Analog Electronic Circuits

  • Upload
    -

  • View
    82

  • Download
    1

Embed Size (px)

DESCRIPTION

Engineering Electronic Circuits

Citation preview

  • 0B EE235 Engineering Electronic Circuits

    1BFundamentals: Analog Electronic Circuits

    2B..

  • ii

    --

    (vacuum tube) .. 1947 (John Bardeen) (Walter Brattain) (William Shockley)

    (solid state electronics)

    (discrete device) 1958 (fabrication)(chip) (Jack Kilby) (germanium) (Texas Instrument) (Robert Noyce) (silicon) (Fairchild Semiconductor) 1960

    (op-amp) (applica-tion-specific integrated circuit, ASIC)

    MOSFET(metal-oxide-semiconductor field-effect transistor)

    MOSFET MOSFET 1970

  • iii

    (very-large-scale integrated circuit, VLSI) (digital signal processing)

    1 (microprocessor)

    (desktop computer) (laptop computer)

    (nanotechnology)

    (electromagnetics)(electric circuits) (electronic devices)

    (deple-tion layer) pn (pn junction)

    2 (analog) (frequency characteristics)

    (on)(off) (inverter) MOSFET (RAM)(ROM) A/D D/A (A/D and D/A converters) (implement)(logic function)

    ()

    2 EE235:Engineering Electronic Circuits EE331:Digital Electronic Circuits and Systems

  • iv

    30

    (lecture notes)

    PSpice (circuit simulation)

    2549

  • v

    1 1 1.1 1 1.2 1 1.3 1 1.4 1 1.5 2 1 1.6 2 1.7 4 1.8 RC 7 1.8.1 7 1.8.2 15 1.8.3 RC 18 2 28 2.1 28 2.1.1 28 2.1.2 28 2.1.3 28 2.1.4 pn 28 2.2 28 2.3 28 2.3.1 28 2.3.2 28 2.3.3 34 2.4 FET 35 2.4.2 FET 35 2.4.2 MOSFET 38 2.5 43 2.5.1 43 2.5.2 44 2.5.3 FET 57

  • vi

    3 59 3.1 59 3.2 61 3.2.1 2 62 3.2.2 1 65 3.2.3 70 3.2.4 72 3.2.5 74 3.3 75 3.3.1 75 3.3.2 77 3.4 FET 78 3.4.1 JFET MOSFET 78 3.4.2 MOSFET 81 3.5 85 3.6 86 3.6.1 86 3.6.2 90 3.6.3 94 3.6.4 96 3.6.5 3 98 3.7 FET 98 3.7.1 98 3.7.2 101 3.7.3 103 3.8 106 3.9 110

    4 112 4.1 112 4.1.1 112 4.1.2 FET 115 4.2 116

  • vii

    4.3 117 4.4 127 4.4.1 127 4.4.2 130 4.5 132 4.5.1 132 4.5.2 fch 134 4.6 PSpice 143

    5 152 5.1 152 5.2 154 5.2.1 154 5.2.2 155 5.3 156 5.3.1 - 156 5.3.2 - 159 5.3.3 - 161 5.3.4 - 164 5.4 / 167 5.5 168 5.5.1 - 168 5.5.2 - 171 5.6 174

    6 180 6.1 180 6.2 184 6.2.1 184 6.2.2 188 6.2.3 CMRR 188 6.2.4 189 6.2.5 195 6.3 196

  • viii

    6.4 199 6.5 203 6.5.1 203 6.5.2 203 6.5.3 208 6.5.4 PSpice 211 6.6 214 6.6.1 214 6.6.2 216 6.6.3 217

    7 222 7.1 223 7.1.1 223 7.1.2 224 7.2 225 7.2.1 225 7.2.2 227 7.3 A 228 7.4 A - 232 7.5 B - 234

    8 239 8.1 239 8.1.1 239 8.1.2 241 8.2 242 8.2.1 242 8.2.2 243 8.2.3 245 8.2.4 245 8.2.5 246 8.2.6 248 8.2.7 248

  • ix

    8.3 249 8.3.1 249 8.3.2 GB 250 8.3.3 254 8.4 258 8.4.1 258 8.4.2 A741 259

    9 262 9.1 262 9.2 RC 263 9.2.1 263 9.2.2 RC 265 9.3 LC 267 9.3.1 267 9.3.2 268 9.3.3 270 9.4 271 9.5 273 9.5.1 273 9.5.2 LC 274

    275

    287

  • 1

    1.1 (impedance and admittance)

    -- Electric Circuits

    1.2 (voltage and current sources) -- Electric Circuits

    1.3 (dependent sources, controlled sources) -- Electric Circuits

    1.4 -- Electric Circuits

    1.5 2 (2-port parameters) -- Electric Circuits

    1

  • 1 2

    1.1

    1.2

    1.6 (amplifier) (audio system) (television) (CD player) (mobile telephone)

    1.1 1~1 2~2 (voltage gain) Av (input im-pedance) Zin (output impedance) Zout

    1.2 Av Zin 1~1 v1 Avv1 Zout 1.2 v1 1~1 v1 Av Avv1 Avv1 2~2 (load) 2~2( 2~2 )

    2 1

    Zout

    Zout

    +

    Av Zin

    Avv1 v1 v1Zin

    1

    1

    2

    v2

    2

    2

  • v2 = Avv1 (1-)

    1.3

    1

    Avvv1

    Zout

    Zin +

    2

    1.4

    1.3 1~1 2~2 RL v0 (internal impedance) 1.4

    R

    2

    1

    2

    v = 0in

    in

    ZvZ+ (1-

    2)

    v2 = 1vLout

    L vARZ

    R+ (1-

    3)

    1

    1

    2

    RL v0 +

    Avvv1

    Zout

    Zin +

    1

    1 2

    2

    RL

    v0 + v1 v2

    3

  • (1-2)(1-3)

    v2 = 0vin

    in

    Lout

    L

    ZvAZ

    RZR

    ++ (1-4)

    Av v

    1.5

    A0 = 0

    2

    vv =

    ))(Z( LoutinLinv

    RZRZA

    ++ (1-5)

    (1-5) Zin Zout A0 = Av RL Zin Zout 1.5

    1 2

    R

    Av A0 (1-5)

    10 [V] 10/(1103) = 10,000

    2

    (effective gain) Av

    1.7 (decibel, dB) (transfer property) 1 [mV] 10,000 (decibel, dB)

    1 +

    1 2

    v2

    4

  • 12

    PP Ap = (1-6)

    dBp

    A = 10log101

    2

    PP [dB] (1-

    7)

    100,000 50 [dB]

    P2

    P1 =

    Zout i

    1.6

    50 [dB] 100,000

    1.6 P1

    inR

    21 = (1-8)

    P2 =

    v 21iniR

    L

    22

    Rv = (1-9)

    (1-8)(1-9)

    Ap =

    22LiR

    1

    2

    PP =

    L

    in21

    22

    RR

    vv =

    in

    L21

    22

    RR

    ii (1-10)

    (1-7) (1-10)

    dBp

    A = 1

    2log10 P P

    = 2

    1

    2log10

    vv +

    L

    inlog10RR =

    2

    1

    2log10

    ii +

    in

    Llog10RR

    = 1

    2log20vv +

    L

    inlog10RR =

    1

    2log20ii +

    in

    Llog10RR (1-11)

    (1-11)

    Avvv1Rin

    +

    1

    1 2

    2

    RL v1 v2

    i 21

    5

  • = 1

    2log20vv =

    1

    2log20ii dBvA dBiA (1-12)

    P2/P1, v2/v1 i2/i1 1 1 1 1

    1

    Av1 Av3Av2

    1.7

    1 v2 = 800 [mV] v1 = 1 [V] v2/v1 = 0.8

    = 1

    2log20vv = 20log

    1000800

    dBvA

    1.938 [dB] (logarithm)

    v1/v2

    dBvA = 2

    1log20vv = 20log

    8001000

    1.938 [dB]

    3 1.7

    Avt = Av1Av2Av3 dBvtA = 20logAv1 + 20logA + 20logA v2 v3

    6

  • = dB3vdB2v AA ++ dB1vA (1-13)

    dBm 1 [mW] 10 [dBm] 10 [mW] 20 [dBm] 100 [m

    ()

    1.1

    W]

    0.00316* 50 10540 10 4 1/100 30 10 3 0.0316 *20 1/100 1/10 10 1/10 0 .316*

    0 1 1

    10 10 3.16*

    20 100 10

    30 103 31.6*

    40 104 100

    50 105 316*

    * 1.1

    1.8 RC (passive basic circuit element)(resistor) (capacitor) (inductor)

    (ac-

    ve)

    (phase) RC

    (integrated circuit, IC) ti (semiconductor) (amplitude)

    7

  • 8

    1.8.1 (first-order lowpass characteristics) 1.8 Z CRhR RRiR

    Z =

    ih

    11

    RCj +

    = ih

    i

    1 RCjR+ (1-14)

  • Rs

    1.8

    Gh vs vi

    Gh = s

    i

    vv =

    ih

    is

    ih

    i

    1

    1

    RCjRR

    RCjR

    ++

    +

    = ishis

    i

    RRCjRRR++

    =

    is

    ish

    is

    i

    1

    1

    RRRRCjRR

    R

    +++

    (1-15)

    G0 = is

    i

    RRR+ (1-16)

    ch = is

    ish

    1

    RRRRC +

    (1-17)

    (1-15)

    Gh ch

    01

    1

    j

    G+

    (1-18)

    Ch Ch j Ch (infinity, ) Ch = Ch

    (1-18)

    Ri vs vi + Ch

    Z

    8

  • Gh = G0 = is

    i

    RRR+

    G0 (dc gain) (1-18) f = /2 Gh =

    ch

    01

    1

    ffj

    G+

    (1-19)

    fch =

    is

    ish2

    1

    RRRRC +

    (1-20)

    hG = 2

    ch

    0

    1

    +

    ff

    G (1-21)

    argGh = Gh = ch

    1tanff (1-22)

    (1-21) f 0 G0 f = 0 f

    hG

    hG

    Gh (1-19) f Gh f 0 (1-21)(1-22) Gh 1.9()() 1.9() f G0 f = 0 f = fch (1-21) ( 0.707) fch = (cutoff frequency) Gh 1.9() 0 90 0 f = fch 45 1.10()() Gh 10( 10) 1.9

    hG

    hG

    hG

    hG 20G

    21 hG 20G

    hG

    9

  • 0 0.5fch fch 1.5fch

    2fch f

    0

    0.5G0

    20G

    |Gh| G0

    ()

    0

    ()

    1.9

    2 fch 1.10 100 fch 10( 10) 1.10 Gh 90 hG (1-21)

    0

    h

    GG

    = 2

    ch1

    1

    +

    ff

    (1-23)

    0 0.5fch fch 1.5fch 2fch

    30

    60

    90

    45

    Gh

    f

    10

  • G

    ()

    ()

    1.10

    dB0

    h

    GG

    = 2

    ch1log20

    +

    ff [dB] (1-24)

    (1-24) 10 1.11

    1.11 (1-24)

    - f 0 [Hz] = 0 dB0h

    GG

    - f = fch

    102fch 101fch fch 10fch 102fch 0

    0

    0.5G0

    f

    |Gh|

    20G

    0

    102fch 101fch fch 10fch 102fch

    90

    60

    45

    30

    Gh

    f

    11

  • 1.11

    dB0h

    GG = 2

    ch

    ch1log20

    +

    ff = 2log20 3 [dB] (1-25)

    (1-25) 3 [dB] 21

    - f > 3fch f >> fch

    >> 1 (1-24)

    dB0hGG

    ( 2chff )

    dB0

    h

    GG

    ch

    log20ff [dB] (1-26)

    A(f)

    A(f) = ch

    log20ff [dB] (1-27)

    f >> fch dB0h GG

    - (1-27) A(f)

    f = fch : A(f) = 0 [dB]

    f = 2fch : A(f) 6 [dB] f = 4fch : A(f) 12 [dB] f = 8fch : A(f) 18 [dB]

    102fch 101fch fch 10fch 102fch 40

    30

    20

    10

    30

    0

    hG

    [dB]

    G

    f

    12

  • f fch 2fch, 4fch, 8fch,. 2 A(f) 0 [dB] 6, 12, 18, . [dB] A(f) 6 [dB] f 2 (at-tenuation) 6 dB/oct ( 6 dB per octave) - A(f) f 10

    f = fch : A(f) = 0 [dB]

    f = 10fch : A(f) = 20 [dB] f = 100fch : A(f) = 40 [dB] f = 1000fch : A(f) = 60 [dB] A(f) 20 [dB] f 10 20 dB/dec ( 20 dB per decade)

    dB0hGG

    - 0 [dB]

    - f = fch 3 [dB]

    - f > fch 6 dB/oct 20 dB/dec RC ( 4)

    1.8 Ri = (1-16)(1-20) G0 = 1

    fch = sRCh2

    1 (1-28)

    (1-24) dBhG

    dBhG = 2

    ch1log20

    +

    ff [dB] (1-29)

    fch = 1 [kHz] (1-29) Gh (1-22) 10 1 [Hz] ~ 1 [MHz] 1.12

    dBhG

    13

  • 0

    ()

    ()

    1.12

    10 1.12 (Bode plot)

    1 10 100 1k 10k 100k 1M 60

    50

    40

    30

    20

    10 3

    f [Hz]

    hG [dB]

    6 dB/oct 20 dB/dec

    0

    1 10 100 1k 10k 100k 1M 90

    60

    45

    30

    Gh

    f [Hz]

    14

  • 1.13

    1.8.2 (first-order highpass characteristics) C C 1.13 A B Ri Cl C C (C-coupling)

    1.13 vs vi

    Gl = s

    i

    vv =

    il

    s

    i1 RCj

    R

    R

    ++

    = )(

    11

    1

    isl

    is

    i

    RRCjRR

    R

    +++

    = jff

    Gcl

    0

    1+ (1-30)

    G0 = is

    i

    RRR+ (1-31)

    fcl = )(21

    isl RRC + (1-32)

    (1-30)

    lG = 2cl

    0

    1

    +ff

    G (1-33)

    Rs

    Ri vs vi

    Cl

    B

    +

    A

    15

  • Gl = ffcl1tan (1-34)

    (1-33) vs C vi f = fcl f = G0 (1-31) Gl (1-34) f 0 ~ 90 ~ 0 f = fcl Gl = 45

    lG

    lG

    20G

    Gl Rs = 0 (1-31)(1-32)

    lG

    G0 = 1 0 [dB]

    fcl = il2

    1RC (1-35)

    (1-33) |Gl|

    dBlG = 2

    cl1log20

    +ff (1-36)

    fcl = 1 [kHz] Gl 10 1.14

    dBlG

    1.14()(1-36)

    - f > fcl = 1 [kHz] G0 0 [dB] dBlG

    - f = fcl = 1 [kHz]

    dBlG = 2

    cl

    cl1log20

    +

    ff = 2log20 = 3 [dB] (1-37)

    (1-37) 3 [dB]

    - f < 0.4fcl = 400 [Hz] f > 1 (1-36)

    dBlG

    dBlG ffcllog20 (1-38)

    16

  • lG

    ()

    ()

    1.14

    B(f ) = ffcllog20 (1-39)

    f

  • f = 10 [Hz] : B(f ) = 40 [dB] f = 20 [Hz] : B(f ) 34 [dB] f = 40 [Hz] : B(f ) 28 [dB] f = 80 [Hz] : B(f ) 22 [dB] 10, 20, 40, 80,.[Hz] 2 B(f ) 6 [dB] B(f ) 6 dB/oct f
  • Z1

    Z2 v2

    1.15

    1.16

    () v2 Z2 C

    RC

    (1) (high-boost circuit)

    1.16 R C () G =

    1

    2

    vv =

    211

    1

    2

    1R

    RCjR

    R

    ++

    = 21121

    112 )1(RRCjRR

    RCjR

    +++

    =

    21

    211

    11

    21

    2

    1

    1

    RRRRCj

    RCjRR

    R

    ++++

    (1-41)

    2

    10

    1

    1

    ffj

    ffj

    G+

    + (1-42)

    v1

    v2 R2 Cl

    R1

    v1

    19

  • G0 = 21

    2

    RRR+ (1-43)

    f1 = 112

    1RC (1-44)

    f2 =

    21

    2112

    1

    RRRRC +

    (1-45)

    R1 > R1R2/(R1+ R2) f1 < f2

    2

    1

    ff =

    21

    2

    RRR+ = G0 (1-46)

    (1-42)

    G = 2

    2

    2

    10

    1

    1

    +

    +

    ff

    ff

    G (1-47)

    dBG = 20logG0 +

    +

    2

    11log10

    ff

    +

    2

    21log10

    ff (1-48)

    (1-48) f1 = 100 [Hz] f2 = 10 [kHz] (1-46)

    G0 = 10000100 =

    1001

    = 20logG0 = 40 [dB] (1-49) dB0G 1.17 40 [dB] f1 = 100 [Hz] 20 dB/dec 0 [dB] f2 = 10 [kHz]

    dBG

    20

  • 1.17

    dBG dBG

    G [dB]

    1 10 100 1k 10k 100k 1M

    40

    30

    20

    10

    0

    6 dB/oct 20 dB/dec

    f [Hz]

    1.17

    3 f < f1 f1 < f < f2 f > f2 f1 = 100 [Hz] f2 = 10 [kHz]

    - f < f1 :

    (1-48) f > 1 (f/f2)2 >> 1

    21

  • dBG 20logG0 + 1

    2log20ff = 0 [dB] (1-52)

    0 [dB] R1

    1.18

    3 (1-50), (1-51) (1-52) RC (asymptotic plot) 100 [Hz] 40 [dB] 3 [dB] 10 [kHz] 0 [dB] 3 [dB]

    dBG

    dBG dBG

    dBG

    (2) (low-boost circuit)

    1.18 R C ()

    G = 1

    2

    vv =

    221

    22

    1

    1

    CjRR

    CjR

    ++

    +

    = )(1

    1

    212

    22

    RRCjRCj++

    +

    1

    2

    1

    1

    ffj

    ffj

    +

    + (1-53)

    f1 = (1-54) )(21

    212 RRC + f2 =

    2221

    RC (1-55)

    v2

    R2

    v1 C2

    22

  • (1-54)(1-55) f1 < f2

    2

    1

    ff =

    21

    2

    RRR+ (1-56)

    (1-53)

    G = 2

    1

    2

    2

    1

    1

    +

    +

    ff

    ff

    (1-57)

    dBG =

    +

    2

    21log10

    ff

    +

    2

    11log10

    ff (1-58)

    (1-58) 3 f < f1 f1 < f < f2 f > f2

    - f < f1 :

    (1-58) f > 1 (f/f2)2 >> 1

    dBG 2

    1log20ff (1-61)

    20log(f1/f2) [dB]

    23

  • (1-58) f1 = 100 [Hz] f2 = 10 [kHz]

    0

    1.19

    2

    1

    ff =

    21

    2

    RRR+ = 100

    1 (1-62)

    1.19

    1.19 0 [dB] 100 [Hz] 0 [dB] 100 [Hz] 20 dB/dec 10 [kHz] 40 [dB] f f2 100 [Hz] 0 [dB] 3 [dB] 10 [kHz] 40 [dB] 3 [dB]

    dBG dBG

    dBG

    (3) (bandpass circuit)

    1.20

    1 10 100 1k 10k 100k 1M

    40

    30

    20

    G [dB]

    6 dB/oct 20 dB/dec

    10

    f [Hz]

    24

  • G = 1

    2

    vv =

    22

    11

    22

    111

    11

    CjR

    CjR

    CjR

    +++

    +

    1.20

    = 1)1)(1(

    1

    221

    1 +++ CjRCjR

    = 12

    211

    2

    2

    1 11

    1

    RCjRCjC

    CRR ++++

    (1-63)

    3 (low cutoff frequency) (high cutoff frequency) (passband) (stopband)

    1.20 f1 f2 f1 > C2 (1-63) C2/C1

    G 12

    212

    1 11

    1

    RCjRCjR

    R +++

    v2 R2 v1 C2

    R1 C1

    25

  • =

    21

    212

    211

    21

    2

    )(11

    1

    RRRRCj

    RRCjRR

    R

    +++++

    =

    2

    1

    0

    1ffj

    jffG

    ++ (1-64)

    G0 = (1-65) 21

    2

    RRR+

    f1 = )(21

    211 RRC + (1-66)

    f2 =

    21

    2122

    1

    RRRRC +

    (1-67)

    (1-64) G =

    21

    2

    0

    1

    +

    ff

    ff

    G (1-68)

    dBG = 20logG0

    +

    21

    21log10

    ff

    ff (1-69)

    (1-68) 0

    G

    ff

    ff 12 = 0

    f = f0 = 21 ff (1-70)

    G0 f0 (center frequency) G

    f1 > f/f2 , 1 (1-69)

    dBG = 20logG0 + 1

    log20ff (1-71)

    26

  • 20logG0 f1 20 dB/dec

    - f1 < f < f2 :

    f f1 f1/f , 1 (1-69)

    dBG = 20logG0 2

    log20ff (1-73)

    20logG0 f2 20 dB/dec (1-69) f1

  • 1.21

    6 [dB] f1 = 10 [Hz] f2 = 100 [kHz] 3 [dB] f0 1 [kHz] (1-70)

    dBG

    dBG

    28

  • 28

    2

    2.1 (semiconductor) 2.1.1 (intrinsic semiconductor)

    -- Electronic Devices 2.1.2 (extrinsic semiconductor) -- Electronic Devices 2.1.3 -- Electronic Devices 2.1.4 pn (depletion layer) -- Electronic Devices

    2.2 (diode) -- Electronic Devices

    2.3 (bipolar transistor) 2.3.1 -- Electronic Devices

    2.3.2 (1) (active) (bias)(power supply) npn pnp 2.1 3 E (emitter) B (base) C (collector)

  • 29

    () npn () pnp

    2.1

    () npn () pnp

    2.2

    (2) (quiescent state) (direct current, dc) 2.2 (common base) npn pnp (forward bias) (reverse bias) npn pnp npn pnp 3

    IE = IB + IC (2-1)

    IC = 0IE (2-2) IB = (10)IE (2-3) 0 (common-base current gain) 1 0.98, 0.99 0.995 (2-2)

    E C

    B

    VBE VCB

    IB

    IE IC E C

    B

    VCB VBE

    IB

    IE IC

    E C

    B

    E C

    B

  • 30

    () IEVBE () ICVCB

    2.3

    2.3 2.3() IE VBE -(forward) IE VBE

    IE = IS )1( BE VkTq

    e (2-4)

    q : = 1.610-19 [C]

    k : (Boltzmans constant) = 1.3810-23 [J/K]

    T : [K]

    IS : (saturation current)

    q/kT VT = kT/q VT (thermal voltage) 27C(300 [K]) VT 26 [mV] 2.3() IC VCB IE

    - VCB > 0 IC IE () VCB IC IE

    - VCB = 0 IC barrier potential 0 IC = 0 VCB < 0

    0.2 0.4 0.6 0.8 0

    2

    4

    6

    8

    10

    VBE [V]

    IE [mA]

    ICO

    IE = 10

    IE = 8

    IE = 6

    IE = 4

    IC [mA]

    IE = 2 mA

    10

    0 2 4 6 8 10 12 VCB [V]

    1

    8

    6

    4

    2

  • 31

    () npn () pnp

    2.4

    barrier potential

    - IE = 0 IC ICO IC VCB (reverse bias) (leakage current) ICO ICO ICO ICO

    (3)

    2.4 (common emitter) npn pnp IB IC (2-2)(2-3)

    B

    C

    II =

    0

    0

    1

    IC = 0

    0

    1 IB = 0IB (2-5)

    0 = 0

    0

    1 (2-6)

    0 (common-emitter current gain)

    C

    E

    B VBE

    VCEIB

    IC

    IE

    E

    C

    B

    VBE

    VCE IB

    IE

    IC

  • 32

    2.5

    2.5 IC VCE IB 3 (saturation region) (active region) (cutoff region) (breakdown region) VCE > VBR VBR (breakdown vol-tage) ICVCE IB2>IB1 VK(knee voltage) (saturation region)(active region) VBR(breakdown voltage) VCE VCE > VBR ICVCE IB VK VBR IB1> 0 VK VBR ( VK < VCE < VBR) IB0 (cutoff)(off) (Digital Electronics)

    2.6 2.6() IB VBE IEVBE 2.3() 2.6()

    IB0=0

    VCE

    IB1>0

    IB2>IB1

    IC

    VK VBR

    active region

    saturation region

    cutoff region

    breakdown region

  • 33

    () IBVBE () ICVCE

    2.6

    2.7

    ICVCE IB (depletion layer) 0 0 0 (2-6) IC VCE

    ICVCE 2.7

    0.2 0.4 0.6 0.8 0

    20

    40

    60

    80

    100

    VBE [V]

    IB [A]

    IC [mA]

    0 4 8 12 16 200

    IB=20 A 4

    8

    12

    16

    VCE [V]

    IB=40

    IB=60

    IB=80

    IB=100

    IB=120

    IB=140

    VA 0 VCE

    IC

    IB1

    IB4

    IB3

    IB2

    IB6 IB5

  • 34

    () ()

    2.8

    VA VCE VA (Early voltage) (Early effect) (2-2)(2-4) IC VA

    IC = 0IS

    +

    A

    CE11BEVVe

    VkTq

    (2-7)

    VA 50~100 [V]

    2.3.3 2.8 B-E VBE = 0.6 [V] B-C VCC = 20 [V] 2.8() IE = 1.5 [mA] 0 1 IC = 0IE IE = 1.5 [mA] V2 = RCIC = 5k 1.5mA = 7.5 [V] VBE V1 = 0.01 [V] VBE VBE + V1 2.8() V1 VBE IE IE IE + IE IE = 0.5 [mA] IC IE IC + IC = 1.5 + 0.5 = 2.0 [mA] IC RC V2 + V2 = RC(IC + IC) = 5k(1.5mA + 0.5mA) = 7.5 + 2.5 = 10 [V]

    V1 = 0.01 [V] V2 V2 + V2 V2 = 2.5 [V] 2

    Av = 1

    2

    VV

    =

    01.05.2 = 250 (2-8)

    E C

    B

    VBE 0.6V

    VCC 20V

    IE IC

    RC5k

    V2

    E C

    B

    VBE

    VCC 20V

    IE+IE

    RC 5k V2+V2

    V1

    IC+IC

  • 35

    2.9

    VBE = 0.6 [V] VCC = 20 [V] (operating point) VBE = 0.6 [V] (quiescent state) V1, IE, IC V2 (alternating current, ac) (small signal) v1, ie, ic v2 (2-8)

    Av = 1

    2

    vv = 250 (2-9)

    3

    2.4 FET(field-effect transistor) 2.4.1 FET (junction FET, JFET) 2.9 JFET S (source) G (gate) D (drain) (channel) ID JFET 2.9 n JFET n (n channel) n p pn pn (depletion layer) n barrier potential 0 p n

    JFET n G S (VGS0)

    p+

    p+

    nS D

    G

    VGS VDS

    ID

    depletion layer channel

  • 36

    () n () p

    2.10 JFET

    VGS ID

    JFET n VGS VGS 0 VGS ID VGS ID VGS VGS = VP ID VP (pinchoff voltage) JFET n VGS 0 > VGS > VP VGS JFET p n p ID VGS, VP, VDS JFET n

    2.10() () JFET n p VGS VGS ID

    ID = IDSS2

    1

    P

    GS

    VV (2-10)

    IDSS (saturation current) VGS = 0 VDS 2.11() ID VGS (2-10) n VP = 3 [V], IDSS = 4.5 [mA] VDS = 10 [V] 2.11()

    G

    D

    S

    VDS

    VGS

    ID

    G

    D

    S

    VDS

    VGS

    ID

  • 37

    () ID-VGS () ID-VDS

    2.11

    2.12

    ID-VDS VGS VGS ID 2.12 ID-VDS VGS = 0 JFET 3 0 < VDS < VSAT (ohmic region) VSAT < VDS < VBR (saturation region) VDS > VBR (breakdown region) VSAT

    VSAT = VGS VP (2-11) ID VGS VDS ID-VDS 2.11() VDS

    VGS = 0 IDSS

    0 VSAT VDS [V] VBR

    ID [mA]

    ohmic region

    saturation region

    3 2 1 0 0 1

    1

    2

    3

    4

    5

    VGS [V]

    VDS = 10 [V] 5

    ID [mA]

    2.5 2.0

    VGS = 0 V

    0.5

    1.0

    1.5

    0 2 4 6 8 10 12 VDS

    0

    4

    3

    2

    1

  • 38

    2.13

    ID VDS channel length modulation

    ID = IDSS(1 2P

    GS )VV (1 + VDS) (2-12)

    channel length modulation parameter [V-1] VA

    2.4.2 MOSFET (metal-oxide-semiconductor FET) MOSFET 2 (enhancement) (depletion)

    (1) MOSFET

    2.13 MOSFET n G1 (metal) (SO2, sili-con oxide) p (substrate) -- (metal-oxide-semiconductor, MOS) (well) n 2 n n-p-n VGS = 0 ID VGS VGS > 0 (minority carrier)p VGS VGS VT (threshold voltage) n p n electron inversion layer

    p

    n+

    S DG1VGS

    VDS

    ID

    electron inversion layer (n channel)

    n+

    G2(substrate)

    metal SiO2

    depletion layer

  • 39

    () () 2.14

    VGS>VT n-n-n

    G2 n (isolation) n p

    2.14() ID-VGS 0 VT ID

    ID = Kn(VGS VT 2) (2-13) Kn conduction parameter [A/V2] G1

    Kn = LtW

    ox

    oxn

    2 (2-14)

    n : (mobility) inversion layer ox : (permittivity) tox : W : L :

    2.14() ID-VDS VGS

    VGS5 > VGS4

    VGS5 > VGS4

    VGS4 > VGS3

    VGS3 > VGS2

    VGS2 > VGS1

    VGS1 > VT = 0

    0 VDS

    ID

    VSAT

    ohmic region

    saturation region

    0 VT

    VDS : ID

    VGS

  • 40

    () ()

    2.15

    VGS5>VGS4 VDS = VSAT VDS>VSAT VSAT

    VSAT = VGS VT (2-15) VSAT VGS VT (2-15) VGS VSAT VGS VSAT VSAT ID-VDS ID-VDS

    ID-VDS 2.14() VDS channel modulation (1-12) (2-13)

    ID = Kn(VGS VT 2) (1 + VDS) (2-16) channel-length modulation parameter MOSFET p n p VSG VSD VT

    ID = Kp(VSG + VT 2) (2-17)

    VSAT = VSG + VT (2-18)

    ID (2-17)

    D

    p

    n+

    S G1 VGS

    VDS

    ID

    n-channel

    n+

    G2

    metal SiO2

    depletion layer

    IDSS

    VT

    VDS :

    ID

    VGS 0

  • 41

    2.1

    channel length modulation

    ID = Kp(VSG + VT 2) (1 + VSD) (2) MOSFET

    MOSFET n VGS = 0 n-p-n ID MOSFET n 2.15() n n-n-n VDS ID VGS = 0 VGS ID VGS VT ID 2.15() ID-VGS

    (3) MOSFET

    2.1 MOSFET G2 G2 (isolation)

    MOSFET

    G1 G2

    D

    S

    n

    p G1

    G2

    D

    S

    G1G2

    D

    S

    G1G2

    D

    S

    G1

    D

    S

    G1

    D

    S

    G1

    D

    S

    G1

    D

    S

  • 42

    () ()

    2.16

    MOSFET n G2 MOSFET p G2

    MOSFET MOSFET n VGS VDS n n p (hole) n MOSFET NMOS PMOS n p

    (4) CMOS

    CMOS complementary MOS NMOS PMOS 2.16() (inverter) 2.16() VDD= 5 [V] vi 0~5 [V] vi = 0 NMOS (off) PMOS (on) vo = VDD = 5 [V] 0 5 [V] vi = 5 [V] NMOS PMOS vo = 0 vo vi 2.5 [V] 2.16()

    vo [V]

    vi [V]

    5

    2.5

    2.5 5 0

    D

    S

    S

    vi vo

    +VDD

    NMOS

    PMOS

  • 43

    () npn () pnp

    2.17 () npn () pnp

    2.18

    2.5 2.5.1 (1) 2.17()() npn pnp pn 2 0 npn pnp 2.18()() B rb B rb rb rb 50~500 [] D1 D2 0IE IE ICO (2) 2.3.2

    (2) FET

    FET

    n n p

    B

    E C p p n

    B

    E C

    E C

    B

    D1 D2

    IE IC

    IB

    ICO

    0IE

    rb

    B E C

    B

    D1 D2

    IE IC

    IB

    ICO

    0IE

    rb

    B

  • 44

    2.5.2 (compact disc, CD) (audio amplifier) (CD player) (speaker) (play)

    (composite signal) (small signal) 3 (small-signal equivalent circuit)

    (1)

    2.19() D V0 (forward) V0 D (V0>0.6~0.7 [V]) IDQ VDQ

    V0 = VDQ + RIDQ (2-19)

    V0 V0 IDQ + ID VDQ + VD 2.19()

    V0 + V0 = VDQ + VD + R(IDQ + ID) (2-20) (2-19)(2-20)

    V0 = VD + RID (2-21) (2-21) (2-19) 2.19() (principle of super- position)

  • 45

    () ()

    () ()

    2.19

    (2-19)(2-21) V0, VD, ID

    (2-21)

    V0 = D

    D

    IV ID + RID (2-22)

    VD/ID rD

    V0 = rDID + RID (2-23) 19() V0, VD, ID v0, vD, iD (2-23)

    v0 = rDiD + RiD (2-24)

    19() v0, vD, iD

    D

    VDQ IDQ

    V0 R

    D

    VDQ+VD IDQ+ID

    V0

    RV0

    VD IDrD

    RV0

    iD vD

    rD

    Rv0 +

  • 46

    2.20

    V0, VDQ, IDQ v0, vD, iD 19() 19()

    rD IDVD 20

    ID = IS( DV

    kTq

    e 1) (2-25)

    D

    D

    VI

    = DS

    VkTq

    eIkTq (2-26)

    (2-15) VD = VDQ DQV

    kTq

    e >> 1

    IDQ = IS QDV

    kTq

    e (2-27)

    (2-26)(2-27)

    D

    D

    VI

    = DQIkT

    q (2-28)

    IDVD 2.20 V0 VDQ IDQ V0 V0 + V0 VD ID VD/ID rD (VD, ID 0)

    D

    1r

    = D

    D

    VI

    (2-29)

    (2-28)(2-29)

    rD = DQ

    1Iq

    kT (2-30)

    0 VDQ

    ID

    VD

    IDQ

    VD

    IDQ

    P

    ID=IDQ

    ID=IDQ

  • 47

    () ()

    2.21

    27C(T = 300 [K]) kT/q 0.026 [V] (2-30)

    rD = DQ

    026.0I

    [] (2-31)

    rD = [mA]26

    DQI [] (2-32)

    (2-31)(2-32) IDQ = 1 [mA] rD = 26 [] IDQ = 2 [mA] rD = 13 [] (2)

    2.21() pnp pn 2.18() D1 IE D2 D1 D2 re rc D1 D2 re (2-30)

    re = E

    1Iq

    kT (2-33)

    re = E

    026.0I

    []

    = [mA]26

    EI [] (2-34)

    27C rc D2 5~10 [M]

    E C

    B

    re

    ic

    ib

    rc

    ie

    rb

    B ie

    E C

    B

    ie ic

    ib

  • 48

    () ()

    2.22

    2.21() (dependent current source) ie ie 0 ie, ib ic T npn pnp

    RL 2.22() rc>>RL, rb rc RL rb rc rc 2.22()

    (3)

    2.23() npn 2.21() 2.23() ie ib ib

    2.23() B C 2.24()

    ie = ib + ic (2-35)

    E C

    B

    re

    ie ic

    ib

    rc

    ie

    rb

    B

    RL

    E C

    B

    re

    ie ic

    ib

    ie

    rb

    B

  • 49

    () ()

    2.23

    () ()

    () ()

    2.24

    ie ie 2.24()(2-35) 2.24() vBC vBC = rc(ib+ic) + rcic = (1)rcic rcib (2-36) (2-36) vBC 2.24() 2.24() 2.24() 2.24() rcib 2.24() =

    1 (2-37)

    2.24() B C

    C

    E

    B ib

    ic

    ie

    B C

    E

    rb

    ic

    ie

    rc

    ie

    re

    B ib

    C

    ic

    rc

    ie

    vBC

    B C ic

    rc

    (ib+ic)

    vBC

    B

    C

    ic (1)rc rcib

    vBC

    B + C ic

    (1)rc

    ib

    vBC

    B

  • 50

    () ()

    2.25

    () ()

    2.26

    2.25() ib ib (1)rc re (1)rc (1)rc 2.25()

    2.25()() T (1)rc 2.25() (1)rc 2.25() 2.26() (hybrid-) 2.25() r gm

    2.25() rb ib ib ib (1+)ib re re (1+) rb

    B C

    E

    rb ic

    ie

    (1)rc

    ib

    re

    B ib B C

    E

    rb ic

    ie

    ib

    re

    B ib

    B rb

    v gmv

    ib

    r

    C

    E

    ic B

    v gmv

    ib

    r

    C

    E

    ic

  • 51

    rb+(1+)re 2.26() rb+r r = (1+)re (2-38) v = (1+)reib (2-39) ic = gmv = gm(1+)reib (2-40) 2.25() 2.26() ic (2-40) 2.25() gm(1+)reib = ib gm =

    e

    11 r

    + =

    er (2-41)

    gmr = er (1+)re = (1+)

    = 1 = (2-42)

    r = (1+)re >> rb rb 2.26() rb 2.26()

    2.6() IC-VCE IB ( VK

  • 52

    () ()

    2.27

    2.3.2 (3) IC (2-7) (2-7)

    CE

    C

    VI

    =

    AS0

    1)1( BEV

    eIV

    kTq

    (2-44)

    VCE/VA

  • 53

    2.28

    (4) h

    2 (input port)(output port) 2 (2-port network) 2 2.28 1-1 2-2 v1, v2 i1, i2 2 (2-port parameters) h (hybrid parameters) 2 v1 i2 i1 v2

    v1 = h11i1 + h12v2 (2-47)

    i2 = h21i1 + h22v2 (2-48)

    h11 h12 h21 h22

    h11 = 01

    1

    2 =viv : (2-49)

    h21 = 01

    2

    2 =vii : (2-50)

    h12 = 02

    1

    1=ivv : (2-51)

    h22 = 02

    2

    1=ivi : (2-52)

    (specification) h h

    i1 1

    1

    2

    2 v1 v2

    i2

  • 54

    () () 2.29

    2.30

    2.29() 2 h (2-47)(2-48)

    vbe = hieib + hrevce (2-53)

    ic = hfeib + hoevce (2-54)

    2.29()

    h 2.29() h (2-49)~(2-52) h 2.27() 2 vbe, ib vce, ic 2.30

    hie hfe (2-53)(2-54) vce = 0 hie hfe 2.30 vbe 2.31 ro vbe = (rb + r//rc)ib

    C

    E

    B ib

    ic

    vbe vce hfeib hrevce

    E

    B

    ib

    vbe

    C

    ic

    oe

    1h

    + vce

    hie

    B

    gmv

    ib

    r v

    C

    E

    ic

    ro

    rc rb

    vce vbe

  • 55

    2.31

    hie = 0b

    be

    ce =viv = rb + r//rc

    = rb + c

    c

    rrrr+ (2-55)

    rc>>r

    hie rb + r (2-56) hfe 2.31 vce

    v = c

    c

    rrrr+ ib (2-57)

    irc = c

    rrr+ ib (2-58)

    ic = gmv irc (2-59) (2-57)(2-58)(2-59)

    ic = gmc

    c

    rrrr+ ib c

    rrr+ ib

    = c

    rrr+ (gmrc 1)ib

    hfe = 0b

    c

    ce =vii =

    c

    rrr+ (gmrc 1) (2-60)

    rc>>r gmrc>>1

    hfe gmr = (2-61) hre hoe ib = 0 2.30 vce 2.32

    B

    gmv

    ib

    r v

    C

    E

    ic

    ro

    rc rb

    + vbe vce= 0

    irc

  • 56

    2.32

    vbe = v = c

    rrr+ vce

    hre = 0ce

    be

    b =ivv =

    c

    rrr+ (2-62)

    rc>>r

    hre c

    rr (2-63)

    ic

    ic = o

    ce

    rv +

    c

    ce

    rrv+ + gmv

    = o

    ce

    rv +

    c

    ce

    rrv+ + gm c

    rrr+ vce

    = (o

    1r

    + c

    1rr + + c

    m

    rrrg+ )vce

    = (o

    1r

    + c

    1rr +

    + )vce

    hoe = 0ce

    c

    b =ivi =

    o

    1r

    + c

    1rr +

    + (2-64)

    (r+rc)>>(1+) hoe

    o

    1r

    (2-65)

    h T 2.23()

    re = oe

    re

    hh (2-66)

    rb = hie oe

    re

    hh (1 + hfe) (2-67)

    B

    gmv

    ib= 0

    r v

    C

    E

    ic

    ro

    rc rb

    + vce

    vbe

  • 57

    rc = oe

    fe1h

    h+ (2-68)

    = fe

    fere

    1 hhh

    ++ (2-69)

    2.5.3 FET 2.5.1 (2) FET

    ID VGS VDS ID VGS VDS

    ID = f(VGS, VDS) (2-70)

    dID ID VGS VDS VGS VDS dVGS dVDS (2-70) dID

    dID = DSDS

    DGS

    GS

    D dVVIdV

    VI

    + (2-71)

    gm = GS

    D

    VI

    ,

    d

    1r

    = DS

    D

    VI

    (2-72)

    (2-72)(2-71)

    id = gmvgs + d

    1r

    vds (2-73)

    ig = 0 (2-73) 2.33() 2.33()

    A = gmrd (2-74)

    gm, rd A (mutual conductance) (drain resistance) (voltage gain)

    gm rd FET JFET n 2.4.1 (2-10)

  • 58

    () ()

    2.33

    gm = GS

    D

    VI

    = 2IDSS(1

    P

    GS

    VV )(

    P

    1V

    )

    = )(

    2P

    DSS

    VI (1 P

    GS

    VV ) (2-75)

    VGS VP gm

    gm = P

    DSS2VI (1

    P

    GS

    VV ) (2-76)

    n p (2-12) VGS

    rd = 1

    DS

    D

    VI =

    2

    P

    GSDSS )1(

    1

    VVI

    = D

    1I (2-77)

    MOSFET n (2-13)(2-16)

    gm = GS

    D

    VI

    = 2Kn(VGS VT) (2-78)

    rd = 1

    DS

    D

    VI =

    D

    1I (2-79)

    MOSFET p (2-17)

    gm = GS

    D

    VI

    = 2Kp(VSG + VT) (2-80)

    rd (2-79)

    G

    gmvgs vgs

    D

    S

    id

    rd vds

    ig G

    Avgs vgs

    D

    S

    id rd

    vds

    ig

    +

  • 59

    3

    3.1 3.1() a1(t) a2(t)

    a1(t) = AQ (3-1)

    a2(t) = Amsint (3-2) a1 AQ a2 Am AQ a1 + a2 a2 AQ 3.1() Am AQ AQ Am AQ + a2 AQ a2

  • 60

    () ()

    3.1

    () () ()

    3.2

    AQ + a2 AQ a2

    3.2() V1 D (conduct)(on) I1 V1 I1 3.3() Q0 V1 I1 Q0 (operating point)

    v1 V1 I1+i1 3.2() v1 V1 3.3() v1 V1

    Am 0 t

    AQ

    a(t)

    a1(t)

    a2(t)

    0 t

    AQ

    a(t) a1(t)+a2(t)

    AQ+Am

    AQAm

    D

    I1

    V1 D

    I1+i1

    V1

    v1 + rD

    i1

    v1 +

  • 61

    () ()

    3.3

    i1 I1 Q1 Q2 3.2() 3.2()

    i1 = D

    1

    rv (3-3)

    rD 3.3() (2-30) 2

    rD = 1

    1Iq

    kT (3-4)

    3.2() (small-signal equivalent circuit) 3.2()

    3.2

    V

    I

    V1

    I1 Q0

    I

    V V1

    I1 Q0

    Q1

    Q2

    V1+ v1

    I1+ i1

  • 62

    () ()

    3.4

    3.2.1 2 () 3.4() VEE VCC RE VEE IE RC (load) 3.4() () 3.4()

    E-B-B VEE = REIE + VBE + rbIB = REIE + VBE + rb{(1 0)IE ICO} IE =

    b0E

    CObBEEE

    )1( rRIrVV

    ++ (3-5)

    ICO (1 0)rb

  • 63

    3.5

    VEE VCC VBE ( 0.6~0.7 [V]) IE (3-6) RE IE IC = 0IE IE VCB (3-8) RC IE, IC VCB

    3.5 IC-VCB 2 (3-8)

    VCB = VCC RCIC (3-10) IC-VCB (3-10) VCB= 0 IC = VCC/RC A IC= 0 VCB= VCC B A B A-B 3.5 (load

    0 VCC VCB

    C

    CC

    RV

    VCC/2

    A

    B

    Q

    Q

    IE6

    IE5

    IE4

    IE3

    IE2

    IE1

    load line

    (a)

    (a)

    (b)

    (b)

    ic

    vcb

    VCBIC

    IC

  • 64

    line) 1/RC IE IC VCB (3-7)(3-9) IC VCB A-B (loci)(VCB, IC) IE

    IE IE3 Q VCB= VCC/2 ie () 3.4() ic vcb Q ic vcb ie ie ic vcb (a) 3.5 (a) ic vcb IE RE (3-6) RE IE Q A RE IE Q B

    IE Q B Q (VCB, IC) VCB VCC VCB VCC VCCVCB IC ie ic vcb IC VCCVCB ic vcb (clip) ic vcb (b) (signal distortion) Q

    VBE IEVBE 2.3() VBE > 0.6 [V] IE VBE > 0.6 [V] IE VBE VBE VBE = 0.6 ~ 0.7 [V] (Si)

  • 65

    () ()

    3.6

    3.1 3.4() VCC = 10 [V],VEE = 5 [V], RC = 5 [k], 0 = 0.99 VBE = 0.7 [V] RE VCB = VCC/2 VCB = VCC/2 VCC = 10 [V] RC = 5 [k] (3-8)

    2CCV = VCC RCIC

    IC = C

    CC

    2RV =

    k5210 = 1 [mA]

    IE = 0

    C

    I =

    99.0mA1 1 [mA]

    VEE = 5 [V], VBE = 0.7 [V] (3-6)

    RE = E

    BEEE

    IVV =

    mA17.05 = 4.3 [k]

    3.2.2 1 () 3.6() VCC R1 R2 VCC 3.6() +VCC (ground) VCC, R1 R2 3.7() 3.7() VBB RB 3.7() VBB RB

    R1

    Q

    R2

    RC

    RE

    VCC IB

    IE

    IC

    VC

    R1

    Q

    R2

    RC

    RE

    +VCC

    IB

    IE

    IC

    VC

  • 66

    () () ()

    3.7

    VBB = CC21

    2 VRR

    R+ (3-11)

    RB = R1//R2 = 21

    21

    RRRR+ (3-12)

    3.7() 3.6() 3.8 2 ICO ICO

    IC = 0IE + ICO 0IE (3-13) IB = IE IC = IE (0IE + ICO) = (1 0)IE ICO (1 0)IE (3-14) (2-2)(2-3) 2

    VBB VBB = RBIB + VBE + REIE IB (3-14) IE

    IE = B0E

    BEBB

    )1( RRVV+

    (3-15)

    IE (3-15) IC IB (3-13)(3-14)

    R1

    R2

    +VCC

    VBB

    R1

    R2VCC VBB

    RB

    VBB

  • 67

    3.8

    VE = REIE (3-16)

    VB = VBE + REIE (3-17)

    VC = VCC RCIC (3-18) VCB = VCC RCIC VB (3-19) VCE = VCC (RE + 0RC)IE (3-20) VBE IB-VBE 2.6() 2 0.6~0.7 [V]

    3.2 3.9 VBE = 0.6 [V], 0 = 0.99

    (3.11)(3.12) VBB RB

    VBB = 10k10k40k10 + = 2 [V]

    RB = k10k40k10k40

    + = 8 [k]

    (3-15) IE

    IE = k8)99.01(k5.16.02

    + = 0.886 [mA]

    IC = 0.990.886 = 0.877 [mA] IB = (1 0.99)0.886 = 8.86 [A]

    +VCC

    RB

    VCB

    IE

    IC

    IB

    ICO 0IE rb B

    VBE VBB

    RC

    RE

    VCE

    VC

    VB VE

  • 68

    3.9

    VE = REIE = 1.5k0.886mA = 1.33 [V] VB = VBE + VE = 0.6 + 1.33 = 1.93 [V]

    VC = VCC RCIC = 10 5k0.877mA = 5.62 [V] VCB = VC VB = 5.62 1.93 = 3.69 [V] VCE = VC VE = 5.62 1.33 = 4.29 [V] PSpice Spice Simulation Program with Integrated Circuit Emphasis (University of California, Berkeley)

    3.2 3.9

    R1 1 4 40K R2 1 0 10K RE 3 0 1.5K RC 2 4 5K Q 2 1 3 MOD1 VCC 4 0 DC 10V .MODEL MOD1 NPN (IS=0.8E-13 VA=100 RB=400 BF=99) .OP .END

    IB Q

    2

    RE 1.5k

    1

    0 IE

    IC

    VC

    RC 5k R1 40k

    R2 10k

    3

    4 +VCC 10V

    VCB

    VBEVCE

    VE VB

  • 69

    **** BJT MODEL PARAMETERS ****************************************************************************** MOD1 NPN IS 80.000000E-15 BF 99 NF 1 VAF 100 BR 1 NR 1 RB 400 ******************************************************************************

    NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) 1.9315 ( 2) 5.6060 ( 3) 1.3310 ( 4) 10.0000 VOLTAGE SOURCE CURRENTS NAME CURRENT VCC -1.081E-03 TOTAL POWER DISSIPATION 1.08E-02 WATTS ****************************************************************************** **** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG C **** BIPOLAR JUNCTION TRANSISTORS NAME Q MODEL MOD1 IB 8.56E-06 IC 8.79E-04 VBE 6.00E-01 VBC -3.67E+00 VCE 4.28E+00 BETADC 1.03E+02 GM 3.40E-02 RPI 3.02E+03 RX 4.00E+02 RO 1.18E+05 CBE 0.00E+00 CBC 0.00E+00 CJS 0.00E+00 BETAAC 1.03E+02 CBX 0.00E+00 FT 5.41E+17 ****************************************************************************** JOB CONCLUDED TOTAL JOB TIME .03 ******************************************************************************

  • 70

    3.10 3.11

    7 .MODEL IS VA RB rb BF 3.9 (1) (2) (3) VB, VC VE

    3.2.3 (1) (base bias) 3.10 RB VCC IB

    IB = B

    BECC

    RVV (3-21)

    IC = 0IB (3-22)

    VCE = VCC RCIC (3-23) (stable) (switching)

    (2) (emitter bias)

    3.11 IB VB 0

    IE = E

    BEEE

    RVV (3-24)

    IC = 0IE (3-25)

    RB

    Q

    RC

    +VCC

    IB

    IE

    IC

    VCE VBE

    Q

    RB

    RC

    RE

    +VCC

    IB

    IE

    IC

    VCE VBE

    VB

    VEE

  • 71

    3.12 3.13

    VCE = VCC + VEE (RE + 0RC)IE (3-26) 2

    (3) (collector-feedback bias)

    RC RB VCB 3.12 VCC = RC(IB + IC) + RBIB + VBE = (1 + 0)RCIB + RBIB + VBE IB =

    C0B

    BECC

    )1( RRVV++

    (3-27)

    VCE = VCC RC(IB + IC) = VCC RCIE (3-28) VCB = RBIB =

    C0B

    BECCB

    )1()(

    RRVVR++ (3-29)

    VCB VRC RB = (1 + 0)RC RB VCB

    (4) (emitter-feedback bias)

    (1) 3.10 RE 3.13 VCC = RBIB + VBE + REIE

    IB

    RB

    Q

    RC

    +VCC

    IE

    IC

    VCE

    VCB

    VRC

    VBE

    IB

    RB

    Q

    RC

    +VCC

    IE

    IC

    VCE

    RE

    VBE

  • 72

    = RBIB + VBE + (1 + 0)REIB IB =

    E0B

    BECC

    )1( RRVV++

    (3-30)

    IC = 0IB (3-31) VCE VCC (RC + RE)IC (3-32)

    3.2.4 (bias stability) 3.2.1 (sensitivity) (shift) VBE 2.2 [mV/C] ICO 0.1~ 10 [nA] 2 10C VBE ICO

    (stability index) ICO VBE

    SI = CO

    C

    II

    (3-33)

    SV = BE

    C

    VV

    (3-34)

    (3-33)(3-34) IC VC ICO VBE

    3.8 ICO (3-13)(3-14)

  • 73

    3.14

    IC = 0IE + ICO (3-35) IB = (1 0)IE ICO (3-36) VBB

    VBB = RBIB + VBE + REIE (3-37)

    (3-36)(3-37) IE

    IE = B0E

    COBBEBB

    )1( RRIRVV

    ++ (3-38)

    (3-38)(3-35)

    IC = B0E

    COBEBEBB0

    )1()()(

    RRIRRVV

    +++ (3-39)

    VC (3-39)(3-18)

    VC = VCC RCB0E

    COBEBEBB0

    )1()()(

    RRIRRVV

    +++ (3-40)

    (3-33),(3-34) (3-39),(3-40)

    SI = B0E

    BE

    )1( RRRR+

    + E

    BE

    RRR + =

    E

    B1RR+ (3-41)

    SV = B0E

    C0

    )1( RRR

    + E

    C

    RR (3-42)

    SI SV (3-41)(3-42) ICO VBE IC VC ()

    R1

    Q

    R2

    RC

    RE

    +VCC

    IB

    IE

    IC VRC

    VCE

    VRE

  • 74

    3.15

    () RE 3.14 RE VRE VRC, VCE VRE

    VRC : VCE : VRE = 1 : 1 : 0.1 ~ 0.5 (3-43) SI SV 5 ~ 20

    3.2.5 ICO VBE (integrated circuit, IC) ICO ICO VBE

    3.15 Q2 R2 Q2 Q1 Q2 VBE1 = VBE2 = VBE

    VB = BEBECC21

    2 )( VVVRR

    R ++ (3-44)

    IE = E

    BEB

    RVV

    Q1

    RE

    IE

    IC

    RC R1

    +VCC

    VBE1

    VE VBE2

    R2

    VC Q2

    VB

  • 75

    =

    ++ BEBEBECC21

    2

    E)(1 VVVV

    RRR

    R

    = )()( BECC21E

    2 VVRRR

    R + (3-45)

    IC = 0IE = )()( BECC21E20 VVRRR

    R + (3-46)

    VC = VCC RCIC = VCC )()( BECC21E

    2C0 VVRRR

    RR + (3-47)

    (3-34) SV (3-47)

    BE

    C

    VV

    =

    )( 21E2C0

    RRRRR+

    21

    2

    E

    C

    RRR

    RR

    + (3-48)

    (3-48) (3-42) SV R2/(R1 + R2) VC

    (zenor diode)

    3.3 3.3.1 3.2.2 3.6()

    () ICO = 0

    () 0 = 1.0 ()

    VBE B ICO 0.1 ~ 10 [nA] IC ICO = 0 0 0.99 ~ 0.997

  • 76

    () ()

    3.16

    () ()

    3.17

    1.0 VBE 3.16() 0 = 1.0 IC = 0IE = IE (3-49) IB = IE IC = 0 (3-50) VBB = rbIB = 0 (3-51) VBE = rbIB + VBE = VBE (3-52) VBE 0.6 ~ 0.7 [V]

    3.16()(3-50),(3-51) B-B B-B (nullator) 3.17() C-B IC IE VCB IC VCB VCB C-B (norator)

    C

    IE

    IC

    IB 0IE

    rb B

    VBE

    VCB

    VBB

    E

    B

    VBE

    Q IB

    IE

    IC

    B

    C

    E

    I

    V

    V = I = 0

    I

    V

    V I

  • 77

    () npn () pnp

    3.18

    3.17()

    3.18 () npn () pnp (nullor model)

    3.3.2 3.19() VB, VE, IE VC 3.19()

    VB = CC21

    2 VRR

    R+ (3-53)

    VE = VB VBE (3-54)

    IE = E

    E

    RV = IC (3-55)

    VC = VCC RCIC (3-56) 3.2.2 (3-53)~(3-56) 3.2.2

    3.3 3.2

    B VBE

    B

    C

    E

    B B

    VBE

    C

    E

  • 78

    () ()

    3.19

    (3-53)~(3-56)

    VB = 10k10k40k10 + = 2 [V]

    VE = 2 0.6 = 1.4 [V]

    IE = IC = k5.14.1 = 0.933 [mA]

    VC = 10 5k0.933mA = 5.34 [V] 3.2 IC IC IC 3.2 6.4% VC VC VC 3.2 5%

    3.4 FET FET 2 FET FET

    3.4.1 JFET MOSFET 2 JFET MOSFET n-n-n n p-p-p p JFET MOSFET JFET n MOSFET

    R1

    Q

    R2

    RC

    RE

    +VCC

    IE

    IC

    VC

    B

    C

    E

    VE VB

    R1

    R2

    RC

    RE

    +VCC

    IE

    IC

    VC

    B

    C

    E

    VE VB

    B VBE

  • 79

    3.20 3.21

    2 VP JFET n VGS 0 VP 0 > VGS > VP VGS ID VGS

    ID = 2

    P

    GSDSS 1

    VVI (3-57)

    3.20 FET 2 VGS VDD

    VDS = VDD RDID (3-58) VDS = VDD/2 (3-58)

    RDID = 2DDV (3-59)

    RD = D

    DD

    2IV (3-60)

    (3-57) VGS

    VGS = PDSS

    D1 VII

    (3-61)

    RG RG RG RG RG 1 [M]

    G

    D

    S

    ID RD

    VDD

    VGS

    RG VDS

    G

    D

    S

    VDS

    ID RD

    VDD

    RSRG

    VGSVRS

  • 80

    3.4 3.20 JFET IDSS = 5 [mA] VP = 3.8 [V] VDD = 10 [V] ID = 1 [mA] RD VGS VDS = VDD/2 = 5 [V] (3-58)

    RD = D

    DSDD

    IVV =

    mA1510 = 5 [k]

    (3-61) VGS

    VGS = )8.3(mA5mA11

    = 2.10 [V]

    JFET JFET

    VDS > VSAT = VGS VP (3-62) 3.4 VDS = 5 [V] VSAT = 1.7 [V] VDS > VSAT JFET 3.20

    2 3.21 JFET VDD RS VRS

    VGS = VRS = RSID (3-63) VDS

    VDS = VDD (RD + RS)ID (3-64) ID (3-61) VGS (3-63)

    RS = D

    GS

    IV (3-65)

    3.5 3.21 IDSS VP JFET 5 [mA] 3.8 [V] VDD = 10 [V] ID = 1 [mA] VGS, RS, VDS RD

    JFET JFET 3.4 10 [V]

  • 81

    3.22 3.23

    1 [mA] VGS 3.4 2.10 [V] (3-63) RS

    RS = D

    GS

    IV =

    mA1)10.2( = 2.10 [k]

    VDS = 2RSDD VV =

    210.210 = 3.95 [V]

    (3-64)

    RD = D

    RSDSDD

    IVVV =

    mA110.295.310 = 3.95 [k]

    3.4.2 MOSFET 3.22 MOSFET n R1 R2 VDD 2 R2 VGS 2 VT VGS>VT ID VGS

    ID = Kn(VGS VT)2 (3-66) ID VGS

    VGS = Tn

    D VKI + (3-67)

    VGS = DD21

    2 VRR

    R+ (3-68)

    VDS = VDD RDID (3-69)

    R1

    M

    R2

    RD

    +VDD

    ID

    VDS

    G

    D

    S

    VGS

    R1

    M

    R2

    RD

    +VDD

    ID

    VDS G

    D

    S VGS

    RSVG

  • 82

    3.5 3.22 MOSFET Kn = 0.51 [mA/V2] VT = 1 [V] VDD = 6 [V] R1 = 30 [k], R2 = 20 [k] VGS ID VDS = VDD/2 RD (3-68)(3-66)

    VGS = 6k20k30k20 + = 2.4 [V]

    ID