1
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0 5 20 35 50 65 80 95 100 % A cetone (v/v) A nthraquinone (m g/m l) 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0 5 20 35 50 65 80 95 100 % Ethanol (v/v)[1 bar,100 C] A nthraquinone (m g/m l) ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ 103.2 4.8 mg/g ๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐ (45.3 6.3 mg/g) ๐๐๐๐๐๐ (6.90 0.3 mg/g) ๐๐๐๐๐ (1.20 0.6 mg/g) ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐ Soxhlet ๐๐๐๐ 50%(v/v) ๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ 14.6 1.0 mg/g ๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ 3.97 0.17 ๐๐๐/mg ๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐ ๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ 80%(v/v) ๐๐๐๐ ๐๐๐ ๐๐๐ 50%(v/v) ๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ 38.9 1.6 ๐๐๐ 27.0 6.9 mg/g ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ 2.94 0.12 ๐๐๐ 1.42 0.36 ๐๐๐/mg ๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐ 1 ๐๐๐๐ ๐๐๐๐๐๐๐๐ 100๐ ๐๐๐๐๐๐๐๐ 5 ๐๐๐๐ ๐๐๐๐ 80% (v/v) ๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ 95.3 0.6 mg/g ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ 4.28 0.03 ๐๐๐/mg ๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ 1.50 0.08 ๐๐๐/mg ๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐ 2.27 0.11 mg/g ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ (Influences of Anthraquinone Extraction Techniques from (Influences of Anthraquinone Extraction Techniques from Morinda Morinda sp. on Extraction Efficiency) sp. on Extraction Efficiency) ๐๐๐๐๐๐๐๐ References Abstract ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ( ( Department of Food Engineering, Faculty of Agro-Industry, Chiang Mai Department of Food Engineering, Faculty of Agro-Industry, Chiang Mai University) University) Acknowledgements The financial support of this research was provided from “The Grant for New Generation Researcher” of Chiang Mai University (2005) to N. Leksawasdi and RPUS grant from Thai Research Fund (TRF), Industrial Sector (2006) to W. Temiyaputra, T. Suebsanga, K. Yajom, and S. Piyaworanon. The research team would like to thank both institutions for their continuous supports of this project. ๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐ ๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐ ๐๐๐๐ ๐๐๐๐ ๐๐๐๐๐๐๐ Introduction Anthraquinone plays an important role as a biocatalyst in the pulp paper production industry. Ibrahim and Osman (1994) discussed the potential of using anthraquinone as laxative and growth inhibitor of microbes such as fungi. Furthermore, anthraquinone can also be used as substrate in the production of various dyes and pigments such as alizarin. This chemical is commonly found in plants such as Noni (Morinda sp.) and Cassod (Cassia sp.) (Kaewdok and Tubsombat, 2002). Noni plant or Indian Mulberry tree is commonly available in the northern part of Thailand. Shotipruk et al. (2004) examined the anthraquinone extraction from M. citrifolia with hot water at high pressure within the temperature range of 110-220C and flow rate speed of 2-6 ml/min. The best extraction condition was obtained at 220C, 4 ml/min and 7 MPa with maximum anthraquinone level of 43 mg/g dried root. Aobchey et al. (2002) reported anthraquinone extraction from the root of M. augustifolia and biomass obtained from root cell culture. The extraction solvents were chloroform and methanol at atmospheric pressure. The highest level of anthraquinone obtained was 15 mg/g dried root which was compared to 8.9 mg/g of root cell culture. The aims of this research The aims of this research were to determine anthraquinone content in root, stem, bark and leaf of Morinda sp. in order to select the part of plant with the highest anthraquinone level for further investigation on the extraction technique. The effects of four extraction techniques, which include (1) Soxhlet extraction (2) simple solvent extraction at room temperature, (3) pressurized steamer extraction and (4) the extraction in closed-circuit solid-liquid extraction unit, on the extraction cost and extraction efficiency were examined so that the cost effective method of anthraquinone extraction from Morinda sp. root for large scale production can be established. Discussion The roots contained the highest specific concentration of anthraquinone at 103.2 4.8 mg/g dried mass, followed by stem (45.3 6.3 mg/g), bark (6.90 0.3 mg/g) and leaf (1.20 0.6 mg/g). This was compared to the maximum concentration of 1.2 mg/g anthraquinone glycoside and 2.0 mg/g total anthraquinone from C. siamea dried leaf (Kritsanapan and Nualkaew 2003). Further comparative analysis with extraction in the pressurized steamer at 1 bar and 100 o C for 5 min with total anthraquinone level of 95.3 0.6 mg/g dried root powder (at 80% ethanol, (0.159 0.001 mg/ml)/(0.05 g/30 ml) = 95.3 0.6 mg/g) indicated that soxhlet extraction methods had lower extraction efficiency than the extraction in pressurized steamer. The roles of water in the enhancement of extraction efficiency were prominent in every case of anthraquinone extraction with various types of solvent. Hemwimol et al. (2006) explained that a relatively high polarity index (p.i.) of water (p.i. = 9) in comparison to ethanol (p.i. = 5.2) might contribute to the enhancement of extraction efficiency. However, the error associated with this extraction procedure was still relatively large as evidence from the presence of two outliers, in which the level of extracted anthraquinone (mg/ml) at 65 and 95% ethanol were much lower than that at 50, 80 and 100% ethanol. Further experimentation should be conducted to investigate whether extraction time beyond 5 min and extraction pressure (5 – 20 psi) play any part in stabilizing the extraction efficiency as well as the positioning or the number of extraction containers presence in the pressurized steamer that might influence or interfere the accessing pattern of steam to each container. Aobchey, P., Sriyam, S., Praharnripoorab, W., Lhieochaiphant, S., and Phutrakul, S. 2002. Aobchey, P., Sriyam, S., Praharnripoorab, W., Lhieochaiphant, S., and Phutrakul, S. 2002. Production of Production of red pigment from the root of red pigment from the root of Morinda angustifolia Morinda angustifolia Roxb. var. scabridula Craib. by root cell culture. Chiang Roxb. var. scabridula Craib. by root cell culture. Chiang Mai Mai University Journal 1: 66-78. University Journal 1: 66-78. Hemwimol, S., Pavasant, P., and Shotipruk, A. 2006. Hemwimol, S., Pavasant, P., and Shotipruk, A. 2006. Ultrasound-assisted extraction of anthraquinones Ultrasound-assisted extraction of anthraquinones from roots of from roots of Morinda Morinda citrifolia citrifolia . Ultrasonics Sonochemistry 13: 543-548. . Ultrasonics Sonochemistry 13: 543-548. Ibrahim, D., and Osman, H. 1994. Ibrahim, D., and Osman, H. 1994. Antimicrobial of Antimicrobial of Cassia alata Cassia alata from Malaysia. Journal of from Malaysia. Journal of Ethnopharmacology, 45: 151-156. Ethnopharmacology, 45: 151-156. Kaewdok, P. and Tubsombat, S. 2002. The anthraquinone extraction from the leaves of herbs in the Family Kaewdok, P. and Tubsombat, S. 2002. The anthraquinone extraction from the leaves of herbs in the Family Leguminosae. Research and Academic Services Institute, Rajbhat Mahasarakam (online) Leguminosae. Research and Academic Services Institute, Rajbhat Mahasarakam (online). Available: Available: http://research.rmu.ac.th/dataresearch/p1 http://research.rmu.ac.th/dataresearch/p1 . . php?ac=show&r=493 php?ac=show&r=493 . [March 30, 2007]. . [March 30, 2007]. Kritsanapan, W., and Nualkeaw, S. 2003. Kritsanapan, W., and Nualkeaw, S. 2003. Variation of anthraquinone content in Variation of anthraquinone content in Senna siamea Senna siamea leaves leaves (online). Available: (online). Available: http://schoolbotany.haii.or.th/exhibition46/presentations/wandee/wandee.PPT . [July . [July 28, 2005]. 28, 2005]. Sakunpak, A., Panichayupakaranant, P., and Sirikatitham, A. 2007. Sakunpak, A., Panichayupakaranant, P., and Sirikatitham, A. 2007. Preparation of Preparation of Senna alata Senna alata leaf extract leaf extract and quantitative analysis of anthraquinone (online). Available: and quantitative analysis of anthraquinone (online). Available: http://www.grad.psu.ac.th/ http://www.grad.psu.ac.th/ grad_research/apply_file/full3920600305071 grad_research/apply_file/full3920600305071 . . pdf. pdf. [March 30, 2007 [March 30, 2007 ] ] . . Shotipruk, A., Kiatsongserm, J., Pavasant, P., Goto, M., and Sasaki, M. 2004. Shotipruk, A., Kiatsongserm, J., Pavasant, P., Goto, M., and Sasaki, M. 2004. Pressurized hot water Pressurized hot water extraction of anthraquinones from the roots of extraction of anthraquinones from the roots of Morinda citrifolia Morinda citrifolia . Biotechnology Progress 20: 1872-1875. . Biotechnology Progress 20: 1872-1875. Skoog, D.A., West, D.M., and Holler, F.J. 1996. Fundamentals of Analytical Chemistry, 7th edition. p.53 Skoog, D.A., West, D.M., and Holler, F.J. 1996. Fundamentals of Analytical Chemistry, 7th edition. p.53 - 55. - 55. The comparison of anthraquinone levels in root, stem, bark and leaf of Morinda sp. were investigated. The roots contained the highest specific concentration of anthraquinone at 103.2 4.8 mg/g dried mass, followed by stem (45.3 6.3 mg/g), bark (6.90 0.3 mg/g) and leaf (1.20 0.6 mg/g). Four extraction techniques were employed to extract anthraquinone from the roots of Morinda sp. Soxhlet apparatus was utilized in the first technique with 50% (v/v) methanol as an extraction solvent. It was found that 14.6 1.0 mg/g dried roots powder was extracted with the expenses of 3.97 0.17 Baht/mg anthraquinone. This was compared to the second extraction method at room temperature with 80%(v/v) acetone and 50%(v/v) ethanol that led to the highest concentration of extracted anthraquinone at 38.9 1.6 and 27.0 6.9 mg/g with the accompanied cost of 2.94 0.12 and 1.42 0.36 Baht/mg, respectively. The third extraction procedure was carried out in the pressurised steamer at 1 bar and 100C for 5 min with 80% (v/v) ethanol. The highest level of extracted anthraquinone was 95.3 0.6 mg/g at the price of 4.28 0.03 Baht/mg. The last method of extraction was performed in the closed-circuit solid-liquid extraction unit at room temperature. Although the extraction cost was relative small (1.50 0.08 Baht/mg), the specific concentration obtained was not high (only 2.27 0.11 mg/g). terials & Methods Materials & Chemicals Materials & Chemicals All of the chemicals used in the experiment with the exception of 95% (v/v) industrial grade ethanol were analytical reagent grade. Sample Preparation Sample Preparation The roots of Morinda sp. were collected from households within the Muang and Saraphee District of Chiang Mai Province. The appropriate size reduction for root, stem, bark and leaf were applied and followed by drying step at 65C and 1 m/s air flow rate. Anthraquinone Extraction with Soxhlet Apparatus Anthraquinone Extraction with Soxhlet Apparatus The original extraction method for C. siamea Britt. proposed by Kritsanapan and Nualkaew (2003) using soxhlet extraction unit was improved and modified for root. Each extraction was performed twice. The extraction was performed with 150 ml of 50%(v/v) ethanol or 50%(v/v) methanol using four rounds of reflux followed by filtration with Whatman No. 4 filter paper. Anthraquinone Extraction with Other Methods Anthraquinone Extraction with Other Methods Three replicates were used and the ratio of root powder per volume of solvent at 0.17 g per 100 ml was maintained. Extraction with different type of solvents at room temperature Three types of solvents were used including ethanol, acetone and ethyl acetate. Each solvent was mixed with distilled water in the following %(v/v overall solution); 0, 5, 20, 35, 50, 65, 80, 95 and 100. The extraction was done for 6 h with 0.05 g root. Extraction in pressurized steamer The extraction was repeated as previous method with ethanol as a solvent. The sample was placed in the moisture can and carried out the extraction in the stainless steel pressurized steamer at 1 bar and 100C for 5 min. Extraction in solid-liquid extraction unit The 5 g root powder was extracted with 3 litres of distilled water in the closed circuit solid-liquid extraction demonstration unit (Armfield, Ringwood, UK, Model No. 12697) Results 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0 5 20 35 50 65 80 95 100 % Ethanol (v/v) A nthraquinone (m g/m l) T T a a b b l l e e 1 1 : : S S u u m m m m a a r r y y o o f f e e x x p p e e n n s s e e s s i i n n v v o o l l v v e e d d i i n n a a n n t t h h r r a a q q u u i i n n o o n n e e e e x x t t r r a a c c t t i i o o n n w w i i t t h h f f o o u u r r e e x x t t r r a a c c t t i i o o n n t t e e c c h h n n i i q q u u e e s s E E x x t t r r a a c c t t i i o o n n m m e e t t h h o o d d S S o o l l v v e e n n t t E E x x t t r r a a c c t t i i o o n n c c o o n n d d i i t t i i o o n n s s A A n n t t h h r r a a q q u u i i n n o o n n e e ( ( m m g g p p e e r r g g o o f f r r o o o o t t p p o o w w d d e e r r ) ) I I n n i i t t i i a a l l e e x x t t r r a a c c t t i i o o n n c c o o s s t t o o f f a a n n t t h h r r a a q q u u i i n n o o n n e e 1 1 m m g g ( ( B B a a h h t t ) ) S S o o x x h h l l e e t t 5 5 0 0 % % ( ( v v / / v v ) ) e e t t h h a a n n o o l l R R e e f f l l u u x x 4 4 t t i i m m e e s s 1 1 1 1 . . 2 2 ± ± 2 2 . . 8 8 a 4 4 . . 9 9 8 8 ± ± 1 1 . . 2 2 5 5 I S S o o x x h h l l e e t t 5 5 0 0 % % ( ( v v / / v v ) ) m m e e t t h h a a n n o o l l R R e e f f l l u u x x 4 4 t t i i m m e e s s 1 1 4 4 . . 6 6 ± ± 1 1 . . 0 0 a 3 3 . . 9 9 7 7 ± ± 0 0 . . 1 1 7 7 I S S o o l l v v e e n n t t 5 5 0 0 % % ( ( v v / / v v ) ) e e t t h h a a n n o o l l R R o o o o m m t t e e m m p p e e r r a a t t u u r r e e 2 2 7 7 . . 0 0 ± ± 6 6 . . 9 9 b 1 1 . . 4 4 2 2 ± ± 0 0 . . 3 3 6 6 II S S o o l l v v e e n n t t 8 8 0 0 % % ( ( v v / / v v ) ) a a c c e e t t o o n n e e R R o o o o m m t t e e m m p p e e r r a a t t u u r r e e 3 3 8 8 . . 9 9 ± ± 1 1 . . 6 6 c 2 2 . . 9 9 4 4 ± ± 0 0 . . 1 1 2 2 III S S o o l l v v e e n n t t 5 5 0 0 % % ( ( v v / / v v ) ) E E A A * R R o o o o m m t t e e m m p p e e r r a a t t u u r r e e 2 2 6 6 . . 9 9 ± ± 5 5 . . 1 1 b 3 3 . . 6 6 8 8 ± ± 0 0 . . 7 7 0 0 I,III P P S S # 8 8 0 0 % % ( ( v v / / v v ) ) e e t t h h a a n n o o l l 1 1 b b a a r r , , 1 1 0 0 0 0 C C 9 9 5 5 . . 3 3 ± ± 0 0 . . 6 6 d 4 4 . . 2 2 8 8 ± ± 0 0 . . 0 0 3 3 I S S L L E E ! T T a a p p w w a a t t e e r r R R o o o o m m t t e e m m p p e e r r a a t t u u r r e e 0 0 . . 0 0 0 0 3 3 8 8 ± ± 0 0 . . 0 0 0 0 0 0 2 2 e 1 1 . . 5 5 0 0 ± ± 0 0 . . 0 0 8 8 II * e e t t h h y y l l a a c c e e t t a a t t e e , , # p p r r e e s s s s u u r r i i z z e e d d s s t t e e a a m m e e r r , , ! s s o o l l i i d d - - l l i i q q u u i i d d e e x x t t r r a a c c t t i i o o n n T T h h e e n n u u m m b b e e r r w w i i t t h h t t h h e e s s a a m m e e a a l l p p h h a a b b e e t t ( ( a a - - e e ) ) a a n n d d R R o o m m a a n n n n u u m m e e r r i i c c a a l l ( ( I I I I I I I I ) ) i i n n d d i i c c a a t t e e n n o o s s i i g g n n i i f f i i c c a a n n t t d d i i f f f f e e r r e e n n c c e e a a t t 9 9 5 5 % % C C I I Conclusion In conclusion, anthraquinone extraction in the pressurized steamer with 80% ethanol provided the superior extraction in term of extraction efficiency and cost ratio over that of a more expensive soxhlet and a less efficient solid-liquid extraction procedures.

ผลกระทบของเทคนิคการสกัดสารแอนทราควิโนนจากต้นยอต่อประสิทธิภาพการสกัด

  • Upload
    galvin

  • View
    53

  • Download
    2

Embed Size (px)

DESCRIPTION

ผลกระทบของเทคนิคการสกัดสารแอนทราควิโนนจากต้นยอต่อประสิทธิภาพการสกัด ( Influences of Anthraquinone Extraction Techniques from Morinda sp. on Extraction Efficiency ). บทคัดย่อ. วงศ์วัฒน์ เตมียบุตร สิริลักษณ์ ปิยวรนนท์ เกศินี ยะจอม ธิดารัตน์ สืบสง่า นพพล เล็กสวัสดิ์. - PowerPoint PPT Presentation

Citation preview

Page 1: ผลกระทบของเทคนิคการสกัดสารแอนทราควิโนนจากต้นยอต่อประสิทธิภาพการสกัด

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 5 20 35 50 65 80 95 100

% Acetone (v/v)

An

thra

qu

ino

ne

(mg

/ml)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 5 20 35 50 65 80 95 100

% Ethanol (v/v) [1 bar, 100๐C]

An

thra

qu

inon

e (m

g/m

l)

งานวิ�จั�ยน�ทำ าการเปรยบเทำยบปร�มาณสารแอนทำราควิ�โนนในผงราก ลำ าต้�น เปลำ อกแลำะใบ ของต้�นยอ พบวิ$าส$วินรากมปร�มาณแอนทำราควิ�โนนส%งทำ&ส'ดเทำ$าก�บ 103.2 4.8 mg/g มวิลำแห้�ง ต้ามด�วิยลำ าต้�น (45.3 6.3 mg/g ) เปลำ อก (6.90 0.3 mg/g ) แลำะใบ (1.20 0.6 mg/g ) จัากน��นน าเทำคน�คการสก�ดส&วิ�ธีการมาใช้�สก�ดแอนทำราควิ�โนนจัากรากต้�นยอด�งต้$อไปน� วิ�ธีแรกใช้�ช้'ด Soxhlet ด�วิย 50%(v/v) เมทำานอลำ จัะสก�ดแอนทำราควิ�โนนได� 14.6 1.0 mg/g รากต้�นยอบดแห้�ง ค�ดเป-นค$าใช้�จั$าย 3.97 0.17 บาทำ/mg แอนทำราควิ�โนน ส$วินวิ�ธีทำ&สองทำ าการสก�ด ณ อ'ณห้ภู%ม�ห้�อง ด�วิยต้�วิทำ าลำะลำาย 80%(v/v) อะซีโต้น แลำะ 50%(v/v) เอทำานอลำ จัะได�แอนทำราควิ�โนนควิามเข�มข�นส%งส'ด 38.9 1.6 แลำะ 27.0 6.9 mg/g ค�ดเป-นค$าใช้�จั$าย 2.94 0.12 แลำะ 1.42 0.36 บาทำ/mg ต้ามลำ าด�บ การสก�ดด�วิยวิ�ธีทำ&สามในถั�งอ�ดควิามด�น 1 บาร1 อ'ณห้ภู%ม� 100ซี เป-นเวิลำา 5 นาทำ ด�วิย 80% (v/v) เอทำานอลำ จัะสก�ดแอนทำราควิ�โนนได�มากทำ&ส'ดถั2ง 95.3 0.6 mg/g โดยมต้�นทำ'นการสก�ดอย%$ทำ& 4.28 0.03 บาทำ/mg ส$วินวิ�ธีการสก�ดส'ดทำ�ายในเคร &องสก�ดสารผสมของแข3งด�วิยของเห้ลำวิแบบวิงจัรป4ดทำ&อ'ณห้ภู%ม�ห้�องมต้�นทำ'นในการสก�ดเพยง 1.50 0.08 บาทำ/mg แต้$สก�ดได�เพยง 2.27 0.11 mg/g

ผลำกระทำบของเทำคน�คการสก�ดสารแอนทำราควิ�โนนจัากต้�นยอต้$อประส�ทำธี�ภูาพการสก�ดผลำกระทำบของเทำคน�คการสก�ดสารแอนทำราควิ�โนนจัากต้�นยอต้$อประส�ทำธี�ภูาพการสก�ด(Influences of Anthraquinone Extraction Techniques from (Influences of Anthraquinone Extraction Techniques from MorindaMorinda sp. on Extraction Efficiency) sp. on Extraction Efficiency)

บทำค�ดย$อ

References

Abstract

ภูาควิ�ช้าวิ�ศวิกรรมอาห้าร คณะอ'ต้สาห้กรรมเกษต้ร มห้าวิ�ทำยาลำ�ยเช้ยงให้ม$ ภูาควิ�ช้าวิ�ศวิกรรมอาห้าร คณะอ'ต้สาห้กรรมเกษต้ร มห้าวิ�ทำยาลำ�ยเช้ยงให้ม$ ((Department of Food Engineering, Faculty of Agro-Industry, Chiang Mai Department of Food Engineering, Faculty of Agro-Industry, Chiang Mai University)University)

AcknowledgementsThe financial support of this research was provided from “The Grant for New Generation Researcher” of Chiang Mai University (2005) to N. Leksawasdi and RPUS grant from Thai Research Fund (TRF), Industrial Sector (2006) to W. Temiyaputra, T. Suebsanga, K. Yajom, and S. Piyaworanon. The research team would like to thank both institutions for their continuous supports of this project.

วิงศ1วิ�ฒน1 เต้มยบ'ต้ร ส�ร�ลำ�กษณ1 ป4ยวิรนนทำ1 เกศ�น ยะจัอม ธี�ดาร�ต้น1 ส บสง$า นพพลำ เลำ3กสวิ�สด�8

IntroductionAnthraquinone plays an important role as a biocatalyst in the pulp paper production industry. Ibrahim and Osman (1994) discussed the potential of using anthraquinone as laxative and growth inhibitor of microbes such as fungi. Furthermore, anthraquinone can also be used as substrate in the production of various dyes and pigments such as alizarin. This chemical is commonly found in plants such as Noni (Morinda sp.) and Cassod (Cassia sp.) (Kaewdok and Tubsombat, 2002). Noni plant or Indian Mulberry tree is commonly available in the northern part of Thailand.

Shotipruk et al. (2004) examined the anthraquinone extraction from M. citrifolia with hot water at high pressure within the temperature range of 110-220C and flow rate speed of 2-6 ml/min. The best extraction condition was obtained at 220C , 4 ml/min and 7 MPa with maximum anthraquinone level of 43 mg/g dried root. Aobchey et al. (2002) reported anthraquinone extraction from the root of M. augustifolia and biomass obtained from root cell culture. The extraction solvents were chloroform and methanol at atmospheric pressure. The highest level of anthraquinone obtained was 15 mg/g dried root which was compared to 8.9 mg/g of root cell culture.

The aims of this researchThe aims of this research were to determine anthraquinone content in root, stem, bark and leaf of Morinda sp. in order to select the part of plant with the highest anthraquinone level for further investigation on the extraction technique. The effects of four extraction techniques, which include (1) Soxhlet extraction (2) simple solvent extraction at room temperature, (3) pressurized steamer extraction and (4) the extraction in closed-circuit solid-liquid extraction unit, on the extraction cost and extraction efficiency were examined so that the cost effective method of anthraquinone extraction from Morinda sp. root for large scale production can be established.

DiscussionThe roots contained the highest specific concentration of anthraquinone at 103.2 4.8 mg/g dried mass, followed by stem (45.3 6.3 mg/g), bark (6.90 0.3 mg/g ) and leaf (1.20 0.6 mg/g). This was compared to the maximum concentration of 1.2 mg/g anthraquinone glycoside and 2.0 mg/g total anthraquinone from C. siamea dried leaf (Kritsanapan and Nualkaew 2003). Further comparative analysis with extraction in the pressurized steamer at 1 bar and 100oC for 5 min with total anthraquinone level of 95.3 0.6 mg/g dried root powder (at 80% ethanol, (0.159 0.001 mg/ml)/(0.05 g/30 ml) = 95.3 0.6 mg/g) indicated that soxhlet extraction methods had lower extraction efficiency than the extraction in pressurized steamer. The roles of water in the enhancement of extraction efficiency were prominent in every case of anthraquinone extraction with various types of solvent. Hemwimol et al. (2006) explained that a relatively high polarity index (p.i.) of water (p.i. = 9) in comparison to ethanol (p.i. = 5.2) might contribute to the enhancement of extraction efficiency. However, the error associated with this extraction procedure was still relatively large as evidence from the presence of two outliers, in which the level of extracted anthraquinone (mg/ml) at 65 and 95% ethanol were much lower than that at 50, 80 and 100% ethanol. Further experimentation should be conducted to investigate whether extraction time beyond 5 min and extraction pressure (5 – 20 psi) play any part in stabilizing the extraction efficiency as well as the positioning or the number of extraction containers presence in the pressurized steamer that might influence or interfere the accessing pattern of steam to each container.

Aobchey, P., Sriyam, S., Praharnripoorab, W., Lhieochaiphant, S., and Phutrakul, S. 2002.Aobchey, P., Sriyam, S., Praharnripoorab, W., Lhieochaiphant, S., and Phutrakul, S. 2002. Production of red Production of red pigment from the root of pigment from the root of Morinda angustifoliaMorinda angustifolia Roxb. var. scabridula Craib. by root cell culture. Chiang Mai Roxb. var. scabridula Craib. by root cell culture. Chiang Mai University Journal 1: 66-78.University Journal 1: 66-78.Hemwimol, S., Pavasant, P., and Shotipruk, A. 2006.Hemwimol, S., Pavasant, P., and Shotipruk, A. 2006. Ultrasound-assisted extraction of anthraquinones from Ultrasound-assisted extraction of anthraquinones from roots of roots of MorindaMorinda citrifoliacitrifolia. Ultrasonics Sonochemistry 13: 543-548.. Ultrasonics Sonochemistry 13: 543-548.Ibrahim, D., and Osman, H. 1994.Ibrahim, D., and Osman, H. 1994. Antimicrobial of Antimicrobial of Cassia alataCassia alata from Malaysia. Journal of Ethnopharmacology, from Malaysia. Journal of Ethnopharmacology, 45: 151-156.45: 151-156.Kaewdok, P. and Tubsombat, S. 2002. The anthraquinone extraction from the leaves of herbs in the Family Kaewdok, P. and Tubsombat, S. 2002. The anthraquinone extraction from the leaves of herbs in the Family Leguminosae. Research and Academic Services Institute, Rajbhat Mahasarakam (online)Leguminosae. Research and Academic Services Institute, Rajbhat Mahasarakam (online).. Available: Available: http://research.rmu.ac.th/dataresearch/p1http://research.rmu.ac.th/dataresearch/p1..php?ac=show&r=493php?ac=show&r=493. [March 30, 2007]. . [March 30, 2007]. Kritsanapan, W., and Nualkeaw, S. 2003.Kritsanapan, W., and Nualkeaw, S. 2003. Variation of anthraquinone content in Variation of anthraquinone content in Senna siameaSenna siamea leaves (online). leaves (online). Available: Available: http://schoolbotany.haii.or.th/exhibition46/presentations/wandee/wandee.PPT. [July 28, 2005].. [July 28, 2005].Sakunpak, A., Panichayupakaranant, P., and Sirikatitham, A. 2007.Sakunpak, A., Panichayupakaranant, P., and Sirikatitham, A. 2007. Preparation of Preparation of Senna alataSenna alata leaf extract leaf extract and quantitative analysis of anthraquinone (online). Available: and quantitative analysis of anthraquinone (online). Available: http://www.grad.psu.ac.th/http://www.grad.psu.ac.th/ grad_research/apply_file/full3920600305071grad_research/apply_file/full3920600305071..pdf. pdf. [March 30, 2007[March 30, 2007]]..Shotipruk, A., Kiatsongserm, J., Pavasant, P., Goto, M., and Sasaki, M. 2004.Shotipruk, A., Kiatsongserm, J., Pavasant, P., Goto, M., and Sasaki, M. 2004. Pressurized hot water extraction Pressurized hot water extraction of anthraquinones from the roots of of anthraquinones from the roots of Morinda citrifoliaMorinda citrifolia. Biotechnology Progress 20: 1872-1875.. Biotechnology Progress 20: 1872-1875.Skoog, D.A., West, D.M., and Holler, F.J. 1996. Fundamentals of Analytical Chemistry, 7th edition. p.53 - 55.Skoog, D.A., West, D.M., and Holler, F.J. 1996. Fundamentals of Analytical Chemistry, 7th edition. p.53 - 55.

The comparison of anthraquinone levels in root, stem, bark and leaf of Morinda sp. were investigated. The roots contained the highest specific concentration of anthraquinone at 103.2 4.8 mg/g dried mass, followed by stem (45.3 6.3 mg/g), bark (6.90 0.3 mg/g ) and leaf (1.20 0.6 mg/g). Four extraction techniques were employed to extract anthraquinone from the roots of Morinda sp. Soxhlet apparatus was utilized in the first technique with 50% (v/v) methanol as an extraction solvent. It was found that 14.6 1.0 mg/g dried roots powder was extracted with the expenses of 3.97 0.17 Baht/mg anthraquinone. This was compared to the second extraction method at room temperature with 80%(v/v) acetone and 50%(v/v) ethanol that led to the highest concentration of extracted anthraquinone at 38.9 1.6 and 27.0 6.9 mg/g with the accompanied cost of 2.94 0.12 and 1.42 0.36 Baht/mg, respectively. The third extraction procedure was carried out in the pressurised steamer at 1 bar and 100C for 5 min with 80% (v/v) ethanol. The highest level of extracted anthraquinone was 95.3 0.6 mg/g at the price of 4.28 0.03 Baht/mg. The last method of extraction was performed in the closed-circuit solid-liquid extraction unit at room temperature. Although the extraction cost was relative small (1.50 0.08 Baht/mg), the specific concentration obtained was not high (only 2.27 0.11 mg/g).

Materials & MethodsMaterials & ChemicalsMaterials & ChemicalsAll of the chemicals used in the experiment with the exception of 95% (v/v) industrial grade ethanol were analytical reagent grade.Sample PreparationSample PreparationThe roots of Morinda sp. were collected from households within the Muang and Saraphee District of Chiang Mai Province. The appropriate size reduction for root, stem, bark and leaf were applied and followed by drying step at 65C and 1 m/s air flow rate. Anthraquinone Extraction with Soxhlet ApparatusAnthraquinone Extraction with Soxhlet ApparatusThe original extraction method for C. siamea Britt. proposed by Kritsanapan and Nualkaew (2003) using soxhlet extraction unit was improved and modified for root. Each extraction was performed twice. The extraction was performed with 150 ml of 50%(v/v) ethanol or 50%(v/v) methanol using four rounds of reflux followed by filtration with Whatman No. 4 filter paper. Anthraquinone Extraction with Other MethodsAnthraquinone Extraction with Other MethodsThree replicates were used and the ratio of root powder per volume of solvent at 0.17 g per 100 ml was maintained.Extraction with different type of solvents at room temperatureThree types of solvents were used including ethanol, acetone and ethyl acetate. Each solvent was mixed with distilled water in the following %(v/v overall solution); 0, 5, 20, 35, 50, 65, 80, 95 and 100. The extraction was done for 6 h with 0.05 g root.Extraction in pressurized steamerThe extraction was repeated as previous method with ethanol as a solvent. The sample was placed in the moisture can and carried out the extraction in the stainless steel pressurized steamer at 1 bar and 100C for 5 min. Extraction in solid-liquid extraction unitThe 5 g root powder was extracted with 3 litres of distilled water in the closed circuit solid-liquid extraction demonstration unit (Armfield, Ringwood, UK, Model No. 12697) at room temperature. Sample was collected every 30 min for 5 h.Analytical MethodsAnalytical MethodsThe analysis of anthraquinone was performed spectrophotometrically at 325.4 nm and chromatographically using HPLC for the determination of anthraquinone content in root, stem, bark and leaf of Morinda sp. with AlltimaTM C8 column The statistical hypothesis testing on difference in the level of extracted anthraquinone and extraction cost were performed using experimental mean comparison technique (Skoog et al. 1996).

Results

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 5 20 35 50 65 80 95 100

% Ethanol (v/v)

An

thra

qu

ino

ne

(mg

/ml)

TTaabbllee 11:: SSuummmmaarryy ooff eexxppeennsseess iinnvvoollvveedd iinn aanntthhrraaqquuiinnoonnee eexxttrraaccttiioonn wwiitthh ffoouurr eexxttrraaccttiioonn tteecchhnniiqquueess

EExxttrraaccttiioonn mmeetthhoodd

SSoollvveenntt EExxttrraaccttiioonn ccoonnddiittiioonnss

AAnntthhrraaqquuiinnoonnee ((mmgg ppeerr gg ooff rroooott

ppoowwddeerr))

IInniittiiaall eexxttrraaccttiioonn ccoosstt ooff aanntthhrraaqquuiinnoonnee

11 mmgg ((BBaahhtt))

SSooxxhhlleett 5500 %%((vv//vv)) eetthhaannooll

RReefflluuxx 44 ttiimmeess

1111..22 ±± 22..88aa 44..9988 ±± 11..2255II

SSooxxhhlleett 5500 %%((vv//vv)) mmeetthhaannooll

RReefflluuxx 44 ttiimmeess

1144..66 ±± 11..00aa 33..9977 ±± 00..1177II

SSoollvveenntt 5500 %%((vv//vv)) eetthhaannooll

RRoooomm tteemmppeerraattuurree

2277..00 ±± 66..99bb 11..4422 ±± 00..3366IIII

SSoollvveenntt 8800 %%((vv//vv)) aacceettoonnee

RRoooomm tteemmppeerraattuurree

3388..99 ±± 11..66cc 22..9944 ±± 00..1122IIIIII

SSoollvveenntt 5500 %%((vv//vv))

EEAA** RRoooomm

tteemmppeerraattuurree 2266..99 ±± 55..11bb 33..6688 ±± 00..7700II,,IIIIII

PPSS## 8800 %%((vv//vv)) eetthhaannooll

11 bbaarr,, 110000 CC 9955..33 ±± 00..66dd 44..2288 ±± 00..0033II

SSLLEE!! TTaapp wwaatteerr

RRoooomm tteemmppeerraattuurree

00..00003388 ±± 00..00000022ee 11..5500 ±± 00..0088IIII

**eetthhyyll aacceettaattee,, ##pprreessssuurriizzeedd sstteeaammeerr,,!!ssoolliidd--lliiqquuiidd eexxttrraaccttiioonn TThhee nnuummbbeerr wwiitthh tthhee ssaammee aallpphhaabbeett ((aa--ee)) aanndd RRoommaann nnuummeerriiccaall ((II –– IIIIII)) iinnddiiccaattee nnoo ssiiggnniiffiiccaanntt ddiiffffeerreennccee aatt 9955%% CCII

ConclusionIn conclusion, anthraquinone extraction in the pressurized steamer with 80% ethanol provided the superior extraction in term of extraction efficiency and cost ratio over that of a more expensive soxhlet and a less efficient solid-liquid extraction procedures.