2014-033

Embed Size (px)

Citation preview

  • 8/10/2019 2014-033

    1/44

    Research DivisionFederal Reserve Bank of St. Louis

    Working Paper Series

    Can risk explain the profitability of technical trading in

    currency markets?

    Yuliya IvanovaChris Neely

    David Rapach

    and

    Paul Weller

    Working Paper 2014-033Ahttp://research.stlouisfed.org/wp/2014/2014-033.pdf

    October 2014

    FEDERAL RESERVE BANK OF ST. LOUISResearch Division

    P.O. Box 442

    St. Louis, MO 63166

    ______________________________________________________________________________________

    The views expressed are those of the individual authors and do not necessarily reflect official positions of

    the Federal Reserve Bank of St. Louis, the Federal Reserve System, or the Board of Governors.

    Federal Reserve Bank of St. Louis Working Papers are preliminary materials circulated to stimulate

    discussion and critical comment. References in publications to Federal Reserve Bank of St. Louis Working

    Papers (other than an acknowledgment that the writer has had access to unpublished material) should be

    cleared with the author or authors.

  • 8/10/2019 2014-033

    2/44

    Can

    risk

    explain

    the

    profitability

    of

    technical

    trading

    in

    currency

    markets?

    YuliyaIvanova*

    ChrisNeely

    DavidRapach

    Paul

    Weller

    October30,2014

    JELCodes: F31,G11,G12,G14

    Keywords:Exchangerate;Technicalanalysis;Technicaltrading;Efficient

    markets

    hypothesis;

    Risk;

    Stochastic

    Discount

    Factor;

    Adaptive

    markets

    hypothesis;Carrytrade;

    *Ph.D. Candidate, Department of Finance, University of Iowa, Iowa city, IA 52245; e-mail: [email protected]; phone: +1-319-335-0926; fax: +1-319-335-3690. Assistant Vice President, Federal Reserve Bank of St. Louis, St. Louis, MO 63166; e-mail:[email protected]; phone: +1-314-444-8568; fax: +1-314-444-8731.

    Professor of Economics,

    Saint Louis University, St. Louis, MO 63108; e-mail: [email protected]; phone:

    +1-314-977-3601; fax: +1-314-997-1478.John F. Murray Professor of Finance Emeritus, University of Iowa, Iowa city, IA 52245; e-mail: [email protected]; phone: +1-319-335-0948; fax: +1-319-335-3690.

    Chris Neely is the corresponding author. We thank seminar participants at the Federal Reserve Bank of St.Louis for helpful comments. The usual disclaimer applies. The views expressed in this paper are those of

    the authors and do not reflect those of the Federal Reserve Bank of St. Louis or the Federal Reserve

    System.

  • 8/10/2019 2014-033

    3/44

    AbstractItisarobustfindingthattechnicaltradingrulesappliedtoforeignexchangemarkets

    haveearnedsubstantialexcessreturnsoverlongperiodsoftime.However,theapproachto

    riskadjustmenthas typicallybeen rathercursory,andhas tended to focuson theCAPM.

    Weexaminethereturnstoasetofdynamictradingrulesandlookattheexplanatorypower

    ofawiderangeofmodels:CAPM,quadraticCAPM,CCAPM,Carharts4factormodel,an

    extendedCCAPMwithdurableconsumption,LustigVerdelhan(LV)factors,volatilityand

    skewness.Althoughskewnesshassomemodestexplanatorypowerfortheobservedexcess

    returns, no model can plausibly account for the very strong evidence in favor of the

    profitabilityof technical analysis in the foreign exchangemarket.We conclude that thesefindings strengthen the case for consideringmodels incorporating cognitivebias and the

    processesoflearningandadaptation,asexemplifiedintheAdaptiveMarketsHypothesis.

  • 8/10/2019 2014-033

    4/44

    1

    1.

    Introduction

    It is a stylized fact that excess returns for currencyrelated trading strategies,

    especially the carry trade, areweakly correlatedwith traditional risk factors, such as the

    CAPMsequitymarketfactor.Tobettermeasureabnormalreturnsincurrencymarketsand

    assess market efficiency, recent studies propose a variety of risk factors for carry trade

    portfolios. These risk factors include consumption growth (Lustig and Verdelhan, 2007),

    crash risk (Brunnermeier, Nagel, and Pedersen, 2008), a forward premium slope factor

    (Lustig,Roussanov, andVerdelhan, 2011), economic size (Hassan, 2013),global exchange

    rate volatility (Menkhoff, Sarno, Schmeling, and Schrimpf, 2012), and liquidity (Mancini,

    Ranaldo,andWrampelmeyer,2013).

    Theserecentlyproposedcurrencyriskfactorsusefullyexplainthereturnstoacross

    sectionofcarrytradeportfolios.Nevertheless,theeconomiccaseforthesefactorswouldbe

    morecompellingiftheycouldalsoexplainexcessreturnsforinvestmentstrategiesbeyond

    thecarrytrade(Burnside,2011).Suchexplanatoryabilitywouldallaydataminingconcerns

    andbetterestablishtheeconomicrelevanceofthenewlyproposedcurrencyriskfactors.In

    this spirit, the present paper investigates the ability of recently proposed currency risk

    factorstoaccountfortheexcessreturnsoftechnicaltradingstrategies.Technicaltradinghas

    received less attention than the carry tradedespitebeing as successful,welldocumented

    and mysterious. Technical analysis (or trend following) is very popular among currency

    market participants (Menkhoff and Taylor, 2007), and a sizable literature indicates that

    traditional risk factors fail to explain the profitability of a variety of technical strategies.

    Fromthisstandpoint,theabilityofnewlyproposedcurrencyriskfactorstoaccountforthe

  • 8/10/2019 2014-033

    5/44

    2

    profitabilityof technicalstrategiesprovidesan informativetestofthefactorsrelevance.If

    newriskfactorsfailtoadequatelyaccountforthebehavioroftechnicalstrategies,thenthese

    factorsarelessappealingeconomicallyandthesearchformorerobustcurrencyriskfactors

    shouldcontinue.

    Weinvestigatetheabilityofabroadarrayofcurrencyriskfactorstoexplainexcess

    returnsfor the technicalportfoliosdeveloped inNeelyandWeller (2013).Theseportfolios

    arebased on a variety of popular technical indicators and provide a realistic picture of

    returns for trendfollowing practitioners. We consider the following models: CAPM,

    quadraticCAPM,CCAPM,Carharts4factormodel,anextendedCCAPMwithdurable

    consumption, LustigVerdelhen (LV) factors, volatility and skewness. In a nutshell, our

    resultsshowthatrecentlyproposedcurrencyriskfactorshavelittleexplanatorypowerfor

    technicalportfolioreturns.Thenewriskfactorsidentifiedintherecentliteraturethusdonot

    appearrelevantforanimportantclassofportfoliosinthecurrencyspace.Wehighlightthe

    dimensionsalongwhich thenew risk factors fail toaccount for thebehaviorof technical

    portfolios. The inadequacies of extant currency risk factors highlight the challenges in

    explainingtechnicalportfolioreturns.

    The restof thepaper isorganizedas follows.We firstdescribe theconstructionof

    currencyportfolios.We thendescribe thedifferent currency risk factors thatwe consider

    andeconometricmethodology.Ourempiricalresultsfollow.

  • 8/10/2019 2014-033

    6/44

    3

    2.

    Trading

    Rules

    and

    Data

    2.1TradingRules

    Thegoalofourpaperistoexaminewhetherrecentadvancesinriskadjustmentcan

    explain the seemingly very strong performance of traditional technical trading rules in

    foreign exchange markets. We would like our trading rules to represent those that the

    academic literature has investigated but also to be chosen dynamically, in an ex ante

    fashion, to mimic the backtesting habits of practitioners and also to exploit changing

    patternsinadaptivemarkets.Inordertodoso,webasicallyfollowNeelyandWeller(2013)

    who dynamically constructed portfolio strategies from an underlying pool of frequently

    studied rules 7 filter rules, 3moving average rules, 3momentum rules, and 3 channel

    ruleson19dollarand21crossexchangerates.5There isonenotabledifferencebetween

    therulesusedinthispaperandthoseinNeelyandWeller(2013):toisolatethedeterminants

    oftechnicaltradingrules,thepresentpaperdoesnotincludecarrytradereturnsamongthe

    rules.

    Menkhoffetal.(2012b)havepreviouslystudiedtheriskadjustmentofcertaintypes

    ofcurrencymomentumstrategies. Onemightbeconcerned that the rulesstudiedhere

    technicalruleswouldbeverysimilartothemomentumrulesstudiedbyMenkhoffetal.

    (2012b). But Menkhoff et al. (2012b) empirically evaluate this concern and argue that

    technicalrulesandmomentumrulesarequitedifferent.

    Allofthebilateralrulesborrowinonecurrencyandlendintheother.Thustheyall

    5Dooley and Shafer (1984) and Sweeney (1986) look at filter rules; Levich and Thomas (1993) look at filter

    and moving average rules; Jegadeesh and Titman (1993) consider momentum rules in equities, citing Bernard

    (1984) on the topic; and Taylor (1994) tests channel rules, for example.

  • 8/10/2019 2014-033

    7/44

    4

    produceexcessreturns.Wewillfirstdescribethetypesoftradingrulesbeforedetailingthe

    dynamicrebalancingprocedureforcurrencytradingstrategies.

    Afilterrulegeneratesabuysignalforaforeigncurrencywhentheexchangerate

    (domesticpriceofforeigncurrency)hasrisenbymorethanypercentaboveitsmostrecent

    low. It generates a sell signalwhen the exchange ratehas fallenbymore than the same

    percentagefromitsmostrecenthigh.Thus,

    (1)

    where is an indicator variable that takes the value +1 for a long position in foreign

    currencyand1 fora shortposition.nt is themost recent localminimumof andxt the

    most recent localmaximum.The seven filter ruleshave filter sizes (y)of0.005,0.01,0.02,

    0.03,0.04,0.05,and0.1.

    Amovingaveragerulegeneratesabuysignalwhenashorthorizonmovingaverage

    ofpastexchangeratescrossesalonghorizonmovingaveragefrombelow.Itgeneratesasell

    signalwhen the shortmoving average crosses the longmoving average from above.We

    denotetheserulesbyMA(S,L),whereSandLarethenumberofdaysintheshortandlong

    moving averages, respectively. The moving average rules are MA(1, 5), MA(5, 20), and

    MA(1, 200). Thus, MA(1, 5) compares the current exchange rate with its 5day moving

    averageandrecordsabuy(sell)signaliftheexchangerateiscurrentlyabove(below)its5

    daymovingaverage.

  • 8/10/2019 2014-033

    8/44

    5

    Ourmomentumrules takea long (short)position inanexchangeratewhen then

    daycumulativereturnispositive(negative).Weconsiderwindowsof5,20and60daysfor

    themomentumrules.

    Achannelruletakesalong(short)positioniftheexchangerateexceeds(islessthan)

    themaximum (minimum)over thepreviousndaysplus (minus) thebandof inaction (x).

    Wesetntobe5,10,and20,andxtobe0.001forallrules.Thus,

    (2)

    We apply these 16 bilateral rules 7 filter rules, 3 moving average rules, 3

    momentumrules,and3channelrulesto19dollarand21crossexchangerates, listed in

    Table1.TheseriesfortheDEMwassplicedwiththatfortheEURafterJanuary1,1999.For

    simplicitywerefertothisseriesthroughoutastheEUR.Notallexchangeratesaretradable

    throughout the sample. Table 1 details the dates on which we permit trading in each

    exchangerate.

    Inanystudyoftradingperformanceespeciallywhenusingexoticcurrenciesone

    mustpay closeattention to transaction costs.Rulesand strategies thatmay appear tobe

    profitablewhensuchcostsareignoredturnoutnottobeoncetheappropriateadjustments

    have been made. We follow the methods in Neely and Weller (2013) and calculate

    transactionscostsusinghistoricalestimatesforsuchcostsinthedistantpastandfractionsof

    Bloomberg spreads after those were available. Neely and Weller (2013) detail these

    calculations.

    otherwise

    1,...,minif

    1,...,maxif

    1

    1

    21

    21

    1

    xSSSS

    xSSSS

    z

    zntttt

    ntttt

    t

    t

  • 8/10/2019 2014-033

    9/44

    6

    2.2DynamicTradingStrategies

    We would like to construct dynamic strategies to mimic the actions of foreign

    exchange traders who backtest potential rules on historical data to determine trading

    strategies. Accurately modeling potential trading returns provides the most realistic

    environmentforassessingwhetherriskadjustmentexplainssuchreturns.

    Therefore,weconstructdynamictradingstrategiesasfollows:

    1. Ateachpoint in the sample,weapply the16bilateral rules toallavailable

    exchangerates,calculatingthehistoricalreturnstatisticsforeachexchangeraterulepairat

    eachpoint.There isamaximumof(16*40=)640exchangeraterulesonanygivenday,but

    missingdataforsomeexchangeratesoftenleavefewerthanhalfthatnumberofcurrency

    rulepairs.

    2. Starting 500 days into the sample, we evaluate the Sharpe ratios of all

    exchangeraterulepairswithatleast250daysofdatasincethebeginningoftherespective

    samples.WethensorttheraterulepairsbytheirexpostSharperatios,rankingtheraterule

    pairsbySharperatiofrom1to640.Wethenmeasuretheperformanceofthestrategiesover

    thenext20days.

    3. Every 20business days, we evaluate, sort and rank all available raterule

    pairsusingthecompletesampleofdataavailabletothatpoint.Thus,thereturnsonthetop

    ranked strategy pair willbe generatedby a given trading rule applied to a particular

    exchangerateforaminimumof20days,atwhichpointitmay(ormaynot)bereplacedby

    anotherruleappliedtothesameoradifferentcurrency.

    Werefertotheseriesofsortedpairsasdynamicstrategies.Thatis,theseriesofthe

  • 8/10/2019 2014-033

    10/44

    7

    bestexante ruleexchangeratepairs isknownasstrategy1, thesecondbestexante rule

    exchangeratepairsisknownasstrategy2,etc.

    Although we select the raterule pairs for the dynamic strategies based upon

    historicalperformance,asdescribedabove,weevaluatethestrategiesperformanceoverthe

    periodsaftertheyareselected. Thatis,allreturnperformancestatisticsinthispaperarefor

    strategiesthatwerechosenexanteandarethusimplementable.

    2.3Currencyportfolios

    As is customary in related literature,we examine the riskadjustment of technical

    tradingrulesinthefollowingway:Usingstrategies1to300touseastestassets,weform12

    equallyweightedportfoliosof25strategiesperportfolio.Thusportfoliop1attimetconsists

    ofthe25currencyrulepairswithSharperatiosranked1to25.Portfoliop2consistsofthe25

    currencyrule pairs with Sharpe ratios ranked 26 to 50, and so on. The makeup of the

    portfolios of currencyrule pairs may change from period to period with ex post Sharpe

    ratiorankings.6

    Iftechnicalanalysishaspredictivevalue,onewouldexpectthehigherranked(lower

    numbered) ex ante strategies to also do better ex post than the lower ranked (higher

    number) strategies. Figure 1 confirms a positive relation between ex ante and ex post

    performance over the sample. The figure shows the spread in excess return, standard

    deviationandSharperatiosoverthe12portfolios.Thetoppanelshowsthatall12portfolios

    6Alternatively, one could examine riskadjusted returns to a portfolio of the top N strategies. Althoughwe omit the full results for brevity, we also riskadjust the return to four such portfolios, using equal andex ante, meanvariance optimal weights and N = 10, 50. We will note results from these exercises whereappropriate.

  • 8/10/2019 2014-033

    11/44

    8

    havepositiveexcessreturns,generallydecliningasonegoesfromp1(4.61%perannum)to

    p12(1.08%perannum). Themiddlepanelshowsthatthehighrankedportfoliosalsotend

    tohavemorevolatile returns, though the relation isnotassteepas for returns.The third

    panelconfirmsthis:expostSharperatiosarehigherfor theportfolioswithhigherexante

    rankings,rangingfrom0.92forp1to0.29forp12.

    3. Theoreticalframeworkforriskadjustment

    3.1GeneralFramework

    Toprovideageneralframeworkwithinwhichtomeasureriskexposureweneedto

    characterize equilibrium in the foreign exchange market. We assume the existence of a

    representative investorbased in theUS,and introducea stochasticdiscount factor (SDF),

    that prices payoffs in dollars.7It represents a marginal rate of substitutionbetween

    presentandfutureconsumptionindifferentstatesoftheworld.Thefirstorderconditions

    forutilitymaximizationsubjecttoan intertemporalbudgetconstraintimplythatanyasset

    returnmustsatisfy

    |=1 (3)

    wheredenotes the informationavailable to the investor at time t.Varyingassumptions

    about the content ofproduce thedifferent categories ofmarket efficiency advancedby

    Fama. Since we are modeling the risk exposure of technical trading rules we will be

    primarilyconcernedwithweakform

    efficiency inwhich the information setcontainsonly

    pastprices.

    7 Although we motivate the SDF framework with a representative investor, much weaker assumptions are

    sufficient. In particular, absence of arbitrage implies the existence of a SDF framework, as in equation (3).

  • 8/10/2019 2014-033

    12/44

    9

    Equation(3)impliesthattheriskfreeassetreturnisgivenby

    = | (4)

    Using(3),(4)andthedefinitionofcovariance,itfollowsthat

    |= ,|| . (5)

    That is, the excess return to any asset or trading strategy will be proportional to the

    covarianceoftheassetreturnwiththeSDF.

    The implication for technical trading strategies that take positions in foreign

    currencies based on past prices is then straightforward. Positive excess returns are

    consistentwithmarketefficiencyonlyiftheexcessreturnalsocovariesnegativelywiththe

    SDF. This then raises the question of how to model the SDF and how to test whether

    equation(5)explainsreturns.

    Therearepotentiallyseveralways inwhichonecould test theextent towhich the

    SDFframeworkcanexplainexcessreturnstothetradingrules. Themostdirectwouldbeto

    model theSDF,, in (3)witha specificutility functionandcalibratedparametersand

    test whether the errors from (3) are mean zero. Alternatively, one could estimate the

    parameters of with some nonlinear optimization method, such as the generalized

    method of moments (GMM), and test the overidentifying restrictions. Finally, one could

    linearize theSDF,,with aTaylor series expansion, estimate a linear time seriesor a

    returnbetamodelandevaluatewhether therisk factorsexplain theexpected returns.The

    nextsubsectionsdetailthosetestingprocedures.

  • 8/10/2019 2014-033

    13/44

    10

    3.2TestingaCalibratedSDF

    Initially,wewillfollowLustigandVerdelhan(2007)inusinganextendedversionof

    the CCAPM to adjust returns for risk. They use the model of Yogo (2006) in which a

    representative agent has EpsteinZin preferences over durable consumption and

    nondurableconsumption.Utilityisgivenby

    1 ,

    (6)

    whereisthetimediscountfactor,isameasureofriskaversion,istheelasticity

    ofintertemporalsubstitutioninconsumption,and 1 1 1 .Theoneperiodutilityfunctionisgivenby

    , 1 (7)

    where is the weight on durable consumption and is the elasticity of substitution

    between durable and nondurable consumption. Yogo (2006) shows that the stochastic

    discountfactortakestheform

    , (8)

    Where 1

    and,isthereturnonthemarketportfolio.

    Thismodel, theEpsteinZindurable consumptionCAPM (EZDCAPM)nests two

    othermodelsofinterest,thedurableconsumptionCAPM(DCAPM)andtheCCAPM.The

    DCAPMholds ifwe impose the restriction 1 .TheCCAPMholds if inadditionwe

    impose .Thestochasticdiscountfactorin(8)satisfiesthefamiliarEulerequationin(3).

  • 8/10/2019 2014-033

    14/44

    11

    Toinitiallyassesstheseconsumptionbasedmodelsofrisk,wecarryoutacalibration

    exercise similar to that in Lustig and Verdelhan (2007). We choose parameter values

    identified in Yogo (2006): 0.023, 0.802, 0.700. Then we use sample data on

    durableandnondurableconsumptionand thereturnon themarketportfolio togenerate

    pricing errors = 0, whereR is the excess return to portfolio pi, and i

    1, ,12.8The coefficient of relative risk aversion is chosen to minimize the sum of

    squaredpricingerrorsintheEZDCAPM.Table2presentstheseresults.Allmodelsclearly

    perform very poorly; theis negative in every case.9The maximum Sharpe ratios and

    priceofriskdiffersubstantiallyfromthoseinTable4ofLustigandVerdelhen(2007).Since

    their testassetsare currencyportfolios sortedaccording to interestdifferentialwewould

    expect thesenumbers tobesimilar.Theportfolioswith thehighest returnshavenegative

    betas(p1hasabetaof 1.97).Thisimpliesthattheportfolioreturncovariespositivelywith

    M.SinceMishighinbadtimeswhenmarginalutilityishighandconsumptionislow,these

    portfoliosactasconsumptionhedgesandwouldbeexpectedtoearnrelativelylowreturns.

    3.3LinearFactorModels

    ResearcherstypicallylinearizetheSDFwithafirstorderTaylorapproximationand

    thenassessthemodelsfitofthedatawiththatlinearsystem. Althoughitisnotclearhow

    well the linearmodel approximates the SDF, thisproceduremakes estimation somewhat

    easierandisconsistentwiththeliterature.

    Therefore,weconsidertheclassoflinearSDFsthattaketheform

    8Recall that portfolios p1 to p12 each consist of 25 currency-rule pairs, ranked every 20 days by ex-ante Sharpe

    ratio. P1 contains strategies 1 to 25; p2 contains strategies 26 to 50 and so on.9The R2s are negative because the models predictions covary negatively with the mean excess returns of the

    test assets.

  • 8/10/2019 2014-033

    15/44

    12

    (9)

    whereis a scalar, is a 1vector of parameters andis a 1vector of demeaned

    factors that explain assetprice returns.The constantin (9) isnot identifiedandwe can

    normalizeittounity.10WehypothesizethattheSDFpricesportfoliosofexcesstradingrule

    returns,,inwhichcaseequation(3)impliesthat

    | 0 (10)

    Theunconditionalversionof(10)is

    1 0 (11)

    fromwhichitfollowsthat

    (12)

    whereis the factor covariancematrix, is a 1vectorof coefficients in a

    regressionofonand isa 1vectoroffactorriskpremia.

    The model (12) is a returnbeta representation. It implies that an assets expected

    return isproportional to itscovariancewith therisk factors. Thebetasaredefinedas the

    timeseriesregressioncoefficients

    1, ,, 1, , (13)

    whereis the nondemeaned factor at time t. In the special case that the factors,, are

    excessreturns,thentheintercepts()inthetimeseriesrepresentation(13)arezero.Wecan

    seethisbyfirstnotingthattheexpectationofthefactormustsatisfy(12)becausewehave

    assumedthatthefactorisalsoareturn.

    10For any pair, {a,b}, such that 0, any {ca, cb} where cis a real constant would also satisfythe equation because 0. Therefore, only the ratio b/amatters and one can normalize ato 1or to any other constant.

  • 8/10/2019 2014-033

    16/44

    13

    (14)

    wherethesecondequalityfollowsbecausemustequalonebecausethefactorcovaries

    perfectlywithitself.Second,wetakeexpectationsin(13)andsolvefortheconstant

    0 (15)

    Thesecondequalityin(15)uses(12)and(14).

    Forthesecases inwhichthefactor isitselfanexcessreturne.g.,theCAPMone

    cantestthemodelbyregressingasetofNexcessreturnstotestassetsonthefactor,asin

    (13),andthendirectlytestingwhethertheconstants()arezero. Iftheconstantsarenon

    zero,thenthemodelfailstoexplaintheexcessreturntothetestassets.

    For testsofmoregeneralsetsof factors,FamaMacBeth (1973)suggesta twostage

    procedurethatfirstestimatesthesforeachtestassetwiththetimeseriesregression(13).11

    Thesecondstagethenestimatesthefactorprices fromacrosssectionalregressionofmean

    excessreturnsfromthetestassetsonthebetas.

    , (16)

    where is the regression coefficient tobe estimated ands are the pricing errors. The

    model impliesnoconstant in (16)butone isoften includedwiththereasoning that itwill

    pickupestimationerrorintherisklessrate.Alargevalueof,orasignificantchangeinthe

    fitofthemodelwithaconstantindicatesapoorfit(Burnside(2011)).Foragivensetoftest

    assets,thevariationofthebetasin(14)determinestheprecisionoftheestimatedfactorrisk

    11Fama-MacBeth (1973) originally used rolling regressions to estimate the s and cross-sectional regressions at

    each point in time to estimate a and for each time period, then using averages of those estimates to getoverall estimates. The time series of and estimates could then be used to estimate standard errors for theoverall estimates that correct for cross-sectional correlation.

  • 8/10/2019 2014-033

    17/44

    14

    premia, . If thebetas do not vary sufficiently, then is not identified and the test is

    inconclusive.

    ThestandarderrorsinthesecondstageoftheoriginalFamaMacBethproceduredo

    not account for the fact that the regressors () are generated regressors. Shanken (1992)

    suggestsacorrectiontoaccountforthisissue.OnecanuseGMMtosimultaneouslyestimate

    both (13) and (16), obtaining the identical point estimates as the 2stage procedurebut

    properlyaccounting for crosssectional correlation,heteroskedasticityand theuncertainty

    aboutin the covariancematrix of theparameters (seeCochrane, 2005 chapter 10).The

    momentrestrictionsaregivenby

    , 0, 0

    , 0 for 1,2,and 1,2, (17)

    Inourempiricalexercises,weestimatethebetareturnmodelswithGMMandpresentthree

    setsofstandarderrorsOLS,ShankenandGMMintheinterestofcomparison.

    4. Results

    4.1CAPMmodelsofthereturnstop1throughp12

    Figure1showedthattheexpostSharperatiosofthetechnicalstrategiesvariedwith

    their ex ante rank. That is, past returns tend to predict future returns. Does the risk

    adjustmentaffecttheexpectedcrosssectionofreturns?

    AsabenchmarkwefirstlookatwhethertheCAPMcanexplaintheexcessreturnsto

    the12portfolios,P1P12,whichconsistofstrategies125,2650,276300,respectively.The

    model has a single factor, the market excess return, and so we consider the following

    regressionequationforeachportfolio:

  • 8/10/2019 2014-033

    18/44

    15

    , , (18)

    whereistheexcessreturntothedynamicportfoliostrategyandisthemarketexcess

    return.Themodelrequiresthattheintercept,alpha,notbesignificantlydifferentfromzero.

    Apositivealphawouldimplythatthemodelfailstoexplainthereturn.

    PanelAofTable3 shows the results for regression (13) for the12portfolios. The

    riskadjustmentleavesthemeanreturn(alphas)essentiallyunchangedforall12portfolios.

    PortfolioP1,forexample,hasahighlysignificantmonthlyalphaof0.39,or4.68percentper

    annum.Thehighlysignificantalphas indicate that themarket factorcannotexplain the

    excessreturnstothetechnicalportfoliosandthenegativebetasindicatethatthereturnsare

    notevenpositivelycorrelatedwiththemarketreturns.WeconcludethattheCAPMfailsto

    explaintheexcessreturnsofthedynamicportfoliostrategies.

    WeturntothequadraticCAPMinTable3.

    , , , (19)

    Because the squared excess return is not the return to a tradable portfolio, we cannot

    interpret theconstant in the timeseriesregressionasariskadjustedreturn.Here too, the

    coefficients on the market (are all negative, which would tend to indicate that the

    marketriskdidnotexplaintheforexportfolioreturns,butthequadratictermsusuallyhave

    significantlypositivecoefficients( thatsuggestthatequitymarketvolatilityinfluences

    dynamic technical portfolio returns. Menkhoff et al. (2012a) document a similar

    phenomenon forcarry tradereturns.Further, therightmostcolumnsshow that these

    coefficientsjointly differ from zero and from each other, which potentially allows us to

    identifythepriceofriskforthequadraticCAPMfactor.

  • 8/10/2019 2014-033

    19/44

    16

    TheQuadCAPM columnsofPanelB show thataddingaconstant to thecross

    sectional regression raises the R2 from 0.11 to 0.18 but the constant is not statistically

    significantwithGMMstandarderrors.Thepriceofriskforthequadraticmarketreturnis

    0.31 and statistically significant. These statistics indicate that the quadratic CAPM might

    partiallyexplainsomeoftheexcessreturnsofthedynamicportfoliostrategies.

    WenextexamineCarharts(1997)fourfactorextensionofthethreefactormodelof

    FamaandFrench(1993)wheretheriskfactorsaretheexcessreturnontheU.S.stockmarket

    (),thesizefactor(),thevaluefactor()andthemomentumfactor().12

    , , , , (20)

    Panel A of Table 3 shows that the alphas for the top portfolios are positive and

    highlysignificantandthecoefficientsontheregressorsaregenerallynegative(,and

    )orinsignificant().TherightmostcolumnsofPanelAshowthatonecannotreject

    the nulls of no variation in any of the fourbeta vectors. This indicates that one cannot

    conclusively identify the price of risk for these factors. Perhapsbecause of this lack of

    identification,thepricesoffactorriskestimatedbycrosssectionalregressionforbothSMB

    andHMLarenegative,whichisinconsistentwithestimatesderivedfromthesamplemean.

    Asnotedabove,whenthefactorsaretradableexcessreturnsthenfactormeansareequalto

    pricesofrisk.The factormeans inoursampleare0.58% (),0.24% (),0.29% ()

    and 0.68% ( ). There is no evidence that the fourfactor model explains the excess

    12 Fama and French (1993) showed that 3-factors, market return, firm size and book-to-market ratios very

    effectively explained the returns of certain test assets. The factors used in equation (15) are returns to zero-

    investment portfolios that are simultaneously long/short in stocks that are in the highest/lowest quantiles of thesorted distribution. For example, the small-minus-big (SMB) portfolio takes a long position in small firms and a

    short position in large firms.

  • 8/10/2019 2014-033

    20/44

    17

    returnstothedynamicportfoliostrategies.

    4.2Consumptionbasedmodelsofthereturnstop1throughp12

    Wenowexaminewhetherconsumptionbasedmodelsofassetpricingexplainthe

    returnstothe12portfoliosofdynamicstrategies.TheCCAPMrelatesassetreturnstothe

    realconsumptiongrowthofariskaverserepresentativeagent,asinequation(8).

    Wefirstconsiderthreevariationsofthelinearapproximationofthefactormodelin

    (8),theCCAPM,DCAPMandEZDCAPM(Yogo(2006)).

    , , , , (21)

    whereandare lognondurableanddurableconsumptiongrowth respectively,and

    ,isthelogreturnonthemarketportfolio.Thelinearapproximationforthemostgeneral

    of thesenestedmodels,theEZDCAPM,usesnondurablesplusservices,durablesandthe

    marketexcessreturnasfactors.Onecanestimatethefactorprices,,andportfoliobetas,i

    withthebetarepresentationgivenbyequations(13)and(16).

    , , , ,, , (22)

    , , , , (23)

    where , , , , ,is the factor covariance matrix and is

    thecovariancematrixbetweenthetestreturnsandthefactors.TheDCAPMandCCAPM

    restrict, andthepair,{, ,,}toequalzero,respectively.13

    Table4,PanelApresentstheresultsof the timesseriesregressions.Allmodels,C

    CAPM,DCAPMandEZDCAPMperformpoorly.FortheCCAPMthebeta forportfolio

    p1issignificantatthe10percentlevelbuthasthewrong(negative)sign.Mostofthebetas

    13One could infer the utility function parameter values from the estimates of the coefficients on the factors in

    the linear model, as in Lustig and Verdelhan (2007), see equation (4) in that paper.

  • 8/10/2019 2014-033

    21/44

    18

    for the DCAPM and EZDCAPM are either negative or insignificant. The rightmost

    columnsofPanelA show that thebetavectors allvary significantly from zeroand from

    eachother,permittingidentificationofthepricesofrisk.

    PanelBshowstheresultsofthecrosssectionalregressionsforeachmodelestimated

    withandwithoutaconstant.IncludingconstantsappearstochangethefitoftheCCAPM

    andDCAPMmodels:Theconstantsarenotsignificantattheonesided10percentleveland

    change the R2s from negative to positive levels. The negative R2s are damning: They

    indicatethatasimpleconstantwouldexplaintheexpectedreturnsbetterthanthemodel.

    TheEZDCAPMmodelappearstofitbetterthantherestrictedmodels.Theconstant

    isnotsignificantandtheR2issizable,at0.61anddoesnotchangemuchwiththeadditionof

    the constant.Theprice of risk fornondurable consumption in theEZDCAPMmodel is

    statisticallysignificantbutnegative,2.24percent.Thisnegativepriceofriskisimplausible

    becausetheorypredictsthatitshouldbepositivewhenthecoefficientofriskaversion 1,

    andtheelasticityofsubstitutioninconsumption 1.Yogo(2007)estimates tobe0.210

    fortheEZDCAPMwithequityassets.

    We find in all cases that the coefficient of risk aversion is estimated to be

    significantlynegative.The reason for thiscanbe seenclearly in thecaseof theCCAPM.

    Equation (5) implies that , ; the Fundamental Theorem of Asset Pricing

    requirestobepositiveandsoitfollowsthatifanassethasapositiveexpectedexcess

    return itmust covarynegativelywith theSDF.TheSDF (M), in turn, ismarginalutility,

    which will covary negatively with consumption. In the case of the CCAPM where the

    singlefactorisconsumptiongrowth,thismeansthatthemodelpredictsthatreturnstothe

  • 8/10/2019 2014-033

    22/44

    19

    higher ranking dynamic portfolio strategies should be positively correlated with

    consumptiongrowth. In fact,we find thereverse: thedynamicportfoliostrategies tend to

    performwellinstateswhenconsumptiongrowthislow,andthusprovideahedgeagainst

    consumption risk. Tobe consistent with the model such strategies should earn negative

    excessreturns.

    Figure2displaystheactualmeanexcessreturntoeachportfolio()versusthe

    predicted return ( for the crosssectional regressions that include a constant.

    Intriguingly, there does appear tobe a positive relationshipbetween the predicted and

    actualreturnforallthreemodels,CCAPM,DCAPMandEZDCAPM. Recall,however,that

    the prices of risk are implausibly signed and that the crosssection regression should

    excludetheconstant.

    If one excludes the constant from the regression, the actual returns exceed the

    predicted return for all but one return for the CCAPM and DCAPM cases (Figure 3).

    Although the lower leftpanelofFigure3appears to illustrateanicepositive relationship

    betweenEZDCAPMpredictionsandactual returns, this relation ismisleading: It ignores

    thenegativeR2sandnegativepricesofnondurableconsumptionrisk.

    4.3Foreignexchangebasedmodelsofthetechnicalreturns

    Consumptionbasedmodelshavegenerallyfailedtoexplainriskadjustedreturnsin

    severalcontextssotheresultsinTable4comeasnosurprise.Thisfailureofconsumption

    basedmodelshas ledresearchersto lookforotherriskfactorsthatmightproxyforfuture

    investment opportunities. In the context of stock returns it hasbecome commonplace to

  • 8/10/2019 2014-033

    23/44

    20

    work with factors that are the returns to various stock portfolios (see Fama and French

    (1993)andCarhart(1997)).

    Lustig,RoussanovandVerdelhan (2011)have recentlyapplied thisgeneral idea to

    the foreignexchangemarket.They formcurrencyportfolioson thebasisof interest rates.

    Portfolio 1 contains those currencies with the lowest interest rates, portfolio 6 those

    currencieswith thehighest interest rates.Theportfoliosare rebalancedat theendofeach

    month.FromtheseportfoliosLustigetal.(2011)constructtworiskfactors.Thefirstfactor,

    whichtheydenoteRX,istheaveragecurrencyexcessreturntogoingshortinthedollarand

    longinthebasketofsixforeigncurrencyportfolios.Thesecondfactor,HMLFX,isthereturn

    to a strategy thatborrows low interest rate currencies (portfolio 1) and invests in high

    interestratecurrencies(portfolio6),inotherwordsacarrytrade.14

    Canthesefactorsexplainthecrosssectionalvariationinexpectedreturnsacrossthe

    12technicalportfoliosthatweresortedonpastSharperatio?Weexaminethisquestionwith

    theGMMestimationofthebetareturnmodelsusingtheRXfactorandtheHMLFX factoras

    riskfactors.Thisprovidesuswithestimatesofthefactorriskpremia(and)and

    the parameters of the model. Because the factors are tradable we can test the modelby

    comparing theestimatesof the riskpremiawith the factormeans.We reject themodel if

    theydiffersignificantly.

    Panel A of Table 5 shows that thebetas on the RX factor are small and always

    insignificant.However,foreightofthedynamicportfoliosthebetasontheHMLFXfactorare

    significantlynegativeatthetenpercentlevelandallofthepointestimatesarenegative.The

    14RX and HMLFXare very similar to the first two principal components of the returns to the 6 portfolios.

  • 8/10/2019 2014-033

    24/44

    21

    signsofthebetassuggestthatthereturnstothetechnicaltradingrulestendtobehighwhen

    thecarry tradereturnsare low.TheHMLFXbetas forportfoliosp1,p3,p4,andp5arenot

    significant, however, and the alphas for the top five portfolios are often significant and

    always higher than the unadjusted mean returns. The fact that the constants (i.e., risk

    adjusted returns) are always higher than the unadjusted mean returns indicates that

    accounting for HMLFX and RX risk actually deepens the puzzle of the profitability of

    technical trading rules. These results make it seem unlikely that any risk factor that

    explainedthecarrytradecouldalsoexplainthetechnicalreturns.

    Tests from the time series regression in Panel A, far right columns, indicate that

    neithersetofbetasvariessufficientlytoidentifythepricesofrisk. Nevertheless,wepresent

    resultsforthecrosssectionalregressioninPanelBofTable5. Thoseresultsshowthatthe

    priceofriskfortheHMLFX factoris2.08andishighlysignificant,andtheR2is0.35(Table5,

    PanelB).Buttheconstantintheregressionis0.22andisalsohighlysignificant.Themeanof

    theHMLFXis0.69%.Whentheconstantisexcluded,theR2becomesnegative,however.We

    concludethattheRXandHMLFXfactorscannotexplainthereturnstothedynamictechnical

    portfolios.

    Menkhoff,Sarno,SchmelingandSchrimpf(2012a)findthatglobalforeignexchange

    volatilityisanimportantfactorinexplainingcarrytradereturns.Toinvestigatethisfactors

    explanatory power for our technical returns, we estimate a global volatility factor in a

    mannerverysimilarto thatofMenkhoff,Sarno,SchmelingandSchrimpf(2012a).Wefirst

    calculatethemonthlyreturnvarianceforeachoftheavailableexchangeratesateachmonth

    inour sampleand then calculateaglobal foreign exchangevolatility factor from the first

  • 8/10/2019 2014-033

    25/44

    22

    principalcomponentofthemonthlyvariances.Vol1 istheseriesof innovationsofanAR1

    process fit to thisprincipal componentwhileVol2 is the firstdifference in thisprincipal

    component. We then estimate abeta representation using these volatility factors and a

    dollarexposurefactorthattheynoteisverysimilartotheLustig,RoussanovandVerdelhan

    (2011)RX factor.Menkhoff, Sarno, Schmeling and Schrimpf (2012a)denote this theDOL

    factorintheirwork.

    Table6displaystheresultsfromtheGMMestimationofthebetasystem. PanelAof

    Table6shows that thebetasonRXarenotjointlystatisticallysignificantnorsignificantly

    differentfromeachother. ThusthepriceofRXriskisnotidentified. Incontrast,betason

    thevolatilityfactors(Vol1andVol2)arepositiveandhighlysignificantbutdonotappearto

    captureanyofthecrosssectionalspread inreturns.That is,there isnoobviouspatternto

    thebetasfromthelow tohighrankingportfolios.

    Turning to Panel B of Table 6, when one excludes the constant from the cross

    sectionalequation,thepricesofriskonVOL1andVOL2aresmallandinsignificantandthe

    R2s of the crosssectional regressions are negative. In addition, the constant terms are

    significant. In other words, the volatility factor picks up time series variation in returns

    whichiscommontoallportfolios,butthemodeldoesnotexplainthecrosssectionalspread

    in returns, or the level of returns for portfolios p1 and p2. There is no evidence for a

    negativepriceofvolatilityrisk.

    Researchers have also explored skewness as a risk factor for carry trade returns

    (Rafferty(2012))andthecrosssectionofequityreturns(Amaya,Christoffersen,Jacobs,and

    Vasquez (2011). To investigatewhetherexposure toskewnesscangenerate thereturns to

  • 8/10/2019 2014-033

    26/44

    23

    the technical trading rules, we form a skewness factora tradable portfolio that is long

    (short) currencies in thehighest (lowest) skewnessquintile in agivenmonthand then

    estimatethemodelsbetarepresentation.Table7presentsthoseresults.

    Panel A of Table 7 shows that the skewness betas are all positive and highly

    significant.Onecannot,however,rejectthehypothesisthattheyareallequaltoeachother,

    precludingstrong identificationofthepricesofrisk. InPanelB,theconstant inthecross

    sectionalregressionismarginallysignificantandtheexclusionofthisconstantreducesthe

    R2fromahealthy0.25toaverymodest0.09.Withouttheconstant,thepriceofriskis0.82

    andstatisticallysignificant.These results suggest thatexposure to skewnessdoesaccount

    forsometechnicaltradingrulereturns,althoughitsexplanatorypowerisfairlylimited.

    5. DiscussionandConclusion

    Researchershave longdocumented theprofitabilityof technicalanalysis in foreign

    exchangerates.StudiesthatfoundpositiveresultsincludePoole(1967),DooleyandShafer

    (1984), Sweeney (1986), Levich and Thomas (1993), Neely, Weller and Dittmar (1997),

    Genay(1999),Lee,GleasonandMathur(2001)andMartin(2001)).

    Despitesuchasubstantialrecordofdocumentedgains,thereasonsforthissuccess

    remain mysterious. Neely (2002) appears to rule out the central bank intervention

    explanation suggestedbyLeBaron (1999).To investigate thepossibilityofdata snooping,

    dataminingandpublicationbias,Neely,WellerandUlrich(2009)analyzetheperformance

    ofrulesintrueoutofsampleteststhatoccurlongafteranimportantstudy.Theyconclude

    thatdatasnooping,dataminingandpublicationbiasareunlikelyexplanationsbutthatthe

    adaptivemarketshypothesisisplausible.

  • 8/10/2019 2014-033

    27/44

    24

    It remainspossible, however, that technical trading rule profitability results from

    exposuretosomesortofrisk.Recently,severalauthorshaveconsideredmoderntechniques

    for riskadjustmentof thecarry tradeormomentum rules in foreignexchangemarkets. If

    these factors explain the returns to other trading strategies, they become much more

    interesting economically.The goal of thispaperhasbeen to apply abroad range of risk

    adjustment techniques to determine whether there is any evidence that exposure to risk

    plausiblyexplainstheprofitabilityoftechnicalanalysisintheforeignexchangemarket.

    We examine many types of risk adjustment models, including the CAPM, a four

    factormodel,severalconsumptionbasedmodels,andfactorsmotivatedbythecarrytrade

    puzzle, volatility measures and skewness. Although skewness might have some limited

    explanatory power, no model of risk adjustment can plausibly explain the very robust

    findingsoftheprofitabilityoftechnicalanalysisintheforeignexchangemarket.

  • 8/10/2019 2014-033

    28/44

    25

    References

    Amaya,D.,Christoffersen,P.,Jacobs,K.,&Vasquez,A.,2011,Do realized skewnessand

    kurtosispredict thecrosssectionofequity returns (No.201144).SchoolofEconomics

    andManagement,UniversityofAarhus.

    Brunnermeier, Markus K, Stefan Nagel, and Lasse H Pedersen, 2008, Carry Trades And

    Currency Crashes. Kenneth Rogoff, Woodford, Michael, & Acemoglu, Daron. NBER

    MacroeconomicsAnnual200823:313347.

    Burnside,Craig,2011,Carrytradesandrisk,NBERWorkingPaper17278.

    Burnside,Craig,2011,TheCrossSectionofForeignCurrencyRiskPremiaandConsumption

    GrowthRisk:Comment.AmericanEconomicReview.

    Carhart,MarkM.,1997,Onpersistenceinmutualfundperformance.TheJournalofFinance

    52.1:5782.

    Dooley, Michael P., and Jeffrey R. Shafer, 1984, Analysis of shortrun exchange rate

    behavior:March1973toNovember1981,inDavidBigmanandTeizoTaya,eds.:Floating

    Exchange Rates and the State ofWorld Trade Payments (Ballinger Publishing Company,

    Cambridge,MA):4370.

    Fama,EugeneF.,1970,Efficientcapitalmarkets:A reviewof theoryand empiricalwork.

    TheJournalofFinance25.2:383417.

    Genay,Ramazan,1999,Linear,nonlinearand essential foreign exchange rateprediction

    withsimpletechnicaltradingrules.JournalofInternationalEconomics47.1:91107.

  • 8/10/2019 2014-033

    29/44

    26

    Hassan,Tarek,2013,CountrySize,CurrencyUnions,andInternationalAssetReturns.The

    JournalofFinance68.6:22692308.

    LeBaron,Blake,1999,Technicaltradingruleprofitabilityandforeignexchangeintervention.

    JournalofInternationalEconomics49.1:125143.

    Lee, Chun I., Kimberly C. Gleason, and Ike Mathur, 2001, Trading rule profits in Latin

    Americancurrencyspotrates.InternationalReviewofFinancialAnalysis10.2:135156.

    Levich,RichardM.,andLeeR.ThomasIII,1993,Thesignificanceoftechnicaltradingrule

    profits in the foreignexchangemarket:Abootstrapapproach.Journalof International

    MoneyandFinance12.5:451474.

    Lustig, Hanno, and Adrien Verdelhan, 2011, The cross section of foreign currency risk

    premia and consumption growth risk: Reply. The American Economic Review: 3477

    3500.

    Lustig,Hanno, andAdrienVerdelhan.2007.TheCrossSectionofForeignCurrencyRisk

    PremiaandConsumptionGrowthRisk.AmericanEconomicReview,97.1:89117.

    Lustig,Hanno,NikolaiRoussanov, andAdrienVerdelhan, 2011,Common risk factors in

    currencymarkets. ReviewofFinancialStudies:hhr068.

    Lustig,Hanno,NikolaiRoussanov,andAdrienVerdelhan,2014,Countercyclicalcurrency

    riskpremia.JournalofFinancialEconomics111.3:527553.

    Mancini,L.,Ranaldo,A.andWrampelmeyer,J.,2013,Liquidity in theForeignExchange

    Market: Measurement, Commonality, and Risk Premiums. The Journal of Finance

    68.5:18051841.

  • 8/10/2019 2014-033

    30/44

    27

    Martin, Anna D., 2001, Technical trading rules in the spot foreign exchange markets of

    developingcountries.JournalofMultinationalFinancialManagement11.1:5968.

    Lukas Menkhoff & Mark P. Taylor, 2007, The Obstinate Passion of Foreign Exchange

    Professionals:TechnicalAnalysis,JournalofEconomicLiterature45.4: 936972.

    Menkhoff,Lukas,LucioSarno,MaikSchmelingandAndreasSchrimpf,2012,Carrytrades

    andglobalforeignexchangevolatility.JournalofFinance67.2:681718.

    Menkhoff, Lukas, Lucio Sarno, Maik Schmeling, and Andreas Schrimpf, 2012, Currency

    momentumstrategies.JournalofFinancialEconomics106.3:660684.

    Neely,ChristopherJ.,2002,Thetemporalpatternoftradingrulereturnsandexchangerate

    intervention: Intervention does not generate technical trading rule profits.Journal of

    InternationalEconomics58.1:211232.

    Neely, ChristopherJ., and Paul A. Weller, 2013, Lessons from the evolution of foreign

    exchangetradingstrategies.JournalofBanking&Finance37.10:37833798.

    Neely,ChristopherJ.,PaulA.Weller, andJoshuaM.Ulrich, 2009,The adaptivemarkets

    hypothesis: Evidence from the foreign exchange market. Journal of Financial and

    QuantitativeAnalysis44.02:467488.

    Poole,William,1967,Speculativepricesasrandomwalks:Ananalysisoftentimeseriesof

    flexibleexchangerates.SouthernEconomicJournal33:468478.

    Rafferty, Barry, 2012, Currency Returns, Skewness and Crash Risk. Skewness and Crash

    Risk.Unpublishedmanuscript.

    Shanken,Jay.,1992,OntheEstimationofBetaPricingModels.ReviewofFinancialStudies

    5.1:133.

  • 8/10/2019 2014-033

    31/44

    28

    Sweeney, RichardJ., 1986, Beating the foreign exchange market.Journal of Finance 41.1:

    163182.

    Yogo, Motohiro, 2006, A ConsumptionBased Explanation of Expected Stock Returns.

    JournalofFinance61.2:53980.

  • 8/10/2019 2014-033

    32/44

    29

    Table1:Datadescription

    Notes:The tabledepicts the21exchangeratesversus theUSDand19nonUSDcrossratesused in

    oursamplealongwiththestartingandendingdatesofthesamples,numberoftradingdates,average

    transactioncost,andstandarddeviationofannualizedlogreturns.

    Currency Group Country

    Currency abbreviation

    versus the USD

    # of trading

    obs

    Trading start

    date

    Trading end

    date Mean TC

    STD of Annualized

    FX Return

    Advanced Australia AUD 9008 4/7/1976 12/31/2012 3.1 11.6

    Advanced Canada CAD 9344 1/2/1975 12/31/2012 2.9 6.7

    Advanced Euro Area EUR 9717 4/3/1973 12/31/2012 3.0 10.6Advanced Japan JPY 9599 4/3/1973 12/28/2012 3.0 10.5

    Advanced New Zealand NZD 6027 8/3/1987 12/31/2012 3.9 12.4

    Advanced Norway NOK 6515 1/2/1986 12/31/2012 3.4 11.6

    Advanced Sweden SEK 7278 1/3/1983 12/28/2012 3.3 11.4

    Advanced Switzerland CHF 9697 4/3/1973 12/31/2012 3.1 12.0

    Advanced UK GBP 9338 1/2/1975 12/31/2012 2.9 9.9

    Dev. Europe Czech Republic CZK 5049 1/5/1993 12/31/2012 5.2 12.4

    Dev. Europe Hungary HUF 4466 1/2/1995 12/28/2012 10.3 14.3

    Dev. Europe Hungary/Switzerland HUF_CHF 4165 1/3/1996 12/28/2012 10.5 12.0

    Dev. Europe Poland PLN 3918 2/24/1997 12/31/2012 7.1 14.6

    Dev. Europe Russia RUB 3055 8/1/2000 12/28/2012 3.6 7.4

    Dev. Europe Turkey TRY 2769 1/2/2002 12/31/2012 12.9 15.4

    Latin America Brazil BRL 3330 5/3/1999 12/31/2012 6.0 16.8

    Latin America Chile CLP 4359 6/1/1995 12/28/2012 5.9 9.5

    Latin America Japan/Mexico JPY_MXN 3887 1/4/1996 12/28/2012 4.6 16.9Latin America Mexico MXN 4220 1/4/1996 12/31/2012 4.6 10.5

    Latin America Peru PEN 4252 4/1/1996 12/31/2012 5.3 5.0

    Other Israel ILS 3750 7/20/1998 12/31/2012 8.1 7.8

    Other Israel/Euro Area ILS_EUR 2552 1/2/2003 12/31/2012 8.5 10.2

    Other South Africa ZAR 4394 4/3/1995 12/31/2012 8.7 16.4

    Other Taiwan TWD 3605 1/5/1998 12/28/2012 5.0 5.3

    Adv. Cross Rates Switzerland/UK CHF_GBP 9169 1/3/1975 12/31/2012 3.0 9.8

    Adv. Cross Rates Australia/UK AUD_GBP 8920 4/7/1976 12/31/2012 3.2 12.4

    Adv. Cross Rates Canada/UK CAD_GBP 9217 1/2/1975 12/31/2012 3.0 10.3

    Adv. Cross Rates Japan/UK JPY_GBP 8982 1/2/1975 12/28/2012 3.0 12.2

    Adv. Cross Rates Euro Area/UK EUR_GBP 9187 1/2/1975 12/31/2012 3.0 8.1

    Adv. Cross Rates Australia/Switzerland AUD_CHF 8848 4/7/1976 12/31/2012 3.2 14.4

    Adv. Cross Rates Canada/Switzerland CAD_CHF 9150 1/3/1975 12/31/2012 3.1 12.4

    Adv. Cross Rates Japan/Switzerland JPY_CHF 9338 4/3/1973 12/28/2012 3.2 11.7

    Adv. Cross Rates Euro Area/Switzerland EUR_CHF 9602 4/3/1973 12/31/2012 3.2 5.9Adv. Cross Rates Canada/Australia CAD_AUD 8894 4/7/1976 12/31/2012 3.2 10.3

    Adv. Cross Rates Japan/Australia JPY_AUD 8633 4/7/1976 12/28/2012 3.2 15.3

    Adv. Cross Rates Euro Area/Australia EUR_AUD 8861 4/7/1976 12/31/2012 3.2 12.8

    Adv. Cross Rates Japan/Canada JPY_CAD 8968 1/2/1975 12/28/2012 3.1 12.7

    Adv. Cross Rates Euro Area/Canada EUR_CAD 9158 1/2/1975 12/31/2012 3.1 10.7

    Adv. Cross Rates Japan/Euro Area JPY_EUR 9347 4/3/1973 12/28/2012 3.1 11.3

    Adv. Cross Rates New Zealand/Australia NZD_AUD 5943 8/3/1987 12/31/2012 3.9 8.7

  • 8/10/2019 2014-033

    33/44

    30

    Table2: Calibration

    CCAPM DCAPM EZCCAPM EZDCAPM

    stdT[M]/ET[M] 0.93 1.22 0.92 1.22

    varT[M]/ET[M] 0.60 0.61 0.59 0.61

    MAE(in%) 1.32 0.96 1.33 0.96

    R2 1.50 0.13 1.50 0.13

    Notes:Thesampleis19782010(annualdata).ThetableshowstheresultsofestimatinganEuler

    equation, as in equation (3), with 12 dynamic technical trading strategies as test assets. The

    returnsare those toportfoliosp1 top12,asdescribed in the text.The first tworowsreport the

    maximumSharperatio(row1,stdT[M]/ET[M])andthepriceofrisk(row2,varT[M]/ET[M]).The

    lasttworowsreportthemeanabsolutepricingerror(inpercentagepoints)andtheR2.FollowingYogo (2006), we fixed sigma () at 0.023 (EZCCAPM and EZDCAPM), alpha () at 0.802

    (DCAPMandEZDCAPM),delta()at0.98,andrho()at0.700(DCAPM,EZDCAPM).Gamma

    ()isfixedat41.16tominimizethemeansquaredpricingerrorintheEZDCAPM.

  • 8/10/2019 2014-033

    34/44

    31

    Table3:ResultsforCAPM,QuadraticCAPMandCarhartmodelforportfoliosp1p12

    p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11CAPM

    Constant 0.39 *** 0.25 *** 0.21 *** 0.13 * 0.20 *** 0.07 0.14 ** 0.14 ** 0.12 * 0.13 ** 0.11

    Rm 0.04 * 0.05 ** 0.04 * 0.04 * 0.03 0.05 ** 0.05 *** 0.04 * 0.05 *** 0.04 ** 0.04

    R2

    0.01 0.02 0.01 0.02 0.01 0.02 0.03 0.02 0.03 0.03 0.02

    Quad.CAPM

    Constant 0.26 *** 0.17 ** 0.12 * 0.05 0.14 ** 0.00 0.09 0.07 0.05 0.09 0.02

    Rm 0.03 0.04 * 0.03 0.04 * 0.02 0.04 ** 0.05 *** 0.03 0.05 *** 0.04 *** 0.03

    Rm2 0.65 *** 0.39 0.46 0.38 0.25 0.35 0.23 0.32 0.33 0.20 0.60

    R2

    0.04 0.03 0.03 0.03 0.02 0.04 0.03 0.03 0.04 0.03 0.05

    CarhartConstant 0.41 *** 0.27 *** 0.21 *** 0.13 * 0.17 *** 0.07 0.13 * 0.13 ** 0.11 0.12 ** 0.08

    Rm 0.04 * 0.05 ** 0.03 0.04 ** 0.02 0.04 * 0.03 0.03 0.04 ** 0.03 0.02

    SMB 0.05 * 0.04 * 0.04 0.02 0.02 0.03 0.03 * 0.03 0.04 * 0.04 * 0.03

    HML 0.06 * 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02

    UMD 0.03 * 0.02 0.02 0.02 0.03 ** 0.02 0.02 0.02 0.02 * 0.03 ** 0.03

    R2

    0.04 0.03 0.02 0.02 0.02 0.04 0.03 0.03 0.05 0.04 0.03

    Mean R 0.37 0.23 0.19 0.11 0.18 0.05 0.11 0.12 0.09 0.11 0.09

    Panel A: Time Series Regressions

  • 8/10/2019 2014-033

    35/44

    32

    Rm 3.34 3.29 2.99 0.61 3.16 2.27

    (2.13) * (2.59) ** (1.92) * (0.47) (2.23) * (1.57)

    [1.70] [2.08] * [1.44] [0.37] [1.09] [0.70]{1.44} {2.02} * {1.26} {0.33} {1.06} {0.62}

    Rm2 0.17 0.31

    (1.70) (3.88) ***

    [1.31] [3.10] **

    {1.31} {3.10} **

    SMB 1.64 2.41

    (1.01) (2.04) *

    [0.49] [0.91]

    {0.44} {0.90}

    HML 3.76 3.50

    (3.76) *** (3.72) ***

    [1.83] [1.67]

    {1.92} * {1.70}

    UMD 4.01 5.37

    (2.08) * (3.58) ***

    [1.01] [1.60]

    {1.08} {1.60}

    Constant 0.28 0.18 0.09(3.11) ** (2.00) * (0.82)

    [2.55] ** [1.50] [0.38]

    {2.33} ** {1.29} {0.35}

    R2

    0.05 0.16 0.18 0.11 0.73 0.72

    Panel B: Cross Sectional Regressions

    CarhartQuad. CAPMCAPM

    Notes: Monthly data 06/1977 12/2012. The table shows the results of estimating a beta

    representationmodelofdynamic technical trading strategiesonequity factors.Factorsare the

    excessreturnontheU.S.stockmarket(),thesizefactor(SMB),thevaluefactor()andthemomentum factor (). tstatisticsare indicated inparentheses. ( ) tstatisticsbasedonOLSstandarderrors. []tstatisticsbasedonShankenstandarderrors. {}tstatisticsbasedonGMM

    standarderrors. Significancelevels: ***1%,**5%,*10%.

  • 8/10/2019 2014-033

    36/44

    33

    Table4:ResultsforCCAPM,DCAPMandEZDCAPMmodelforportfoliosp1p12

    p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

    CCAPM

    Constant 5.95 *** 3.36 ** 2.56 1.14 2.14 0.89 1.18 2.39 ** 1.12 0.91 0.29

    Nondurables 0.99 ** 0.44 0.29 0.09 0.09 0.05 0.19 0.67 0.11 0.20 0.46

    R2

    0.11 0.02 0.01 0.00 0.00 0.00 0.00 0.07 0.00 0.01 0.03

    DCAPM

    Constant 4.75 *** 4.66 *** 2.93 3.22 ** 3.90 1.37 2.78 3.76 * 1.83 1.30 0.33

    Nondurables 1.55 *** 0.16 0.12 1.05 * 0.90 0.17 0.92 0.04 0.22 0.37 0.48

    Durables 0.56 0.61 * 0.17 0.97 ** 0.82 0.23 0.74 * 0.64 0.33 0.18 0.02

    R2 0.14 0.07 0.01 0.09 0.09 0.01 0.08 0.14 0.02 0.01 0.03

    EZDCAPM `

    Constant 5.73 *** 5.46 ** 3.56 4.82 *** 5.24 ** 2.32 3.52 4.35 ** 2.04 1.81 1.49

    Nondurables 1.33 ** 0.34 0.02 1.41 * 1.20 0.38 1.09 0.10 0.27 0.49 0.74

    Durables 0.37 0.76 0.29 1.29 ** 1.08 0.41 0.89 0.75 0.37 0.28 0.25

    Market 0.07 0.05 0.04 0.11 ** 0.09 ** 0.06 0.05 0.04 0.01 0.04 0.08

    R2

    0.20 0.12 0.04 0.23 0.21 0.07 0.12 0.17 0.02 0.03 0.15

    Mean R 4.57 2.76 2.16 1.26 2.27 0.81 1.44 1.46 0.97 1.19 0.94

    Panel A: Time Series Regressions

  • 8/10/2019 2014-033

    37/44

    34

    Notes:Annualdata19782010.The tableshowstheresultsofestimatingabetarepresentation

    modelofdynamic technical trading strategieson consumption factors.Nondurables () andDurables()arelognondurable(plusservices)anddurableconsumptiongrowthrespectively,and Market ( ,) is the log return on the market portfolio. tstatistics are indicated inparentheses. ( ) t statisticsbased on OLS standard errors. [ ] t statisticsbased on Shanken

    standarderrors. {}t statisticsbasedonGMMstandarderrors. Significancelevels: ***1%,**5%,

    *10%.

    Nondurables 1.95 3.09 1.90 3.20 2.03 2.24

    (4.08) *** (5.28) *** (4.19) *** (5.19) *** (4.26) *** (5.14) ***

    [2.79] ** [2.55] ** [2.94] ** [2.20] * [2.43] ** [2.60] * *

    {3.08} ** {2.76} ** {3.29} *** {2.02} * {2.44} ** {2.65} **

    Durables 1.76 4.77 1.61 1.89

    (2.66) ** (3.72) *** (2.48) ** (2.83) **

    [1.85] * [1.51] [1.43] [1.39]

    {2.06} * {1.31} {1.43} {1.46}

    Market 19.32 26.95

    (2.63) ** (3.28) ***

    [1.40] [1.47]

    {1.56} {1.21}

    Constant 1.43 1.48 0.58

    (2.42) ** (2.68) ** (0.97)

    [1.49] [1.67] [0.49]

    {1.54} {1.68} {0.41}

    Parameters

    84.32 133.94 82.33 139.40 91.89 102.72

    (4.08) *** (5.28) *** (4.19) *** (5.17) *** (4.27) *** (5.23) ***

    [2.79] ** [2.55] ** [2.93] ** [2.19] * [2.41] ** [2.61] * *

    {3.08} ** {2.76} ** {3.28} *** {2.01} * {2.45} ** {2.66} **

    0.09 0.11

    (3.28) ** (3.32) ***

    [1.99] * [1.61]

    {2.14} * {1.32}

    0.06 0.50 0.01 0.12

    (0.26) (2.35) ** (0.06) (0.54)

    [0.18] [1.00] [0.06] [0.26]

    {0.19} {0.87} {0.04} {0.26}

    R2

    0.50 1.10 0.50 0.45 0.65 0.61

    Panel B: Cross Sectional Regressions

    EZDCAPMDCAPMCCAPM

  • 8/10/2019 2014-033

    38/44

    35

    Table5:ResultsforLVmodelforportfoliosp1p12

    p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

    Constant 0.35 *** 0.20 *** 0.17 ** 0.06 0.12 0.04 0.10 0.09 0.12 0.15 * 0.11

    Rx 0.02 0.03 0.04 0.02 0.02 0.02 0.01 0.02 0.06 0.04 0.02

    HMLfx 0.03 0.07 * 0.05 0.05 0.03 0.08 ** 0.09 ** 0.07 * 0.09 ** 0.10 ** 0.09

    R2

    0.00 0.02 0.01 0.01 0.01 0.03 0.04 0.02 0.05 0.06 0.04

    Mean R 0.32 0.15 0.12 0.02 0.10 0.02 0.04 0.04 0.04 0.07 0.04

    Panel A: Time Series Regressions

    Constant 0.22

    (2.66) **

    [2.04] *

    {1.84} *

    Rx 0.29 1.73

    (0.53) (2.32) **

    [0.41] [1.78]

    {0.39} {1.68}

    HMLfx 2.08 0.32

    (2.96) ** (0.49)

    [2.29] ** [0.38]

    {1.78} {0.31}

    R2

    0.35 0.24

    Panel B: Cross Sectional Regression

    Note: Monthly data 11/ 1983 12/2012. The table shows the results of estimating abeta representation mod

    strategiesoncurrencymarket factors.Rx theaveragecurrencyexcessreturn togoingshort in thedollarand

    currencyportfolios.HMLFX thereturntoastrategythatborrowslowinterestratecurrenciesandinvestsinhigh

    words a carry trade. tstatistics are indicated inparentheses. ( ) t statisticsbasedonOLS standard errors. [

    standarderrors. {}t statisticsbasedonGMMstandarderrors. Significancelevels: ***1%,**5%,*10%.

    Table6:Resultsforvolatilityfactorsforportfoliosp1p12

  • 8/10/2019 2014-033

    39/44

    36

    p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

    Constant 0.29 *** 0.12 ** 0.11 * 0.01 0.08 0.05 0.01 0.03 0.02 0.04 0.02

    Rx 0.01 0.03 0.03 0.01 0.01 0.01 0.01 0.02 0.05 0.04 0.02

    VOL1 2.33 ** 2.15 ** 1.71 2.51 ** 1.70 ** 2.93 *** 1.94 ** 1.75 * 2.60 ** 2.63 ** 2.01

    R2

    0.03 0.03 0.02 0.05 0.03 0.07 0.03 0.03 0.06 0.07 0.04

    Constant 0.32 *** 0.15 ** 0.13 ** 0.02 0.10 0.02 0.04 0.05 0.05 0.08 0.05

    Rx 0.01 0.03 0.03 0.01 0.01 0.01 0.02 0.02 0.05 0.03 0.02

    VOL2 1.86 ** 1.92 ** 1.67 * 2.39 *** 1.73 *** 2.83 *** 2.22 *** 1.62 ** 2.72 *** 2.64 *** 1.77 **

    R2

    0.02 0.03 0.03 0.05 0.03 0.08 0.05 0.03 0.08 0.09 0.03

    Mean R 0.32 0.15 0.12 0.02 0.10 0.02 0.04 0.04 0.04 0.07 0.04

    Panel A: Time Series Regressions

  • 8/10/2019 2014-033

    40/44

    37

    Constant 0.19 0.28

    (2.21) * (3.09) **

    [2.03] * [2.37] **

    {1.91} * {2.42} **

    Rx 0.02 0.22 0.55 0.64

    (0.04) (0.39) (0.96) (1.10)

    [0.04] [0.38] [0.74] [1.04]

    {0.03} {0.41} {0.68} {1.06}

    VOL1 0.05 0.03

    (1.90) * (1.24)

    [1.75] [1.20]

    {1.62} {1.35}

    VOL2 0.10 0.03

    (3.25) *** (1.04)

    [2.52] ** [0.99]

    {2.22} * {1.01}

    R2

    0.06 0.11 0.22 0.17

    Panel B: Cross Sectional Regression

    Note: Monthly data 11/ 1983 12/2012. The table shows the results of estimating abeta representation mod

    strategiesoncurrencyvolatilityfactors.Rxtheaveragecurrencyexcessreturntogoingshort inthedollarand

    currency portfolios. VOL1 volatility innovations measuredby the residuals from AR(1). VOL2 volatility

    difference. tstatisticsareindicatedinparentheses.()t statisticsbasedonOLSstandarderrors. []t statisticsba

    {}t statisticsbasedonGMMstandarderrors. Significancelevels: ***1%,**5%,*10%.

  • 8/10/2019 2014-033

    41/44

    38

    Table7:Resultsforskewnessfactorforportfoliosp1p12

    p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

    Constant 0.73 *** 0.78 *** 0.86 *** 0.91 *** 0.71 *** 0.93 *** 0.87 *** 0.91 *** 0.96 *** 0.91 *** 0.85 *

    SKEW 0.20 *** 0.20 *** 0.19 *** 0.19 *** 0.16 *** 0.18 *** 0.18 *** 0.19 *** 0.19 *** 0.19 *** 0.17 *

    R2

    0.18 0.19 0.22 0.22 0.19 0.22 0.21 0.26 0.25 0.27 0.21

    Mean R 0.37 0.23 0.19 0.11 0.18 0.05 0.11 0.12 0.09 0.11 0.09

    Panel A: Time Series Regressions

    Co nstant 0.6 4

    (2.78) **

    [1.78]

    {1.83} *

    SKEW 4.31 0.82

    (3.45) *** (2.73) **

    [2.16] * [2.73] **

    {2.33} ** {3.15} ***

    R2

    0.25 0.09

    Panel B: Cross Sectional Regression

    Note: Monthly data 06/1977 12/2012. The table shows the results of estimating abeta representation mod

    strategiesoncurrencyvolatilityfactors.SKEWreturnofaportfoliothatislongcurrenciesinthehighestskew

    currencies in the lowest (negative) skewnessquintile foragivenmonth. tstatisticsare indicated inparenthes

    standarderrors. []t statisticsbasedonShankenstandarderrors. {}t statisticsbasedonGMMstandarderror5%,*10%.

  • 8/10/2019 2014-033

    42/44

    39

    Figure1:Return,standarddeviationandSharperatiostatisticsfromsortedportfoliosp1

    top12

    Notes: Thefigureshowsstatisticsfromthe12dynamicallyconstructed,technicaltrading

    portfoliosinforeignexchangemarkets,basedonproceduresinNeelyandWeller(2013).

  • 8/10/2019 2014-033

    43/44

    40

    Figure2:Actualmeanannualreturnsvs.predictedreturnsforportfoliosp1throughp12

    (crosssectionalregressionwithaconstant)19782010

    Notes: Thefigureshowsscatterplotsofactualversuspredictedreturnsfromthe12dynamically

    constructed,technicaltradingportfoliosinforeignexchangemarkets,basedonproceduresinNeelyandWeller(2013). Thepredictedreturnsareconstructedfromthebetarepresentationof

    thelinearconsumptionmodelswithaconstantinthecrosssectionalequation.

    0 1 2 3 4 50

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    1

    2

    3

    4

    5

    6

    7 8

    9

    10

    11

    12

    Predicted R

    ActualR

    CCAPM

    0 1 2 3 4 50

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    1

    2

    3

    4

    5

    6

    7 8

    9

    10

    11

    12

    Predicted R

    ActualR

    DCAPM

    0 1 2 3 4 50

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    1

    2

    3

    4

    5

    6

    7 8

    9

    10

    11

    12

    Predicted R

    ActualR

    EZ-DCAPM

  • 8/10/2019 2014-033

    44/44

    Figure3:Actualmeanannualreturnsvs.predictedreturnsforportfoliosp1throughp12

    (crosssectionalregressionwithoutaconstant)19782010

    Notes: Thefigureshowsscatterplotsofactualversuspredictedreturnsfromthe12dynamically

    constructed,technicaltradingportfoliosinforeignexchangemarkets,basedonproceduresin

    NeelyandWeller(2013). Thepredictedreturnsareconstructedfromthebetarepresentationof

    thelinearconsumptionmodelswithoutaconstantinthecrosssectionalequation.

    -2 -1 0 1 2 3 4 5-2

    -1

    0

    1

    2

    3

    4

    51

    2

    3

    4

    5

    6

    7 8

    910

    11

    12

    Predicted R

    ActualR

    CCAPM

    -2 -1 0 1 2 3 4-2

    -1

    0

    1

    2

    3

    4

    5

    1

    2

    3

    4

    5

    6

    7 8

    910

    11

    12

    Predicted R

    ActualR

    EZ-DCAPM

    -2 -1 0 1 2 3 4 5-2

    -1

    0

    1

    2

    3

    4

    51

    2

    3

    4

    5

    6

    7 8

    910

    11

    12

    Predicted R

    ActualR

    DCAPM