48
1 第第第 第第第第 第第第 第第第第 概概 概概 §10.1 §10.1 概概概概概概概概概概 概概概概概概概概概概 §10.2 §10.2 概概概概概概 概概概概概概 §10.3 §10.3 概概概概概概概概概概概 概概概概概概概概概概概 §10.4 §10.4 概概概概概概概概概 概概概概概概概概概 §10.5 §10.5 概概概概 概概概概

第十章 滑动轴承

Embed Size (px)

DESCRIPTION

第十章 滑动轴承. 概述 §10.1 滑动轴承的类型与结构 §10.2 滑动轴承材料 §10.3 润滑剂与润滑方法的选用 §10.4 滑动轴承的设计计算 §10.5 流体静压轴承. 概 述. 滑动轴承 —— 与轴颈表面形成滑动摩擦副的轴承 组成、 特点及应用 不同类型、不同应用场合的滑动轴承 , 其重要程度和运转参数差异非常大 , 结构的复杂程度和价格差异亦极大。因而,滑动轴承的设计计算,在要求和工作量方面也有很大的差别。 滑动轴承设计计算内容. 概 述. 决定轴承的结构型式 ; 选择轴瓦、衬层和涂覆层材料 ; 确定轴承几何参数; - PowerPoint PPT Presentation

Citation preview

Page 1: 第十章 滑动轴承

1

第十章 滑动轴承第十章 滑动轴承第十章 滑动轴承第十章 滑动轴承

概述概述§10.1 §10.1 滑动轴承的类型与结构滑动轴承的类型与结构§10.2 §10.2 滑动轴承材料 滑动轴承材料 §10.3 §10.3 润滑剂与润滑方法的选用润滑剂与润滑方法的选用§10.4 §10.4 滑动轴承的设计计算滑动轴承的设计计算 §10.5 §10.5 流体静压轴承流体静压轴承

Page 2: 第十章 滑动轴承

2

概 述• 滑动轴承——与轴颈表面形成滑动摩擦副的轴承• 组成、 特点及应用• 不同类型、不同应用场合的滑动轴承 ,其重要程度和

运转参数差异非常大 ,结构的复杂程度和价格差异亦极大。因而,滑动轴承的设计计算,在要求和工作量方面也有很大的差别。

• 滑动轴承设计计算内容

Page 3: 第十章 滑动轴承

3

概 述

决定轴承的结构型式 ;选择轴瓦、衬层和涂覆层材料; 确定轴承几何参数; 选择润滑剂和润滑方法; 计算轴承工作能力,确定轴承运转参数。

Page 4: 第十章 滑动轴承

4

§10.1 滑动轴承的类型与结构

• 按能承受的载荷方向

滑动轴承的类型与应用径向轴承 推力轴承

Page 5: 第十章 滑动轴承

5

§10.2 滑动轴承的类型与结构

• 按能承受的载荷方向

滑动轴承的类型与应用径向轴承 推力轴承

径向推力轴承

Page 6: 第十章 滑动轴承

6

• 按摩擦状态

滑动轴承的类型与结构

干摩擦轴承无润滑轴承

固体润滑轴承

流体摩擦(润滑)轴承 流体动压轴承

流体静压轴承 动静压混合润滑轴承

流体摩擦

混合摩擦(润滑)轴承 :

干摩擦、边界摩擦、流体摩擦共有的摩擦状态

Page 7: 第十章 滑动轴承

7

滑动轴承的结构 • 径向轴承

滑动轴承的类型与结构

3 )调心轴承

1)整体式2)剖分式

Page 8: 第十章 滑动轴承

8

•推力轴承结构

a)圆止推面 b) 环形止推面c)单止推环d)多止推环

滑动轴承的类型与结构

Page 9: 第十章 滑动轴承

9

轴瓦 滑动轴承的类型与结构

轴瓦包括径向轴承的轴瓦、轴套和推力轴承的推力瓦。

•轴瓦 单层 (金属 )轴瓦和多层 (金属 )轴瓦厚壁轴瓦和薄壁轴瓦

带挡边和不带挡边轴瓦

Page 10: 第十章 滑动轴承

10

• 轴套

滑动轴承的类型与结构

带挡边和不带挡边轴套 ;单层和多层轴套

•油孔、油槽和油室

Page 11: 第十章 滑动轴承

11

滑动轴承的类型与结构

•油孔、油槽和油室

Page 12: 第十章 滑动轴承

12

§10.2 滑动轴承材料对轴瓦材料性能的要求

1 .减摩性 成副材料的属性 (不是单一材料的属性 )

2 .嵌入性 材料允许润滑剂中外来硬质颗粒嵌入而防止刮伤和磨粒磨损的性能。 3.顺应性

Page 13: 第十章 滑动轴承

13

3 .顺应性

滑动轴承材料

材料靠表层的弹塑性变形补偿滑动摩擦表面初始配合不良和轴的挠曲的性能。 4.耐磨性 配副材料抵抗磨损的性能。 5.耐气蚀性 材料抵抗气蚀 (磨损 )的性能。 6.磨合性 在轴颈与轴瓦初始接触的磨合阶段,减小轴颈或轴瓦加工误差、同轴度误差、表面粗糙度,使接触均匀,从而降低摩擦力、磨损率的性能。

Page 14: 第十章 滑动轴承

14

轴瓦材料的种类 滑动轴承材料

1 . 金属材料•铸造锡基轴承合金 :如 ,ZSnSb12Pb10Cu4 。 •铸造铅基轴承合金 : 如 ,ZPbSb16Sn16Cu2

•铸造铜基轴承合金 :如 , ZCuSn5Pb5Zn5, ZCuSn10P1•变形 (锻造 )铜合金 :如 , CuSn8P •铸造铝基轴承合金 •耐磨铸铁 2.粉末冶金材料 3. 非金属材料 :工程塑料、炭石墨、陶瓷、橡胶

Page 15: 第十章 滑动轴承

15

轴瓦表面涂层材料 滑动轴承材料

•常用的表面涂层材料: PbSn10 、 PbIn7 、 PbSn10Cu2

•涂层的功能使轴瓦表面与轴颈匹配有良好的减摩性;提供一定的嵌入性;改善轴瓦表面的顺应性;防止含铅衬层材料中的铅腐蚀轴颈。 •涂层的厚度一般为 0.017 mm~ 0.075 mm 。

Page 16: 第十章 滑动轴承

16

各种轴瓦材料的性能比较 滑动轴承材料

轴瓦材料 抗拉强度 σb/MPa

弹性模量 E/

GPa

密度 ρ/ g·cm-

3

热导率 λ/

W(m·℃)-1 线胀系数 α/

10-6·℃-1

锡基轴承合金 80 ~ 90 48 ~ 57 7300 ~ 7380 33.5 ~ 38.5 23.1 铅基轴承合金 60 ~ 80 29 9300 ~ 1020

020.9 ~ 25.1 24.0 ~ 28.0

铜基轴承合金 150 ~ 700 75 ~ 120 7600 ~ 9000 27 ~ 71 16 ~ 19 耐磨铸铁 200 ~ 350 — — — —

表 22-1 各种轴瓦材料的物理性能

Page 17: 第十章 滑动轴承

17

表 22-2 各种轴瓦材料的使用性能比较

滑动轴承材料

金 属 材 料 非 金 属 材 料 ( 含油 ) 粉末冶金材料 锡 ( 铅 )

基轴承合金

铜基轴承合 金

铜铅合金

铸铁

塑料 木材 橡胶 炭石墨

承载能力 尚可 良 良 良 尚可 差 差 差 尚可

减摩性 优 中等 良 中等

中等 优 优 良 中等

耐磨性 尚可 优 中等 优 中等 尚可 差 尚可 中等

顺应性 优 尚可 差 差 优 良 优 中等 差

Page 18: 第十章 滑动轴承

18

§10.3 润滑剂与润滑方法的选用 润滑剂及其选用

滑动轴承常用润滑剂有:润滑油、润滑脂、固体润滑剂、气体润滑剂、水等。

•润滑油在一般参数下的大多数滑动轴承使用矿物油,有特殊要求时使用合成油。

1. 为滑动轴承专门研制的‘主轴、轴承和有关离合器用油’ (F组 )。

Page 19: 第十章 滑动轴承

19

润滑剂与润滑方法的选用

2. 为某些机械研制的润滑油也是用来润滑那些机械中的滑动轴承的。

•润滑油的选用

轴颈线速度 v/m·s - 1 < 0.1

0.1~0.3

0.3~0.6

0.6~1.2

1.2~2.0

2.0~5.0

5.0~9.0

> 9.0

轴承载荷p/MPa

< 3

工作温度

10 ~ 60℃ 粘

度等级

68,100

68 46,68 46 32,4615,22,

327,10

3 ~7.5

150100,150

10068,100

68 —

7.5 ~30

20 ~ 80℃

680,1 000

680460,320

150,220

Page 20: 第十章 滑动轴承

20

轴承间隙 /mm

0.002~0.006

0.006~0.010 0.010~0.030

0.030~0.060

主轴油牌号 L-FD 2 L-FD 3 、 5 、 7

L-FD 7 、 10

L-FD 15 、22

主轴油的选用

高速主轴轴承一般应选用 L-FD油,可根据轴承间隙按下表选牌号。

润滑剂与润滑方法的选用

•润滑脂

脂润滑轴承可根据滑动速度参考表 22-5 选用润滑脂的锥入度,根据工作温度选取润滑脂品种。

Page 21: 第十章 滑动轴承

21

润滑剂与润滑方法的选用

轴承工作温度 θ/℃ < 60 60~130 > 130

线速度 v/m·s-1 < 0.5 > 0.5 < 0.5 > 0.5 —

润滑脂品种 钙基润滑脂 羟基润滑脂

锂基润滑脂 膨润土基脂

锥入度 /(10 mm)-1 265~340

335~385 220~250

表 22-5 脂润滑轴承润滑脂的选择

•固体润滑剂

滑动轴承常用的固体润滑剂有炭石墨、二硫化钼、聚四氟乙烯等。

Page 22: 第十章 滑动轴承

22

润滑剂与润滑方法的选用

润滑方法的选用 油、脂润滑滑动轴承润滑方法的选取

K/(N·m)1/2·s-3/2

≤2 000 > 2 000~16 000

> 16 000~32 000

> 32 000

润滑剂 润滑脂 润 滑 油

润滑方法 旋盖式注油杯润滑

滴油润滑 飞溅、油环或压力供油润滑

压力供油润滑

Bd

Fp

pvk

3

F —轴承的径向载荷 ,B —是轴承的有效宽度d —轴颈直径; v —轴颈的圆周速度 (m/s)

Page 23: 第十章 滑动轴承

23

§10.4 滑动轴承的设计计算滑动轴承的参数

•径向轴承轴颈直径 d或半径 r轴瓦孔直径 D或半径R半径间隙 c(c=R - r) 相对间隙ψ(ψ=c/r)轴瓦宽度 B

1. 几何参数

Page 24: 第十章 滑动轴承

24

滑动轴承的设计计算

•推力轴承

止推环的外径 do或外半径 ro止推垫圈的内直径 di或内半径 ri 轴瓦宽度 B 、轴颈的直径 d 、止推环的外径 do 、止推垫圈的内直

径 di 需通过承载能力计算确定,而半径间隙 c 或相对间隙 ψ 则需要根据经验选取。

Page 25: 第十章 滑动轴承

25

2. 工况参数

滑动轴承的设计计算

载荷 F( 包括大小、方向和特性 ) ;轴的转速 n( 包括大小、方向和特性 )。一般已知。

3.热力学参数 功耗 P 、散热量、轴承各处温度和润滑剂的温度。实测值必须在允许的范围内,通过计算在设计时加以控制。

Page 26: 第十章 滑动轴承

26

无润滑轴承的设计计算

滑动轴承的设计计算

设计已知条件:轴径 d 、转速 n 、载荷 F、轴瓦材料。

设计准则 : 轴承的 p、 v 值不要超过轴承材料极限p-v曲线限定的范围。 •设计步骤 1) 计算出滑动速度 : v=πdn ( 径向轴承 )2) 计算允许的 p 值

•无润滑轴承的失效形式 :磨损

Page 27: 第十章 滑动轴承

27

3) 确定轴承宽度

滑动轴承的设计计算

PD

FB

F---轴承所承受的径向载荷 ,D---轴承直径

4)其它参数 •相对间隙( ψ=2c/d ) , ψ=0.8×10-3(πdn)1/4 •轴瓦壁厚 推荐值见表 22-7

Page 28: 第十章 滑动轴承

28

滑动轴承的设计计算

Page 29: 第十章 滑动轴承

29

轴瓦孔径 10~18 18~30 30~40 40~50 50~65 65~80 80~100

100~150

150~200

轴瓦壁厚

工程塑料

0.8~1.0

1.0~1.5 1.5~2.0

2.0~3.0

3.0~3.5

3.5~4.0

— — —

炭石墨

3~4 4~5 6~8 10~12 12~18 18~25

表 22-7 工程塑料与炭石墨轴瓦壁厚

滑动轴承的设计计算

Page 30: 第十章 滑动轴承

30

含油轴承、不充分润滑轴承和固体润滑轴承的计算

滑动轴承的设计计算

1.限制轴承的单位面积载荷 p( 防止过度塑性变形和磨损 )

][ pBd

Fp 径向轴承

推力轴承 ][)(

422

0

pddZ

Fp

i

2.限制轴承滑动速度 v ( 防止高温下过快磨损 )

径向轴承 v=πdn≤[v] v=π(do+di)n/2≤[v] 推力轴承

Page 31: 第十章 滑动轴承

31

3.限制轴承的 pv 值 (限制轴承发热量 )

滑动轴承的设计计算

径向轴承 ][PVB

nFpv

推力轴承 ][)(

2

0

pvddz

Fnpv

i

将对 p、 pv、 v的限制画在对数坐标图上,构成一条折线。这种计算方法称为条件性计算。

[p]、 [v]和 [pv]数据查阅相关表格。

Page 32: 第十章 滑动轴承

32

液体动力润滑轴承的计算

滑动轴承的设计计算

液体动力润滑轴承是利用轴颈与轴瓦的相对速度和表面与油的粘附性能,将润滑油带入轴承间隙,建立起压力油膜而把轴颈与轴瓦隔开的一种液体摩擦轴承。描述这种润滑状态的基本方程是雷诺方程。从数学观点看,流体润滑计算的基本内容就是对雷诺方程的应用和求解。

(一)雷诺方程

Page 33: 第十章 滑动轴承

33

滑动轴承的设计计算

h---油膜厚度; η---润滑油粘度; P---油膜压力; u---轴颈线速度;X---轴颈线速度方向的坐标;Z---轴瓦表面垂直于轴颈线速度方向的坐标。由雷诺方程得出流体动力润滑轴承形成承载油膜的条件:

Page 34: 第十章 滑动轴承

34

滑动轴承的设计计算

流体动力润滑轴承形成承载油膜的条件: •润滑剂要有粘度,且油膜承载能力随粘度提高而增大;

•轴颈要有相对速度,且油膜承载能力随速度提高而增大;

•油膜厚度是变量,且沿速度方向逐渐减小方能形成正油膜压力,即需要轴颈和轴瓦表面形成收敛形间隙,称为油楔;

•要供给充足的润滑剂。

(二)油楔形成方法

Page 35: 第十章 滑动轴承

35

形成油楔是流体动压轴承的最基本条件。不同的油楔形成方法造就成各种各具特色的动压轴承。

滑动轴承的设计计算

(二)油楔形成方法

(三 ) 液体动力润滑径向轴承的计算

偏心距 e—轴瓦几何中心 O与轴颈 中心 Oj的距离 ;

1. 几何参数

偏心率 ε—偏心距 e与轴颈间隙 c之比, (ε =e/c)

Page 36: 第十章 滑动轴承

36

偏位角 φ—中心连线 O Oj 与载荷作用线所夹锐角;

滑动轴承的设计计算

油膜厚度 h —圆轴承,从 OOj量起,任意 θ角处油膜厚度h≈R-r+ecosθ≈c+ecosθ≈c(1+εcosθ)

最小油膜厚度 h2 ( θ = 180°)是保证流体动力润滑的最重要的参数。 h2=dψ(1-ε)/2

Page 37: 第十章 滑动轴承

37

2. 性能计算

滑动轴承的设计计算

即计算液体动力润滑径向圆轴承的承载能力、摩擦功耗、润滑油流量。雷诺方程有三个未知量( h、 η、 p),还需要补充两个方程。

•膜厚度方程 h≈c(1+εcosθ)

• 热平衡方程1) 令: Fμ/F=μ,为轴承的摩擦因数; μ=μ/ψ,为摩擦

特性数 ,则摩擦功耗为 Pμ=πμψFdn2)热平衡计算

Page 38: 第十章 滑动轴承

38

滑动轴承的设计计算

2)热平衡计算

•对自吸 ( 无压力 )供油的轴承 ,轴承表面散去的热量计算式为 : Pμ= QA=kA(Θb-Θa) k是系数,在自然通风下 k=15~20[W/(m2 K)]; A是轴承座散热面积; Θb 是轴承工作温度,最高不得超过 90℃; Θa

是环境温度。 •对压力供油的轴承 ,润滑剂带走的热量计算式为 Pμ= QL=cρq(Θo-Θi)

Page 39: 第十章 滑动轴承

39

c 是润滑油的比热容; ρ是润滑油密度; q是轴承端泄流量; Θo是润滑油出油温度; Θi是润滑油进油温

度,一般取为 35-45℃。

QL=cρq(Θo-Θi)

滑动轴承的设计计算

轴承工作温度为 :Θb =(Θo+Θi)/2, 轴承最高工作温度不得超过 100℃。 3) 确定轴承的承载能力

油膜压力的合力即为轴承的承载能力。用轴承特 性数 F来表征承载能力,有

Page 40: 第十章 滑动轴承

40

滑动轴承的设计计算

pm 是轴承平均载荷 ,pm=F/(BD);ψ是相对间隙; ηe 是润滑油有效黏度; n是轴颈转速。

轴承特性数 F

可以建立圆轴承在稳态条件下、不同宽径比时 , 轴承特性数 F 与偏心率 ε的关系曲线。同样可以建立轴承的功耗、流量、偏位角等特性数与偏心率 ε的关系曲线。当载荷、转速已知,选定直径、宽度、间隙和润滑剂之后,利用关系曲线可以查出偏心率 ε,再利用这些图表根据偏心率 ε 可以求出功耗、流量和偏位角。

Page 41: 第十章 滑动轴承

41

滑动轴承的设计计算

Page 42: 第十章 滑动轴承

42

滑动轴承的设计计算

3. 参数选取

•宽径比 (B/D) 。

一般情况建议在 0.2-1.5范围内选取,

•相对间隙 (ψ)•润滑油粘度 (η) •最小油膜厚度 ( h2 ) , h2min=S(Ra1+ Ra2) •表面粗糙度 Ra值一般在 0.2-0.8 µm范围内

4. 改变参数对轴承性能的影响

Page 43: 第十章 滑动轴承

43

滑动轴承的设计计算

性 能 参 数

加 大 的 参 数 改用周向油槽

轴承直径D

轴承宽度B

半径间隙c

载荷p

旋转速度n

润滑油粘度 η

进油温度Θin

供油压力ps

轴向油槽长度

轴向油槽宽度

最小油膜厚度h2

↑ ↑ ↑

↓↓ ↑ ↑ ↓ — — — ↓

轴承工作温度Θe

↑ ↑ ↓ ↑ ↑ ↑ ↑ — ↓ — ↑

摩擦功耗P

↑ ↑ — ↑ ↑ ↑ ↓ — ↑ — ↓ ↑

润 滑油 流量 q

↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↓

表 22-11 参数改变对轴承性能的影响

Page 44: 第十章 滑动轴承

44

§10.5 流体静压轴承 流体静力润滑 :依靠泵入润滑表面压力流体以形成承载油膜的润滑方式。采用该润滑方法的轴承称为静压轴承,也称外压轴承。 突出特点 :摩擦副表面组成等厚间隙、无相对运动也能实现良好的流体润滑。

1. 静压轴承的组成

Page 45: 第十章 滑动轴承

45

流体静压轴承

静压轴承的组成

Page 46: 第十章 滑动轴承

46

2. 静压轴承的工作原理

流体静压轴承

Page 47: 第十章 滑动轴承

47

3. 静压轴承的计算原理

流体静压轴承

•基本方程仍是雷诺方程 •静压轴承在无速度下也能形成润滑油膜 ,雷诺方程右边项中的速度为零 , 变为拉普拉斯方程。

3 3

( ) ( ) 0h p h p

x x z z

若进一步简化为一维流 ,则可根据连续性原理 ,通过流量平衡计算出静压轴承的承载能力。

Page 48: 第十章 滑动轴承

48

流体静压轴承

计算结果表明 :•静压油膜的刚度比动压油膜高 •轴转动的静压轴承 ,理论上仍应按雷诺方程求解,即在其承载能力中包含动压承载能力部分。若动压承载能力部分小到可以忽略不计,这样的轴承可按纯静压轴承计算。 •充分利用其动压承载能力部分的静压轴承,称为动静压混合轴承。