [53]. ija . ,

    12

    jiij

    j i

    uuSx x

    = + 1

    2ji

    ijj i

    uux x

    = .

    , , (CLS) [18].

  • 43

    ( )( )

    2 21 2 3

    2 2 2 24 52 2

    6 72 2

    1 13 3

    23

    . (2.47)

    t t t ts

    t t

    t tij jk ki ij jk ki

    a S c S II I c S S c II Ikk kc S S c S S IVI

    k kc S S S c S

    = + + + +

    + + + + +

    c

    :

    ( )( ) ( )( )1.50.3 0.361 exp

    exp 0.75max ,1 0.35 max ,c

    SS

    = + . (2.48)

    :

    2 2 21 2 3 4 5 6 70.1, 0.1, 0.26, 10 , 0, 5 , 5c c c c c c c c c c = = = = = = = .

    , (GL) [23], .

    :

    ( )2 2 21 2 3 13t t ska c S c S S c S II I

    = + ,(2.49)

    ( )

    ( )2

    12 2 2

    3 1

    3 6 1c

    += + + + ; (2.50)

    ( ) ( )222 22 3/ 2, /8S = = . (2.51)

  • 44

    :

    1 2 32 / 21, 1/ 7, 2 / 7 = = = . , , , , . , CLS 7 , . . .

    (EARSM) , , .

    N

    ( )1

    2

    i j k i j i ii k j k

    k k kI II III

    i j jii j k j jk j ik

    k k j i

    VIV

    ji

    k ki

    u u u u u u uu u u ut x x x

    u u uupu u u p u p ux x x x

    uux x

    + =

    + + + +

    . (2.52)

    VI

    ; - ; -

  • 45

    ; - ; - ; - . :

    1

    ,

    ij i j l i j i jl

    l

    ij ij ijij

    Da u u u u u u ukuk Pt x k x k

    PC

    = +

    + + (2.53)

    ; - ; -

    ( ' ' ' 'i iij i k j kk k

    u uP u u u ux x = , / 2ijP P= ); -

    ; - ; . , , . . ARSM.

    0ij i j l i j ll

    Da u u u u u kukt x k x

    = . (2.54)

    , ARSM t , , i ju u , . ARSM , .

  • 46

    1i j ij ij ij iju u PP C

    k

    = + + . (2.55)

    ijP , / 2ijP P= ijC

    , . ij ij . . , :

    ( )21

    2

    7 18115 11

    5 9 2 ,11 3

    ij ij ik kj ik kj

    ik kj ik kj ij ik ki

    CP a S a a

    C a S S a a S

    + + = + +

    (2.56)

    ( )3 4 1 2 2 .3ij ij ik kj ik kj ik kj ik kj ij ik kiPA A a A S a a A a S S a a S + = + +

    ( )( )12

    1 2 3 42 2 2 2

    11 15 988 11, , ,11 7 1 7 1 7 1 7 1

    CCA A A AC C C C

    = = = =+ + + + - . . 2.2.

    . 2.2. EARSM

    1A 2A 3A 4A WJ, [60] 1.20 0 1.80 2.25 LRR, [34] 1.54 0.37 1.45 2.89 SSG, [53] 1.22 0.47 0.88 2.37 GS, [23] 1.22 0.47 5.36 1.68

  • 47

    , . ija ijS ij , . [52], [60], [65]. [60] :

    ( )( )

    ( )( ) ( )

    2 21 2 3 4

    2 2 2 25 6

    2 2 2 2 2 2 27 8

    2 2 2 2 2 29 10

    1 13 3

    23

    23

    .

    sa S S II I II I S S

    S S S S IVI

    S S VI S S S S

    S S S S

    = + + + +

    + + + + + + +

    + +

    (2.57)

    2

    jiij

    j i

    uuSx x

    = + ,

    2uu ji

    ij x xj i

    =

    k = : ija a= , ijS S= , ij = . i - S :

    2 2

    3 2

    2 2

    , ,

    , ,

    .

    s ij ij ij ji

    ij jk ki ij jk ki

    ij jk kj jk

    II S S S II

    III S S S S IV S S

    V S S S

    = = = = = = = = = =

    (2.58)

  • 48

    (2.56) (2.57) i . .

    2.3.6.

    (2.52) (2.56). .

    i j ij ij ij ij iju u

    C P Dt

    + = + . (2.59)

    ijC ; ijP - ; ijD - ; ij - ; ij - . .

    , , . .

    ijD , , (DH) [19]:

    i ji j k s k ll

    u uku u u C u ux = , (2.60)

    sC 0.22.

  • 49

    : .

    :

    ( )

    1 sij

    ijC a = , (2.61)

    1C - .

    , . (, , (LRR)) [34]:

    ( )( )

    2

    * *2

    9 64 25 11 3

    7 10 ,11

    rij

    ij ik kj ik kj km km ij

    ik kj ik kj

    CS a S S a a S

    C a a

    + = + + +

    + (2.62)

    2C - . LRR : 1 1.5C = 2 0.582C = [34].

    , , k .

    , , , , [64] (. .2), , .

    2.3.7.

    1,

    , .

  • 50

    :

    tjj

    ux

    = . (2.63)

    , , (DH) [19]:

    1i t t i jj

    u C u ux = . (2.64)

    , (KM) [31],

    :

    1i k k j

    i t tj

    u u u uu C

    k x =

    . (2.65)

    , , , (AS) [9],

    :

    1 2 2i j i k k j

    i t t tj

    u u u u u uu k C C

    k xk = +

    . (2.66)

    :

    1 20.22, 0.22t tC C= = .

    , :

  • 51

    ( ) ( )i j i i i i ij

    u u u P Dt x + = + + . (2.67)

    [25].

    , EARSM, , , , (WWJ) [61]:

    ( )41i ij j kk

    ku c B u ux = , (2.68)

    B

    ( ) ( )22 13

    1 2

    12

    1 12 2

    s sG Q I G c S c c S cB

    G GQ Q

    + + + =

    +;

    2 31sc c c = , 2 31c c c = + ; 1

    1 12 12

    PG cr

    = ; ,

    : 2 21 s sQ c II c II = + , 3 22 2 23 s s sQ c III c c IV= + . :

    1 2 3 44.51, 0.47, 0.02, 0.08c c c c = = = = .

    2.3.8.

    , :

    p

    kSt

    = , (2.69)

  • 52

    p - , , k - . . . , .. . , . p Re p ,

    Re ppW d

    = , (2.70) W - ; pd - .

    . : , . :

    pVV

    CV

    = ; (2.71)

    pmm

    Cm

    = , (2.72)

    p ; . .

    ( 1.2)

  • 53

    (2.5-2.7). , . , . , . , ( ). , . ( ) , ( ) [49], , .

    .

    p pd x

    udt

    =JJG G

    . (2.73)

    , ,

    ...p A g vm Sa M Ppdu

    m F F F F F Fdt

    = + + + + + +JJG JG JG JG JG JG JG

    , (2.74)

    AF

    JG- ; gF

    JG-

    ; vmFJG

    - ; SaFJG

    - ; MFJG

    - ; PFJG

    - . , , .

  • 54

    pp id

    I Tdt =JJJG G

    , (2.75)

    pI - ; iT G - , .

    , (2.74).

    , . :

    23 Re4

    fA p d p rel

    p pF m C U

    d

    =

    G. (2.76)

    dC

    . Re 1p

  • 55

    fp

    = :

    ( )vm p vm f pdF m C u udt= G . (2.79) vmC . vmC 0.5.

    . . [44]

    0.5

    21.615AS p reluF d Uy

    = G

    . (2.80)

    .

    ( )28 relM f p Ma rel relrelU

    F d c U = GG G GG , (2.81)

    rel

    G, relUG

    - .

    f f f fP p pp p

    Du DuF m m g

    Dt Dt =

    G GG G . (2.82)

    ,

    . (2.5) (2.7), (2.73) (2.75), ,

  • 56

    . .

    2.3.9. 1.3,

    (mixture fraction). :

    ki ji i i

    u D ut x x x

    + =

    . (2.83)

    ,

    2.3.7. , , ( )k kY Y = ( )k kT T = . 2.3. kY PDF

    ( ) ( )10

    k kY Y P d = . (2.84) PDF ( )P - .

    , 2 . (2.13),

  • 57

    k k22 2

    2 2

    2 .

    jj j

    j j j j

    j j

    uD u u

    t x x x x

    Sc x x

    + =

    (2.85)

    (2.85) ,

    (2.83). k

    ju k2ju

    j jx x .

    , , ( 2.3.7.).

    k tji

    ux

    =

    . (2.86)

    :

    k2

    2 tj

    iu

    x

    =

    . (2.87)

    [35]:

    22 2j jSc x x k

    = . (2.88)

    [35], [47], [59].

    - , . FASTEST-3D : BML Gequation. BML ,

  • 58

    (progress variable), , . Gequation . [6], [40], [63]. - .

    BML [35]:

    ( ) k

    k,

    i ti i j

    i j j k j

    iu i

    uk k ku k u ut x x x x

    pu cx

    + = + +

    (2.89)

    ( ) k

    k

    2

    1 2

    3 .

    i ti i j

    i j j j

    ij

    uu c u u ct x k x k x x

    pc u ck x

    + = + +

    (2.90)

    (2.88) (2.89) BML . 3c 1.44 . (BML), . [35], [47], [59].

    2.3.10.

    . Ret , .

  • 59

    , : , , .

    . 2.2.

    : 1) ,

    : u y+ += , uuu

    + = , u yy + = ,

    wu = - , 2) ,

    . ,

    5 ln 3.05u y+ += + . ,

  • 60

    . 0 11.63y+ (. 2.2),

    3) 11.63y+ , :

    ( )1 lnu Ey B+ + = + , (2.91) 0.41 - ; - , ( 8.8E = ); 5.0B - .

    , 20% 80% . , , . ( ), . , , . [45].

    (, [29]) :

    1) 11y+ : t Pr y+ + = , (2.92)

    - ; t - ; + - ,

  • 61

    2) 0 11.63y+ : t , (2.93)

    3) 11.63y+ :

    t lnt

    k y Dk

    + + = + . (2.94) + :

    ( )Prt fU + + = + , (2.95)

    f [29]

    2 / 312.5Pr 2.12ln Pr 1.5f = + + . (2.96)

    :

    effyT

    ++= . (2.97)

    , . . , , , . , , k (2.29), (2.30)

  • 62

    Ret , , s , . , 2 / k (2.30) . 0 = + , , ; 0 - ( - ) .

    (Low- Re) .

    k [16]

    i tj ijj j j k j

    k k u kut x x x x

    + = + +

    ; (2.98)

    2

    1 1 2 2

    ;

    ij ij

    j j

    t

    j j

    uu c f c f Et x k x k

    x x

    + = + + + +

    (2.99)

    0 = + , 0 22ky

    = ; (2.100)

    / 222yE e

    y += ; (2.101)

    2

    tkc f = . (2.102)

    0.01151 yf e

    += ; 1 1f = ; 2(Re / 6)

    2 1 0.22 tf e=

    . :

    1 21.35; 1.80; 0.09; 1.0; 1.3kc c c = = = = = .

  • 63

    , k , .

    WJ CLS.

    ( & ) [60]

    ( )( ) ( )

    ( )

    2 2 2 221 2 1 3

    2 2 21 4 1

    2 2 2 2 21 6 1 9

    3 4 1 113 3max( , )

    12max( , )

    2 . (2.103)3

    exij seq

    s s

    eqs s

    Ba f S II I f II III II

    Bf f S SII II

    f S S IVI f S S

    = + +

    + + + +

    -

    1 1 expyfA

    ++

    = , (2.104)

    26A+ = .

    - (2.86). sII , - eqsII :

    21

    1

    405 5.74216 160

    eqs

    cIIc

    = , (2.105)

    1 1.8c = .

  • 64

    (Craft, Launder & Suga) [18]:

    ( )( )

    21 2

    2 2 23 4 2

    2 25 2

    6 72 2

    13

    13

    23

    ;

    t t ts

    t t

    t

    t tij jk ki ij jk ki

    a S c S II I c S Sk

    kc II I c S S

    kc S S IVI

    k kc S S S c S

    = + + + + + + + +

    + +

    (2.106)

    2

    tkc f = ; (2.107)

    ( )( ) ( )( )1.50.3 0.361 exp

    exp 0.75max ,1 0.35 max ,c

    SS

    = + . (2.108)

    ( ) ( )1/ 2 21 exp Re /90 Re / 400t tf = . (2.109)

    2Re /t k = . (2.110)

    :

    2 2 21 2 3 4 5 6 70.1, 0.1, 0.26, 10 , 0, 5 , 5c c c c c c c c c c = = = = = = = .

    . , - (LB) [8]

    0.255Re 2 41(1 ) (1 )Re

    tT

    tf e = + . (2.111)

  • 65

    , ; , , [64] (. .2). ; , , , .

  • 66

    3.

    , , , . . : , , , . FASTEST3D (Flow Analysis Solving Transport Equations Simulating Turbulence 3 Dimensional) [20]:

    - , ;

    - ; - ; -

    ; - (Strongly Implicit Procedure)

    ; - ,

    (domain decomposition). 3.1.

    N N

    i

    i i i IVI II III

    u S

    t x x x

    + =

    , (3.1)

  • 67

    ; - ; - ; .

    . , , :

    ( ) ( )ii i iV V V V

    dV u dV dV S dVt x x x + = , (3.2)

    - (, ); - (/ , . .); S - , , ( , ..).

    , :

    V

    div dV ndF S dV = = v . (3.3)

    ( ) i iiV V

    dV u n d S dVt x + = , (3.4)

    , V in , n . .

    FASTEST-3D (. 3.1).

  • 68

    . 3.1.

    . . (3.4) . , .

    3.2. . . 3.2 . . 1 2 3( , , ) , 1 2 3( , , )x x x . [21] .

  • 69

    . 3.2. [21]

    1 1 1

    1 2 3

    2 2 2

    1 2 3

    3 3 3

    1 2 3

    x x x

    x x xT

    x x x

    =

    . (3.5)

    ji j ix x

    = . (3.6)

    1T ( ) :

  • 70

    1 1 1

    1 2 3

    1 2 2 2

    1 2 3

    3 3 3

    1 2 3

    x x x

    Tx x x

    x x x

    =

    , (3.7)

    ( )1 TadT TJ= , (3.8) detJ T= - ( )TadT - , T .

    ,

    1 1j i iji i

    xadjx J J

    = = (3.9)

    1 iji jx J

    = , (3.10)

    ij - ,

    3 3 3 32 2 1 1 1 2 1 2

    2 3 3 2 3 2 2 3 2 3 3 2

    3 3 3 32 2 1 1 1 2 1 2

    3 1 1 3 1 3 3 1 3 1 1 3

    3 3 3 32 2 1 1

    1 2 2 1 2 1 1

    x x x xx x x x x x x x

    x x x xx x x x x x x x

    x x x xx x x x

    =

    1 2 1 1

    2 1 2 2 2

    x x x x

    .

    (3.11)

  • 71

    , (3.10) (3.2),

    ( ) i i ik ikV V

    dV u n d n d S dVt J

    + = . (3.12)

    (3.12), [21]

    ( )j j li n i l kb kiV V

    dV u F b u b S dVt V x

    + = , (3.13)

    jnbF -

    ; jkb - . , 1j = East ( E) West ( W); 2j = North ( N) South ( S); 3j = Top ( T) Bottom ( B) (. 3.3).

    . 3.3.

  • 72

    3.3. East, . 3.4. . P E; , , te, ne, se be.

    . 3.4. East East [21]:

    ( ) ( ) ( )2 2 21 1 1 1 11' 2 3 12

    1 1 1 2 1 1 3 1 3 1 331 2 2 2 3 2 1 1 2 2 3 3 3

    {

    ,

    ie k i k

    F b b b b b

    v v

    b b b b b b b b b b b b

    v v

    = + + +

    + + + + + +

    (3.14)

    i :

  • 73

    1 E P = , 2 ne se = , (3.15) 3 te be = .

    , , E P , (3.14). ne , se , te , be P, E, N, S, T, B, ne, se, te, be. 3.4. East

    ( ) ( )1 1 1 1 11 1 2 2 3 3{ } ee k e e eeF b u b u b u b u m = + + = i , (3.16)

    emi

    East ,

    ( )1 1 11 1 2 2 3 3em b u b u b u= + +i . (3.17)

    0e t w s bnm m m m m m+ + =i i i i i i

    . (3.18) FASTEST-3D ; , .

  • 74

    3.5.

    ( - ) (3.1) .

    :

    ( )P

    PPV

    dV Vt t . (3.19)

    . , :

    ( ) ( ) 1 1 1 1 1 1n nP P n n n n nNb Nb P P PNb

    V VA S A

    t = + . (3.20)

    t , n 1n . (3.20) PA , pS . : ( ) ( )

    ( )

    11 1 1 1 1

    1 1 1 1 11 .(3.21)

    n nP P n n n n n

    P P Nb NbNb

    n n n n nP P Nb Nb

    Nb

    V Vf A A S

    t

    f A A S

    = + + + + + +

    0f = , ; 0.5f = , . , , . f ,

  • 75

    .

    3.6.

    3.3-3.5 (3.1). , , . (, - ..) (.3.5).

    . 3.5. ,

    , ,

  • 76

    1

    1 1 1 ,

    P

    P k Pi i iPV

    j jj P ji i

    j k l

    dV V b Vx x J

    b V bJ J

    = =

    (3.22)

    j k l PV = .

    , ix ( ) ( ) ( )1 2 3

    i

    pe w i n s i t b iuS p p b p p b p p b= . (3.23)

    ig :

    i

    giuS g V = . (3.24)

    (3.22)

    i

    kuS i

    duS :

    i ii i

    p g d ki u uu uS S S S S= + + + . (3.25)

    , :

    i ii

    g d ki u uuS S S S= + + . (3.26)

    3.7.

    . . 3.6 .

  • 77

    . 3.6. (Upwind Difference

    Scheme (UDS)) East P E (. 3.7):

    , 0, 0

    P eUDSe

    E e

    f mf

    f m>=

  • 78

    (P E) (. 3.7) :

    ( )1CDSe E e P ef f f = + , (3.28)

    e PeE P

    = . (3.29)

    , , , .

    (UDS/CDS), FASTEST-3D :

    N ( )UDS CDS UDSe e e e

    f f f f= + , (3.30)

    - .

    0 = UDS , 1 = UDS . 0 1, . , UDS CDS UDS .

    3.8.

    . : Np p Nb Nb P

    Nb

    A A S =

    , (3.31)

  • 79

    pA - p P ; NbA - .

    (3.31) : (1) (1) (2) (2)

    (1) (2)p p Nb Nb Nb Nb P

    Nb NbA A A S = , (3.32)

    Nb(1)=E, W, N, S, T, B Nb(2)=EN, WN, ES, WS, NT, NB, ST, SB, ET, EB, WT, WB, ENT, ENB, WNT, WNB, EST, ESB, WST, WSB (. 3.3).

    , ( )( )(1) (1)

    (1)2p p Nb Nb P

    NbA A S Nb = . (3.33)

    1n +

    1n+ ( )( )1 1(1) (1)

    (1)2n n np p Nb Nb P

    NbA A S Nb+ + = . (3.34)

    , . 3.9. . , . - . FASTEST-3D SIMPLE, , , , .

  • 80

    [20] [21]. m 1m . (3.34) iu

    1 1 1 1, , ( )

    m mu m u m m mp i P Nb i Nb P i p

    NbA u A u Q p = . (3.35)

    pS

    1( )mi pp 1mPQ . * 1mp p = *u (3.35) *,i Pu

    ( )11* * 1 *, ,1 mm u mi P Nb i Nb P iu PNbPu A u Q pA

    = + . (3.36)

    *iu

    , . , * * * * * * *p e w n s t bm F F F F F F = + + , (3.37) *iu

    * * 1, ,e e i e i eF u b= . (3.38)

    . , ( *,i eu ,

    *,i nu , ..) .

  • 81

    **iu **p ,

    . :

    ** * cori i iu u u= + , ** * cori i ip p p= + . (3.39) **iu

    **p , :

    ( )11** * 1 **, ,1 mm u mi P Nb i Nb P iu PNbPu A u Q pA

    = + . (3.40)

    (3.36) (3.40) : ( ),cor cori P i Pu p= . (3.41) e ( ),cor cori e i eu p= . (3.42) 1, ,

    cor core e i e i eF u b= (3.43)

    * cor cor cor cor cor corp e w n s t bm F F F F F F = + + , (3.44) *Pm , *iu .

    (3.42) (3.43) , (3.44),

  • 82

    *corcorp p Nb p

    Nb NbA p A p m = , (3.45)

    , (Strongly Implicit Procedure (SIP)). , , FASTEST-3D :

    (3.36) 1m *iu . , *u

    * 1mp p = *Pm (3.37).

    *Pm (3.45), corp . :

    ** * corpp p p= + , 0 1p< , (3.46)

    P - , . ** mp p= 1m + . corp *iu

    **iu ,

    **,i eF .., .

    3.10. (3.31)

  • 83

    A S = , (3.47) A- , (3.31) CV; - , ; S - , , (3.31). (3.47) . A ( FASTEST-3D ). , , , , , , . . . n (3.37) n , . nr ( (3.31)) n nA S r = . (3.48) . : 1n nM N B+ = + . (3.49) nM , (3.49) ( ) ( )1n n nM B M N+ = (3.50)

  • 84

    n nM r = . (3.51) 1n n n += , . nN , (3.49) . (3.49) M A. (SIP), [55] [21], FASTEST-3D. M LU ILU: M LU A N= = + . (3.52)

    ILU LU, A L U . , L U A (W, E, S, N, B, T, P), LU (SE, NW ..). [55] , , N , LU. N , 0N M A. , (SE, NW, etc.) N (W, E, S, N, B, T, P). . [55] , A. A, N. M, A N, . L U A N.

  • 85

    , L U . (3.51) n nLU r = (3.53) 1n n nU L r R = = . (3.54) LU, nR (3.54) . n , : 1n n n+ = + . (3.55) , nr .

    . .

    , (3.31) , , (3.31) ( SIP).

    , , , . :

    ( )1 1m m new m = + , (3.56)

  • 86

    m 1m - m m (m-1) ; new - (3.31) 0 1< . , , . .

  • 87

    4. FASTEST-3D

    FASTEST-3D

    , , , . , , , (, ..) . . , , .

    FASTEST-3D Fortran C [20]:

    - (); - ; - - ; - , ;

    - ;

    - ;

    - , MPI (Message Passing Interface).

    , . ,

  • 88

    , .

    4.1. FASTEST-3D

    , FASTEST-3D Linux fastest3d.tgz. : CD ( cp /media/ /fastest3d.tgz fastest3d.tgz); ( tar xvfz fastest3d.tgz). . 4.1 FASTEST-3D. :

    1. ( 4.2). 2. ( 4.2). 3. , ( 4.3).

    4. ( 4.4). 5. ( 4.5).

  • 89

    . 4.1. FASTEST-3D.

    4.2. FASTEST-3D

    ICEM CFD.

    : , , . grid01.grd grid01.tbc fastest3d/project/grid , test.grd test.tbc. *.grd , *.tbc ( , ..). *.tbc, :

    INL- , OUT- , SOL- , MIR- , CON- ;

    INL- , OUT- , SOL- , , FLX- , , HTC- ,

  • 90

    , MIR- ;

    SOL- , , FLX- , .

    , fastests3d/project/map/test.md. test.md.

    ( (1)): ### number of processors 1 ;number of processors

    ( ): ### processor info 1 1 1 0 ;proc. in i, j, k dir., new processor (block 1) 1 1 1 0 ;proc. in i, j, k dir., new processor (block 2) 1 1 1 0 ;proc. in i, j, k dir., new processor (block 3)

    ( (1) ):

    ### number of flow regions 1 ( ): ### flow region description 1 ;flow region for block #1 1 ;flow region for block #2 1 ;flow region for block #3 ( (0)): ### number of rotating regions 0

  • 91

    (): ### rotating region description 0 ;block #1 0 ;block #2 0 ;block #3

    ,

    (): ### volume check 1 ;1 = on, 0 = off

    ( (1),

    (2,2,2): ### monitoring point 1 2 2 2 ;block, i, j, k

    ( (0)):

    ### turbulence statistics 0 ;input number for turbulence statistics (memory allocation) ; 0 = no memory for turbulence statistics is allocated ; 1 = memory for mean values and reynolds stresses is allocated ; 2 = additional memory for skewness and flatness

    ,

    ( (0)): ### number of chemical species 0

    ( (0)): ### number of chemical reactions 0

  • 92

    ( (0)): ### number of comb. prog. variables 0

    ( (isotherm), (turbulent), - (earsm), (steady), (prem) ( ), (radiation) ( )): ### allocation isotherm turbulent earsm steady ;keywords are: ; isotherm or temperature ; steady or unsteady ; laminar or turbulent ; if turbulent____ keps ; | ; |_ earsm ; | ; |_ restr ; | ; |_ les ; ; prem or nothing ; prem is for single reactive scalar ; for Bray-Moss-Libby model ; (premixed combustion) ; ;When "temperature" is given, memory

    ; for arrays concerning temperature ;calculations and temperature topology ;will created. ; ; radiation or nothing ;(Gas radiation model.Only with

    ; temperature possible, otherwise

  • 93

    ; memory for radiation is not allocated) ; ;If no entry point is given, memory will ;be allocated for isotherm, turbulent and ;unsteady calculation.

    map3d map fastest3d/project.

    4.3. ,

    , ( ): fastest3d/project/id/test.id. . ( (channel)): ### title channel (created by Alex Yun) ( (0), (1): ### read restart 0

    ( (10) , ASCI (0), (10) ): ### write output 10 0 10 ;restart ascii visual (0 = no output) (tecplot6): ### file formats for visual output tecplot6 ;[cfview37|cfview37time] ;[tecplot6|tecplot6temp]

  • 94

    ;[explorer] (not supported ???) ;[plot3d|plot3dtemp]

    ( (vel), (pres), (tke), (edis)): ### visual output variables vel pres tke edis ;[vel][pres][tke][edis][temp][conc] ;[den][vis][vism][hcap][hcon][hconm][diff][td] ;[vort][avg][tau][yplus][dist][mix][mixdiff] ;[tauxx][tauyy][tauzz][tauxy][tauyz][tauxz] ;[mixvar][drhodt][srs][usrs][vsrs][wsrs] ( (t), (f), 0.6): ### compressible f 0.6 ;[t/f] [density realxation]

    ( (vel),

    (turb)): ### lcalc vel turb ;[vel][turb|rsm|visles][temp][conc][time][mix] ;[mixvar][tab][srs][scfl][raf][sp1][sp3] ;turb: use a two-equation turbulence model ;rsm: use a reynolds stress turbulence model ;visles: perform a Large Eddy Simulation ;mix: perform combustion progress variables ;mixvar: perform combustion progress variables ; variances equation ;tab: perform laminar/flamelet/ildm chemistry ;srs: solve sing.react.scal. transp.eq.(BML model) ;scfl: solve scal.flux transp.equ. (+BML model) ;raf: solve rad.flux equation ;sp1/sp3 different approximations for the heat flux equation

  • 95

    (k - (keps74): ### turbulence model keps74 ;according to the above choice of [turb|rsm|visles] ;[keps74|kl93|rng92|chien82] for k-eps type models ;[awj|alrr|assg|ncls|ngl] for nlinear & EARS models ;[lrr|jm|ssg|hp|ipgl|ipgy] for reynolds stress models ;[smag|germ] for Large Eddy Simulations

    (Daly & Harlow (dh)): ### scalar flux model dh ; [hp|ls|jm|dh|km|as|wwj]

    ( (notab)): ### combustion models notab ;[notab|equil1D|equil2D|flamlet|ildm|ildmv|eqrad] ;nothing / equilibrium 1D / equilibrium 2D / flamelet chemistry/ ;ildm: only rpv transport equations / ;ildm: also rpv variances transport equations ;eqrad:equilibrium 2D with radiation

    ( (0,0,0)): ### gravity 0. 0. 0. ( (10e-3)): ### geometric scale 1.e-3 1.e-3 1.e-3 ( (t)): ### check for negativ volumes t

  • 96

    ( (1.e-3), (1.e+10)): ### residuum limits 1.e-3 1.e+10 (- (cds)): ### interpolation method cds ;[cds|tbi] : ### underrelaxation 0.3 0.3 0.3 0.9 0.5 0.5 0.7 0.9 0.9 0.9 0.5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 ;u v w p k eps vis den t c mix restr mixvar srs scfl ildm ildmv rf cst vofr

    , , ( (fofi), (10000) , (1.e-3): ### time discretization fofi ;discretization method [fofi|sofi|crni|ruk3|ruk5] 10000 1.e-3 ;no of timesteps,size of timestep

    ( (none)): ### bouyancy by temperature gradient none ;[none|boussinesq|dengrad] ( (0)): ### prog. variables for combustion 0 ;no of progress variables: mix. frac, mass. fracts

  • 97

    ( (0,0,0): ### pressure gradient 0. 0. 0. ;pressure gradient in x,y,z direction

    4.4. ,

    : fastest3d/project/funcbcs.f, fastest3d/project/funcprp.f.

    . funcbcs.f. :

    function fu(x,y,z,iflr,igb,ifa,totime) function fv(x,y,z,iflr,igb,ifa,totime) function fw(x,y,z,iflr,igb,ifa,totime)

    : fu=1.36d0 fv=0.0d0 fw=0.0d0

    : function fte(x,y,z,iflr,igb,ifa,totime)

    fte=0.3d0 :

    function frscxx(x,y,z,iflr,igb,ifa,totime) function frscyy(x,y,z,iflr,igb,ifa,totime) function frsczz(x,y,z,iflr,igb,ifa,totime) function frscxy(x,y,z,iflr,igb,ifa,totime) function frscyz(x,y,z,iflr,igb,ifa,totime) function frsczx(x,y,z,iflr,igb,ifa,totime)

  • 98

    : frscxx=0.04d0

    frscyy=0.04d0 frsczz=0.04d0 frscxy=0.d0 frscyz=0.d0

    frsczx=0.d0 :

    function fed(x,y,z,iflr,igb,ifa,totime)

    rlength=0.127d0 fed=sqrt(fte(x,y,z,iflr,igb,ifa,totime)**3)/rlength

    function ft(x,y,z,iflr,igb,ifa,totime)

    :

    ft=293.15d0

    :

    function fuw(x,y,z,iflr,igb,ifa,totime) function fvw(x,y,z,iflr,igb,ifa,totime) function fww(x,y,z,iflr,igb,ifa,totime)

    :

    fuw=0.d0 fvw=0.d0 fww=0.d0

    function ftw(x,y,z,iflr,igb,ifa,totime)

  • 99

    :

    ftw=293.15d0

    function fqw(x,y,z,iflr,igb,ifa,totime)

    fqw=0.d0 :

    function fmixt(x,y,z,iflr,igb,ifa,totime)

    :

    if (y.gt.0.5) then fmixt=0.0 else fmixt=1.0

    endif

    function fmixtvar(x,y,z,iflr,igb,ifa,imphi,totime)

    :

    if(imphi.eq.1) then c---- mixture fraction variance fmixtvar=0.0d0 elseif(imphi.eq.2) then c---- reaction progress variable 1 variance (ildm) fmixtvar=0.0d0 elseif(imphi.eq.3) then c---- reaction progress variable 2 variance (ildm) fmixtvar=0.0d0 endif

  • 100

    function fsrs(x,y,z,iflr,igb,ifa,totime) function fsrscorx(x,y,z,iflr,igb,ifa,totime) function fsrscory(x,y,z,iflr,igb,ifa,totime) function fsrscorz(x,y,z,iflr,igb,ifa,totime)

    :

    fsrs=0.d0 fsrscorx=0.d0 fsrscory=0.d0 fsrscorz=0.d0

    funcprp.f :

    function fden(press,tmpr,iflr,sumcm) c---- Air fden=0.96737341d0-0.00028655237d0*tmpr-1463.8211d0/tmpr+ 46843.588d0/t**1.5-347974.74d0/tmpr**2

    function fvis(tmpr,iflr) c---- Air fvis=-9.2014393d-6+4.4397544d-9*tmpr-1.4046401d-14*tmpr**2.5+ 3.2787496d-16*tmpr**3+1.5276332d-6*sqrt(tmpr) c---- Luft R=287.1 J/(Kg K) if (nfr.eq.1) rgas=287.1d0

  • 101

    function flam(tmpr,iflr) c---- Air flam=0.042491107d0+1.4835066d-6*tmpr**1.5-8.5222871d-12* tmpr**3-0.41142788d0/sqrt(tmpr) function fcp(tmpr,iflr) c---- Air fcp=-0.014860411d0+8.3859987d-10*tmpr**2.5- 1.7304405d-11*tmpr**3+0.002323523d0*sqrt(tmpr) function fbeta(tmpr,iflr) c---- Air fbeta=3.421d-3 function frks(x,y,z,iflr,igb,ifa) c---- Alle Waende sind glatt: frks = 0.d0 c c---- Alle Waende haben die gleiche Rauhigkeit: c frks = 0.001d0 function fmixdiff(t,iflr,imphi)

    if (imphi.eq.1) fmixdiff=0.0003d0 if (imphi.eq.2) fmixdiff=0.0003d0 function fschmidtt()

    fschmidtt=0.9d0 ( ) function frhoun(f)

    frhoun=1.0d0

  • 102

    ( ) function ftun(f)

    ftun=300.0d0

    ( ) function fulamburn(n,f)

    fulamburn=0.5d0 (T_burn - T_unburn) / T_unburn ( ) function fexprat(n,f)

    fexprat=6.0d0 fastest3d. 4.5.

    CFView Tecplot. . , Linux GNUplot. Linux .

    :

    - subroutine usrini; - (

    ) subroutine usrtim; - (

    ) subroutine util. subroutine util:

    c === channel flow === c === Re=12300 === integer npoint parameter (npoint=30) integer icell,ipoint

  • 103

    real*8 minabstand,abstand real*8 xst,xend,yst,yend,zst,zend,ddl real*8 xline(1:npoint),yline(1:npoint),zline(1:npoint) real*8 ypoint,upoint,vpoint,wpoint c --------- Profile at x/h=95 --------------- c start and end coordinates xst=12.0d0 xend=12.0d0 ddl=(xend-xst)/dfloat(npoint-1) xline(1)=xst do ipoint=2 , npoint xline(ipoint)=xline(ipoint-1)+ddl enddo yst= 0.0d0 yend=0.127d0 ddl=(yend-yst)/dfloat(npoint-1) yline(1)=yst do ipoint=2 , npoint yline(ipoint)=yline(ipoint-1)+ddl enddo zst=0.025d0 zend=0.025d0 ddl=(zend-zst)/dfloat(npoint-1) zline(1)=zst do ipoint=2 ,npoint zline(ipoint)=zline(ipoint-1)+ddl enddo open(1,file='res/channel.dat') write(1,*)'#Profile at axial position x=12m' write(1,*)'#h, u, uu, uv, vv, ww, te ed' do ipoint = 1 , npoint minabstand=1d+0 c looking for the nearest point do icell=1,nxyza c check the distance abstand=sqrt((xc(icell)-xline(ipoint))**2+ & (yc(icell)-yline(ipoint))**2+

  • 104

    & (zc(icell)-zline(ipoint))**2) c update min. distance if necessary if (abstand.lt.minabstand & ) then minabstand=abstand c --- y ypoint=yc(icell) c --- u upoint=u(icell) endif enddo write(1,'(10(e14.7,1x))') & ypoint , upoint enddo close(1)

    4.6.

    . , , Fastest-3D.

    FASTEST-3D 4.3-4.5.

    , ; , (. 4.2).

    . 4.2.

  • 105

    100h , h - . . Re 13700= . 6000CV = . [31]. exp_channel.dat.

    . 4.3 , WJ , . AMD Athlon 2000+ 2 . 20 .

    . 4.3.

    , WJ .

  • 106

    1. . . . .: , 1969. 2. . . . .: , 1987. 3. . . . .: . . , ,

    1997. 4. . . . .: , 2003. 5. . . . .: ,

    2001. 6. - . .

    . .: , 1987 7. Abe K. An investigation of algebraic turbulence and turbulent scalar-

    flux models for complex flow fields with impingement and separation. Turbulence and Shear Flow Phenomena II, Stockholm, II: 223-228, June 27-29.2001.

    8. Abe K., Kondoh T., Nagano Y. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows. Int. J. Heat Mass Transfer, Vol. 37, pp. 139-151., 1994.

    9. Abe K., Suga K. Towards the Development of a Reynolds Averaged algebraic Turbulent Scalar Flux Model. Int. J. Heat Fluid Flow, Vol. 22, pp. 19-29, 2001.

    10. Abrahamson J. Collision rates of small particles in a vigorously turbulent flow. Chemical engineering Science, Vol.30, 1371-1379, 1975.

    11. Baldwin B.S., Lomax H. Thin Layer Approximation and algebraic Model for Separated Turbulent Flows. AIAA Paper 78-257, Huntsville, AL , 1978.

    12. Blei S, Ho C.A., Sommerfeld H. A stochastic droplet collision model with consideration of impact efficiency. Conference Proceedings. ILASS-Europe Zaragova, 2002.

    13. Boussinesq. J. Theorie de l Ecoulemen Tourbillant. Mem. Presentes par Divers Savants Acad. Sci. Inst. Fr. , Vol. 23, pp. 46-50, 1877.

    14. Bttner C. ber den Einfluss der electrostatistischen Feldkraft auf turbulente Zweiphasenstrmungen, numerische Modellirung mit der Euler-Lagrange-Methode. PhD thesis, Universitt Halle-Wittenberg, 2002.

    15. Bradshaw P., Ferris D.H., Atwell N.P. Calculation of Boundary Layer Development Using the Turbulent Energy Equation. Journal of Fluid Mechanics, Vol. 28, Pt.3 , pp. 593-616.

  • 107

    16. Chen C.J., Rodi W. Vertical Turbulent Buoyant Jets. A review of experimental data. Pergamon Press, 1980.

    17. Chou P.Y. On the Velocity Correlations and the Solution of the Equations of Turbulent Fluctuation. Quart. Appl. Math. , Vol. 3, p. 38.

    18. Craft T.J., Launder B.E. and Suga K. Development and application of a cubic eddy viscosity model of turbulence. Int. J. Heat and Fluid Flow 17: 108-115, 1996.

    19. Daly B.J., Harlow F.H. Transport equations in turbulence. Phys. Fluids 13:2634-2649.

    20. FASTEST-3D-CFD-Code. Handbuch, Invent Computing GmbH, Erlangen, 1997.

    21. Ferziger J.H., Peric M. Computational Methods for Fluid Dynamics. Berlin. 1996.

    22. Gatski T.B., Speziale C.G. On explicit algebraic stress models for complex turbulent flows. Journal of fluid Mechanics. Vol. 254, pp. 59-78, 1993.

    23. Gibson M.M., Launder B.E. Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86:491-511, 1978.

    24. Girimaji S. Fully-Explicit and Self-Consistent Algebraic Reynolds Stress Model. NASA Research Center, Hampton, Va 23681-0001.

    25. Jakirlic S., Tropea C. Numerische Modellierung konvektiver Wrmebertragung unter Bercksichtigung wandnaher Turbulenz. Sonderforschungsbereich 568, 2003.

    26. Jones W.P., Launder B.E. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, 15:301-314, 1972.

    27. Johnson D.A., King L.S. A Mathematically Simple Turbulence Closure Model for Attached and Separated Turbulent Boundary Layers. AIAA Journal, Vol. 23, No. 11, pp. 1684-1692.

    28. Hgstrm C., Wallin S., Johansson A.V. Passive scalar flux modeling for CFD. Turbulence and Shear Flow Phenomena II, Stockholm, II: 223-228, June 27-29.2001.

    29. Kader B.A., Yaglom A.M. Heat and mass transfer lows for fully turbulent wall flows. Int. J. Heat Mass Transfer. Vol. 15. pp. 2329-2351,1972.

    30. Kim J., Moin P. Transport of Passive Scalars in a Turbulent Channel Flows. Turbulent Shear Flows 6, pp. 85-96, 1989.

  • 108

    31. Kim J., Moin P., Moser R. Turbulence statistics in fully developed channel flow at the low Reynolds number. J. Fluid Mech., Vol. 177, pp. 133-166.

    32. Krieger G.C. Untersuchung zur Hydroxylradical und Stickoxidbildung in turbulenten Wasserstoffdiffusionsflammen mittels Wahrscheinlichkeitsdichte-Methoden. PhD thesis, Darmstadt University of Technology, 1997.

    33. Kolmogorov A.N. Equations of turbulent motion of an incompressible fluid. Izvestia Academy of Sciences, USSR; Physics 6:56-58, 1942.

    34. Launder B.E., Reece G.J. and Rodi W. Progress in the development of a Reynolds stress turbulence closure. J. Fluid Mech. 68:537-566. 1975

    35. Maltsev A. Towards the Development and Assessment of Complete CFD Models for the Simulation of Stationary Gas Turbine Combustion Processes. Doctor thesis. Darmstadt. 2004.

    36. Mansour N.N., Kim J., Moin P. Reynolds stress and dissipation rate budgets in a turbulent channel flow. J. Fluid Mech., Vol. 194,pp. 15-44. 1988.

    37. Menter F.R. Zonal two Equation k Turbulence Models for Aerodynamic Flows. A/AA 93-2906.

    38. Menter F.R. Methoden, Moeglichkeiten und Grenzen numerischer Stroemungsberechnungen. Numet. Erlangen, 2002.

    39. Nee V.W., Kovasznay L.S.G. The calculation of the incompressible Turbulent Boundary Layer by a Simple Theory. Physics of Fluid, Vol. 12, p. 473.

    40. Piters N. Turbulent combustion. Cambridge. Univercity Press. 2000. 41. Pope S. A more general effective viscosity hypothesis. J. Fluid Mech.

    72: 331-340. 1975 42. Rodi W. A. New algebraic Relation for Calculating the Reynolds

    Stresses. Mechanical of Fluid, ZAMM 56, T219-T221, 1976. 43. Rotta J. C. Statistische Theorie Nichthomogener Turbulenz. Z. Phys.,

    Vol. 129, pp. 547-575, 1951. 44. Saffman P.G., Turner J.S. On the collision of drops in turbulent clouds.

    J- Fluid Mech. Vol. 1, 16-30, 1956. 45. Schlichting H., Gersten K. Boundary layer Theory. Springer Verlag.

    New York. 8th rev. And enl. Edition, 2000. 46. Schmidt E., Mller R. Strmungskrfte auf Partikeln in Gasen. VDI

    Verlag GmbH. Dsseldorf, 1997.

  • 109

    47.

    Schneider E. Numerische Simulation turbulenter vorgemischter Verbrennungssysteme: Entwiklung und Anwendung eines RANS basierte gesamt Modells. Doctor thesis. Darmstadt, 2005.

    48. Smith A.M.O., Cebeci T. Numerical Solution of the Turbulent Boundary Layer Equatio., Douglas Aircraft Division Report DAC 33735, 1967.

    49. Sommerfeld M. Modellirung und numerische Berechnung von partikelbeladenen turbulenten Strmungen mit Hilfe des Euler/Lagrange Verfahrens. Habilitationsschrift, Universitt Erlangen- Nrnberg, Shaker Verlag, Aahen, 1996.

    50. Sommerfeld M., Kohnen G., Rger M. Some open questions and inconsistencies of Lagrangian particle dispersion models. In proc. of the 9th Symp. On Turbulent Shear Flows, Kyoto, Japan, pages 1-6. Lehrstuhl fr Strmungsmechanick, 1993.

    51. Spalart P.R., Allmaras S.R. A One-Equation Turbulence model for Aerodynamics. Conference Reno, Nevada, USA, 92-439. 1999.

    52. Spenser A. J.M., Rivlin R.S. The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Rat. Mech. Anal. 2:309-336, 1959.

    53. Speziale C.G., Sarkar S., Gatski T.B. Modeling the pressure strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech. 227:245-272, 1991.

    54. Spurk J.H. Stroemungslerhe. 2 Auflage. Springer-Verlag, Berlin, 1989.55. Stone H. L. Iterative solution of implicit approximations of

    multidimensional partial differential equation. SIAM J. Numer. Anal. Vol. 5, No. 3, pp. 530-558, 1968.

    56. Suga K., Abe K. Nonlinear Eddy Viscosity Modeling for turbulence and Heat Transfer Near Wall and Shear Free Boundaries. Int. J. Heat Fluid flow. Vol. 21, pp. 37-48, 2000.

    57. Strelets M. Detached eddy simulation of massively separated flows. AIAA-00-2306, 2000.

    58. Van Driest E. R. On turbulent Flow Near a Wall. Journal of the Aeronautical Sciences, Vol. 18, pp. 145-160, 1956.

    59. Wachter E. M. Anwendung der Instationren Flamelet Methode auf Diffusions Flammen im Post-Processing-Modus. VDI Verlag. 2005.

    60. Wallin S. Engineering turbulence modeling for CFD with a focus on explicit algebraic Reynolds stress models. Doctoral thesis. Norsteds Truckeri, Stockholm, Sweden, 2000.

  • 110

    61. Wikstrom P.M., Wallin S., Johansson A.V. Derivation and investigation of a new explicit algebraic model for the passive scalar flux. Phy. Fluids. 12:688-702. 2000.

    62. Wilcox D.C. Turbulence Modeling for CFD. California, 1994. 63. Williams F. A. Combustion theory. Benjamin Cummung, 1985. 64. Yun A. Development and Analysis of Advanced Explicit Algebraic

    Turbulence and Scalar Flux Models for Complex Engineering Configurations. Doctor thesis. Darmstadt. 2005.

    65. Zheng Q. Theory of representation for tensor function A unified invariant approach to constitutive equation. Appl. Mech. Rev. 47 (11): 545-587. 1994.

  • 111

    . .1. .

    . -

    . .

    - 0

    i

    i

    ux

    =

    -

    1i ji iij i

    j i j j

    u u uu p gt x x x x

    + = + +

    -

    1j j

    j j ju D u S

    t x x x

    + = +

    ( ) . - p

    pd x

    udt

    =JJG G

    . - ...p A g vm Sa M Pp

    dum F F F F F F

    dt= + + + + + +

    JJG JG JG JG JG JG JG

    . - pp i

    dI T

    dt =JJJG G

    -

    0ii

    ut x

    + =

    - kj ii ii ij

    j i j j

    u uu up u u gt x x x x

    + = + +

    - kjj

    j j j

    uD u

    t x x x + = +

    .

    i tj ij

    j j j k j

    k k u kut x x x x

    + = + +

  • 112

    . .1.

    .

    21 2

    i tj ijj j j j

    uu c ct x k x k x x

    + = + +

    . ( )* *ij ij t

    j j j j

    k k u ku kt x x x x

    + = + +

    . .

    ( )2ij ij tj j j j

    uut x k x x x + = + +

    . ( )*ij ij k t

    j j j j

    k k u ku kt x x x x

    + = + +

    . .

    SST

    ( )2

    1 212(1 )

    ij ij t

    j j j j

    j j

    uut x k x x x

    kFx x

    + = + + + +

    . RST

    CLS

    ( )( )

    21 2

    2 2 23 4 2

    2 25 62 2

    7 2

    13

    13

    23

    t t ts

    t t

    t tij jk ki

    tij jk ki

    a S c S II I c S Sk

    kc II I c S S

    k kc S S IVI c S S S

    kc S

    = + + + + + + + + +

    +

    .

    RST

    GL ( )21 2

    22

    313

    t

    ts

    ka c S c S S

    c S II I

    = + +

  • 113

    . .1.

    EARSM

    .

    RST

    ( ) ( )

    ( ) ( )( )

    2 21 2 3

    2 24 5

    2 2 2 2 2 26 7

    2 2 2 2 28 9

    2 2 2 210

    1 13 3

    2 23 3

    sa S S II I II I

    S S S S

    S S IVI S S VI

    S S S S S S

    S S

    = + + +

    + + + + + + +

    + + ++

    - .

    RST

    WJ, LRR, SSG, GS

    ( )3 4 12

    23

    ij ij ik kj ik kj

    ik kj ik kj ij ik ki

    PA A a A S a a

    A a S S a a S

    + = + +

    -

    RST

    ( )1

    2

    i j k i j i ii k j k

    k k k

    i ji j k i jk j ik

    k k

    j ji i

    j i k k

    u u u u u u uu u u ut x x x

    u uu u u p u p u

    x x

    u uu upx x x x

    + = + + +

    + +

    .

    i tj ijj j j k j

    k k u kut x x x x

    + = + +

    .

    21 1 2 2

    ij ij

    j j

    t

    j j

    uu c f c f Et x k x k

    x x

    + = + + + +

  • 114

    . .1.

    . RST

    CLS

    ( )( )

    1 22

    2 2 23 4 2

    2 25 62 2

    7 2

    13

    13

    23

    t t ts

    t t

    t tij jk ki

    tij jk ki

    f c f c fa S S II I S S

    kkc f II I c f S S

    k kc f S S IVI c f S S S

    kc f S

    = + + + + + + + + +

    +

    EARSM

    .

    RST

    ( )

    ( ) ( )( )

    2 221 2

    2 21 3

    2 2 21 4 1

    2 2 2 2 21 6 1 9

    3 4 113max( , )

    13

    12max( , )

    23

    exij seq

    s s

    eqs s

    Ba f S II III II

    f II I

    Bf f S SII II

    f S S IVI f S S

    = + + +

    + + + +

    - .

    RST

    WJ

    ( )3 4 12

    23

    ij ij ik kj ik kj

    ik kj ik kj ij ik ki

    PA A a A S a a

    A a S S a a S

    + = + +

    -

    tj

    ju

    x

    = GGDH

    DH 1i t t i j

    ju C u u

    x =

  • 115

    . .1.

    KM 1

    i k k ji t t

    j

    u u u uu C

    k x =

    AS 1 2 2

    i j i k k ji t t t

    j

    u u u u u uu k C C

    k xk = +

    EASFM

    WWJ ( )41i ij j kk

    ku c B u ux =

    (BML) . ( ) k

    k

    ii i j

    i j

    ti

    j k j u i

    uk k u k u ut x x

    k pu cx x x

    + = + + +

    .

    ( ) kk

    2

    1 2

    3

    i ti i j

    i j j j

    ij

    uu c u u ct x k x k x x

    pc u ck x

    + = + +

    RST

    k k( ) k

    k k k k

    2k i ji j i jS

    k k k

    j jRii k j k ij j ik

    k k u i j

    u u uu u u ukCt x x x

    u pu pu u u u u c u cx x x x

    + = + + +

    BML

    k k( ) kk k j j k

    2

    22

    12

    k jj jS

    k k k

    j jS ci j k cj j

    k k u i

    u u cu c u ckCt x x x

    u pcu c u u c c u cx x x c

    + = + + +

    , . . 1 .

  • 116

    . .2. RANS [64] (

    ). 10-15

    3-72-6

    1 1-1,11,1-1,3

    3-5

    0

    5

    10

    15

    k-eps EARSM AdvancedEARSM

    RSM Low-Rekeps

    Low-ReEARSM

    Low-ReRSM