18
Motori Brushless Università degli studi di Ferrara Azionamenti Elettrici 176 176 10.2 Brushless Sinusoidale Il Brushless di tipo sinusoidale attualmente è il motore più utilizzato nelle applicazioni ad alte prestazioni. Abbiamo visto in precedenza la tecnica di tipo sinusoidale che si basa su un andamento sinusoidale della derivata del flusso concatenato con un avvolgimento, in funzione della posizione angolare del rotore. Vediamo ora un modo per rappresentare la corrente e la forza magnetomotrice; questo ci permetterà di determinare il modello del motore brushles. 10.3 Corrente e forza magnetomotrice Supponiamo di avere un motore a tre fasi e di alimentare la prima fase con la corrente i 1 (indicata in figura). Al traferro si avrà una distribuzione di f.m.m sinusoidale per quanto visto in precedenza. Vogliamo ora rappresentare l’andamento della f.m.m con un vettore 1 m di modulo m 1 =F 1 I, dove F 1 è il valore massimo della funzione di distribuzione dei conduttori (1° armonica) e I è il valore della corrente, diretto lungo l’asse dell’avvolgimento, otteniamo: Il massimo valore positivo della f.m.m. si ha in corrispondenza di α = 0, ed il massimo negativo per α = π, mentre si ha f.m.m=0: quando α assume il valore 2 π o 2 3 π . La funzione f.m.m. lungo il traferro può essere scritta come (distribuzione sinusoidale): α α α cos ) ( ) ( 1 1 I F I F m = = La proiezione di 1 m su una qualsiasi retta rappresenta il valore della f.m.m. in quella direzione.

10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

  • Upload
    vuphuc

  • View
    260

  • Download
    4

Embed Size (px)

Citation preview

Page 1: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

176

176

10.2 Brushless Sinusoidale Il Brushless di tipo sinusoidale attualmente è il motore più utilizzato nelle applicazioni ad alte prestazioni. Abbiamo visto in precedenza la tecnica di tipo sinusoidale che si basa su un andamento sinusoidale della derivata del flusso concatenato con un avvolgimento, in funzione della posizione angolare del rotore. Vediamo ora un modo per rappresentare la corrente e la forza magnetomotrice; questo ci permetterà di determinare il modello del motore brushles. 10.3 Corrente e forza magnetomotrice Supponiamo di avere un motore a tre fasi e di alimentare la prima fase con la corrente i1 (indicata in figura). Al traferro si avrà una distribuzione di f.m.m sinusoidale per quanto visto in precedenza. Vogliamo ora rappresentare l’andamento della f.m.m con un vettore 1m di modulo m1=F1I, dove F1 è il valore massimo della funzione di distribuzione dei conduttori (1° armonica) e I è il valore della corrente, diretto lungo l’asse dell’avvolgimento, otteniamo:

Il massimo valore positivo della f.m.m. si ha in corrispondenza di α = 0, ed il massimo negativo per

α = π, mentre si ha f.m.m=0: quando α assume il valore 2π o

23π .

La funzione f.m.m. lungo il traferro può essere scritta come (distribuzione sinusoidale):

ααα cos)()( 11 IFIFm ==

La proiezione di 1m su una qualsiasi retta rappresenta il valore della f.m.m. in quella direzione.

Page 2: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

177

177

Se con la medesima corrente I si alimenta la fase 2, si può rappresentare la rispettiva f.m.m con un vettore 2m , che ha la stessa ampiezza F1I del vettore precedente m1, ma sfasato di 120° rispetto a

1m , orientato lungo l’asse di simmetria della fase 2, che può essere scritto come π

32

12

jIeFm = dove

π32j

e è un operatore che ruota il vettore di partenza di 120°.

Analogamente ai primi due casi, decidiamo di alimentare la fase 3 e consideriamo un terzo vettore

3m che rappresenta la f.m.m. della terza fase, che può essere scritto come π

34

13

jIeFm = , dove

l’operatore π

34j

e ruota il vettore di partenza di 240°. Possiamo ora definire un vettore generale dato dalla somma delle singole f.m.m ricavate alimentando le varie fasi con le correnti i1, i2, i3:

)( 32

211321 iaaiiFmmmm ++=++=

Dove π

32j

ea = e π

34

2 jea = , dato che (i1+ i2+ i3)=0, posto: )(

32

32

21 iaaiii ++= si ha che iFm 123

=

dove i è il vettore rappresentativo delle correnti delle fasi. La scelta del vettore [i] è dovuto al fatto che le sue proiezioni, sui tre assi 1, 2, 3 sono le correnti i1, i2, i3.

Vediamo che la somma dei 3 vettori 32

21 ,, iaaii porta nel punto P’ ⎟⎠⎞

⎜⎝⎛→ i

23 e non in P.

PP’

ai2 i

1

a i2

3

Page 3: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

178

178

Questo è dovuto al fatto che il vettore ⎟⎠⎞

⎜⎝⎛ i

23 è un vettore nello spazio che sta su un piano (i1+ i2+

i3)=0, e per questo rappresentabile nel piano, ma naturalmente le dimensioni non sono le stesse. Infatti per esempio, se consideriamo che il vettore 321 iii ++ si trovi sull’asse 1:

Le componenti di 2i e 3i ortogonali all’asse 1 si devono annullare, altrimenti il vettore risultante non sarebbe sull’asse 1, quindi la somma delle proiezioni dei vettori che rappresentano le 3 correnti (i1, i2, i3 vedi figura) sull’asse 1 è data da:

111132 23)(

21

21

21 iiiiii =+−−=+−−

cioè il vettore 1i amplificato di un fattore 23 .

Come si vede la proiezione del vettore risultante sull’asse 1 non è il vettore 1i , ma un vettore più

grande di 23 .

Abbiamo visto come rappresentare la f.m.m con un vettore generale, dato dalla somma di 3 vettori, rappresentanti ciascuno le singole f.m.m delle 3 fasi. Il vettore [i] può essere rappresentato in diversi modi:

- tramite un sistema di due assi cartesiani ⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡=

γγ

β

α

sincos

ii

ii

i

- con un numero complesso βα jiii += con una somma di 3 vettori(le cui direzioni sono proiezioni nel piano dei 3 assi dello spazio):

)(32

32

21 iaaiii ++= con π

32j

ea =

In figura possiamo vedere la rappresentazione del vettore [i] nei tre modi sopra indicati:

Page 4: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

179

179

10.4 Flusso concatenato Per quanto riguarda il flusso concatenato, si può effettuare lo stesso discorso fatto per la f.m.m. Consideriamo il flusso concatenato con i tre avvolgimenti λ1m, λ2m, λ3m e supponiamo che siano le proiezioni di un vettore λm sui tre assi. Naturalmente sono funzione dell’angolo θ :

Con riferimento solo alla 1° armonica in θ, dato che le 3° armoniche non danno contributo alla coppia, le 3 componenti sono:

)34cos()(

)32cos()(

)cos()(

3

2

1

πθθλ

πθθλ

θθλ

−=

−=

=

K

K

K

m

m

m

Andando a sommare i tre valori otteniamo:

0]sin23cos

21

32sinsincos

21[cos

)]34cos()

32cos([cos)()()( 321

=−−+−=

=−+−+=++

θθπθθθ

πθπθθθλθλθλ

K

Kmmm

Page 5: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

180

180

dato che il termine θπθ sin23

32sinsin =

La somma delle 1° armoniche concatenate con gli avvolgimenti è nulla: λ1m+λ2m+λ3m = 0 e quindi [λm] sta sullo stesso piano di [i] . Possiamo dunque rappresentare il vettore del flusso come:

)(32

32

21 mmmm aa λλλλ ++= con π

32j

ea =

per le stesse considerazioni fatte su [i]. Concludendo, si può ricavare che anche il flusso totale [λ] sta sullo stesso piano di [λm] e [i], dato che :

miLeq λλ += essendo Leq uno scalare. Naturalmente dobbiamo essere nelle ipotesi di linearità del circuito magnetico. 10.5 Comando tipo sinusoidale L’espressione della coppia erogata dai tre avvolgimenti è data da:

θλ

θλ

θλ

θλ

dd

ipd

di

dd

id

dipT mtmmm ][

][)( 33

22

11 =++=

l’espressione rappresenta anche il prodotto interno di due vettori nello stesso spazio a tre dimensioni.

Il vettore θλ

dd m ][

( come [λm]), nell’ipotesi fatta di trascurare le 3° armoniche, stà sullo steso piano

di [i], dato che:

∑ =j

jm

dd

λ

Abbiamo che:

θλ

θλ

dd

ipTd

dipT mmt ×=→=

][][

dove × è un prodotto scalare. Per quanto concerne il passaggio dallo spazio al piano, abbiamo due possibili scelte:

Page 6: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

181

181

- mantenere costante il vettore e aumentare di 23 il valore delle coordinate sugli assi.

le componenti nel piano sono state maggiorate rispetto a quelle nello spazio di un fattore 23

Il vettore è rimasto inalterato.

- mantenere costante il valore delle coordinate e diminuire la dimensione del vettore di 32

Dobbiamo apportare queste modifiche alle coordinate o ai vettori, poiché nel passaggio dallo spazio al piano, mantenere l’espressione della coppia inalterata significa mantenere inalterata la lunghezza dei vettori. Non esiste un criterio assoluto per la decisione di quale tecnica adottare: si preferisce spesso imporre la seconda modalità, cioè che le componenti nel piano corrispondano a quelle dello spazio (grandezze bifase = grandezze trifase).

Se si adotta questa scelta, [i] e [λm] sono in realtà più corti di un fattore (23 ) e ciò deve essere

considerato nell’espressione della coppia, se si vuole determinare la coppia reale:

θλ

dd

ipT m×=23

I vettori [i] e [λm] saranno:

Page 7: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

182

182

)(32

)(32

32

21

32

21

mmmmmj

mm

j

aaje

iaaiijiieii

λλλλλλλ βαθ

βαα

++=+==

++=+==

dove l’elemento ejθ effettua la rotazione di θ. [λm] è in funzione di θ, intrinsecamente, mentre [i] è impostato dal controllo (sincrono).

I vettori [λm] e θλ

dd m sono ortogonali tra loro e di pari ampiezza λm:

mm

jmm

jd

d

e

λθλ

λλ θ

=

=

la dimostrazione si può ricavare sostituendo l’espressione estesa di [λm] nella sua derivata:

jjejeedd

ded

dd

mj

mj

mjm

jmm λλλ

θλ

θλ

θλ θθθ

θ

==+==)(

essendo:

0=θλ

dd m dato che il modulo del flusso concatenato è costante

032 B

pNrK

jed

de

m

jj

⋅⋅⋅==

=

lπλ

θθ

θ

La coppia può essere scritta:

ipT m ∧= λ23

equivalentemente:

)sin(23 θαλ −= ipT m

i

α θ

λm

dλm

dθ= λj

m

Page 8: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

183

183

l’angolo (α-θ) sarà fissato costante dal controllo (feedback) e pari a 2π (coppia massima).

Il vettore i dovrà essere sincrono al flusso ma sfasato di 2π , questo è compito del controllo.

Entrambi i vettori [λm](θ) e [i] (θ) sono funzioni di θ.

La coppia, nell’ipotesi di avere i due vettori sfasati sempre di 2π sarà:

)(23 tipT mλ=

viene regolata nel tempo variando il valore della corrente i(t). Ci siamo così ricondotti ad un modello che ricorda molto strettamente quello di un motore in corrente continua:

)()( tiKtT aφ= Dove ia(t) è la corrente di armatura. Per il controllo ci si riferisce normalmente ad un sistema di riferimento sincrono con il motore: assi (d, q), dove lasse d coincide con il vettore mλ . Abbiamo bisogno quindi di un sensore di posizione per misurare la posizione del rotore, e quindi conoscere la posizione di mλ , per controllare i .

Concludendo:

- il vettore iq deve essere sfasato di 2π rispetto al flusso concatenato mλ , così da ottenere la coppia

massima. - d rappresenta la direzione del flusso concatenato ( mezzeria del polo nord ) Deve essere scelto allineato con il vettore λ , e quindi λ coincide con la componente d:

i

θ

λm

iq

λm

q

d

Page 9: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

184

184

qmipT λ

23

=

Per portarsi sugli assi rotanti (d, q) si possono individuare “trasformazioni matriciali” , che operano direttamente sulle componenti del vettore . 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi (α , β) ad assi rotanti (d , q)

dove α coincide con l'asse dell'avvolgimento 1 e θ rappresenta la posizione del rotore

⎪⎩

⎪⎨⎧

+−=

+=

θθ

θθ

βα

βα

cossen

sencos

IIIq

IIId

⎥⎦

⎤⎢⎣

⎡⋅⎥

⎤⎢⎣

⎡−

=⎥⎦

⎤⎢⎣

⎡βθθ

θθ α

II

IqId

cossensencos

La matrice inversa di A(θ) è pari alla sua trasposta:

⎥⎦

⎤⎢⎣

⎡ −==

⎥⎦

⎤⎢⎣

⎡−

=

θθθθ

θθ

θθθθ

θ

cossensencos

)()(

cossensencos

)(

1 tAA

A

Si ha quindi:

⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

β

αθII

AIqId

)(

⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡IqId

AII t )(θ

β

α

L'operatore A(θ) trasforma le coordinate dello stesso vettore da un sistema di riferimento (α, β) all ' altro (d ,q) . L'operatore e-jθ, applicato ad un vettore , lo ruota di -θ rispetto allo stesso sistema di riferimento: A(θ) ⇔ e-jθ At(θ) ⇔ ejθ

Page 10: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

185

185

in pratica , se si ruota i di -θ (che equivale a moltiplicare la funzione di (α, β) per e-jθ allora si ottengono coordinate del sistema di riferimento (d , q):

αβθ

βααβ

iei

jiii

jiii

jdq

qddq

−=

+=

+=

Infatti:

⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡−

=⎥⎦

⎤⎢⎣

+−++=+−=+

β

α

βαβαβα

θθθθ

θθθθθθ

ii

sinsin

ii

isinijsiniijiijsinjii

q

d

qd

coscos

)cos(cos))((cos

10.6 Trasformata di Clarke Se invece vogliamo ottenere una trasformazione dal sistema trifase ( 1 , 2 , 3 ) a quello bifase (α, β) , ricorriamo alla trasformazione Clarke. Nell'ipotesi di conservare l'ampiezza delle componenti (scelta effettuata ) otteniamo:

⎥⎦

⎤⎢⎣

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

−−

−=⎥⎥⎥

⎢⎢⎢

β

α

ii

iii

23

21

23

21

01

3

2

1

Mentre la trasformazione inversa ( dal sistema bifase a quello trifase ) è:

i

α

β

θ

qdθ

e -jθi

Page 11: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

186

186

⎥⎥⎥

⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

−−=⎥

⎤⎢⎣

3

2

1

23

230

21

211

32

iii

ii

β

α

⎥⎥⎥

⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

−−=⎥

⎤⎢⎣

3

2

1

31

310

31

31

32

iii

ii

β

α

ottenuta avendo moltiplicato i termini nella matrice per il fattore 2/3 . Quest'ultimo era stato introdotto affinché si arrivasse alla condizione:

identitàBBt =32

Page 12: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

187

187

10.8 CONTROLLO DI MACCHINA: BRUSHLESS SINUSOIDALE L'obiettivo del controllo di macchina è cercare di avere il vettore corrente sincrono ed in quadratura con λm

Infatti orientare i in modo che sia sfasato di 90° rispetto a mλ consente di avere sempre la coppia massima .

mλ è posizionato sulla mezzeria del polo nord ( flusso magnetico ). La coppia è indipendente dalla posizione angolare del rotore, se il controllo mantiene sempre i ortogonale a mλ , e sarà data dall'equazione:

qmiptT λ23)( =

id = 0 ( controllo ), perché non dà nessun contributo. Scriviamo le equazioni con riferimento agli assi rotanti:

[ ]

dtdiRV

iLeq m

][][][

][][λλλ

+=

+=

considerando la prima equazione:

][][][ miLeq λλ += con t],,[][ 321 λλλλ =

Applichiamo la trasformazione di Clark per passare dal sistema trifasico 1, 2, 3 a quello bifasico α, β:

iq

λm

q

d

Page 13: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

188

188

Dovremmo moltiplicare per BB32'= per avere la trasformazione da un sistema all'altro .

La nuova equazione è:

αβαβαβ λλ miLeq +⋅= Ora passiamo dal sistema di riferimento (α, β) a quello ad assi rotanti (d, q). Attraverso la trasformazione di Park, cioè utilizzando la matrice A(θ) vista in precedenza, si ottiene:

αβλλ mdqdq iLeq +⋅= con αβλθλ )(Adq = che è l'equazione dei flussi, valida soltanto nelle ipotesi di non saturazione e di struttura isotropa .

Agiremo nella stessa maniera , considerando gli avvolgimenti:

[ ]dt

diRV ][][ λ+=

Passiamo al sistema di riferimento (α, β) , ( trasformazione Clarke ):

dtd

iRV αβαβαβ

λ+=

con Β' costante Ricordando ora che moltiplicare l‘equazione per la matrice A (θ) equivale a moltiplicare per l‘operatore θje− , possiamo scrivere:

αβθ VeV j

dq−= ⇒ θ

αβj

dqeVV = e per lo stesso motivo :

dqj iei θ

αβ =

dqje λλ θ

αβ = Siamo quindi già passati nel sistema di riferimento ad assi rotanti (d,q) . Andando a sostituire nella (1) i valori di αβV , αβi e αβλ appena trovati, risulta:

Page 14: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

189

189

[ ]dt

ediVe dqj

dqj

dqj λθ

θθ += Re

[ ]

dtdej

dted dqj

dqdq

j λλωλ θθ

+=

arrivando all ‘ equazione finale:

dqdq

dqdq jdt

diRV λωλ++= ( B )

dove il termine dqj λω rappresenta le forze elettromotrici mozionali. La presenza di queste f.e.m. è dovuta al fatto che, nel procedimento appena visto, la trasformazione delle equazioni avviene su sistema di riferimento in movimento. Se il sistema non fosse stato in movimento avremmo avuto:

0=dqj λω Consideriamo ora la figura:

possiamo scrivere quindi: ( ) qdj λλ −= ( ) dqj λλ = Andando a considerare queste due espressioni e l‘equazione precedente possiamo arrivare al sistema:

⎪⎪⎩

⎪⎪⎨

++=

−+=

dq

qq

dd

dd

dtd

RiV

dtd

RiV

ωλλ

ωλλ

Occupiamoci ora del sistema che riguarda i flussi:

⎪⎩

⎪⎨⎧

+=

+=

mqqeqq

mddeqd

iL

iL

λλ

λλ

Page 15: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

190

190

Considerando il sistema di riferimento (d,q), si può dire che: λmq = 0 λmd = λm

Ricordando che la derivata di λm rispetto al tempo è zero (λm = cost.) e tenendo in considerazione gli accorgimenti appena visti, possiamo scrivere le equazioni del Brushless nel sistema di riferimento (d,q):

⎪⎪⎩

⎪⎪⎨

+++=

−+=

mdeqq

eqqq

qeqd

eqidd

iLdtdi

LRiV

iLdtdi

LRV

ωλω

ω

Ottenute sostituendo i valori di λd e λq al sistema precedente. Il termine ωλm rappresenta la forza controelettromotrice e può essere considerata come un disturbo, dato che la dinamica di variazione della velocità ω è molto più lenta di quella che riguarda la variazione delle correnti. Si può notare che le due equazioni di macchina in (d,q) non sono indipendenti, ma interagiscono fra di loro. Questo fatto ha un’importanza rilevante dato che, andando a controllare una corrente, si tende a variare involontariamente anche l‘altra. Quello che si cerca di fare è annullare questa dipendenza tra le equazioni. La retroazione di corrente elimina l‘iterazione tra gli assi (d,q), nell‘ipotesi di banda sufficientemente elevata (guadagni del regolatore elevati). Infatti se si spostano i segnali di interazione, ωLeqIq e ωLeqId a monte dei regolatori, occorre dividere tali segnali per il guadagno proporzionale del regolatore Kp, che se è elevato rende trascurabile l’effetto di questi componenti.

Page 16: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

191

191

Ripetendo lo stesso discorso per la f.c.e.m. ω pλm, allora si può dire che per Kp elevati la retroazione di corrente ne riduce l’effetto, come nel motore in corrente continua. Se si impone id = 0 nel sistema visto prima, l‘equazione dell‘asse q diventa analoga a quella di un motore in corrente continua:

mq

eqiqq dtdi

LRV ωλ++=

infatti:

ωφKdtdi

LRiV aaaa ++=

Il controllo di macchina nei motori brushless può essere realizzato in due modi: - Realizzazione del controllo vettoriale su assi rotanti:

In questo caso i regolatori sono posti nel sistema di riferimento (d,q), per fare ciò, si misurano le correnti nel sistema trifasico ( solo 2 perché la terza corrente si ricava dall’equazione (i1+ i2+ i3)=0), con le trasformazioni di di Clarke e di Park si determinano le componenti delle correnti id e iq in (d,q). A questo punto si può effettuare il controllo in questo sistema di riferimento, dove id

*

viene posto uguale a zero e iq* è il set point di coppia. Con le trasformazioni di Park e Clark inverse

si ottengono le tensioni nel sistema trifasico che dovranno essere applicate al motore. Per la trasformazione di Park occorre conoscere l‘angolo θ, che è ottenuto tramite un sensore di posizione calettato sull‘albero motore. Utilizzando questo tipo di controllo si ottiene un errore che a regime si annulla: infatti i regolatori PI controllano grandezze che a regime sono continue. Lo svantaggio sta nel fatto di dovere utilizzare due matrici complete di trasformazione (A(θ) e At(θ) ). Occorre quindi effettuare otto moltiplicazioni per effettuare le trasformazioni. Un tempo, le trasformazioni erano eseguite in analogico e questo le rendeva molto complicate. Per questo si preferiva porre i regolatori su assi fissi anziché su assi mobili.

+−

2 3

2 3 Σ ij= 0i

1 2 3

v1 2 3

iα βi

d q

id q

vα βv

d q

A( )θ

A ( )t

θ

θ

* ** *

Page 17: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

192

192

Vediamo questa seconda soluzione: - Realizzazione del controllo vettoriale su assi fissi

Vediamo che i regolatori sono ora posti su assi fissi. Serve una sola mezza matrice At(θ), (dato che id = 0), e quindi servono soltanto due moltiplicazioni. Questo vantaggio è pagato dal fatto che le prestazioni del controllo sono inadeguate ad alta velocità; gli anelli i1, i2, i3 lavorano a regime su grandezze sinusoidali. I set-point variano continuamente, cioè l‘errore non si annulla a regime. NOTE : I sensori di posizione, resolver o encoder incrementale, devono essere allineati con il corpo magnetico del rotore. Per effettuare l‘allineamento si utilizza l‘equazione della coppia.

23

=T p mλ ∧ i

Quello che si cerca di fare è di imporre il vettore della corrente [i] in una certa direzione (generalmente lungo l‘asse 1 che coincide con l‘asse α). Finché [λm] non coincide con [i], la coppia non è nulla. L‘allineamento è verificato quando [λm] = [i], ottenendo così T = 0. E’ importante che il rotore si possa muovere liberamente.

+−

2 3

Σ ij= 0i

1 2 3

v1 2 3

iα βi

q

θ

At i

1 2 3

** **

Page 18: 10.2 Brushless Sinusoidale - Unife · 10.6 Trasformata di Park • Trasformazione ( Park ): permette il passaggio da assi fissi ( α , β ) ad assi rotanti (d , q) dove α coincide

Motori Brushless

Università degli studi di Ferrara Azionamenti Elettrici

193

193

La scelta del sensore di posizione deve essere fatta in base al tipo di applicazione: in genere si preferisce il resolver per applicazioni a basse velocità (per le tensioni spurie che potrebbero crearsi alle alte velocità) e l‘encoder incrementale alle alte . Si stanno sviluppando altri sensori , quali i sincoder, per applicazioni di elevata precisione.