78
Heng-Ming Hsu National Chung-Hsing University Department of Electrical Engineering Operational-Amplifier Circuits Microelectronic Circuits (III)

Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

Heng-Ming Hsu

National Chung-Hsing University Department of Electrical Engineering

Operational-Amplifier Circuits

Microelectronic Circuits (III)

Page 2: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-1

Microelectrics (III)

Outline

The Two-Stage CMOS Op Amp The Cascode CMOS Op Amp 741 Op Amp Circuit

Page 3: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-2

Microelectrics (III)

OPAMPs are studied in this chapter.

OPAMP design

− bipolar OPAMPs can achieve better performance than CMOS OPAMPs.

− CMOS OPAMPs are adequate for VLSI implementation.

− BiCMOS OPAMPs combine the advantages of bipolar and CMOS devices.

Page 4: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-3

Microelectrics (III)

Two-Stage CMOS Op Amps

Bias generation

1st stage 2nd stage

Page 5: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-4

Microelectrics (III)

Voltage gain (discussed in Sec. 7.7.1) Voltage gain of 1st stage: A1 = −gm1(ro2 || ro4)

Voltage gain of 2nd stage: A2 = −gm6(ro6 || ro7)

DC open-loop gain: Av = A1 × A2

Input offset voltage

Random offset: device mismatches as random in nature

Systematic offset: due to design technique predictable

CC is Miller-multiplied by the gain of the second stage to provide the required dominant pole.

5

7

4

6

)/()/(2

)/()/(

LWLW

LWLW

= If this condition is not met, a systematic offset will result.

Page 6: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-5

Microelectrics (III)

Input Common-Mode Range

The lowest value of VICM has to be sufficiently large to keep Q1 and Q2 in saturation.

VICM ≥ −VSS + Vtn + VOV3 − |Vtp|

The highest value of VICM should ensure Q5 in saturation. VICM ≤ VDD − |VOV5| − VSG1 VICM ≤ VDD − |VOV5| − |Vtp| − |VOV1| −VSS + VOV3 + Vtn − |Vtp| ≤ VICM ≤ VDD − |Vtp| − |VOV1| − |VOV5| Select the values of VOV as low as possible!!

Page 7: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-6

Microelectrics (III)

Output Swing

Output swing The extent of the output signal is limited at the lower and by the need to

keep Q6 saturated and at the upper end by the need to keep Q7 saturated. −VSS + VOV6 ≤ vO ≤ VDD − |VOV7| Select the values of VOV (of Q6 and Q7)as low as possible!!

fT ∝ VOV (in Sec. 6.2.3); the high-frequency performance of a MOSFET improves with the overdrive voltage at which it is operated.

There must be a substantial overlap between the allowable range of VICM and vO for an unit-gain amp application.

Page 8: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-7

Microelectrics (III)

Example Two-Stage CMOS Op Amp Analysis

Let IREF = 25µA, |Vt | (for all devices) = 1V, µnCox = 20 µA/V2, µpCox = 10 µA/V2, |VA | (for all devices) = 25V, VDD = VSS = 5V. For all devices evaluate ID, |VGS |, gm, and ro. Also find A1, A2, the dc open-loop voltage gain, the input common-mode range, and the output voltage range. Neglect the effect of VA on bias current. Solution Dc analysis: Since Q8 and Q5 are matched, I = IREF . Thus, Q1 – Q4 : ID1-4 = 12.5µA. Q7 : ID7 = IREF = 25µA (Q7 is matched Q5 and Q8 ). Q6 : ID6 = 25µA. With ID of each device known, we use to determine |VGS |. Small-signal analysis:

Transconduce

ro is determined from .

( )221 )/)(( tGSoxC VVLWCI −= µ

( ) ( )tGSDDoxtGSoxm VVIILWCVVLWCg −==−= /2)/)((2)/( µµ

D

Ao I

Vr =

Page 9: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-8

Microelectrics (III)

Summary of the dc and ac parameters: Determine the voltage gain: Voltage gain of 1st stage: A1 = −gm1(ro2 || ro4) = −62.5(2 || 2) = −62.5 V/V Voltage gain of 2nd stage: A2 = −gm6(ro6 || ro7) = −100(1 || 1) = −50 V/V The overall dc open-loop gain: Av = A1 × A2 = (−62) × (−50) = 3125 V/V Operating range: The lower limit of the input CM range: Q1 and Q2 leave the saturation region. Since the drain of Q1 is at −5 + 1.5 = −3.5 V, then the lower limit of the input CM range is −4.5 V. The upper limit of the input CM range: Q5 leave the saturation region. VIcm/max = VDD − |VGS5| + |Vt | − |VGS1| = 5 − 1.6 + 1 −1.4 = 3 V The output range is determined from Q7 leaving the saturation region, VOmax = VDD − |VGS7| + |Vt | = 5 − 1.6 + 1 = 4.4 V and from Q6 leaving the saturation region, VOmin = −VSS + |VGS6| − |Vt | = −4.5 V

Page 10: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-9

Microelectrics (III)

Input Offset Voltage

Random offset: device mismatches as random in nature Systematic offset: due to design technique predictable

If the input stage is perfectly balanced, then VDS4 = VDS3 = VGS4.

VGS4 = VGS6, hence

In order for no offset voltage to appear at the output, then I6 = I7.

Since

6 66 4

4 4

( / ) ( / )( / ) ( / ) 2W L W L II IW L W L

= =

77

5

( / )( / )W LI IW L

=

5

7

4

6

)/()/(2

)/()/(

LWLW

LWLW

=

If this condition is not met, a systematic offset will result.

Page 11: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-10

Microelectrics (III)

Voltage Gain

Simplified small-signal equivalent circuit:

Rin =∞ Gm1 = gm1 = gm2

R1 = ro2 || ro4

Dc gain of 1st stage

11 1

2( /2)m

OV OV

I IGV V

= =

2 42 4/2 /2

A Ao o

V Vr rI I

= =

( )1 1 1 1 2 4

12 4

21 1m m o o

OVA A

A G R g r rV

V V

= − = − = −

+

Page 12: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-11

Microelectrics (III)

A1 is increased by Q1 and Q2 at a low overdrive Choosing a longer channel length to obtain larger Early voltage, |VA|.

Both action, however, degrade the frequency response of the amplifier. (See Sec. 6.2.3)

R2 = ro6 || ro7

Dc gain of 2nd stage

Overall dc gain

Output resistance Ro = ro6 || ro7

62 6

6

2 Dm m

OV

IG gV

= =

7 766 4

6 7 6

A AAo o

D D D

V VVr rI I I

= = =

( )2 2 2 6 6 7

66 7

21 1m m o o

OVA A

A G R g r rV

V V

= − = − = −

+

( ) ( )1 2 1 1 2 2 1 02 4 6 06 7v m m m o m oA A A G R G R g r r g r r= = =

Generally, 500 ~5000 V/V of Av,max.

Ro can be large (the tens-of-kilohms range) for on-chip op amps.

Page 13: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-12

Microelectrics (III)

Frequency Response Small-signal equivalent circuit of the CMOS op amp:

Transfer function: (See Sec. 7.7.1)

C1 = Cgd2 + Cdb2 + Cgd4 + Cdb4 + Cgs6

C2 = Cdb6 + Cdb7 + Cgd7 + CL (Usually, CL is larger than transistor capacitances) Miller capacitance CT = (1 + Gm2R2)(CC + Cgd6) ≈ Gm2R2CC Poles:

If C2, CC >> C1, then ωP2 ≈ Gm2 / C2 . The value of ωt is usually selected to be lower than the frequencies of

nondominant poles and zeros. Thus, A0 ωP1 = ωt . ωt = Gm1 / CC.

)(1

])1([1

2121

22

12222111 CCCCC

CGRCRGCRGCR C

CmP

CmCmP ++

≈≈++

= ωω

1 2 1 22

1 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2

( )1 [ ( )] [( ( ( )]

m m Co

id C m C C

G G sC R RVV s C R C R C G R R R R s C C C C C C C C R R

−=

+ + + + + + + + +

Page 14: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-13

Microelectrics (III)

Zero: The Miller capacitance CC introduces a right-half-plane zero. Vo = 0 ⇒ sCCVi2 = Gm2Vi2 sz = Gm2 / CC Since Gm2 is of the same order of magnitude as Gm1, the zero frequency

will be close to ωt . Since the zero is in the right half-plane, it will decrease the phase margin. ?? stability

fp1 is the dominant pole formed by the interaction of Miller-multiplied CC and R1. The unity-gain frequency: ft must be lower than fp2 and fz, thus the design must satisfy the following two

conditions:

11 2

mt v p

C

Gf A fCπ

= =

21

2

1 2

mm

C

m m

GGC CG G

<

<

Page 15: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-14

Microelectrics (III)

Simplified Equivalent Circuit Analysis

The circuit applies for f » fp1.

An ideal integrator!!

Page 16: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-15

Microelectrics (III)

Phase Margin

Pole-splitting provides a low-frequency dominant pole (fp1) and shifts fp2 beyond ft.

At ft, the phase lag exceed 90o caused by fp1 and the excess phase shift due to fp2.

Phase lag at ft:

Phase margin:

Phase margin & stability (See 8.10.2) The right half-plane zero decreases the

phase margin.

12

2

1

tan

tan

tp

p

tz

z

ff

ff

φ

φ

= −

= −

total1 1

290 tan ( / ) tan ( / )t p t zf f f fφ − −= + +

total1 1

2

180

90 tan ( / ) tan ( / )t p t zf f f f

φ− −

= −

= − −

Page 17: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-16

Microelectrics (III)

Improve CMOS Op Amp with the Resistance R

Small-signal equivalent circuit of the CMOS op amp with the resistance R.

Find zero:

R = 1/Gm2, the zero can be placed at infinite frequency. R > 1/Gm2, a left-half plane zero introduces adds to the phase margin.

Discussion: The second pole is not very far from ωt . Thus the second pole

introduces appreciable phase shift at ωt , which reduces the phase margin.

222

/1 imC

i VGsCR

V=

+ )/1(1

2 RGCs

mCz −=

Page 18: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-17

Microelectrics (III)

Slew Rate

When large output signal are present, slew-rate limiting can cause nonlinear distortion.

Slew rate: the maximum rate of change possible at the output of a real op amp.

A unity-gain follower with a large step input. (the output voltage cannot change immediately.)

max

odvSRdt

=

Page 19: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-18

Microelectrics (III)

Slew Rate of the Two-Stage CMOS Op Amp

Model of the two-stage CMOS op amp when a large differential voltage is applied.

( )oC

C

Iv t tCISR

C

=

⇒ =

Page 20: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-19

Microelectrics (III)

Relationship Between SR and ft

Slew rate For a given ωt , the slew rate is determined by the overdrive voltage at which

the first transistor are operated. VOV SR .

For a given bias current I, a large VOV is obtained if Q1 and Q2 are p-channel devices. (1st stage)

It allows the 2nd stage to employ an n-channel device that has a greater transconductance, Gm2, resulting in a higher second-pole frequency and a corresponding higher ωt .

C

ISRC

=

1 11

m mGS t

IG gV V

= =−

SR = ( |VGS1| − |Vt | )ωt = VOV1ωt

C

mt C

G 1=ω

Page 21: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-20

Microelectrics (III)

Ex.10.1 Two-Stage CMOS Op Amp Design

Voltage gain

Av = 4000 and VA = 20V

(W/L)1 and (W/L)2:

Design a dc gain of 4000 V/V in a 0.5-µm CMOS technology. Vtn = |Vtp | = 0.5V, k’n = 200 µA/V2, k’pCox = 80 µA/V2, V’An = |V’Ap | = 20V/µm, VDD = VSS = 1.65V, L = 1µm for all devices. Let I = 200µA, ID6 = 0.5mA. If C1 = 0.2pF andC1 = 0.2pF,find the required CC and R to place the transmission zero at s = ∞ for phase margin of 75o. Solution

26

1 2 4 6 6 76

22( /2) 1 1( ) ( )2 ( /2) 2

DA A Av m o o m o o

OV OV D OV

II V V VA g r r g r rV I V I V

= = ⋅ ⋅ ⋅ ⋅ ⋅ =

V24004000 0.316OV

OVV

V= ⇒ =

' 2 21

1 1 1 2

1 1 25100 80 0.3162 2 1D p OV

W W W m WI k vL L L m L

µµ

= ⇒ = ⋅ ⋅ ⇒ = =

Page 22: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-21

Microelectrics (III)

(W/L)3 and (W/L)4:

(W/L)5:

(W/L)6 and (W/L)7:

Select IREF = 20µA, thus

Input CM range: −1.33 V ≤ VICM ≤ 0.52 V Max. signal swing: −1.33 V ≤ vo ≤ 1.33 V Input resistance: Ri = ∞ Output resistance: Ro = ro6 || ro7 = 20 kΩ Determine fp2:

' 2 21

3 3 3 4

1 1 10100 200 0.3162 2 1D n OV

W W W m WI k vL L L m L

µµ

= ⇒ = ⋅ ⋅ ⇒ = =

' 2 25

5 5 5

1 1 50200 80 0.3162 2 1D p OV

W W W mI k vL L L m

µµ

= ⇒ = ⋅ ⋅ ⇒ =

7 5

1252.51

W W mL L m

µµ

= =

2

6 6

1 50500 200 0.3162 1

W W mL L m

µµ

= ⋅ ⋅ ⇒ =

8 5

50.11

W W mL L m

µµ

= =

3

262 6 2 12

2

2 2 0.5 3.2 103.2 / 6370.316 2 2 0.8 10

mDm m p

OV

GIG g mA V f MHzV Cπ π

−× ×

= = = = ≈ = =⋅ ×

Page 23: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-22

Microelectrics (III)

To move the transmission zero to s = ∞, we select the value of R as

For a phase margin of 75o, the phase shift due to fp2 at f = ft must be 15o, that is

Determine CC:

Slew rate: [Eq. (9.40)]

32

1 1 3163.2 10m

RG −= = = Ω

×

1

2tan 15

637 tan15 171

t

p

t

ff

f MHz

− =

= × =

where

11 1

3

6

2 100 0.63 /2 0.316

0.6 10 0.62 171 10

mC m m

t

C

G AC G g mA Vf V

C pF

µπ

π

⋅= = = =

×∴ = =

⋅ ×

62 2 171 10 0.316 340 /t OVSR f V V sπ π µ= = ⋅ × × =

Page 24: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-23

Microelectrics (III)

Cascode CMOS Op Amp

)()( 34422242 oCoCmoCoCmCoCoo rrgrrgRRR ==

Output resistance:

Gain:

om RgA 11 −=

Composed of CS + CG. A high-gain single-stage op amp High output resistance: Increasing Ro

by about two orders of magnitude increases A1 by the same factor.

But the input common-mode range is lower than that obtained in the two-stage amplifier.

Folded-cascode configuration have large common-mode range.

Page 25: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-24

Microelectrics (III)

Folded-Cascode CMOS Op Amp

/2BI I−

Folded : replace input transistor pairs with a counterpart.

Page 26: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-25

Microelectrics (III)

More Complete Circuit for the Folded-Cascode CMOS Op Amp

Page 27: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-26

Microelectrics (III)

Input common-mode range: VICMmax is limited by the requirement that Q1 and Q2 operate in saturation.

VICMmax should ensure Q11 in saturation.

VBIAS3 should be selected to provide I while operating Q11 at a low overdrive voltage.

Output voltage swing:

Upper limit of vo is determined by the need to maintain Q10 and Q4 in saturation. Select VBIAS1 so that Q10 operates at the edge of saturation: VBIAS1 = VDD − |VOV10| − VSG4 Lowest vo is obtained when Q6 reaches the edge of saturation.

max 9ICM DD OV tnV V V V= − +

min 11 1ICM SS OV OV tnV V V V V= − + + +

11 1 9SS OV OV tn ICM DD OV tnV V V V V V V V− + + + ≤ ≤ − +

max 10 4o DD OV OVv V V V= − −

min 7 5o SS OV OV tnv V V V V= − + + +

Page 28: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-27

Microelectrics (III)

Voltage gain Small-signal equivalent circuit:

Transconductance

Output resistance

Open-loop gain

1 21 1

2( /2)m m m m

OV OV

I IG g g GV V

= = = =

4 6 4 4 4 2 10 6 6 6 8( )( )o o o o m o o o o m o oR R R R g r r r R g r r= ≈ ≈

4 4 2 10 6 6 8( ) ( )o m o o o m o oR g r r r g r r=

1 4 4 2 10 6 6 8( ) ( )v m o m m o o o m o oA G R g g r r r g r r= =

Page 29: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-28

Microelectrics (III)

Unity-gain buffer (voltage follower):

Output resistance It is not very small for a single-stage op amp (OTA, operational

transconductance amplifier). An ideal op amp has an zero output resistance!

1

1 11

o o oof

v v m o m m

R R RRA A G R G g

= ≈ = = =+

Page 30: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-29

Microelectrics (III)

Frequency response: Since the primary purpose of CMOS op amps is to feed capacitive loads, CL

is usually large, and the pole at the output becomes dominant. Transfer function

Dominant pole

Unity-gain frequency

Discussion Single-stage op amp: CL fp1, ft phase margin Two-stage op amp: CL fp2 phase margin

1o m o

id L o

V G RV sC R

=+

12p

L of

C Rπ=

2m

t v p m o pL

Gf A f G R fCπ

= = =

Page 31: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-30

Microelectrics (III)

Slew Rate: a large differential input signal is applied. (IB > I )

IB

IB − I

I

12L

t OV

ISRC

f Vπ

=

=

Page 32: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-31

Microelectrics (III)

Ex10.2 Design of a folded-cascode op amp. I = 200µA, IB = 250µA, and |VOV| = 0.25V for all transistors. VDD = VSS = 2.5V Kn’ = 100µA/V2, Kp’ = 40µA/V2, |VA’| = 20V/µm. L = 1µm, CL = 5pF.

Find ID, gm, ro and W/L for all transistors.

2

2 20.25

20

2'

D Dm

OV

Ao

D D

Di

i OV

I IgV

Vr

I IIW

L k V

= =

= =

=

Note: for all transistors

160 /

1.0m o

GS

g r V VV V

=

=

Page 33: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-32

Microelectrics (III)

Find the allowable range of VICM and of the output voltage swing. (p.9-29)

Determine the values of Av, ft, fp, and SR. (p.9-30, -32, -33)

What is the power dissipation of the op amp?

1.25 3 1.25 2ICM oV V V V v V− ≤ ≤ − ≤ ≤

or

4 6

4 6

3 6

3

12

6

12

160(200 80) 9.14 21.28

6.4

0.8 10 6.4 10 5120 /

0.8 10 25.52 2 5 10

1 25.5 52 5120

200 10 40 /5 10

o o

o o o

v m o

mt

L

tp

v L o

L

R M R MR R R M

A G R V V

Gf MHzC

f MHzf kHzA C R

ISR V sC

π π

π

µ

= = Ω = Ω

= = Ω

= = × ⋅ × =

×= = =

⋅ ×

= = = =

×

= = =×

5 0.5 2.5DP V mA mW= × =

Page 34: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-33

Microelectrics (III)

Rail-to-Rail Input Operation (Increasing VICM)

A folded-cascode op amp that employs two parallel complementary input stages to achieve rail-to-rail input CM operation.

i∆

1 2 3 4

( /2)m id

m m m m m

i G VG g g g g∆ =

= = = =

i∆ i∆

i∆

Page 35: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-34

Microelectrics (III)

Output voltage

Voltage gain

Operation analysis:

Over the remainder of the input CM range, only one of two differential pairs will be operational, and the gain drops to half.

2o m o idV G R V=

2ov m o

id

VA G RV

= =

Assume that both differential pairsare operating simultaneously.

Page 36: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-35

Microelectrics (III)

Wide-Swing Current Mirror (Increasing the Output Voltage Range)

The minimum voltage allowed at the output is Vt + 2VOV.

The minimum voltage allowed at the output is 2VOV.

Page 37: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-36

Microelectrics (III)

Homework-1

Problems: 3, 5, 6, 8, 11,13,15,17

Page 38: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-37

Microelectrics (III)

741 Op-Amp

741 op-amp uses a large number of transistors but relatively few resistors and only one capacitor .

− R and C occupy large silicon area .

− C needs more fabrication steps .

− High-quality R&C are not easy to fabricate.

Circuit Diagram in next page.

Page 39: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-38

Microelectrics (III)

741 Op-Amp

Bias generation

Input stage

2nd gain stage

Output stage

Bias

Class AB

Protecting

Page 40: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-39

Microelectrics (III)

Page 41: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-40

Microelectrics (III)

741 Op-Amp Circuit

In keeping with the IC design philosophy the circuit uses a large number of transistors, but relatively few transistors, and only one capacitor. This philosophy is dictated by the economics (silicon area, ease of fabrication, quality of realizable components) of the fabrication of active and passive components in IC form.

741 op-amp consists of three stages

1)Input differential stage 2)Single-ended high-gain stage 3)Output-buffering stage

Page 42: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 10-41 Microelectrics (III)

Bias Circuit: Q11 , Q12, Q10, R4, Q8, Q9, Q13 Bias current IREF is generated in the branch, consisting of the two diode-connected transistors Q11 and Q12 and the resistance R5. Using a Widlar current source formed by Q11, Q10, and R4, bias current for the first stage is generated in the collector of Q10. Another current mirror formed by Q8 and Q9 takes part in biasing the first stage. Double-collector PNP Q13: Current mirror:

Q13B

Q13AQ13B Q13A

VCC VCC

area. emitter is E

QE

QE

REF

O

A

AA

II

B

A

)(

)(≈

Page 43: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 10-42 Microelectrics (III)

The Input Stage: Q1 ~ Q7, R1 ~ R3. −Biased by Q8, Q9, and Q10 provide high

input impedance. −Q3 and Q4 are lateral PNP (low β) higher

emitter-base junction breakdown than NPNs.

protect input transistors Q1 and Q2 when they are accidentally shorted to supply voltages.

−Q5 ~ Q7, R1 ~ R3 provide high-resistance load and single ended output.

−Level shifter : Q3 and Q4

Page 44: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 10-43 Microelectrics (III)

The Second Stage: Q16, Q17, Q13B, R8, R9 −Q16 acts as an emitter follower, thus

giving 1. high input resistance 2. low base current if R9 is large,

hence low loading of the first stage. −Q17 :common base configuration

active load formed by Q13B (active load is better than resistor load).

−CC: Miller capacitor for pole-splitting compensation 30PF area occupied is about 13 times that of a standard NPN transistor.

Page 45: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-44

Microelectrics (III)

The Output Stage: 1) provide low output resistance 2) class AB The 741 uses an efficient class AB output stage,

which consists of the complementary pair Q14 and Q20 with biasing devices Q13A, Q18 and Q19, and an input buffer Q23. (where Q20 is a substrate pnp.)

Short-Circuit Protection Circuitry Transistors Q15, Q21, Q24, and Q22, and resistors R6 and R7 serve to protect the amplifier against output short circuits and these transistors are normally off.

Page 46: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-45

Microelectrics (III)

Device Parameters:

The standard transistors: npn: IS = 10−14 A, β = 200, VA = 125 V pnp: IS = 10−14 A, β = 50, VA = 50 V The nonstandard transistors: Q13, Q14, and

Q20. Q13A : ISA = 0.25×10−14 A Q13B : ISA = 0.75×10−14 A Q14 & Q20 : IS = 3×10−14 A (have an area

three times that of a standard device) Output transistors usually have large areas in

order to be able to supply large load currents and dissipate relatively large amounts of power with only a moderate increase in the device temperature.

Page 47: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-46

Microelectrics (III)

Output Stages (in Chap. 13)

Class A output stage: Emitter follower

Large power is dissipated in the transistor!!

Page 48: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-47

Microelectrics (III)

Output Stages

Class B output stage

There exists an range of vI centered around zero where both transistors are cut off and vO is zero. This dead band results in the crossover distortion!!

Page 49: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-48

Microelectrics (III)

Output Stages

Class AB output stage

Page 50: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-49

Microelectrics (III)

Reference bias current

Input-stage bias

( ) .CC EB BE EEREF

V V V VI mAR

− − − −= =12 11

50 73

Widlar current source:

A 19

ln

10

41010

4101011

µ=⇒

=

=−

C

CC

REFT

CBEBE

I

RIIIV

RIVV

(solved by trial and error)

Reference Bias Current & Input-Stage Bias

Page 51: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-50

Microelectrics (III)

IIIII EECC ≈=⇒= 4321 (High β )

β212

9 +=

IIC

102 CII ≈⇒ (β >> 1)

For the 741, IC10 = 19 µA, thus I ≈ 9.5 µA.

We have IC1 = IC2 ≈ IC3 = IC4 = 9.5 µA

pp: 509, Eq.(6.69)

Page 52: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-51

Microelectrics (III)

Neglect the base current of Q16, then IIC ≈6

Neglect the base current of Q7, then IIC ≈5

Bias current of Q7: (KCL at node-A)

3

2677

2R

IRVIII BE

NEC

++=≈

β

Determine VBE6 : (IS = 10−14 A)

mV 517ln6 =

=

STBE I

IVV

A 5.107 µ=⇒ CI

node-A

Page 53: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-52 Microelectrics (III)

Input bias current

Input offset currents

Input offset voltage

Input common-mode range

221 BB

BIII +

=

For the 741, Using βN = 200, yields IB = 47.5 nA.

Much lower input bias currents can be obtained using an FET input stage. N

BIIβ

=

Because of possible mismatches in the β mismatch, the input offset current is defined as

21 BBOS III −=

The input offset voltage is determined primarily by mismatches between the two sides of the input stage. In the 741 op amp, the input offset voltage is due to mismatches between Q1 and Q2, between Q3 and Q4, between Q5 and Q6, and between R1 and R2.

− The input common-mode range is the range of input common-mode voltages over which the input stage remains in the linear active mode.

− In the 741, the input common-mode range is determined at the upper end by saturation of Q1 and Q2, and at the lower end by saturation of Q3 and Q4.

Page 54: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-53

Microelectrics (III)

Second-Stage Bias

REFBC II 75.013 ≈ ( βP >> 1)

A 550 and A 550 1713 µµ ≈=⇒ CBC II

mV 618ln 1717 =

=

S

CTBE I

IVV

A 2.169

17817171616 µ=

++=≈

RVRIIII BEE

BEC

Page 55: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-54

Microelectrics (III)

Output-Stage Bias

2313 25.0 EREFBC III ≈≈

A 18025.02323 µ=≈≈ REFEC III

A 15 V 6.0 1018 µ=⇒≈ RBE IV

mV 588A 16515180

18

1818

=⇒≈=−=

BE

CE

VII µ

A 8.15A 8.0200/165

1919

18

µµ

=≈⇒==

EC

B

III

mV 530ln 1919 =

=

S

CTBE I

IVV

+

=

20

20

14

14 lnlnS

CT

S

CTBB I

IVIIVV

V 118.11918 =+= BEBEBB VVV

A 154A 103

2014

142014

µ==⇒×== −

CC

SS

IIII

Page 56: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-55

Microelectrics (III)

Summary of Dc Bias of the 741 Circuit

Page 57: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-56

Microelectrics (III)

Small-Signal Analysis of the 741 Input Stage

The differential signal vi applied between the input terminals effectively appears across four equal emitter resistances connected in series – those of Q1, Q2, Q3, and Q4.

where

The input differential resistance of the op amp is

For βN = 200, we obtain Rid = 2.1 MΩ.

e

ie r

vi4

=

Ω=== k 63.2A 9.5

mV 25µI

Vr Te

eNid rR )1(4 += β

Page 58: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-57

Microelectrics (III)

Small-Signal Analysis of the Input Stage with Load Stage

The output node of the input stage: output current . The factor of two indicates that conversion from differential to single-ended is performed without

losing half the signal. Transconductance of the input stage:

Substituting re = 2.63 kΩ and α ≈ 1 yields Gm1 = 1/5.26 mA/V.

eo ii α2=

ei

om rv

iG21α

=≡

Page 59: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-58

Microelectrics (III)

Output Resistance of the First Stage

The output resistance of the input stage:

Ro1 = Ro4 || Ro6

Page 60: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 9-59 Microelectrics (III)

)'1(')1(

44

4444

Emo

Eomoo

RgrRrgrR

+≈++=

where R’E = re2 || rπ and ro = VA /I . VA = 50 V, I = 9.5 µA, and re2 = 2.63 kΩ.

Ro4 = 10.5 MΩ

)](1[

))(1(

6266

626666

π

π

rRgrrRrgrR

mo

omoo

+≈

++=

Ro6 = 18.2 MΩ

The output resistance of the input stage: Ro1 = Ro4 || Ro6 = 6.7 MΩ

Page 61: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-60

Microelectrics (III)

Small-Signal Equivalent Circuit for the Input Stage of the 741 Op Amp

The equivalent circuit is a simplified version of the y-parameter model of a two-port with y12 assumed negligible.

Rid = 2.1 MΩ Gm1 = 1/5.26 mA/V Ro1 = 6.7 MΩ

Page 62: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-61

Microelectrics (III)

Ex: 10.3 mismatch in the Input Stage

Input stage with both inputs grounded and a mismatch ∆R between R1 and R2.

)( ))((

65

65

RRIRIVVRRIIVIRV

BEBE

BEBE

∆+∆−∆=−⇒∆+∆−+=+

and eeEeEBEBE IrrIrIVV ∆≈−=− 665565

erRRR

II

+∆+∆

=∆

Substituting R = 1 kΩ, re = 2.63 kΩ, we have ∆I = 5.5×10−3 I.

To reduce this output current to zero, we have to apply an input voltage VOS given by

1

3

1

105.5

mmOS G

IG

IV−×

=∆

=

I = 9.5 µA, Gm1 = 1/5.26 mA/V VOS ≈ 0.3 mV

A 2% mismatch between R1 and R2 :

Page 63: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系

Ex: 10.4 CMRR of 741 input stage

1.10-62 Microelectrics (III)

moom

mommcm

m

o

m

icm

m

icm

omcm

moo

icm

po

icm

p

ooo

RRgCMRR

RgGGCMRR

Rvi

viG

iiR

vi

ifRvii

RRR

ε

ε

εε

ε

ββ

/)(2

/2

2

,2

1 ,22

:Y-nodeat KCL

:Y-nodeat resistor Total

1091

11

109

=

=≡

==≡

=≅

>>=+

=

Page 64: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-63

Microelectrics (III)

2nd stage : Input Resistance & Transconductance

Input resistance

Transconductance

Ω≈

++++=

M 4]))(1()[1( 81717916162 RrRrR eei ββ

))(1()(

8171717

16179

179217

817

1717

RrRrRR

RRvv

Rrvi

ei

ei

iib

e

bc

++=

+=

+=

β

α

mA/V 5.62

172 =≡

i

cm v

iG

Small-signal equivalent circuit model:

Page 65: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-64

Microelectrics (III)

Output Resistance

Output resistance where Ro13B = ro13B = 90.9 kΩ. Since the resistance between the base of Q17 and ground is relatively small,

the base is about grounded. Thus, Ro17 ≈ 787 kΩ, and hence Ro2 ≈ 81 kΩ.

17132 oBoo RRR =

Page 66: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-65

Microelectrics (III)

Thevenin Equivalent Circuit

Note that the stage open-circuit voltage gain is −Gm2Ro2 .

Page 67: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-66

Microelectrics (III)

Analysis of the 741 Output Stage The output stage is of the AB class, with the network composed of Q18, Q19, and R10 providing the bias of the output transistors Q14 and Q20. The emitter follower Q23 provides added buffering, which makes the op-amp gain almost independent of the parameters of the output transistors.

Page 68: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-67

Microelectrics (III)

Output Voltage Limits

2023satmin

14satmax

EBEBCEEEo

BECECCo

VVVVvVVVv

+++−=−−=

(neglecting the voltage drop across R8 )

Page 69: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-68

Microelectrics (III)

Small-Signal Model of the 741 Output Stage

Find Ri3: The input resistance looking into the base of Q20, RB20 ≈ β20RL = 50×2 kΩ = 100 kΩ. RB20 appears in parallel with the series combination of the output resistance of Q13A

(ro13A ≈ 280 kΩ) and the resistance of the Q18−Q19 network (very small). The total resistance in the emitter of Q23, RE23 ≈ 100 kΩ || 280 kΩ = 74 kΩ. The input resistance Ri3 ≈ β20RE23 = 50×74 kΩ ≈ 3.7 MΩ.

Open-circuit voltage voltage gain, µ :

With RL = ∝, the gain of the emitter-follower output transistor (Q14 or Q20) will be nearly unity.

With RL = ∝ the resistance in the emitter of Q23 will be very large.

the second stage

12

≈=∞=LRo

o

vvµ

Page 70: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-69

Microelectrics (III)

Find the output resistance, Ro : Substituting Ro2 = 81 kΩ, β23 = 50, and re23 = 25/0.18 = 139Ω yields

Ro23 = 1.73 kΩ. For an output current of 5mA, re20 is 5 Ω and Ro = 39 Ω with β20 = 50.

Page 71: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-70

Microelectrics (III)

Output Short-Circuit Protection

If the op-amp output terminal is short-circuited to one of the power supplies, one of the two output transistors could conduct a large amount of current.

resulting in sufficient heating to cause burnout of the IC. Mechanism

R6 together with Q15 limits the current that would flow out of Q14 in the event of a short circuit. If the current in the emitter of Q14 exceeds about 20 mA, the

voltage drop across R6 exceeds 540 mV, which turns Q15 on.

As Q15 turns on, its collector robs some of the current supplied by Q13A, thus reducing the base current of Q14.

This mechanism thus limits the maximum current that op amp can source to about 20 mA.

The relevant circuit is composed of R7, Q21, Q24, and Q22. The current in the inward direction is limited also to about 20 mA.

Page 72: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-71

Microelectrics (III)

Page 73: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-72

Microelectrics (III)

Small-Signal Gain of the 741

Cascading the small-signal equivalent circuits of the individual stages for the evaluation of the overall voltage gain Overall gain:

( )( )oL

Lomiom

o

o

i

o

i

i

i

o

RRRRGRRG

vv

vv

vv

vv

+−−== µ2221

22

22

dB 107.7 V/V 147,24397.0)5.526(1.476 ==×−×−=i

o

vv

Page 74: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-73

Microelectrics (III)

Frequency Response of the 741

Miller compensation technique – to introduce a dominant low-frequency pole A 30-pF capacitor (CC ) is connected in the negative-feedback path of the second

stage. The effective capacitance due to CC between the base of Q16 and ground is Ci = CC( 1+ |A2|) where A2 = −515, and hence Ci = 15,480 pF. The total resistance between the base of Q16 and ground is Rt = (Ro1 || Ri2) = (6.7 MΩ || 4 MΩ) = 2.5 MΩ The dominant pole:

Unit-gain bandwidth ft = A0×f3dB ≈ 1 MHz Phase margin = −90o

In practice, PM ≈ −80o due to nondominant pole. This phase margin is sufficient to provide stable operation of close-loop amplifier with any value of feedback factor β.

Hz 4.12

1==

tiP RC

Page 75: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-74

Microelectrics (III)

A Simplified Model Based on Modeling the Second Stage as an Integrator

C

m

i

o

sCG

sVsVsA 1

)()()( =≡

C

m

CjGjAω

ω 1)( =⇒

Unity-gain frequency:

Substituting Gm1 = 1/5.26 mA/V and CC = 30 pF yields C

mt C

G 1=ω

MHz 12

≈=πωt

tf

This model is valid only at frequency f >> f3dB. A such frequencies the gain falls of with a slope of −20dB/decade, just like that of an integrator.

Page 76: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-75

Microelectrics (III)

Slew Rate of the 741

A unity-gain follower with a large step input

Model for the 741 op amp when a large differential signal is applied

Since the output voltage cannot change immediately, a large differential voltage appears between the op amp input terminal.

Output voltage:

tC

ItvC

O2)( =

Slew rate:

For the 741, I = 9.5 µA and CC = 30 pF, resulting in SR = 0.63×106 V/s.

CCISR 2

=

Page 77: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系 1.9-76

Microelectrics (III)

Relationship Between ft and SR

Gm1: where re is the emitter resistance of each of Q1 through Q4. Thus, ωt:

SR: For the 741 we have SR = 4 × 25 × 103 × 2π × 106 = 0.63×106 V/s. A general form for the relationship between SR and ωt for an op amp with a

structure similar to that of the 741 is

where a is the constant of proportionality relating transconductance of the first stage Gm1, to the first-stage bias current I, Gm1 = aI.

For a given ωt , a higher value of SR is obtained by making a smaller; I = constant, Gm1 .

em r

G4121 =

Tm

Te V

IGI

Vr21 == and

TCC

mt VC

ICG

21 ==ω

Tt V

SR4

tTVSR ω4=

taSR ω

=2

Page 78: Analog Integrated Circuits OP...Operational-Amplifier Circuits Microelectronic Circuits (III) 許恒銘--中興大學電機系 9-1 Microelectrics (III) Outline The Two-Stage CMOS Op

許恒銘--中興大學電機系

Home work-2

Problems: 20,21,22,23,24,28,35,36,40,41,48,49,52

1.10-77 Microelectrics (III)