AC00

Embed Size (px)

Citation preview

  • 7/27/2019 AC00

    1/48

    Just Before Start

    Analog CommunicationSem V EXTC

  • 7/27/2019 AC00

    2/48

    Evaluation System

  • 7/27/2019 AC00

    3/48

    Chapters

    1. Basics of Communication System

    2. Amplitude Modulation & Demodulation

    3. Angle Modulation & Demodulation

    4. Radio Receivers

    5. Sampling Techniques

    6. Pulse Modulation and Demodulation

  • 7/27/2019 AC00

    4/48

    Analog CommunicationBy

    Vaqar Ansari

  • 7/27/2019 AC00

    5/48

    Electronics and

    Telecommunication

    Engineering

  • 7/27/2019 AC00

    6/48

  • 7/27/2019 AC00

    7/48

  • 7/27/2019 AC00

    8/48

    What is a circuit?

    Combination of electronic parts, wires connectedbetween power sources.

    It's like a physical program.

    It's also like setting up dominoes in sequence.

  • 7/27/2019 AC00

    9/48

    What is a breadboard?

    What are they good for?

    Creatings, organizing, and prototyping a circuit.

    Literally started out as a bread board with nails.

  • 7/27/2019 AC00

    10/48

    What are LEDs?

    Light Emitting DiodesDiode Symbol + Arrows for lightPoints to ground

  • 7/27/2019 AC00

    11/48

    Diodes A semiconductor diode isformed with pieces of N and

    P-type material are joined. The P material is called the

    anode.

    The N material is called thecathode.

    The resulting structure is called

    a PN junction.

    A PN junction (or diode) is aswitch or component throughwhich electrons will flow

    easily in one direction but notin the opposite direction.

  • 7/27/2019 AC00

    12/48

    0.3(Ge) 0.7(Si)

    (Ge)(Si)

    VD(V)

    ID(mA)

    Comparison of Si and Ge semiconductor diodes

    Is(Si)=10nA

    Is=reverse saturation current

    Is(Ge)

    1

  • 7/27/2019 AC00

    13/48

    Transistor Operation The basic operation will be described using the pnp transistor.

    The operation of the pnp transistor is exactly the same if the

    roles played by the electron and hole are interchanged.

    One p-n junction of a transistor is reverse-biased, whereas theother is forward-biased.

    Forward-biased junctionof a pnp transistor

    Reverse-biased junctionof a pnp transistor

  • 7/27/2019 AC00

    14/48

    Junction FETs

    (JFETs)

    JFETs consists of a piece ofhigh-resistivity semiconductormaterial (usually Si) whichconstitutes a channelfor the

    majority carrier flow.

    Conducting semiconductorchannel between two ohmiccontacts source & drain

  • 7/27/2019 AC00

    15/48

    Classification scheme for

    Field Effect Transistors.

  • 7/27/2019 AC00

    16/48

    General R-L-C AC circuit

    AC

    R

    AC

    LC

    Volt and current relations

    tVV o cos

    tVtVtVtV cRLo cos

    c

    tq

    Vc

    dt

    tdq

    RVR

    dt

    tdI

    LVL

    2

    2

    dt

    tqd

    L

    tV

    c

    tq

    dt

    tdqR

    dt

    tqdL o cos2

    2

  • 7/27/2019 AC00

    17/48

    t

    Z

    V

    dt

    tdqtI o cos,

    tZVtq o sin

    22 Lc XXRZ 2

    2 1

    L

    C

    R

    R

    XX LctanR

    LC

    1

    tIocos

    XC- X

    L

    R

    Solution of the differential equation

  • 7/27/2019 AC00

    18/48

    -20

    -10

    0

    10

    20

    30

    40

    50

    60

    0 5000 10000 15000 20000

    (rad/sec)

    OhmorOhm^

    Xc=1/wC

    XL=wL

    Xc-XL

    (Xc-XL)^2

    R^2+(Xc-XL)^2

    Z=sqrt(R^2+(Xc-XL)^2)

    C =10 FL = 1mH

    R = 5 ohm

    LC

    1Capacitive circuit Inductive circuitLC

    1

  • 7/27/2019 AC00

    19/48

    -90

    -75

    -60

    -45

    -30

    -15

    0

    15

    30

    45

    60

    75

    90

    0 5000 10000 15000 20000

    (rad/sec)

    degr

    ees

    C =10 FL = 1mH

    R = 5 ohm

    Capacitive circuit

    Inductive circuit

    R

    XXLc

    tanR

    LC

    1

  • 7/27/2019 AC00

    20/48

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 5000 10000 15000 20000

    (rad/sec)

    I

    o

    Amp C =10 F

    L = 1mHR = 5 ohm

    Vo = 5 Volt

    Capacitive circuit

    Inductive circuit

    Z

    VI oo

  • 7/27/2019 AC00

    21/48

    -1

    0

    1

    2

    3

    4

    5

    0 0.0005 0.001 0.0015 0.002

    Time (sec)

    P(t)(W

    att)

    w=5000 rad/sec w=10000 rad/sec w=15000 rad/sec

    C =10 FL = 1mH

    R = 5 ohm

    Vo = 5 Volt

    Capacitive case, 0 Inductive case, 0Resistive case, 0

  • 7/27/2019 AC00

    22/48

    0

    0.25

    0.5

    0.75

    1

    1.25

    1.5

    1.75

    2

    2.25

    2.5

    0 5000 10000 15000 20000

    (rad/sec)

    PavW

    C =10 F

    L = 1mHR = 5 ohm

    Vo = 5 Volt

    Capacitive circuit

    Inductive circuit

    RI

    P oav2

    2

  • 7/27/2019 AC00

    23/48

    Root MeanSquare

    2

    orms

    II

    rmsR RIVrms

    2rmsav RIP

    rmsCX

    IXV Crms

    rmsLX IXV L

    rms

  • 7/27/2019 AC00

    24/48

    Resonance

    At resonance, the capacitive reactance is equalto the inductive reactance.

    LC XX LC

    1

    LCres

    1

    22 Lc XXRZ RZ res

    R

    XX Lctan 0res

    The impedanceis minimum, and it is totally resistive.

  • 7/27/2019 AC00

    25/48

    Resonance

    -20

    -10

    0

    10

    20

    30

    40

    50

    60

    0 5000 10000 15000 20000

    (rad/sec)

    Ohmor

    Ohm^

    Xc=1/wC

    XL=wL

    Xc-XL

    (Xc-XL)^2

    R^2+(Xc-XL)^2

    Z=sqrt(R^2+(Xc-XL)^2)

    C =10 FL = 1mH

    R = 5 ohm

    Z=R=5 ohm

  • 7/27/2019 AC00

    26/48

    Resonance

    -90

    -75

    -60

    -45

    -30

    -15

    0

    15

    30

    45

    60

    75

    90

    0 5000 10000 15000 20000

    (rad/sec)

    degr

    ees

    C =10 FL = 1mH

    R = 5 ohm

    Capacitive circuit

    Inductive circuit

  • 7/27/2019 AC00

    27/48

    Resonance

    At resonance, the capacitive reactance is equalto the inductive reactance, thus

    The impedance is minimum.

    The current is maximum.

    tR

    VtI res

    ores cos,

    t

    Z

    VtI o cos,

    tVV resores cos

  • 7/27/2019 AC00

    28/48

    Resonance

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 5000 10000 15000 20000

    (rad/sec)

    I

    o

    Amp C =10 F

    L = 1mH

    R = 5 ohm

    Vo = 5 Volt

    Capacitive circuit

    Inductive circuit

    Io=Vo/R =5/5 = 1 Amp.

  • 7/27/2019 AC00

    29/48

    Resonance

    0

    0.25

    0.5

    0.75

    1

    1.25

    1.5

    1.75

    2

    2.25

    2.5

    0 5000 10000 15000 20000

    (rad/sec)

    PavW

    C =10 FL = 1mH

    R = 5 ohm

    Vo = 5 Volt

    Capacitive circuit

    Inductive circuit

    Pav=V2

    o/2R =25/(2*5) = 2.5 W

  • 7/27/2019 AC00

    30/48

    Ideal Op-Amp Characteristics

    Open Loop Voltage Gain (Avol) is

    infinite

    Input offset Voltage is zero

    Input bias current is zero

    No power supply limits Input impedance is infinite

    Simple model is a voltage

    controlled voltage source with

    high gain.

    Avol= -

    +-

    +Vosi = 0V

    Vout

    IB-= 0

    IB+= 0

    Avol= ZIN=

    -

    +-

    +

    Vout

  • 7/27/2019 AC00

    31/48

    Close Loop GainVpos Vneg Avol Vout= (1) Input x gain = output

    (2) Voltage divider equation

    (remember Ib =0)Vneg Vout

    R1

    R1 Rf

    =

    Vpos Vout

    R1

    R1 Rf

    Avol Vout= (3) Substitute 2 into 1

    Vout

    AvolVpos

    AvolR1

    R1 Rf 1

    =

    (4) Rearange 3

    Vout

    Vpos

    1

    R1

    R1 Rf

    1

    Avol

    =(5) Multiply num and

    denom with 1/Avol

    (6) Take the limit

    for high gainAvol

    1

    R1

    R1 Rf

    1

    Avol

    lim

    1

    R1

    R1 Rf

    0

    =

    Rf

    R1

    1=

    Vpos

    Vneg

    Avol-

    +-

    +

    Vout

    Rf 1kR1 1k

    IB = 0

    Vpos-

    +

  • 7/27/2019 AC00

    32/48

    Rin 1k

    RF 2k

    Vin

    2V

    Vout

    0VVirtual

    Short to

    GND

    + 2V -

    +

    -

    Iin= 2V/1kIin= 2mA

    Simple Analysis for Inverting Amp

    Rin 1k

    RF 2k

    Vin

    2V

    Vout

    +

    -

    Iin= 2mA

    2mA

    VRF= 2mA x 2k = 4V

    + 4V -

    Vout = -4V

    With respect to GND

    Gain = Vout / Vin

    Gain = (-4V) / (2V) = -2

    IB= 0A

    Vin across Rin

    Iin flows through Rf

    Vout is the voltage across Rf

  • 7/27/2019 AC00

    33/48

    R1 1k

    Rf 99k

    + Vout-

    +

    Vin

    +

    Vout-

    +

    Vin

    R1 1k

    Rf 99k

    +

    Vout-

    +

    VinBuffer

    Vout = Vin

    Common Amplifiers

    Noninverting Amp

    Vout

    Vin

    Rf

    R1

    1=

    Inverting Amp

    Vout

    Vin

    Rf

    R1

    =

  • 7/27/2019 AC00

    34/48

  • 7/27/2019 AC00

    35/48

    Superposition principle

    Used for circuits with multiple input sources.

    Analyze the output response for one sourceat a time.

    Short unused voltage sources

    Open unused current sources

    Repeat the analysis for each source

    Add all the response from each analysis toget the overall system respones

  • 7/27/2019 AC00

    36/48

    VrefVref

    +5VR1 1k

    R2 1k

    +

    VM1+

    VG1

    +

    -

    U1 OPA333

    V

    Vref

    Vref

    +5VR1 1k

    R2 1k

    +

    VM1

    +

    -

    U1 OPA333

    V

    Vref

    VrefVref

    +5VR1 1k

    R2 1k

    +

    VM1+

    VG1

    0.1V

    +

    -

    U1 OPA333

    V

    -1 x Vref = -Vref

    W.R.T.G

    2(Vg1 + Vref)

    W.R.T.G

    (2Vg1 + 2Vref) + (-Vref)=2Vg1 +Vref W.R.T. GND

    (2Vg1 +Vref)Vref =2Vg1 W.R.T. Ref

    2Vg1

    w.r.t Ref

    2Vg1 +Vref

    w.r.t.g

    Superposition Example: Single Supply Amp

    (Noninverting)

  • 7/27/2019 AC00

    37/48

    R3 40k

    R4 40k

    R5 40k

    R6 40k

    Vout

    Va1

    Va2

    -

    +

    A3

    Output Stage

    Dif Amp

    R3 40k R5 40k

    Vout

    Va1

    -

    +

    A3

    R3 40k

    R4 40k

    R5 40k

    R6 40k

    Vout

    Va2

    -

    +

    A3

    Va1

    Va2

    Va2+ Vref

    Find Vout Through Superposition

    Vout = Va2Va1+ Vref

    Inverting Amp

    Gain = -1

    Non-inverting Amp

    Gain = 2

    Voltage Divider

    Gain = 1/2

    Va1

    Vin_dif

    Va2

    -Va1

    Vref

    Va22

    +Vref2

    Vref

    Superposition Example : Diff Amp

  • 7/27/2019 AC00

    38/48

  • 7/27/2019 AC00

    39/48

    Cf Filter (High Gain)

    At high frequency CF will short

    RF

    High Freq Gain = 0/1k+1 = 1

    At low frequency CF acts like

    an open

    DC Gain = (99k/1k)+1 = 100

    -15V

    +15V

    R1 1k

    Rf 99k

    +

    Vout

    Cf 10n

    -

    +

    U1 OPA827

    Vin

    fp1

    2 99 k10 nF160.8Hz

  • 7/27/2019 AC00

    40/48

    Gain(dB)

    -10.00

    0.00

    10.00

    20.00

    30.00

    40.00

    Frequency (Hz)

    1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M

    Phase[deg]

    -80.00

    -60.00

    -40.00

    -20.00

    0.00

    fp1

    2 99 k10 nF160.8Hz

    High Frequency

    Gain = 1 (0dB)

    Low Frequency

    Gain = 100 (40dB)

    -45o/ decade

    +45o/ decade

    Zero at f= 16.08kHz

    40dB / 20dB/dec = 2 decades.

  • 7/27/2019 AC00

    41/48

    Cf Filter (Low Gain)

    At high frequency CF will

    short RF

    High Freq Gain = 0/1k+1 = 1

    At low frequency CF acts like

    an open

    DC Gain = (2k/1k)+1 = 3

    -15V

    +15VR1 1k

    Rf 2k

    +

    Vin

    Vout

    Cf 10n

    -

    +

    fp1

    2 2 k10 nF8 10

    3 Hz

  • 7/27/2019 AC00

    42/48

    Gain(dB)

    -2.00

    0.00

    2.00

    4.00

    6.00

    8.00

    10.00

    Frequency (Hz)

    1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M

    Phase

    [deg]

    -40.00

    -30.00

    -20.00

    -10.00

    0.00

    High Frequency

    Gain = 1 (0dB)

    Low Frequency

    Gain = 3

    (9.54dB)

    -45o/decade +45o/

    decade

    Zero

    fp1

    2 2 k10 nF8 10

    3 Hz

  • 7/27/2019 AC00

    43/48

  • 7/27/2019 AC00

    44/48

    Analog

    Discrete

    Digital

    Signals

    Periodicity

    Periodic

    Non periodic

    Nature ofsample

    Random

    Deterministic

    Odd/Even

    EnergySignal

    Power Signal

  • 7/27/2019 AC00

    45/48

    System

    Linearity

    Causality

    StabilityTime

    Invariant/Variant

    Static/Dynamic

  • 7/27/2019 AC00

    46/48

    FT

    Spectrum

    ParsivalsRelationship

    DFT & FFT

    LT

    Initial Value Theorem

    Final Value Theorem

    ZT Pole & Zeros on ROC Residue Theorem

  • 7/27/2019 AC00

    47/48

  • 7/27/2019 AC00

    48/48

    Just Start