9

Click here to load reader

am1146_4

Embed Size (px)

DESCRIPTION

ok

Citation preview

ARCHIVUMMATHEMATICUM(BRNO)Tomus40(2004), 345353FIXEDPOINTTHEOREMSFORNONEXPANSIVEMAPPINGSINMODULARSPACESPOOMKUMAMAbstract. Inthispaper, weextendseveral conceptsfromgeometryofBa-nachspacestomodularspaces. Withacareful generalization, wecancoverall corresponding results in the former setting. Main result we prove says thatifisaconvex, -completemodularspacesatisfyingtheFatoupropertyandr-uniformlyconvexforallr> 0,Caconvex, -closed, -boundedsubsetofX,T:C Ca-nonexpansivemapping,thenThasaxedpoint.1. IntroductionThe theory of modular spaces was initiated by Nakano [15] in 1950 in connectionwiththetheoryof orderspacesandredenedandgeneralizedbyMusielakandOrlicz[14] in1959. Itiswell knownthatoneof thestandardproofof Banachsxed point theorem is based on Cantors theorem in complete metric spaces [5, 6].Tothisend, usingsomeconvenientconstantsinthecontractionassumption, wepresent a generalization of Banachs xed point theorem in some classes of modularspaces.In this paper, we extend many concepts and results in normed spaces to modularspaces.2. PreliminariesWestart byreviewing somebasic factsabout modular spaces as formulated byMusielakandOrlicz[14]. Formoredetailsthereaderisreferedto[7, 9, 10] and[13].Denition2.1(cf. [7]). LetXbeanarbitrary vectorspace.(a) Afunction: X[0, ] iscalledamodularonXif forarbitraryx, yinX,(i)(x) = 0ifandonlyifx = 0,(ii)(x) = (x)foreveryscalarwith| |= 1,and2000MathematicsSubjectClassication: 46B20, 46E30,47H10.Key words and phrases: xed point, modular spaces, -nonexpansive mapping, -normalstructure, -uniformnormalstructure, r-uniformlyconvex.ReceivedNovember7,2002.346 P. KUMAM(iii)(x +y) (x) +(y)if += 1and, 0.(b) If (iii) is replacedby(iii)(x+y) (x) +(y) if +=1and, 0,esaythatisaconvexmodular.(c) A modular denes a corresponding modular space, i.e. the vector space XgivenbyX= {x X: (x) 0 as 0} .XisalinearsubspaceofX.Ingeneral themodularisnot subadditiveand therefore doesnot behave asanormoradistance. ButonecanassociatetoamodularanF-norm (see[13]).ThemodularspaceXcanbeequippedwithanF-norm (see[13])denedbyx= inf_ > 0; _x_ _.Namely, if isconvex, thenthefunctional |x|=inf_ > 0; _x_ 1_isanorminXwhichisequivalenttotheF-norm..Denition2.2(cf. [7,8]). LetXbeamodularspace.(a) Asequence(xn) Xis saidtobe -convergent toxXandwritexnx,if(xnx) 0asn .(b) A sequence (xn) is called -Cauchy whenever (xnxm) 0 as n, m .(c) The modular is called -complete if any -Cauchy sequence is -convergent.(d) Asubset BXis called -closed if for any sequence (xn) B-convergent tox X,wehavex B.(e) A-closedsubsetB Xiscalled-compactifanysequence(xn) Bhasa-convergent subsequence.(f) issaidtosatisfythe2-condition if(2xn) 0whenever(xn) 0asn .(g) Wesaythat has theFatouproperty if (x) liminfn(xn) wheneverxnx.(h) AsubsetB Xissaidtobe-boundedifdiam(B) < ,wherediam(B) = sup{(x y); x, y B}iscalledthe-diameterofB.(i) Denethe-distancebetweenx XandB Xasdis(x, B) = inf{(x y); y B} .(j) Denethe-Ball, B(x, r),centeredatx XwithradiusrasB(x, r) = {y X; (x y) r} .Let(X, .)beanormedspace. Then(x)=xisaconvexmodularonX.Onecancheckthat -ballsare-closedif andonlyif hastheFatouproperty(cf.[8]).FIXEDPOINTTHEOREMSINMODULARSPACES 347Example2.3.(1) TheOrlicz modular is denedfor everymeasurablereal functionf bytheformula(f) =_R(|f(t)|) dm(t) ,wheremdenotestheLebesguemeasureinRand: R[0, )iscontinuous.Wealsoassumethat(u)=0iu=0and(t) asn . ThemodularspaceinducedbytheOrliczmodulariscalledtheOrliczspaceL.(2)TheMusielak-Orliczmodularspaces(see.[17]). Let(f) =_(, f())d() ,whereisa-nitemeasureon,and : R [0, )satisfythefollowing:(i)(, u)isacontinuousevenfunctionof uwhichisnondecreasingforu>0,suchthat(, 0) = 0, (, u) > 0foru = 0,and(, u) asn .(ii)(, u)isameasurablefunctionofforeachu R.ThecorrespondingmodularspaceiscalledtheMusielak-Orliczspaces, andisdenotedbyL.Denition2.4(cf. [8]). AmodularspaceXissaidtohave-normal structureifforanynonempty-bounded-closedconvexsubsetCofXnotreducedtoaonepoint,thereexistsapointx Csuchthatr(x, C) := sup{(x y); y C} < diam(C) .A modular space Xis said to have -uniformlynormalstructure if there existsaconstantc (0, 1)suchthatforanysubsetCasabove, thereexistsx Csuchthatr(x, C) < c diam(C) .Clearly-uniformlynormal structureis-normal structure.LetXbeamodularspaceandletCbeanonempty-boundedand-closedconvex subset C of X. We will say that C has the xed point property (fpp) if every-nonexpansiveselfmapdenedonC(i.e.,T:CC, (T(x) T(y)) (x y)for every x, y C) has a xed point, that is, there eistsx Csuch that T(x) = x.Also, amodularspaceXissaidtohavethexedpoint property(fpp)if everynonempty-bounded-closed convexsubsetofXhasthexedpointproperty.In Banach spaces, when we think about reexivity automatically the dual spaceis present in our taught. But in modular spaces, it is very hard to conceive the dualspace. Tocircumventtheproblem,weusesomecharacterization ofreexivity.Theorem2.5(Smulian1939, cf. [12]). A normed spaceXis reexive if and onlyif

nCn= whenever (Cn) is a sequence of nonempty, closed bounded and convexsubsetsofXsuchthatCn Cn+1foreachn N.Denition2.6(cf. [8]). LetXbeamodularspace. Wewill saythatXorsatisestheproperty(R)if everydecreasingsequenceof nonempty-closedand-boundedconvexsubsetsofX,hasanonemptyintersection.Thefollowingtheoremisknown.348 P. KUMAMTheorem2.7(cf. [8]). Let Xbea-completemodular space. Assumethat isconvexandsatisestheFatouproperty. Moreover, assumethat Xhasthe-normal structure and hasthe property (R) andCisany-closed-bounded convexnonempty subsetofX. Thenany-nonexpansive mappingT: CChasaxedpointinC.3. ResultsWe start this chapter with generalizations as well as their corresponding resultsofuniformconvexityandnormalstructurecoecientsinmodularspaces.Denition3.1. Forr> 0, a modular spaceXis said to ber-uniformlyconvexif foreach>0, thereexists>0suchthatforanyx, yX, theconditions(x) r, (y) rand(x y) rimply_x +y2_ (1 )r .Denition3.2. Let Xbe aModular space. For any 0andr >0, themodulusof r-uniformconvexity ofXisdenedby(r, ) = inf_1 1r_x +y2_ : (x) r, (y) r, (x y) r_.Denition3.3. ThenormalstructurecoecientofXisthenumberN(X) = inf_diam(C)R(C):C XCis-closedconvex,-boundedanddiam(C) > 0_,whereR(C):=inf{r(x, C): xC}whichiscalledthe-Chebyshevradius ofC(cf.[7]).Remark3.4.(1) ItisnothardtoshowthatR(C) = 0. Indeed,supposeR(C) = 0andlet,x0, y0Cbesuchthat x0=y0. SinceR(C) =infyC r(x, C) =0, sothereexistsasequence(xn)inCsuchthatlimnr(xn, C) = 0. Thus_x0y02_ = _(x0xn) + (xny0)2_ (x0xn) +(xny0) 0asn . Thereforex0= y0,acontradiction.(2) Foranyx CwehaveR(C) r(x, C) diam(C).(3) ItisobviousformthedenitionthatXhas-uniformnormalstructureifandonlyifN(X) > 1(see[11]).Lemma3.5. Letr> 0. AmodularspaceXisr-uniformlyconvexifandonlyif(r, ) > 0forall > 0.Proof. Let>0. If Xis r-uniformlyconvex, thenthereexists >0suchthat for anyx, y Xwith(x) r, (y) r, and(x y) r. wehave_x+y2_(1 )r. Thus, forthesexandy, 1 1r_x+y2_. Hence(r, )FIXEDPOINTTHEOREMSINMODULARSPACES 349>0. Conversely,suppose(r, )>0forsome>0and>0. Takeanyx, y Xsuchthat(x) r, (y) rand(x y) r. Bydenitionof,weget(r, ) 1 1r_x+y2_. Hence1r_x +y2_ 1 (r, ) 1 .ThereforeXisr-uniformlyconvex.Lemma3.6. The modulus (r, .) of uniformconvexityof Xis increasingon[0, ).Proof. Letr>0and1>20. Letx, yXbesuchthat(x)rand(y) r. If(x y) 1r,then(x y) 2r. Thisshowthat_1 1r_x +y2_ : (x) r, (y) r, (x y) r1__1 1r_x +y2_ : (x) r, (y) r, (x y) r2_.Thisimpliesthat(r, 1) (r, 2).Theorem3.7. If the modulus of convexityof amodular space Xsatises(d, ) > 0forall d, > 0,thenXhas-normal structure.Proof. Let Cbe a nonempty -bounded-closedconvexsubset of Xwithdiam(C) = d > 0. Let (0, 1)thereexistx, y Csuchthat(x y) d .Let z =x+y2andwC. Thus, z C, (wx) d, (wy) dand((w x) (w y)) = (x y) d.Consequently,_w _x +y2__ = _(w x) + (w y)2_ (1 (d, ))d .HencesupwC(w z) _1 (d, )_d .Since(d, ) > 0,wegetsupwC(w z) < d = diam(C) .SincethisistrueforanyC,thisprovesthatXhas-normal structure.Lemma3.5andTheorem3.7giveusimmediatelyCorollary3.8. For amodular space X, if Xis r-uniformly convex for allr> 0,thenXhas-normallystructure.Corollary3.9(cf. [4]). Closedboundedconvexsubsetsof uniformlyconvexBa-nachspaceshavenormal structure.350 P. KUMAMTheorem3.10. Let X be a -complete modular space. If is convex and satisestheFatoupropertyandXisr-uniformlyconvexforall r>0,thenXhastheproperty(R).Proof. Let (Cn) be a decreasing sequence of -bounded, -closed nonempty convexsubsetsofX, z XwhichdoesnotbelongtoC1andr =limndis(z, Cn) .Dene Dn=CnB(z, r) andlet dnbe the diameter of Dn. Bythe Fatoupropertyof , (Dn) is adecreasingsequenceof nonempty-bounded, -closedconvexsubsetsofXbecauseB(z, r)isthena-closedset(see[8]).Letrnbe a sequence of positive number that decreases to zero anddnrn> 0for all n. Thereexist x, yDnsuchthat (x y) dn rn. Thus, bythedenitionof(r,dnrnr),wehave(z x +y2) = _(z x) + (z y)2__1 _r, dnrnr__r .Hence1rdis(z, Cn) 1r_z x +y2_ 1 _r, dnrnr_. ()Putd = limndnandan= dn1n,andconsidertwocases.Case1(an d,for alln large enough). Bybeingincreasing and (), wehaveforallnlargeenough,1rdis(z, Cn) 1 _r, anr_ 1 _r, dr_.Lettingn ,weget1 1 _r, dr_,whichimpliesthat(r,dr) = 0. Byr-uniformconvexityofXandLemma3.1.6wehave(r, ) > 0forall > 0,whenced = 0.Case2 (0 < an< d, for innitely many n). There exists a subsequence (an ) suchthatan d,whencethelimitlimn

(r,an

r)existsandby(),wehave1 1 limn

_r, an

r_.Consequently, limn

(r,an

r) = 0. Since an d and (r, ) > 0 for all > 0,wehaved=limndn=0as well. Thus, thereexists a-Cauchysequence(xn), wherexn Dnforeachn. SinceXis-complete, (xn)-converges tosomex0X. Usingthe-closenessof Dn, wededucethat x0Dnforall n1.ThisimpliesthatnNDn= and so nNCn= aswell. Theproofisthereforecomplete.FIXEDPOINTTHEOREMSINMODULARSPACES 351Corollary3.11(cf. [4]). Let Xbea-complete modular spacewithconvexandsatisfyingtheFatouproperty. IfXisr-uniformlyconvexforallr> 0,thenXhasthexedpointproperty.Proof. By Corollary 3.8 and Theorem 3.10,Xhas-normal structure and prop-erty(R). Consequently,Theorem2.7canbeappliedtoconcludethatXhasthexedpointproperty.Corollary3.12(cf. [4]). If Cisanonemptyclosedboundedconvexsubset of auniformlyconvexBanachspace,theneverynonexpansivemappingT: CChasaxedpointinC.Theorem3.13. LetXbe a modular space with modulus of convexity(1, ) = 1forsome (0, 1). Ifweassumethat(x) = (x)forall > 0,thenN(X) 11 (1, ).Proof. LetCbea-closed, -boundedconvexsubsetofXwith diam(C)=d > 0.Since (0, 1),thereexistx, y Csuchthat(x y) d .Let z =x+y2CandwC. Then(wxd) =1d(wx) 1, (wyd) =1d(w y) 1,and__w xd__w yd__ =1d(x y) .Bythedenitionof(1, ),weobtain1d_w x +y2_ =1d_(w x) + (w y)2_ 1 (1, ) .HenceitfollowsthatR(C) supwK(z w) d_1 (1, )_.Consequently,diam(C)R(C)11 (1, ) .ThereforeN(X) 11 (1, ) .Remark3.14. If weassumethat inColloray3.8(x) =(x) forall >0,thenXwillhave-uniformlynormalstructure.Corollary3.15. If Xis a modular space with the modulus of convexity (1, ) (0, 1)forsome (0, 1),thenXhas-uniformlynormal structure.352 P. KUMAMProof. ByTheorem 3.13wehaveN(X) > 1. Thus,byRemarks 3.4(3),Xhas-uniformlynormal structure.Corollary3.16. IfXisa Banachspace spacewithmodulus ofconvexityX() (0, 1) forsome (0, 1) andwe put(x) = x, thenwe getthatXhasuniformlynormal structure.Corollary3.16stronglyimproves [1] whichstates that anyuniformlyconvexBanach spacehasuniformlynormalstructure.NotethataBanachspaceXisuniformlyconvexifandonlyifitsmodulusofconvexitysatisesX() > 0forall > 0(see[5]).Acknowlegement. Theauthorisgrateful toProf. SompongDhompongsaformanyhelpful comments andsuggestions. Theauthoralsowishes thanks toananonymousrefereeforhis/hersuggestionswhichledtosubstantialimprovementsofthispaper. Lastbutnotleast, IwouldliketothankProf. HenrykHudziktohisEnglishsuggestionsandcorrection.References[1] Aksoy, A. G. and Khamsi, M. A., Nonstandardmethodsin xed pointtheory, Spinger-Verlag,Heidelberg,NewYork1990.[2] Ayerbe Toledano, J. M., Dominguez Benavides, T., andL opez Acedo, G., Measures ofnoncompactnessinmetricxedpoint theory: AdvancesandApplicationsTopicsinmetricxedpoint theory,Birkh auser-Verlag,Basel, 99(1997).[3] Chen, S., Khamsi, M. A. and Kozlowski, W. M., SomegeometricalpropertiesandxedpointtheoremsinOrliczmodularspaces, J.Math.Anal.Appl. 155No.2(1991), 393412.[4] Dominguez Benavides, T., Khamsi, M. A. and Samadi, S.,UniformlyLipschitzianmappingsinmodularfunctionspaces,NonlinearAnalysis40No.2(2001), 267278.[5] Goebel, K. andKirk, W. A., Topicinmetricxedpoint theorem, CambridgeUniversityPress,Cambridge1990.[6] Goebel,K.andReich,S.,Uniformconvexity,Hyperbolicgeometry,andnonexpansivemap-pings, Monographstextbooks inpureandappliedmathematics, NewYorkandBasel, 831984.[7] Khamsi, M. A., Fixedpointtheoryinmodularfunctionspacesm,Recent Advances on MetricFixedPointTheorem,UniversidaddeSivilla,SivillaNo. 8(1996), 3158.[8] Khamsi, M. A., Uniformnoncompact convexity, xed point property inmodular spaces,Math.Japonica41(1)(1994), 16.[9] Khamsi, M. A.,Aconvexitypropertyinmodularfunctionspaces,Math.Japonica44,No. 2(1990).[10] Khamsi,M.A.,Kozlowski,W.M.andReich,S., Fixedpoint propertyinmodularfunctionspaces,NonlinearAnalysis, 14,No.11(1990), 935953.[11] Kumam, P.,FixedPointPropertyinModularSpaces, Master Thesis, Chiang Mai University(2002), Thailand.[12] Megginson, R. E., An introduction to Banach space theory, Graduate Text in Math.Springer-Verlag,NewYork183(1998).FIXEDPOINTTHEOREMSINMODULARSPACES 353[13] Musielak, J., Orliczspaces andModular spaces, LectureNotesinMath., Springer-Verlag,Berlin,Heidelberg,NewYork1034(1983).[14] Musielak,J.andOrlicz,W.,OnModularspaces,StudiaMath. 18(1959), 591597.[15] Nakano,H.,Modularsemi-orderedspaces, Tokyo,(1950).DepartmentofMathematics,FacultyofScienceKingMongkutsUniversityofTechnologyThonburiBangkok10140,ThailandE-mail: [email protected]