132

Click here to load reader

第六章 电位分析法

  • Upload
    garran

  • View
    173

  • Download
    19

Embed Size (px)

DESCRIPTION

第六章 电位分析法. 以测定化学电池两电极间的电位差或电位差的变化为基础的电化学分析法叫电位分析法。. §6 — 1 电位分析法概述 一.电位分析法的种类: 直接电位法: 电位滴定法:. 直接电位法:根据电极电位与待测组分活度之间的关系,利用测得的电位差值(或电极电位值)直接求得待测组分的活度(或浓度)的方法。. 电位滴定法:根据滴定过程中电位差(或电极电位)的变化来确定滴定终点的容量分析法。. 二.电位分析法的理论基础: 电位分析法是利用电极的电极电位与待测组分的活度之间的关系来进行测定的。. §6 — 2 电位分析法中所用的电极 - PowerPoint PPT Presentation

Citation preview

Page 1: 第六章  电位分析法

第六章 电位分析法

Page 2: 第六章  电位分析法

以测定化学电池两电极间的电位差或电位差的变化为基础的电化学分析法叫电位分析法。

Page 3: 第六章  电位分析法

§6—1 电位分析法概述一.电位分析法的种类: 直接电位法:

电位滴定法:

Page 4: 第六章  电位分析法

直接电位法:根据电极电位与待测组分活度之间的关系,利用测得的电位差值(或电极电位值)直接求得待测组分的活度(或浓度)的方法。

Page 5: 第六章  电位分析法

电位滴定法:根据滴定过程中电位差(或电极电位)的变化来确定滴定终点的容量分析法。

Page 6: 第六章  电位分析法

二.电位分析法的理论基础: 电位分析法是利用电极的电极电位与待测组分的活度之间的关系来进行测定的。

0 lna bBA

c dC D

a aRTE E

nF a a

Page 7: 第六章  电位分析法

§6—2 电位分析法中所用的电极

一、根据电极上是否发生电化学一、根据电极上是否发生电化学反应分为两种:反应分为两种:

1. 基于电子交换反应的电极2. 离子选择性电极

Page 8: 第六章  电位分析法

(一)基于电子交换反应的电极: 这类电极是以金属为基体的电极。所以也叫金属基电极。它们的共同特点是电极反应中有电子的交换,即有氧化还原反应。

Page 9: 第六章  电位分析法

(1) 第一类电极(2) 第二类电极(3) 第三类电极(4) 第零类电极

Page 10: 第六章  电位分析法

1 、第一类电极:金属与其离子的溶液处于平衡状态所组成的电极。用 (M Mn+) 表示。电极反应为: Mn++ne=M其电极电位可由下式计算:

EMn+/M=E0+0.059/n lgaMn+

例如 Ag+|Ag 电极

Page 11: 第六章  电位分析法

2 .第二类电极:由金属及其难溶盐及与含有难溶盐相同阴离子溶液所组成的电极,表示为 M/MnXm,Xn -,电极反应为: MnXm + me = nM + mXn -

电极电位为:

EMnXm /M=E0+0.059l/mlg1/amXn-

Page 12: 第六章  电位分析法

常用的有 Ag/AgCl 、甘汞

电极( Hg/Hg2Cl2 电极)。

对于甘汞电极,其电极反应为:

Hg2Cl2 + 2e=2 Hg + 2Cl-

Page 13: 第六章  电位分析法

3. 第三类电极:它由金属,该金属的难溶盐、与此难溶盐具有相同阴离子的另一难溶盐和与此难溶盐具有相同阳离子的电解质溶液所组成。表示为M (MX , NX , N+) 。如:Zn| ZnC2O4(s) , CaC2O4(s) , Ca2+

Ca2+ + ZnC2O4 +2e CaC2O4+ Zn

Page 14: 第六章  电位分析法

4. 零类电极:由一种惰性金属(如Pt )和同处于溶液中的物质的氧化态和还原态所组成的电极,表示为 P

t/ 氧化态,还原态。如 Pt/Fe3+ , Fe2+ ,其电极反应为:

Fe3++e=Fe2+

Page 15: 第六章  电位分析法

3

2

0 0.0592lg Fe

Fe

aE E

a

其电极电位为:

Page 16: 第六章  电位分析法

(二)离子选择性电极:离子选择性电极是一类具有薄膜的电极。其电极薄膜具有一定的膜电位,膜电位的大小就可指示出溶液中某种离子的活度,从而可用来测定这种离子。

Page 17: 第六章  电位分析法

1 .电极构造:

离子选择性电极基本上都是由薄膜、内参比电极、内参比溶液、电极腔体构成,

Page 18: 第六章  电位分析法

内参比电极

电极腔体

内参比溶液

电极薄膜

Page 19: 第六章  电位分析法

2 .离子选择性电极的电极电位:对阳离子,电极电位为:

0.059lg ME K a

n

Page 20: 第六章  电位分析法

对阴离子,电极电位为:对阴离子,电极电位为:  

0.059lg NE K a

n

式中: E 为离子选择性电极的电极电位; K 为常数; aM 、 aN 为阳离子和阴离子的活度 ;n 为离子的电荷数。

Page 21: 第六章  电位分析法

3 .离子选择性电极的种类:由于离子选择性电极敏感膜的性质、材料和形式不同,所以我们可以按下列方式进行分类:

Page 22: 第六章  电位分析法

离子选择性电极

晶体膜电极

非晶体膜电极

原电极

敏化离子选择性电极

单晶膜电极

多晶膜电极

固 定 基 体电极流 动 载 体电极气敏电极酶电极

Page 23: 第六章  电位分析法

4 .离子选择性电极的特性参数:对于离子选择性电极的性能可以用它的特性参数来表示。

Page 24: 第六章  电位分析法

1 )线性范围与检测极限:

离子选择性电极的电位与溶液中特定离子活度之间的关系可用能斯特方程式表示,即:

0.0592lgE K a

n

Page 25: 第六章  电位分析法

-lgai

DF

C

G

E

检测下限

Page 26: 第六章  电位分析法

线性范围:图 9-8 中的直线部分 CD 所对应的活度范围。

检测下限: E 与 lga 的关系符合能斯特方程式的最低离子活度,叫离子选择性电极的检测下限。

Page 27: 第六章  电位分析法

2 )选择性系数 Kij :

选择性系数表示干扰离子 j 对待测离子 i 的干扰程度。它越大,干扰就越大,它越小,干扰也就越小。

Page 28: 第六章  电位分析法

离子选择性电极除对特定待测离子有响应外,共存 ( 干扰 ) 离子亦会响应,此时电极电位为 :

0.059lg( )i ij j

ji

K a K az

Page 29: 第六章  电位分析法

3 )响应时间:离子选择性电极的响应时间是指从离子选择性电极和参比电极一起接触试液(或试液中待测离子活度发生变化)算起,到电极电位值变稳定时为止所需的时间。

Page 30: 第六章  电位分析法

4 )电极内阻:离子选择性电极的内阻都很高。

Page 31: 第六章  电位分析法

5 .常用离子选择性电极:1 ) pH 玻璃膜电极: pH玻璃膜电极属于非晶体膜电极中的固定基体电极。它是最早使用、最重要和使用最广泛的氢离子指示电极,用于测量各种溶液的 pH 值。

Page 32: 第六章  电位分析法

A . PH玻璃电极的构造: PH玻璃电极是由一种特定的软玻璃 (在

SiO2 基质中加入 Na2O 和少量 Ca

O 烧制而成)吹制成的球状的膜电极,其结构一般为:

Page 33: 第六章  电位分析法
Page 34: 第六章  电位分析法

球状玻璃膜是由特殊配比

的玻璃( Na2SiO3,厚 0.1 ~

0.5mm) 构成 ,结构为:

Page 35: 第六章  电位分析法
Page 36: 第六章  电位分析法

B 、响应机理(膜电位的产生):

当球状玻璃膜的内外玻璃表面与

水溶液接触时, Na2SiO3 晶体骨架中

的 Na+ 与水中的 H+ 发生交换:

G-Na+ + H+====G-H+ + Na+

Page 37: 第六章  电位分析法

因为平衡常数很大,因此,玻璃膜内外表层中的 Na+ 的位置几乎全部被 H+ 所占据,从而形成所谓的“水化层”。

Page 38: 第六章  电位分析法

外部试液

a 外

内部参比a 内

水化层

水化层干玻璃

Ag+AgCl

Page 39: 第六章  电位分析法

当测量时,将电极放入试液中,在膜外表面与试样间固—液两相界面,因 H+ 交换形成外相界电位( E 外)。膜内表面与内参比

液固—液相界面也产生内相界电位( E 内)。

Page 40: 第六章  电位分析法

这两电位的大小是不等的,这样在横跨整个膜的范围内就存在一个电位差,即为膜电位:

Page 41: 第六章  电位分析法

1

2

( 0.0592lg )

( 0.0592lg )

0.0592lg 0.0592

H

H

H

H

H

E E E

aK

a

aK

a

K a K pH

外膜 内

外表面

内表面

Page 42: 第六章  电位分析法

C 、 PH玻璃电极的电极电位:

0.0592

E E E

E K pH

玻 内参 膜

内参 试

0.0592E K pH 玻 玻 试

Page 43: 第六章  电位分析法

D 、电位法测定溶液 pH 的基本原理: 电位法测定溶液的 pH ,是以玻璃电极作指示电极,饱和甘汞电极作参比电极,浸入试液中组成原电池:

E = E 甘 – E 玻

Page 44: 第六章  电位分析法

0.0592

' 0.0592

E E K pH

K pH

甘 玻 试

Page 45: 第六章  电位分析法

标准校正法的方法和原理如下:先测定标准pH缓冲液的电动势和被测溶液的电动势。

标准pH缓冲液和被测溶液的电动势为:

Page 46: 第六章  电位分析法

' 0.0592s sE K pH

' 0.0592x xE K pH

0.0592x s

x s

E EpH pH

两式相减得:

Page 47: 第六章  电位分析法

E 、玻璃电极特点: 对 H+ 有高度选择性的指示电极,使用范围广,不受氧化剂还原剂影响,适用于有色、浑浊或胶态溶液的 pH 测定;响应快 (达到平衡快 ) 、不沾污试液。

Page 48: 第六章  电位分析法

膜太薄,易破损,且不能用于含 F- 的溶液;电极阻抗高,须配用高阻抗的测量仪表。

存在酸差和碱差(或钠差)

Page 49: 第六章  电位分析法

2 ) 晶体膜电极:晶体膜电极的敏感膜一般为难溶盐加压或拉制成的薄膜。根据膜的制备方法可分为单晶膜电极和多晶膜电极两类。

Page 50: 第六章  电位分析法

单晶膜电极:电极的整个晶体膜是由一个晶体组成,如 F 电极; 多晶膜电极:电极的整个晶体膜是由多个晶体在高压下压制组成,如 Cl,Br,I,Cu2+,Pb2+,Cd2+等离子选择性电极的晶体膜分别用相应的卤化银或硫化物晶体压制而成。

Page 51: 第六章  电位分析法

氟离子选择性电极是目前最成功的单晶膜电极。

结构为:

Page 52: 第六章  电位分析法
Page 53: 第六章  电位分析法

将氟化镧单晶片封在硬塑料管的一端,内充溶液为 0.1mol/LNaF和 NaCl ,内参比电极为 Ag/AgCl 电极。

Page 54: 第六章  电位分析法

它的电极电位可由下式计算:

E=K - 0.059lgaF-

酸度影响: OH- 与 LaF3 反应释放 F- ,使测定结果偏高; H+ 与 F-

反应生成 HF 或 HF2-降低 F- 活度,使测定偏低。

Page 55: 第六章  电位分析法

3 )流动载体电极,又称液膜电极: 敏感膜是由溶解在与水不相溶的有机溶剂中的活性物质构成的憎水性薄膜。构成:固定膜 ( 活性物质 + 溶剂 +微孔 支持体 )+ 液体离子交换剂 + 内参比电极。

Page 56: 第六章  电位分析法

机理:膜内活性物质 ( 液体离子交换剂 ) 与待测离子发生离子交换 反应,但其本身不离开膜。 这种离子之间的交换将引起相界面电荷分布不均匀,从 而形成膜电位。

Page 57: 第六章  电位分析法
Page 58: 第六章  电位分析法

几种流动载体电极:

NO3- : (季铵类硝酸盐 +邻硝

基苯十二烷醚 +5%PVC)

30.059lgM NO

K a

Page 59: 第六章  电位分析法

Ca2+ : ( 二癸基磷酸钙 + 苯基磷酸二辛酯 +微孔膜 )

2

0.059lg

2M CaK a

Page 60: 第六章  电位分析法

6 .离子选择性电极的优点:1 )电极构造简单,测定时不需要复杂仪器,且操作简便。2 )灵敏度高,适用的浓度范围广,一般可达到相差几个数量级。如氟电极,它可用于测定的浓度范围为10 - 1~ 10 - 6mol/L。

Page 61: 第六章  电位分析法

3 )选择性好:用离子选择性电极进行测定时的干扰是比较少的。特别是它对测定环境的要求较低,有利于测定的进行。

Page 62: 第六章  电位分析法

4 )分析快速简便:5 )能用于几十种阴阳离子的测定,对于用其它方法难以测定的某些离子,也可用此法进行测定。 6 )将离子选择性电极制成微型和超微型,可用于医学生物学等特殊领域内的分析。

Page 63: 第六章  电位分析法

§6—2 电位分析法中所用的电极

一、根据电极上是否发生电化学一、根据电极上是否发生电化学

反应分为两种:反应分为两种:

二、根据使用电极的功能,分为指示电极和参比电极:

Page 64: 第六章  电位分析法

指示电极——用来指示溶液中待测离子活度的电极。它的电极电位值要随着溶液中待测离子活度的变化而变化,其电极电位值可指示出溶液中待测离子的活度。 如 pH玻璃电极、氟离子选择性电极等。

Page 65: 第六章  电位分析法

参比电极——测量时作为对比的电极,它的电极电位值在测量条件下是固定不变的。

常用的参比电极有甘汞电极和银 -氯化银电极。

Page 66: 第六章  电位分析法

§6—3 直接电位分析法

直接根据电极电位值与离子活度之间的关系来求得待测离子活度(或浓度)的方法,叫直接电位法。

Page 67: 第六章  电位分析法

一、标准曲线法:1 .活度的测定:把指示电极和参比电极一起分别插入一系列巳知待测离子准确活度的标准溶液中,测定不同活度下的电位值。以测得的电位值对相应的活度的对数作图,得到标准曲线(为一直线)。

Page 68: 第六章  电位分析法

然后再在相同条件下测定试液的电位值,由测得的电位值就可从标准曲线上查得试液中待测离子活度的对数,从而求得其活度。

Page 69: 第六章  电位分析法

2 .浓度的测定:配制一系列浓度为巳知的待测离子的标准溶液,在所配制的标准溶液和待测试液中加入相同量的离子强度较高的溶液。

Page 70: 第六章  电位分析法

然后先测定标准溶液的电位值,以测得的电极电位值对待测离子浓度的对数作图得标准曲线;

Page 71: 第六章  电位分析法

最后再在相同条件下测定试液的电极电位值,由电极电位值从曲线上就可查出试液中待测离子的浓度。

Page 72: 第六章  电位分析法

TISAB(离子强度调节剂):维持溶液的离子强度外,起辅助作用的溶液。如:测定水中 F -时,要在试液和标准溶液中加入 1mol/LNaCl , 0.25mol/L 醋酸, 0.75mol/L 醋酸钠及 0.001mol/L 柠檬酸钠。

Page 73: 第六章  电位分析法

标准溶液浓度

10-2

mol/L

10-3

mol/L

10-4

mol/L

10-5

mol/L

10-6

mol/L

㏒ C -2 -3 -4 -5 -6

电位mv

188 246 303 359 401

测定溶液中氟的浓度

Page 74: 第六章  电位分析法

-6 -5 -4 -3 -2150

200

250

300

350

400

试液的电位值为: 362mv

Page 75: 第六章  电位分析法

二、标准加入法:以测定阳离子为例来介绍它的分析方法:

第一步:先测定体积为 Vx,浓度为 Cx的样品溶液(试液)的电位

值 E1 ;

Page 76: 第六章  电位分析法

第二步:在样品溶液(试液)中加入体积为 Vs ( Vx >> Vs ),浓度为 Cs 的标准溶液,并测定其电位值 E2 ;

然后再用测得的 E1 、 E2通过计算

求得试液中待测离子的浓度。

Page 77: 第六章  电位分析法

/(10 1)E S

CsVsCx

Vx

式中:△ E=E2 - E1 ;

S = 0.0592/n ,

Page 78: 第六章  电位分析法

例:用直接电位法测定水样中的钙离子浓度。移取 100.0mL 水样于烧杯中,将饱和甘汞电极( SCE )和钙离子选择性电极浸入溶液中。测得钙离子选择性电极的电位为- 0.0619V( 对 SCE) 。加入 1.00mL0.0731mol/LCa(N

O3)2标准溶液,混合后测得钙离子选择性电

极的电位为- 0.0483V(对 SCE )。计算原水样中钙离子的浓度。

Page 79: 第六章  电位分析法

解:由公式

CS=0731mol/L,Vs=1.00mL,Vx=100.0mL,

S=0.059/2=0.0295,

△E=-0.0483+0.0619=0.0136V

/(10 1)E S

CsVsCx

Vx

Page 80: 第六章  电位分析法

0.0136/ 0.0295

4

0.0731 1.00

100.0(10 1)

3.87 10 ( / )

Cx

mol L

Page 81: 第六章  电位分析法

三、直接电位法的测量误差:电动势测定的准确性将直接决定待测物浓度测定的准确性:

对下式求导:

lnRT

E K cnF

Page 82: 第六章  电位分析法

得:RT dc

dEnF cRT dc

EnF c

Page 83: 第六章  电位分析法

相对误差为:

//

3900 (25 )o

nc c E

RT F

n E C

Page 84: 第六章  电位分析法

§6—3 电位滴定法

利用滴定过程中电极电位的变化来确定滴定终点的分析方法。即在滴定到终点附近时,电极的电极电位值要发生突跃,从而可指示终点的到达。

Page 85: 第六章  电位分析法

一、电位滴定的基本装置:

包括滴定管、滴定池、指示电极、参比电极、搅拌器、测量电动势的仪器几部分。

Page 86: 第六章  电位分析法
Page 87: 第六章  电位分析法

二、电位滴定法的原理:

进行电位滴定时,是将一个指示电极和一个参比电极浸入待测溶液中构成一个工作电池(原电池)来进行的。

Page 88: 第六章  电位分析法

其中,指示电极是对待测离子的浓度变化或对产物的浓度变化有响应的电极,参比电极是具有固定电位值的电极。

Page 89: 第六章  电位分析法

在滴定过程中,随着滴定剂的加入,待测离子或产物离子的浓度要不断地变化,特别是在计量点附近,待测离子或产物离子的浓度要发生突变,这样就使得指示电极的电位值也要随着滴定剂的加入而发生突变。

Page 90: 第六章  电位分析法

这样我们就可以通过测量在滴定过程中电池电动势的变化(相当于电位的变化)来确定滴定终点。

Page 91: 第六章  电位分析法

在电位滴定中,终点的确定并不需要知道终点电位的绝对值,而只需要电位的变化就可以了。

Page 92: 第六章  电位分析法

三、电位滴定终点的确定: 每加入一定体积的滴定剂V,就测定一个电池的电动势 E ,并对应的将它们记录下来。然后再利用所得的 E 和 V来确定滴定终点。电位滴定法中确定终点的方法主要有以下几种:

Page 93: 第六章  电位分析法

第一种方法:以测得的电动势和对应的体积作图,得到 E~ V 曲线,由曲线上的拐点确定滴定终点。

Page 94: 第六章  电位分析法
Page 95: 第六章  电位分析法

第二种方法:作一次微商曲线,由曲线的最高点确定终点。具体由△E/△V对 V作图,得到△ E/△V对V 曲线,然后由曲线的最高点确定终点。

Page 96: 第六章  电位分析法
Page 97: 第六章  电位分析法

第三种方法:计算二次微商△ 2E/△V2 值,由△ 2E/△V2=0 求得滴定终点。

Page 98: 第六章  电位分析法

三、电位滴定终点的确定:

第一种方法:以测得的电动势和对应的体积作图,得到 E~ V曲线,由曲线上的拐点确定滴定终点。

Page 99: 第六章  电位分析法

第二种方法:作一次微商曲线,由曲线的最高点确定终点。具体由△ E/△V对 V 作图,得到△ E/△V对 V曲线,然后由曲线的最高点确定终点。

Page 100: 第六章  电位分析法

第三种方法:计算二次微商△ 2E/△V2 值,由△ 2E/△V2=0 求得滴定终点。

Page 101: 第六章  电位分析法

例:用 0.1000mol/LAgNO3标准溶

液滴定 10mLNaCl 溶液,所得电池电动势与溶液体积的关系如下表所示:

Page 102: 第六章  电位分析法

AgNO3体积 V

(mL)

电动势 E

(mV)5.00 130

8.00 145

10.00 168

11.00 202

11.10 210

Page 103: 第六章  电位分析法

11.20 22411.30 25011.40 30311.50 32812.00 36413.00 38914.00 401

求 NaCl溶液的浓度。

Page 104: 第六章  电位分析法

解: 1 .由 E~ V 曲线确定终点:以 E 为纵坐标, V为横坐标作图,得到以下曲线:

Page 105: 第六章  电位分析法
Page 106: 第六章  电位分析法

曲线的拐点即为终点。拐点的确定方法为:作二条与曲线相切的 450倾斜角的直线,两条直线的等分线与曲线交点就是滴定的终点。由此法得到的终点为 11.35mL。

Page 107: 第六章  电位分析法

2 .由△ E/△V~ V曲线确定终点:

△E/△V表示 E 的变化值与相对应的加入滴定剂体积的增量(△V)之比。它的计算方法是:用 2个相邻体积所对应的电位值之差除以两相邻的体积之差。

Page 108: 第六章  电位分析法

例如:加入 AgNO3 溶液从 11.30

到 11.40 时的△ E/△V的计算。

Page 109: 第六章  电位分析法

AgNO3体积 V

(mL)

电动势 E

(mV)5.00 130

8.00 145

10.00 168

11.00 202

11.10 210

Page 110: 第六章  电位分析法

11.20 22411.30 25011.40 30311.50 32812.00 36413.00 38914.00 401

求 NaCl溶液的浓度。

Page 111: 第六章  电位分析法

△E/△V= ( 303 - 250 )÷( 11.40 - 11.30 ) =530(mV/mL)

Page 112: 第六章  电位分析法

其它两个相邻体积之间的△ E/△V可按同样的方法求得,结果列于表中。

Page 113: 第六章  电位分析法

AgNO3体积V

(mL)

电动势 E(mV)

△E/△V(mV/mL)

5.00 1305.0

8.00 14511.5

10.00 16832

11.00 20280

11.10 210140

Page 114: 第六章  电位分析法

11.20 224260

11.30 250530

11.40 303250

11.50 32872

12.00 36425

13.00 38912

14.00 401

Page 115: 第六章  电位分析法

然后,用△ E/△V与对应的体积作图(对应的体积为两个体积的平均值 ) ,为了明确标明这一点,可在计算所得的△ E/△V的下标上注明所对应的体积,例如上面求得的△ E/△V可表示

为(△ E/△V) 11.35=530 。

Page 116: 第六章  电位分析法

△E/V

V

Page 117: 第六章  电位分析法

曲线上最高点所对应的体积就是滴定终点时的体积。

Page 118: 第六章  电位分析法

3 .由二次微商求终点:

因为当一次微商为最大时为终点,而此点所对应的二次微商正好等于零,所以。我们可以通过计算求得二次微商等于零所对应的体积,从而可求得终点。

Page 119: 第六章  电位分析法

1 )二次微商的求法:在电位滴定法中,用△ 2E/△V2 表示二次微商,它的计算方法为:某体积所对应的二次微商值等于此体积的前后两个一次微商值之差除以前后体积之差。下面我们举例说明:

Page 120: 第六章  电位分析法

计算加入 AgNO311.10mL时的△ 2E/△V2 :

2 11.15 11.05

2

( ) ( )

11.15 11.05140 80

6000.10

E EE V VV

Page 121: 第六章  电位分析法

2 )通过二次微商求滴定终点:

由表中一次微商可知,最大值在 11.30~ 11.40mL之间,所以,二次微商等于零的一点应在此范围内。

现在来求二次微商等于零的一点。

Page 122: 第六章  电位分析法

首先求出在此范围的△ 2E/△V2 :11.30mL时:

2 11.35 11.25

2

( ) ( )

11.35 11.25530 260

27000.10

E EE V VV

Page 123: 第六章  电位分析法

11.40mL时:

2 11.45 11.35

2

( ) ( )

11.35 11.25250 530

28000.10

E EE V VV

Page 124: 第六章  电位分析法

由此也可知终点在 11.30~ 11.40mL之间。

最后由比例关系求出终点体积。

Page 125: 第六章  电位分析法

设终点体积为 (11.30 + x)mL:

体积由 11.30 到 11.40mL时的△ 2E/△V2 的变化值为

2700 -(- 2800 ) =5500

而体积由 11.30 到 11.30 + xmL时的△ 2E/△V2 的变化值为 2700 - 0

Page 126: 第六章  电位分析法

则:

(11.30 ) 11.30 11.40 11.30

2700 55000.10 2700

0.055500

x

x

Page 127: 第六章  电位分析法

终点体积为 11.30 + 0.05=11.35mL。所以 NaCl 溶液的浓度为:

NaCl

0.1000 11.35C

10.000.1135 /mol L

Page 128: 第六章  电位分析法

四、电位滴定法的特点: (1) 测定准确度高。与化学容量法一样,测定相对误差可低于 0.2%。

(2) 可用于无法用指示剂判断终点的混浊体系或有色溶液的滴定。

(3) 可用于非水溶液的滴定。(4) 可用于微量组分测定。(5) 可用于连续滴定和自动滴定。

Page 129: 第六章  电位分析法

五、电位滴定法的类型和指示电电位滴定法的类型和指示电极的选择极的选择1. 1. 酸碱滴定酸碱滴定通常采用通常采用 pHpH玻璃电极为指示电极、玻璃电极为指示电极、饱和甘汞电极为参比电极。饱和甘汞电极为参比电极。

Page 130: 第六章  电位分析法

2. 2. 氧化还原滴定:滴定过程中,氧化还原滴定:滴定过程中,

氧化态和还原态的浓度比值发生氧化态和还原态的浓度比值发生

变化,可采用零类电极作为指示变化,可采用零类电极作为指示

电极。电极。

Page 131: 第六章  电位分析法

3. 3. 沉淀滴定:根据不同的沉淀反沉淀滴定:根据不同的沉淀反

应,选用不同的指示电极。常选应,选用不同的指示电极。常选

用的是用的是 AgAg 电极。电极。

Page 132: 第六章  电位分析法

4. 4. 配位滴定:在用配位滴定:在用 EDTAEDTA 滴定金滴定金属离子时,可采用相应的金属离属离子时,可采用相应的金属离子选择性电极和第三类电极作为子选择性电极和第三类电极作为指示电极。指示电极。