33
放放放 放放放放 放放 放放放放 放放 放放放放 放放放放放 放放 放放放放 放放放放放 放放放 放放放放 放放放

放大器 的 频率特性

Embed Size (px)

DESCRIPTION

第五章. 放大器 的 频率特性. 放大器 的通频带. 单级 阻容耦合 共射 放大电路 的频率特性. 第八节. 一. 二. 多级 放大电路 的频率特性. 三. 第八节 放大器的通频带. 第八节. A u. A um. 100. U s. 0.707 A um. + V CC. R c. R b. C 2. f (H Z ). +. C 1. 0. T. U o. R s. R L. +. f (H Z ). _. _. 一、放大器的频率特性. 放大器的电压放大倍数也是频率的函数。. 频率特性表达式. - PowerPoint PPT Presentation

Citation preview

Page 1: 放大器 的 频率特性

放大器的

频率特性单级

阻容耦合共射

放大电路的频率特性

多级放大电路

的频率特性

放大器的通频带

第五章

Page 2: 放大器 的 频率特性

放大器的电压放大倍数也是频率的函数。)()()( uu ffAfA

Au(f ) 表示电压放大倍数的幅值与频率的关系,称为幅频特性。φ(f) 表示放大倍数的相位与频率的关系,称为相频特性。

单级阻容耦合共射级放大电路的频率特性

Rb

Rc

T

+

_

C1

C2

Us

.RL

+

_

Uo

.Rs

+VCC

第八节

频率特性表达式

Au Aum

0.707Aum

100

0f(HZ)

110

90

Lf

Lf

Hf

Hf

f(HZ)

180

270

210 310 410 510010

510500

Page 3: 放大器 的 频率特性

放大器的通频带用 fb

w (或∆ f )表示,定义为:

LHbw fff

在频率升高时同样引起 Au 幅值下降,当下降到 0.707Aum 时,对应的频率称为高频截止频率(或上限截止频率),用 fH 表示。

频率 f 降低引起 Au 幅值的下降,当幅值下降为 0.707Aum 时,对应的频率称为低频截止频率(或下限截止频率),用 f L 表示。

幅频特性和相频特性 第八节

Au Aum

0.707Aum

100

0f(HZ)

110

90

Lf

Lf

Hf

Hf

f(HZ)

180

270

210 310 410 510010

510500

中频区的电压放大倍数称为中频电压放大倍数,用 Aum 来表示。.

频率失真

Page 4: 放大器 的 频率特性

Rb

Rc

T

+

_

C1

C2

Us

.RL

+

_

Uo

.Rs

+VCC

在放大电路中,由于耦合电容的存在,对信号构成高通电路。即对于频率足够高的信号电容相当于短路,信号几乎毫无损失地通过;而当信号频率低到一定程度时,电容的容抗不可忽略,信号将在其上产生压降,从而导致放大倍数的数值减小且产生相移。

大容量的耦合电容和旁路电容主要影响放大器的低频特性

第八节

Page 5: 放大器 的 频率特性

晶体管的 PN 结电容和线路寄生电容主要影响放大器的高频特性

由于半导体管极间电容的存在,对信号构成了低通电路。即对于频率足够低的信号相当于开路,对电路不产生影响;而当信号频率高于一定程度时,极间电容将分流,从而导致放大倍数的数值减小且产生相移。

rb'c

c

b

e

N

P

N

re

rbb´

cb'c

cb'e

集电结

发射结

第八节

晶体管内部结构示意图

Page 6: 放大器 的 频率特性

单级阻容耦合共射极放大电路的频率特性可以用下式来表示

)1)(1(H

L

um

u

ff

jff

j

AA

放大倍数换算为分贝的公式为 :

Au(dB)=20lgAu

Au(dB)

40

0f(HZ)

110

90

Lf

Lf

Hf

Hf

f(HZ)

180

270

210 310 410 510010

510500

3dB

20 20dB/ 十倍频

第八节

式中 Aum 为中频电压放大倍数, fL 为下限截止频率, fH 为上限截止频率。f 为频率变量,单位是赫兹。

.

左图称为波特图,是实际工程中常采用的画法。

Page 7: 放大器 的 频率特性

Rb

Rc

T

+

_

C1

C2

Us

.RL

+

_

Uo

.Rs

+VCC+

_

rbe Rc RL

+

-

Rs

Us+

_

.

βIb

.

Uo.

Ui

.Rb

bI cI

中频段电压放大倍数

)( bbeb 忽略不计RrR

bes

L

bes

be

be

Lc

ib

i

umusm

)//(

rR

RrR

r

r

RR

RR

RAA

式中 LcL //RRR

第八节

Page 8: 放大器 的 频率特性

1. 电容 C1 单独作用时的低频特性

s

i

i

o

s

o

1usl

U

U

U

U

U

UA

be

L

i

o

r

R

U

U

1bes

bes

be

1

bes

be

s

i

)(21

1

1

1

CrRfjrR

r

CjrR

r

U

U

是输入回路的时间常数1besL1 )( CrR

+

_

rbe Rc RL

+

_

Rs

Us+

_

.

C1

βIb

.

Uo.

Ui.

bI cI

(一)单级阻容耦合共射放大电路的频率特性

设1besL1

L1

)(2

1

2

1

CrRf

ffjrR

r

U

U

/1

1

Lbes

be

s

i

第八节

Page 9: 放大器 的 频率特性

fjfA

ffjrR

r

r

RA

L1

usm

L1bes

be

be

L

1usl

1

1

1

1

2)(1

1

L1

usm1

usl

ffAA

所以

求出上式的幅值表达式,即为幅频特性

用分贝为单位可写成2)(1lg20lg20)dB( L1usm

1usl ffAA

当 时 即为中频电压放大倍数;L1ff usm1

usl lg20)dB( AA

L1ff L1ff )20lg(-lg20)dB( L1usm

1usl ffAA

3-lg20)dB( usm1

usl AA

取 L11.0 ff 可得 +20dB/十倍频的斜线

20-lg20)dB( usm1

usl AA

时时

最大误差发生在 f=fL1 时,相差 3dB 。

第八节

Page 10: 放大器 的 频率特性

f(HZ)

f(HZ)

90135180

L1fL11.0 f L110 f

7.5

-45/ 十倍频。

20dB/ 十倍频20dB

3dB

Ausl (dB)

20lgAusm

1C

0

fjfAA

L1

usm1

usl

1

1

相频特性

)( L1mL1 ffarctg

式中 是 Ausm 相角.

m

对于共射放大电路 180m 则

)(180 L1L1 ffarctg

L1ff 若 则 180L1 L1ff 135L1 则

则L1ff 90L1 最大误差发生在 L110 ff L11.0 ff

处,相差 7.5

第八节

Page 11: 放大器 的 频率特性

2.电容C2单独作用时的低频特性

+

_

rbe

Rc RL

+

_

Rs

Us+

_

.

C2

βIb

.Uo.

Ib

.

Io

.

从图中可以列出

)( besb

Lo

s

o

2usl

rRI

RI

U

UA

而 b

2

Lc

c

o

1I

CjRR

RI

代入得

2Lc

bes

L

2Lc

Lcbes

Lc

2usl

)(21

1

1

))(

11)()((

CRRfjrR

R

CRRjRRrR

RRA

电容C2所在的输出回路的时间常数为 2LcL2 )( CRR

假设2Lc

L2

)(2

1

CRRf

则ffj

AAL2

usm2

usl

1

1

第八节

Page 12: 放大器 的 频率特性

3.电容C1、C2共同作用下的低频特性如果同时考虑电容对放大倍数的影响,那么低频段的电压放大倍数的表达式为

)1)(1( L2L1

usm

1usl

ffjffj

AA

令式中 f 取不同的值,可以分别求出幅频特性和相频特性的表达式以及低频电压放大倍数的幅值和相角

也可以利用下面的公式 ,由fL1和fL2计算出一个下限截止频率 fL 。

L2L1L221.1 fff

fjf

AA

L

usm

usI

1

如果fL1和fL2相差四倍以上,也可以近似地把较大的一个作为电路的fL。这样低频特性可以近似的表示为

第八节

Page 13: 放大器 的 频率特性

(二)单级阻容耦合共射放大电路的高频特性1.晶体管高频混合 π 型等效电路

Ube.

+

_

Ub´e.

rb´e

cb´e

Uce.

+cb´c

rbb´

Ub´e.gm

b´ 1 2+

_

b c

ee_

Ube.

+

_

Ub´e. rb´e

cb´e

Uce.+

rbb´

Ub´e.

gm

b´ 1 2+

_

b c

ee

cπ cμ

Ube.

+

_

Ub´e.

rb´e

ciUce.

+

rbb´

Ub´e.gm

b´+

_

b c

ee

)1( ebcecbπ UUcc

)1( ceebcbμ UUcc

πebi ccC

在晶体管工作在放大区时, ebce UU

因此 μπ cc 且 cbμ cc可以将 Cμ 看作开路,得简化高频混合 π 型等效电路 其中

第八节

Page 14: 放大器 的 频率特性

混合 π 模型的主要参数

Ube.

+

_

rbe

Uce.

+b c

ee

Ib.

βIb

.

Ube.

+

_

rb'e

Uce.

+b c

ee

Ib.

Ub´e.

+

_

rbb´

Ub´egm

从 ebbbEQTbbbe )1( rrIUrr 可得eEQTeb )1()1( rIUr

再从 ebmb UgI 可得

T

EQ

T

EQ

ebeb

b

m

)1( U

I

U

I

rU

Ig

发射结电容

re 是流过发射极电流的发射结电阻

集电结电容 Cb‘c 可用产品手册给出的参数 Cob 来表示。

fT 是晶体管特征频率

中频区的简化 h 参数等效电路和 π 型等效电路

第八节

Page 15: 放大器 的 频率特性

2.单级阻容耦合共射放大电路的高频特性

+

_

rb´eRc RL

+

_

Rs

Us

+

_

.

C

Uo.Ub´e

.

b b´rbb´

Ub´egm

Ci

s

eb

eb

o

s

o

ush

U

U

U

U

U

UA

Lm

eb

Leebm

eb

o )//(Rg

U

RRUg

U

U

ZrR

Z

U

U

bbss

eb

ieb

eb

i

eb

1

1//

Crj

r

CjrZ

那么

iebbbsbbs

eb

ebiebbbs

eb

s

eb

)()1)(( CrrRjrR

r

rCrjrR

r

U

U

i

ebbbs

ebbbsbes

L

iebbbsbes

ebLm

ush

)(1

1

)( CrrRrrR

jrR

R

CrrRjrR

rRgA

iebbbs

usm

]//)[(21

1

CrrRfjA

其中

iebbbsh ]//)[( CrrR 是输入回路的时间常数

第八节

Page 16: 放大器 的 频率特性

iebbbsh

H

]//)[(2

1

2

1

CrrRf

H

usm

ush

1 ffj

AA

得放大电路的高频段特性表达式

求出它的幅值表达式,即为幅频特性 2)(1 H

usm

ush

ff

AA

2)(1lg20lg20(dB) Husmush ffAA 所以当 即为中频电压放大倍数;

Hff

usmush lg20)dB( AA

Hff Hff

)20lg(-lg20)dB( Husmush ffAA

3-lg20)dB( usmush AA

H10 ff 当 可得 20-lg20)dB( usmush AA

在 Hff 具有 3dB 的最大误差

可得 -20dB/十倍频的斜线处

第八节

Page 17: 放大器 的 频率特性

f(HZ)

f(HZ)

20lgAusm

Aush (dB)

20dB

3dB-20dB/ 十倍频

HfH1.0 f H10 f

180225270

-45/ 十倍频。

7.5

写出

的相位表达式即为相频特性

H

usm

ush

1 ffj

AA

相频特性

)(180 Hh ffarctg

Hff 180h

Hff

225h

Hff 270h

最大误差发生在H1.0 ff H10 ff

处,相差 7.5

第八节

Page 18: 放大器 的 频率特性

(三)全频段的频率特性全频段的频率特性表达式 )1)(1( HL

usm

us

ffjffj

AA

当 HL fff 时 usmus AA 即是中频段电压放大倍数Lff )1( Lusmus ffjAA Hff )1( Husmus ffjAA

时时

即是低频段电压放大倍数 即是高频段电压放大倍数

f(HZ)

f(HZ)

Aus (dB)20lgAusm

-20dB/ 十倍频+20dB/ 十倍频

Hf H10 fH1.0 f

135

90

180225270

-45/ 十倍频。

幅频特性

相频特性

L1.0 f Lf L10 f0

0

第八节

Page 19: 放大器 的 频率特性

多级电路放大倍数的电压放大倍数是各级电压放大倍数的乘积,即:

ukunu2u1u

1AAAAA

n

k

用分贝表示的幅频特性为

n

k

AAAAA1

ukumu2u1u lg20lg20lg20lg20lg20

n

k 1

kn21 相频特性为

第八节

Page 20: 放大器 的 频率特性

两级放大电路的频率特性与单级放大电路的频率特性比较,有如下特点:

( 1 )两级放大电路的通频带要比单级电路的通频带窄。

( 2)在低频区和高频区,两级放大电路的电压放大倍数幅值衰减的更快。

而单级电路的放大倍数的相移是( 3)在中频区,两级放大电路的电压放大倍数的相移是

( 4)在低频区和高频区,两级放大电路的附加相移最大为而单级电路的附加相移最大为

360180

18090

第八节

Page 21: 放大器 的 频率特性

f(HZ)

f(HZ)

-20dB/ 十倍频

-40dB/ 十倍频

Au (dB)20lgAum

20lgAum1

1

Hf H1fL11.0 f L110 f

L1f Lf

H11.0 f H110 f

3dB

3dB

6dB

bwf

bw1f

180

360

540

第八节

Page 22: 放大器 的 频率特性

多级放大电路的上限截止频率 fH 计算公式

HnH2H1H222

1111.1

1

ffff

多级放大电路的下限截止频率 fL 计算公式

LnL2L1L2221.1 ffff

截止频率估算公式 第八节

Page 23: 放大器 的 频率特性

本 章 小 结本章是学习后面各章的基础,因此是学习的重点之一。主要内容如下:

一、放大的概念 在电子电路中,放大的对象是变化量,常用的测试信号是正弦波。放大的本质是在输入信号的作用下,通过有源元件(晶体管或场效应管)对直流电源的能量进行控制和转换,使负载从电源中获得的输出信号能量,比信号源向放大电路提供的能量大得多,因此放大的特征是功率放大,表现为输出电压大于输入电压,输出电流大于输入电流,或者二者兼而有之。放大的前提是不失真,换言之,如果电路输出波形产生失真便谈不上放大。

第五章

Page 24: 放大器 的 频率特性

1. 放大电路的核心元件是有源元件,即晶体管或场效应管。

2. 正确的直流电源电压数值、极性与其它电路参数应保证晶体管工作在放大区、场效应管工作在恒流区,即建立起合适的静态工作点,保证电路不失真。

3. 输入信号应能够有效地作用于有源元件的输入回路,即晶体管的 b- e 回路,场效应管的 g- S 回路;输出信号能够作用于负载之上。

二、放大电路的组成原则第五章

Page 25: 放大器 的 频率特性

6. 最大输出功率 Pom 和效率 η :衡量在输出波形基本不失真情况下负载能够从电路获得的最大功率,以及电源为此应提供的功率,见第六章。

三、放大电路的主要性能指标1. 放大倍数 Au( 或 Ai ):输出变化量幅值与输入变化量幅值之比,或二者的正弦交流值之比,用以衡量电路的放大能力。

第五章

2 . 输入电阻 Ri :从输入端看进去的等效电阻,反映放大电路从信号源索取电流的大小。3. 输出电阻 Ro :从输出端看进去的等效输出信号源的内阻,说明放大电路的带负载能力。4. 最大不失输出电压 Uom :未产生截止失真和饱和失真时,最大输出信号的正弦有效值(或峰值)。5. 下限、上限截止频率 fL 和 fH ,通频带 fbw :均为频率响应参数,反映电路对信号频率的适应能力。

Page 26: 放大器 的 频率特性

1. 静态分析就是求解静态工作点 Q ,在输入信号为零时,晶体管和场效应管各电极间的电流与电压就是 Q点。可用计算分析法或图解法求解。

2 .动态分析就是求解各动态参数和分析输出波形。

通常,利用 h 参数等效电路计算小信号作用时的 Au 、 Ri

和 Ro ,分析频率特性(必要时用混合 π 等效电路计算 f

H ),利用图解法分析 Uom 和输出波形的失真情况。

四、放大电路的分析方法 第五章

放大电路的分析应遵循“先静态、后动态”的原则,只有静态工作点合适,动态分析才有意义; Q 点不但影响电路输出是否失真,而且与动态参数密切相关。

Page 27: 放大器 的 频率特性

1 .晶体管基本放大电路有共射、共集、共基三种接法。共射放大电路既有电流放大作用又有电压放大作用,输入电阻居三种电路之中,输出电阻较大,适用于一般放大。 共集放大电路只放大电流不放大电压,因输入电阻高而常做为多级放大电路的输入级,因输出电阻低而常做为多级放大电路的输出级,因电压放大倍数接近 1 而用于信号的跟随。 共基电路只放大电压不放大电流,输入电阻小,高频特性好,适用于宽频带放大电路。

2. 场效应管放大电路的共源接法、共漏接法与晶体管放大电路的共射、共集接法相对应。它们比晶体管电路输入电阻高、噪声系数低、但电压放大倍数小,还要防止栅源极击穿,适用于做电压放大电路的输入级。

五、晶体管和场效应管基本放大电路第五章

Page 28: 放大器 的 频率特性

六、多级放大电路

1. 多级放大电路的耦合方式

直接耦合放大电路存在温度漂移问题,但因其低频特性好,能够放大变化缓慢的信号,便于集成化,而得到越来越广泛的应用。

阻容耦合放大电路利用耦合电容隔离直流,较好地解决了温漂问题,但其低频特性差,不便于集成化,因此仅在分立元件电路情况下采用。

变压器耦合放大电路低频特性差,但能够实现阻抗变换。常用作调谐放大电路或输出功率很大的功率放大电路。

第五章

Page 29: 放大器 的 频率特性

多级放大电路的电压放大倍数等于组成它的各级电路电压放大倍数之积。其输入电阻是第一级的输入电阻,输出电阻是末级的输出电阻。在求解某一级的电压放大倍数时,应将后级输入电阻做为负载。

多级放大电路输出波形失真时,应首先判断从哪一级开始产生失真,然后再判断失真的性质。在前级所有电路均无失真的情况下,末级的最大不失真输出电压就是整个电路的最大不失真输出电压。

第五章2. 多级放大电路的动态参数

Page 30: 放大器 的 频率特性

3 .本章分析了高、低频段都只考虑一个电容起作用的放大电路的频率响应并画出了波特图。故若遇到各频段只含一个电容的电路,或只考虑一个电容的作用而其他电容可以忽略的情况时,其波特图的形式与此相同。不同的只是 f

H 和 fL 的具体数值及 Aum 的数值和相位。所以,对于这类放大电路只须算出上述三个参数即可画出波特图。多级放大电路的波特图是各级波特图(考虑相互影响)的代数和。

七、放大电路的频率响应 1 .放大电路的频率响应描述方法通常有波特图和用复数表示的放大倍数表达式。

2 .一般的说,放大电路的放大倍数在高频段下降的主要原因是晶体管的极间电容和实际连线间的分布电容;在低频段下降的主要原因是耦合电容和旁路电容。

第五章

Page 31: 放大器 的 频率特性

若电路中每个频段起作用的电容不止一个,则可先分别计算出每个电容起主要作用时的回路时间常数。计算时,将其他电容的作用忽略,求出等效的回路时间常数的近似值。将求出的几个时间常数进行比较,找出其中起主要作用的时间常数,即最小的低频回路时间常数和最大的高频回路时间常数。若其他的时间常数与之相差 3 倍,就可以近似地将它们忽略,只考虑那个主要的时间常数,并可利用它来估计电路的截止频率。

若几个时间常数数值很接近,甚至相同,则可用近似公式计算。

4 . 截止频率的计算方法是时间常数法。

即求出该电容所在回路的时间常数,则截止频率 f=1/(2πτ) 。在一般情况下, fH》 fL ,因此可找出有关回路分别计算。

第五章

Page 32: 放大器 的 频率特性

学完本章希望能够达到以下要求: (1 )掌握以下基本概念和定义:放大、静态工作点、饱和失真与截止失真、直流通路与交流通路、直流负载线与交流负载线、 h 参数等效模型、放大倍数、输入电阻和输出电阻、最大不失真输出电压、静态工作点的稳定、频率特性、温度漂移及非线性失真等。

( 2 )掌握组成放大电路的原则和各种基本放大电路的工作原理及特点,能够根据具体要求选择电路的类型和耦合方式。

( 3 )掌握放大电路的分析方法,能够正确估算基本放大电路的静态工作点和动态参数 Au 、 Ri 和 Ro ,正确分析电路的输出波形和产生截止失真、饱和失真的原因。

第五章

Page 33: 放大器 的 频率特性

( 4 )了解稳定静态工作点的必要性及稳定方法。

( 5 )熟练掌握直接耦合式多级放大电路的工作原理和Au 的计算方法,正确理解阻容耦合放大电路的工作原理和 Au 的计算方法,一般了解变压器耦合式电路的工作原理。

( 6 )会计算只含一个时间常数时电路的 fL 和 fH ,并画出波特图;定性了解多级放大电路频带宽度与单级的关系。

第五章