28
복합 화력 발전 시스템의 Sealing 기술 2007. 11. 14 한국과학기술연구원 에너지메카닉스 연구센터 이용복 ([email protected])

복합화력발전시스템의 Sealing 기술

Embed Size (px)

Citation preview

Page 1: 복합화력발전시스템의 Sealing 기술

복합 화력 발전 시스템의Sealing 기술

2007. 11. 14

한국과학기술연구원에너지메카닉스 연구센터

이용복 ([email protected])

Page 2: 복합화력발전시스템의 Sealing 기술

Type of Seals

• - Annular plane seal- Grooved seal- Labyrinth seal- (Hole pattern )Damper seal- Honeycomb seal- Brush seal- Foil seal

• - Cloth seal

• - Abradable seal

Page 3: 복합화력발전시스템의 Sealing 기술

Gas Turbine Seal Locations

Advanced seals locations on a Frame 7EA gas turbine Ref.) J. of Turbomachinery, Vol. 124, 2002 pp. 293

Page 4: 복합화력발전시스템의 Sealing 기술

Seal Characteristics Evaluated by Design Tools Duringthe Design Process

Page 5: 복합화력발전시스템의 Sealing 기술

BrushSeal

Labyrinth Seal

Floating Ring Seal

Honeycomb Seal

FoilSeal

GroovedSeal

Hybrid

Non-

Contact

Seal

Type of Seals

Page 6: 복합화력발전시스템의 Sealing 기술

스팀 터빈에서의 손실율

(GE Power Generation 1996)

Page 7: 복합화력발전시스템의 Sealing 기술

Labyrinth seal-패킹 링의 구조 및 원리

Page 8: 복합화력발전시스템의 Sealing 기술

가변간극 패킹 링의 원리 및 효과

작동원리

개선효과(Heat Rate Improvement for VCPP in 500MW unit)

Page 9: 복합화력발전시스템의 Sealing 기술

기존 패킹 링과의 비교

일반 패킹

가변간극 패킹

Page 10: 복합화력발전시스템의 Sealing 기술

Labyrinth seal 의 해석

1-Control Volume Model

Governing Equations

연속방정식:

원주방향운동량 방정식:

Page 11: 복합화력발전시스템의 Sealing 기술

가변 간극 실 실험장치

Page 12: 복합화력발전시스템의 Sealing 기술

• Rotor의 Modal Analysis

– ARMD에 의한 해석 결과

1st mode: 182.7 Hz

2nd mode: 295.0 Hz

3rd mode: 2287 Hz

– 실험적 Modal Test 결과

1st mode: 184 Hz

Bearing Stiffness: 3.0 X 10^8 N/m

가변 간극 실 실험

Page 13: 복합화력발전시스템의 Sealing 기술

시스템의 작동조건입력을 위한 설정 창

실과 각 cavity의 치수 설정

통합 해석 코드 개발

Page 14: 복합화력발전시스템의 Sealing 기술

가변간극 실험 및 해석

• 가변간극 실의 작동조건 해석

• 사용된 설계변수Li = 15.4mm, Lo = 6.6mm, w = 22mm,

Po = 0.1MPa, r = 113mm

Pi = 0.109MPa (1.09 bar)

Page 15: 복합화력발전시스템의 Sealing 기술

누설량 실험 및 해석

• Δp 값에 따른 누설량 해석 결과와 비교

• 해석결과– 해석결과 또한 Δp가

증가할수록 누설량이 증가하며, 실험과해석과의 오차는6.77%~ -6.47%로서유체가 공기라는 점을 감안하면 실제와해석결과가 잘 맞는것을 볼 수 있다.

Page 16: 복합화력발전시스템의 Sealing 기술

Flow factor 의 비교

<Del p값에 따른 Flow factor>

0 100 200 300 400 500 600 7000

3

6

9

12

15

18

21

24

27

Flow

fact

or, (

kg*K

^1/2

)/(M

Pa*

m*s

)

Pressure drop across seal, kPa

Page 17: 복합화력발전시스템의 Sealing 기술

동특성 실험 및 해석

Structure Hydrodynamic

of SealRotor

Housing

• 이론적 배경– 마그네틱 베어링 시스템을 스프링과 댐

퍼로 모델링 할 수 있다.

– 초기에는 작동유체가 없는 정적인 상태에서 Hij를 구해 test rig의 계수를 구하고 다시 작동유체의 유입상태에서 측정하여 실의 동적효과가 포함된 계수를구한 후에 두 조건으로부터 얻은 각 계수들의 산술적 연산을 하면 실의 효과에만 의한 동역학적 계수를 얻을 수 있다.

Page 18: 복합화력발전시스템의 Sealing 기술

동특성 실험 및 해석

Page 19: 복합화력발전시스템의 Sealing 기술

To Improve Stability for Steam Turbine, gas Turbine, Compressor;

- Tooth-on stator labyrinth seal을smooth rotor/Honeycomb Stator Seal로 대

체;

- To Improve Leakage Performance

- Numerical analysis for Turbulent liquid, gas seals

- Honeycomb Core와 Support Back Steel 사이에 Brazing Filler Metal(BFM)을 두고Brazing.

- 가스터빈엔진용 BFM은 비결정질의 Ni 기지합금으로 1,000℃이상의 온도에서 용융.

Honeycomb Seal

Page 20: 복합화력발전시스템의 Sealing 기술

가스 터빈 Brush Seals

< Brush Seal Clearance 20% of Typical Labyrinth Seal or Lower>

Typical brush seal designs for a) steam turbineb) gas turbine applications

(a) Typical steam turbine brush seal packing ring assembly.(b) 7EA gas turbine HPP brush seal after 22,000 h ofoperation.

Ref.) J. of Turbomachinery, Vol. 124, 2002

Page 21: 복합화력발전시스템의 Sealing 기술

Typical performance benefits for brush seals

Turbine Class and Location Efficiency Benefit

Utility Steam Tubines (HP Section)

End Packings (multiple locations) 0.1-0.2% unit heat rate

Interstage Packing (multi stages) 0.5-1.2% HP section efficiency; 0.1-0.2% unit heat rate

Industrial Steam Turbines

End Packings (multiple locations) 0.4-0.8% efficiency

Intestage Packing (multi stages) 0.2-0.4% efficiency

Ref.) J. of Turbomachinery, Vol. 124, 2002

Page 22: 복합화력발전시스템의 Sealing 기술

Leakage performance for Brush seal vs. Labyrinth seal

Leakage characteristics of a typical seal under sealinterference and clearance conditions .y scale shows the ratio of Brush seal leakage at a specified condition seal line-to-line leakage.

Ref.) J. of Turbomachinery, Vol. 124, 2002 pp. 293

Page 23: 복합화력발전시스템의 Sealing 기술

From top left corner, clockwise. 1) Brush seal clearance due to wear versus labyrinth seal clearance due to rub, 2) brush seal flow versus labyrinth seal flow, 3) additional kW-h saving of the brush seal in the sealing system, 4) brush seal performance degradation over 3 yr .as new seal provided additional 1.1 percent MW, after 3 yr provided 0.7 percent MW, seal returned to the machine after engine overhaul for additional 3 yr service the seal during overhaul.

7EA machine HPP brush seal field dataduring 22,000 h of operation:

Ref.) J. of Turbomachinery, Vol. 124, 2002 pp. 293

Page 24: 복합화력발전시스템의 Sealing 기술

1) Transient Capability/Stable Brush Seals;- From current seal to 3-5 times dynamically more aggressive engine seals.

2) High Surface Speed;From 120 m/s of AE seal to 244 m/s of GT seals, now moving to 500 m/s.

3) High Pressure Loading;- From 0.69 MPa two stage seals to 2.76 MPa single design, now moving to higher pressure drop multi-stage seal design.

4) High Swirl Flow Field;- Swirl ratios of current applications are 0.3 now moving to 0.6-1.2 region.

5) Air Temperature;From 370 oC to 650-1000 oC temperature

6) Seal Life and Durability;- GT fleet leader w/40000 field hrs w/minimum degradation.- ST fleet leader 40000 field hrs w/minimum degradation.

7) Rotor Surface;- Ceramic coated AE rotors to uncoated GT and ST application.- Interrupted surface at bucket tip seals

Brush Seal Technology Status/MilestonesRef.) J. of Turbomachinery, Vol. 124, 2002

Page 25: 복합화력발전시스템의 Sealing 기술

Stiffness&Damping Mechanism

At high speed when the air film becomes stiff, foil structure provides more damping than gas film. Therefore, dynamic characteristics of foil Seals and bearings depend on foil structure.

Hydrodynamic

Air Film

Journal

Compliant Foil structure

Bearing SleeveAir Bump Foil Air Bump Foil Seal/BearingSeal/Bearing

bump foil

top foil

housing

Journal

Air Foil Seal/BearingAir Foil Seal/Bearing

Ref.) MiTi Co.

Page 26: 복합화력발전시스템의 Sealing 기술

Bearing/Seal

Concept

Theory Verification

Testing

Hydrodynamic Performance

Materials

Bearing/SealImperfections

Acceptance

Testing in

Advanced

Application

Reliability

Life

Economy

Application Testing in Dynamic Simulator

Dynamic Response

Mechanical Compliance

Design Envelope

ThermalDeformation

Rotor Misalignment

Vibration Specifications

Input:Seal GeometryLubricant Charac.SpeedTemperaturePressureLoad

Output:Film ThicknessPower LossStiffnessDampingOnset of Instability

Bearing/SealAnalysis

Seal and Bearing Research in KIST Seal and Bearing Research in KIST -- Development Flowchart Development Flowchart

Page 27: 복합화력발전시스템의 Sealing 기술

Friction and Wear Data Summary (KIST)

Friction and Wear Data Summary (NASA)

Friction Coefficient of CORONA 100 Coating Material (KIST)

고온 공기 포일 베어링 테스트 시험기 (1000℃)

Coating Process of CORONA 102 Coating Material (KIST)

“CORONA” (KIST) vs. PS304 (NASA) for Seals and Bearings(Patent pending in USA, EU)

Page 28: 복합화력발전시스템의 Sealing 기술

Floating Ring SealFloating Ring Seal Critical Technology- Fluid dynamics of pump & turbine elements- High precision manufacturing- Rotordynamics

* cryogenic bearing* high performance sealing unit* rotordynamic stability

Turbine2BoosterInducer(LO ) Impeller(LO2)

SeparateImpeller

InducerImpeller(LCH4)

1 25 6 3 87 4Oxygen pump section Fuel pump section

FloatingFloating

ringring

Clamping nutClamping nut

Support ringSupport ring

Inducer (LO 2)

Floating Ring Seal for Liquid Rocket

Characteristic of floating Ring Seal- Floating ring seal has analytically dynamic

characteristics ; such as excellent stiffness, damping at high operating speed. Stability is higher than the other seal- labyrinth, damper, plain seal.