39
1 Study of low temperature poly silicon for solar cells Advisor: Dr.Hon Kuan Student: Tsung-Yu Li Date 98/04/22

1 Study of low temperature poly silicon for solar cells Advisor: Dr.Hon Kuan Student: Tsung-Yu Li Date : 98/04/22

Embed Size (px)

Citation preview

  • Study of low temperature poly silicon for solar cellsAdvisor: Dr.Hon KuanStudent: Tsung-Yu LiDate98/04/22

  • OutlineIntroduction

    Experimental

    Results and discussion

    Conclusions

    References

  • Introduction500C 1 X XRDSi FE-SEM-

  • Experimental

    PART I AlPART II Al

  • Results and discussion(a) SiO2 film (200nm) (b) Al film(250nm) (c) a-Si film(250nm)

    SEM

  • Results and discussionSEM

  • Results and discussionXRDRaman

  • Results and discussionfirst step annealing process at 500C for 1 hourwithout Al etching off

  • Results and discussionfirst step annealing process at 500C for 1 hour and Al etching off

  • Results and discussionXRD spectra of poly-Si thin film annealed at 500C for 1 hour and Al etched off

  • Results and discussionXRD spectra of Part I specimens annealed at (a) 450 C, and (b)500 C and 5 different durations and Al etched off

  • Results and discussionXRD peak intensity plot versus different annealing duration of Part I specimens annealed at 450 C, and 500 C

  • Results and discussionXRD FWHM plot versus different annealing duration of Part I specimens annealed at 450 C, and 500 C

  • Results and discussionCrystal size of polycrystalline silicon thin film versus different annealing duration of Part I specimens annealed at 450 C, and 500 CDK=1 X 2

  • Results and discussionXRD spectra of Part II specimens annealed at (a) 450 C, and (b)500 C and 5 different durations and Al etched off

  • Results and discussionXRD peak intensity plot versus different annealing duration of Part II specimens annealed at 450 C, and 500 C

  • Results and discussionXRD FWHM plot versus different annealing duration of Part II specimens annealed at 450 C, and 500 C

  • Results and discussionCrystal size of polycrystalline silicon thin film versus different annealing duration of Part II specimens annealed at 450 C, and 500 C

  • Results and discussionRaman spectra of single crystalline silicon111Widenborg[37]Raman 520 cm-1

    JIN [38]Si-Si Raman 499 cm-1

  • Results and discussionRaman spectra of part I specimens under 5 different annealingdurations and annealing duration of (a) 450C, and (b) 500 C,and Al etched off

  • Results and discussionRaman spectra of part II specimens under 5 different annealingdurations and annealing duration of (a) 450C, and (b) 500 C,and Al etched off

  • Results and discussionSEM photos of part I specimens with the second step annealing process at 450C for (a)15 ,(b)30, (c)60,(d)120, and (e)240 minutes.

  • Results and discussionSEM photos of part I specimens with the second step annealing process at 500C for (a)15 ,(b)30, (c)60,(d)120, and (e)240 minutes.

  • Results and discussionpart I specimens with the second step annealing process at 450C for (a)15, (b)30, (c)60, (d)120,and (e)240 minutes.

  • Results and discussionpart I specimens with the Second step annealing process at 500C for (a)15, (b)30, (c)60, (d)120, and (e)240 minutes.

  • Results and discussionSEM photos of part II specimens with the second step annealing process at 450C for (a)15 ,(b)30, (c)60,(d)120, and (e)240 minutes.

  • Results and discussionSEM photos of part II specimens with the second step annealing process at 500C for (a)15 ,(b)30, (c)60,(d)120, and (e)240 minutes.

  • Results and discussionpart II specimens with the second step annealing process at 450C for (a)15, (b)30, (c)60, (d)120, and (e)240 minutes.

  • Results and discussionpart II specimens with the second step annealing process at 500C for (a)15, (b)30, (c)60, (d)120, and (e)240 minutes.

  • Results and discussionLeakage current variation of part I specimens versus bias voltage under 5 different annealing durations and annealing temperature of (a) 450 C and (b) 500C

  • Results and discussionLeakage current variation of part II specimens versus bias voltage under 5 different annealing durations and annealing temperature of (a) 450 C and (b) 500C

  • Results and discussionResistivity variations of part I and part II specimens versus bias voltage under 5 different annealing durations and annealing temperature of (a) 450 C and (b) 500C

  • Results and discussionMobility of poly-silicon thin film of part I and part II specimens as a function of annealing duration

  • Results and discussionCarrier concentration of poly-silicon thin film of part I and part IIspecimens as a function of annealing duration

  • Conclusions450 C 15 1m 3~5 m

    15 60

    a-Si1m

    10-7 A/cm2103~106 -cm 500 C 30 23.4 cm2/V.s10-9 A/cm2 108 - cm

  • References[1] A. Wohllebe, R. Carius, L. Houben, A. Klatt, P. Hapke, J. Klomfa, H. Wagner, Crystallization of amorphous Si films for thin film silicon solar cells, Journal of Non-Crystalline Solids, 227-230, 1998, pp.925-929.[2] -2005.9 [3] http://www.e-tonsolar.com/edu.htm#1[4] H. Kim, G. Lee, D. Kim, S. H. Lee, A study of polycrystalline silicon thin films as a seed layer in liquid phase epitaxy using aluminum-induced crystallization, Current Applied Physics 2 (2002) pp.129-133[5] G. R. Hu, Y. S. Wu, C. W. Chao and H. C. Shih, Growth Mechanism of Laser Annealing of Nickel-Induced Lateral Crystallized Silicon Films, Jan. J. Appl. Phys., Vol. 45, No. 1A, 2006, pp.21-27[6] O. Nast, S. Brehme, D. H. Neuhaus, and S. R. Wenham, Senior Member, Polycrystalline Silicon Thin Films on Glass by Aluminum-Induced Crystallization, IEEE transactions on electron devices, VOL. 46, NO. 10, 1999.10[7] J.L. Hwang, F.Y. Yeh, Application and Lamination of Photovoltaic Module, , 230, 2006.2[8] W. D. Callister, Meterials Science and Engineering, John Wiley & Sons, Inc., Second Edition[9] 2002.9 103[10] W. Shockley, Electrons and Holes in semiconductors, Litton Edacation Publishing Co., Inc., 1950.[11] I. W. Wu, T. Y. Huang, W. B. Jackson, A. G. Lewis, and A. Chiang, Passivation Kinetics of Two Types of Defects in Polysilicon TFT by Plasma Hydrogenation, IEEE Electron Devices Lett., Vol. 12,1991, pp.181.[12] 1962003.4[13] T. Ohzone, M. Fukumoto, G. Fuse, A. Shinohara, S. Odanaka, and masaru sasago, ion-implanted Thin Polycrystalline-Silicon High-Value Resistors for High-Density Poly-Load Static RAM Applications , IEEE Trans. Electron Devices, Vol. 32, 1985, pp.1749.[14] D. B. Meakin, P. A. Coxon, P. Migliorato, J. Stoemenos, and N. A. Economou, High-performance thin-film transistors from optimized polycrystalline silicon films, Appl. Phys. Lett. Vol. 50, 1987, pp.1894.[15] K. Goshima, H. Toyoda, T. Kojima, M. Nishitani, M. Kitagawa, H. Yamazoe and H. Sugai, Lower Temperature Deposition of Polycrystalline Silicon Films from a Modified Inductively Coupled Silane Plasma Jan. J. Appl. Phys. Vol. 38, NO. 6A, 1999, pp.3655.

  • References[16] O. Ebil, R. Aparicio, S. Hazra, R. W. Birkmir, E. Sutterb, Deposition and structural characterization of poly-Si thin films on Al coated glass substrates using hot-wire chemical vapor deposition, Thin Solid Films 4302003, pp.120-124. 104[17] D. D. Sala, S. Loreti, L. Fornarini, I. Menicucci, A. Santoni, P. D. Veneri, C. Privatoc, J. Lancockd, Laser-assisted chemical vapor deposition of thick poly-Si layers for solar cells, Thin Solid Films 403-4042002, pp.302-306.[18] LTPS 2004.9 [19] M. S. Haque, H. A. Naseem, and W. D. Brown, Interaction of aluminum with hydrogenated amorphous silicon at low temperatures, J. Appl. Phys., Vol. 75, No. 8, 15 April 1994.[20] VLSI 2003.7.20 [21] O. Nast, Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon, J. Appl. Phys. Vol. 88, No. 2, 15 July 2000.[22] K. M. Lim, M. Y. Sung, Low noise digital data driver circuit integrated poly-Si TFT-LCD, Microelectronics Journal 30 (1999), pp.905-910.[23] E. V. Jelenkovic, K. Y. Tonga, W. Y. Cheungb, I. H. Wilsonb, S. P. Wongb, M. C. Poon, Low temperature doping of poly-SiGe films with boron by co-sputtering, Thin Solid Films 368 (2000) 55-60.[24] K. Naeli, Mat. Res. Soc. Symp. Proc. Vol. 664, (2001), A6.[25] S. Nakahara, Recent development in a TEM specimen preparation technique using FIB for semiconductor devices, Surface and Coatings Technology 169-170 (2003), pp.721-727.[26] J. K. Rath, Low temperature polycrystalline silicona review on deposition, physical properties and solar cell applications, Solar Energy Materials & Solar Cells (2003), pp.431-487. 105[27] 2005.7[28] 2000.12 [29] K. Nakamura, M. A. Nicolet, and J. W. Mayer, Interaction of Al layers with polycrystalline Si, Journal of Applied Physics, Vol. 46, No. 11, Noverber 1975.

  • References[30] O. Nast, Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon, J. Appl. Phys. Vol. 88, No. 2, 15 July 2000.[31] O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and Stuart R. Wenham, Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature, Appl. Phys. Lett. 73, No. 22, 30 November 1998.[32] M. S. Haque, H. A. Naseem, and W. D. Brown, Aluminum-induced crystallization and counter-doping of phosphorousdoped hydrogenated amorphous silicon at low temperatures, J. Appl. Phys. 79 (10), 15 May 1996[33] O. Prache, Active matrix molecular OLED microdisplays, Displays 22 (2001), pp.49-56.[34] W. S. Liao and S. C. Lee, Interfacial interaction between Al-1%Si and phosphorus-doped hydrogenated amorphous Si alloy at low temperature, J. Appl. Phys. 81 (12), 15 June 1997[35] E. Pihana, A. Slaouia, P. R. Cabarrocasb, A. Focsaa, Polycrystalline silicon films by aluminium-induced crystallisation: growth process vs. silicon deposition method, E. Pihan et al. / Thin Solid Films 451 452 (2004), pp.328-333 106[36] E. Pihan, A. Slaoui, A. Focsa, P. R. Cabarrocas, Polycrystalline silicon films on ceramic substrates by aluminium-induced crystallisation process, 3rd World Conference on Photovoltaic Energy Conversion, May 11-18, 2003 Osaka, Japan[37] P. I. Widenborg, A. G. Aberle, Surface morphology of poly-Si films made by aluminium-induced crystallisation on glass substrates, Journal of Crystal Growth 242 (2002), pp.270-282.[38] Z. JIN, G. A. Bhat, M. Yeungh, H. S. Kwok and M. Wong, Solid-Phase Reaction of Ni with Amorphous SiGe Thin Film on SiO2, Jpn. J. Appl. Phys., Vol. 36 (1997), pp. L 1637-L 1640.