Biomekanika Teknik Industri

Embed Size (px)

DESCRIPTION

Ilmu mekanik yang mempelajari tentang gerakan tubuh untuk meminimalisir kesalahan kerja

Text of Biomekanika Teknik Industri

  • Materi # 8 - BIOMEKANIKA

    Sritomo W.Soebroto, Arif Rahman dan Adhitya Sudiarno Lab. & Perancangan Sistem Kerja

    Institut Teknologi Sepuluh Nopember Surabaya

    Sritomo W. Soebroto, et.al.

    Biomekanika & Manual Handling 1

  • Outline Pertemuan

    Biomekanika : arti dan aplikasinya

    Analisa Mekanika Tubuh

    Perhitungan Dasar Biomekanika

    Studi Kasus Biomekanika

    Manual Handling & Back Safety

    Sritomo W. Soebroto, et.al.

    Biomekanika & Manual Handling 2

  • MENGANGKAT, MENDORONG, DENGAN POSISI SETEGAK

    MUNGKIN UNTUK MEMINIMALKAN BEBAN INTERNAL

    23/10/2013 Biomekanika 3

  • BEBAN INTERNAL TULANG BELAKANG SANGAT

    DIPENGARUHI OLEH POSISI MENGANGKAT

    23/10/2013 Biomekanika 4

  • TEKANAN PERUT IKUT BERPERAN DALAM MENGURANGI

    BEBAN INTERNAL PIRINGAN TULANG BELAKANG

    23/10/2013 Biomekanika 5

  • Biomekanika

    Bidang ilmu yang memadukan antara bidang ilmu biologi dan mekanika

    Biomekanika adalah ilmu pengetahuan yang merupakan kombinasi dari ilmu fisika (khususnya mekanika) dan teknik, dengan berdasar pada biologi dan juga pengetahuan lingkungan kerja.

    Biomekanika menggunakan hukum hukum fisika, mekanika teknik, biologi, dan prinsip fisiologi untuk menggambarkan kinematika dan kinetik yang terjadi pada anggota tubuh manusia.

    Kinematika : pergerakan/ motion pada segmen segmen tubuh. Kinetik : efek dari gaya dan momen yang terjadi pada tubuh. Mekanika digunakan sebagai penyusun konsep, analisa, dan desain dalam sistem biologi makhluk hidup.

    Biomekanika dari gerakan manusia adalah ilmu yang menyelidiki, menggambarkan dan menganalisis gerakan-gerakan manusia (Winter,1990)

    Pada dasarnya mempelajari dan menganalisis batas-batas kekuatan, ketahan, kecepatan, dan ketelitian yang dimiliki manusia dalam melakukan kerja dipengaruhi faktor manusia, sikap kerja dan jenis pekerjaan

    23/10/2013 Biomekanika 6

  • Biomekanika Biomekanika :

    Biostatik : bagian daari biomekanika umum yang hanya menganalisa bagian tubuh dalam keadaan diam maupun bergerak pada garis lurus dengan kecepatan seragam (uniform)

    Biodinamik : berkaitan dengan gerakan-gerakan tubuh taanpa mempertimbangkan gaya yang terjadi (kinematik) dan gaya yang disebabkan gaya yang bekerja dalam tubuh ( kinetik)

    Occupational biomekanika : Bagian dari mekanik terapan yang mempelajari interaaksi fisik antara pekerja dengan mesin, material, dan peralatan dengan tujuan untuk meminumkan keluhan pada sistem kerangka otott agar produktivitas kerja dapat meningkat (Chaffin & Anderson,1984)

    23/10/2013 Biomekanika 7

  • occupational biomechanics

    23/10/2013 Biomekanika 8

    Occupational biomechanics adalah sub disiplin dalam kerangka besar biomekanika yang mempelajari hubungan antara pekerja dengan alat kerja, workstation, mesin, dan material untuk meningkatkan performa dengan meminimalisasi terjadinya cidera musculoskeletal.

    Sehingga studi utama tentang Occupational biomechanics berkaitan dengan masalah musculoskeletal. Sistem musculoskeletal terdiri atas tulang, otot, dan jaringan penghubung (ligament, tendon, fascia, dan cartilage). Fungsi utama sistem tersebut adalah mendukung dan melindungi tubuh dan bagian bagian tubuh, menjaga postur tubuh, produce pergerakan tubuh, serta menghasilkan panas dan mempertahankan suhu tubuh.

  • why occupational biomechanics ???

    Jeffress (1999) indicated that approximately 650,000 workers every year suffer serious injuries and illnesses caused by overexertion, repetition, and other types of physical stress. Such injuries cost U.S. business between $15 to $20 billion dollars a year in workman compensation. According to US Department of labor, back injuries accounted for nearly 20% of all injuries and illnesses in the work place. In the UK, similar numbers appear with 27% of all reported accidents involving manual handling.

    23/10/2013 Biomekanika 9

  • Analisa Mekanik

    Tiga jenis gaya yang bekerja di dalam tubuh manusia (Winter,1990) :

    Gaya Gravitasi:

    Gaya yang melalui pusat massa dari segmen tubuh manusia dengan arah ke bawah

    Gaya Reaksi

    Gaya yang terjadi akibat beban pada segmen tubuh atau berat segmen tubuh itu sendiri

    Gaya Otot

    Gaya yang terjadi pada bagian sendi,baik akibat gesekan sendi atau akibat gaya pada otot yang melekat pada sendi.Gaya ini menggambarkan besarnya momen otot

    10/23/2013 Sritomo W.S & Dyah SD 10

  • Body Segments Group body segments as a percentage of

    Individual body segments mass as a percentage of

    Total body mass ( %)

    Group segment mass (%)

    Total body mass (%)

    Head and neck 8.4 Head

    Neck

    73.8

    26.2

    6.2

    2.2

    Torso (trunk) 50.0 Thorax

    Lumbar

    Pelvis

    43.8

    29.4

    26.8

    21.9

    14.7

    13.4

    Each arm (total) 5.1 Upper arm

    Forearm

    Hand

    54.9

    33.3

    11.8

    2.8

    1.7

    0.6

    Each leg (total) 15.7 Thigh

    Lower leg (shank)

    Foot

    63.78

    27.4

    8.9

    10.0

    4.3

    1.4

    10/23/2013 Sritomo W.S & Dyah SD 11

  • Contoh Perhitungan Dasar Biomekanik

    Mis. P = 10 N, W= 20 N

    F = (13*20) + (30*10) = 112 N Gaya reaksi : J = 112 20 -10 = 82 N

    5

    10/23/2013 Sritomo W.S & Dyah SD 12

  • Biomechanics of the back

    10/23/2013 Sritomo W.S & Dyah SD 13

    LIFTING AND BACK

    STRESS

  • Cont.

    10/23/2013 Sritomo W.S & Dyah SD 14

  • Cont.

    10/23/2013 Sritomo W.S & Dyah SD 15

  • Biomechanical -- Static analysis

    Example :

    A male worker pick a container off a conveyor (located 35 cm above the floor). The container has a mass of 15 kg. This task is performed 360 times pershift

    10/23/2013 Sritomo W.S & Dyah SD 16

  • The measurement

    Distance from wrist to center of mass (c.m.) of hand ( SL1)

    0.07 m

    Distance from wrist to elbow ( SL2) 0.28 m

    Distance from elbow to shoulder ( SL3) 0.3 m

    Distance from shoulder to L5/S1 disk (SL4) 0.36 m

    Angle of hand from horizontal (1) 30o

    Angle of forehand from horizontal (2) 30o

    Angle of upper arm from horizontal ( 3) 80o

    Angle of trunk from horizontal ( 4) 45o

    Body weight (mass) 70 kg

    10/23/2013 Sritomo W.S & Dyah SD 17

  • Calculation

    Work = m.g.h.f m = mass of the load in kilograms (kg)

    g = gravitational constant ( 9.8 m. s -2 )

    h = height of lift in meters (m)

    F = frequency (number of lift per shift)

    Work = (15 kg/lift). (9.8 m. s -2 ).(0.65 m 0.35 m). (360 lifts/shift)

    Work = 15876 J per shift

    10/23/2013 Sritomo W.S & Dyah SD 18

  • For the hand segment Wo = Force due to the weight of the external load = m.g

    = 15 kg . 9.8 m. s -2 = 147 N

    WH = Force due to the weight of the hand = m H. g

    = ( 0.006 . 70 kg ). (9.8 m. s -2 ) = 4.1 N

    Mw = Resultant moment at the wrist to maintain static equilibrium

    Fxw = Resultant force in x- direction at the wrist to maintain static equilibrium

    Fyw = Resultant force in y- direction at the wrist to maintain static equilibrium

    1 = Angle of the hand relative to horizontal 1 = 300 for this examples

    SL1 = Measured length from wrist to c.m. of hand ( at handles of box) SL1 = 0.07 m for this examples

    Fx = Fx w = 0

    Fy = Fy w - Wo - WH = 0

    Mw = Mw - (Wo +WH) . SL1 . Cos 1 = 0

    10/23/2013 Sritomo W.S & Dyah SD 19

  • Fx = Fx w = 0

    Fy = Fy w - Wo - WH = 0

    Mw = Mw - (Wo +WH) . SL1 . Cos 1

    = 0

    Thus For each wrist : Fx w = 0

    Fy w = Wo + WH = ( 147 N)/2 + 4.1 N = 77.6 N

    Mw = (Wo +WH) . SL1 . Cos 1

    =( 77.6 N) . (0.07 m ). (cos 300 ) = 4.7 N.m

    10/23/2013 Sritomo W.S & Dyah SD 20

  • For the lower arm segment WLA = Force due to the weight of the lower arm = mLA . g

    = ( 0.017 . 70 kg ). (9.8 m. s -2 ) = 11.7 N

    Mw = 4.7 N.m

    Fxw = 0

    Fyw = 77.6 N

    2 = Angle of the lower arm relative to horizontal = 300

    for this examples

    SL2 = Measured length from wrist to elbow SL2 = 0.28 m

    2 = Location of c.m. as a portion of SL from elbow = 0.43 ( or 43 %)

    Me = Resultant moment at the elbow to maintain static equilibrium

    Fxe = Resultant force in x- direction at the wrist to maintain static equilibrium

    Fye = Resultant force in y- direction at the wrist to maintain static equilibrium

    Fx = - Fx w + Fxe = 0

    Fy = - Fy w - WLA + Fye = 0

    Me = Me - Mw - WLA.. 2. SL2 . Cos 2 - Fyw . SL2 . Cos 2 - Fxw . SL2 . Sin 2 = 0

    10/23/2013 Sritomo W.S & Dyah SD 21

  • Thus For each elbow: Fx e = 0

    Fy e = 77.6 N + 11.7 N = 89.3 N

    Me = 4.7 N.m + 11.7 N . 0.43 . 0.28 m. 0.866 + 77.6 N .0.28 m . 0.866

    = 24.7 N.m

    10/23/2013 Sritomo W.S & Dyah SD 22

  • For the upper-arm segment

    WUA = Force due to the weight of the trunk = mUA . g = ( 0.028. 70 kg ). (9.8 m. s-2 ) = 19.2 N Me = 24.7 N.m Fxe = 0 Fye = 89.3 N 3 = Angle of the lower arm relative to horizontal = 80

    0 for this examples

    SL3 = Measured length from the elbow to shoulder SL3 = 0.30 m 3 = Location of c.m. as a portion of SL from shoulder = 0.436 ( or 43.6

    %) Ms = Resultant moment at the shoulder to maintain static equilibrium Fxs = Resultant force in x- direction at the shoulder to maintain static

    equilibrium Fys = Resultant force in y- direction at the shoulder to maintain static

    equilibrium

    Fx = - Fxe + Fxs = 0 Fy = - Fye - WUA + Fys = 0 Me = Ms - Me - WUA. 3. SL3 . Cos 3 - Fye . SL3 . Cos 3 - Fxe . SL3 . Sin 3 = 0

    10/23/2013 Sritomo W.S & Dyah SD 23

  • Thus For each shoulder:

    Fxs = 0

    Fys = Fye + WUA = 89.3 N + 19.2 N = 108.5 N

    Ms = 24.7 N.m + 19.2 N . 0.436 . 0.30 m. 0.174 + 89.3 N .0.3 m . 0.174

    = 29.8 N.m

    10/23/2013 Sritomo W.S & Dyah SD 24

  • For the trunk segment

    WT = Force due to the weight of the trunk = mT . g = ( 0.45. 70 kg ). (9.8 m. s -2 ) = 308.7 N Ms = 29.8 N.m for each shoulder = 59.6 N.m for both shoulders Fxs = 0 Fys = 108.5 for each shoulder = 217.0 N for both shoulders 4 = Angle of the trunk relative to horizontal = 45

    0 for this examples

    SL4 = Measured length for L5/S1 to shoulder SL4 = 0.36 m 4 = Location of c.m. as a portion of SL from L5/S1: 4 = 0.67 (

    estimated) Mt = Resultant moment at L5/S1 to maintain static equilibrium Fxt = Resultant force in x- direction at L5/S1 to maintain static

    equilibrium Fyt = Resultant force in y- direction at L5/S1 to maintain static

    equilibrium

    Fx = - Fxs + Fxt = 0 Fy = - Fye - WT + Fyt = 0 Me = Mt - Ms - WT. 4. SL4 . Cos 4 - Fys . SL4 . Cos 4 - Fxe . SL4 . Sin 4 = 0

    10/23/2013 Sritomo W.S & Dyah SD 25

  • Thus For each trunk:

    Fxt = 0

    Fyt = Fys + WT = 217.0 N + 308.7 N = 525.7 N

    Me = 59.6 N.m + 308.7 N . 0.67 . 0.36 m. 0.707 + 217.0 N .0.36 m . 0.707

    = 167.5 N.m

    10/23/2013 Sritomo W.S & Dyah SD 26

  • If the erector spinae muscle group is assumed the only muscle group in the back active to counter the moment L5/S1 and the moment arm of the erector spinae muscle group is known, the muscle force necessary in the erector spinae muscle group to maintain static equilibrium can be estimated If the moment arm of the erector spinae muscle group is 0.04 m ( from L5/S1) we can determine the muscle force required by :

    F. d = 167.5 N.m F = 167.5 N.m = 4187 N 0. 04 m

    Where : F = Muscle force required in erector spinae to maintain static equilibrium d = Moment arm length of erector spinae muscle group ( from L5/S1)

    10/23/2013 Sritomo W.S & Dyah SD 27

  • If we wish to examine the compressive and shear forces acting on the disk L5/S1) we can use the calculations above. Since the trunk is bend 450 angle , the vertical force can be resolved into equal compressive and shear components. The vertical force, other than that exerted by the erector spinae muscle group, is the sum of the weights of the load (box) the arms and trunk, therefore :

    Fv = Total vertical force acting upon L5/S1 disk

    = WO + WH + WLA + WUA + WT = 147 + 2(4.1) + 2 (11.7) + 2(19.2) + 308.7= 525.7 N

    10/23/2013 Sritomo W.S & Dyah SD 28

  • The vertical force due to weight of the box, arms and trunk is resolved into its compressive (Fvc) and shear (Fvs) components :

    Fvc = 525.7 . Cos 450 = 371.7 N

    Fvs = 525.7 . Sin 450 = 371.7 N

    The total compressive ( Fc) dan shear ( Fs) forces are found as follows :

    Fc = 371.7 N + 4187 N = 4558.7 N

    Fs = 371.7 N

    10/23/2013 Sritomo W.S & Dyah SD 29