1
Molecular Electronics: Synthesizing the Technology of the Future Kindle S. Williams, Katherine E. Donaldson, Joseph E. Meany, and Stephen A Woski Department of Chemistry The University of Alabama, Tuscaloosa, AL 35487 Introduction The field of molecular electronics centers around the synthesis of single- molecule electronic components. These components have the potential to one day replace their silicon-based counterparts, resulting in both smaller and more efficient devices which can be assembled from the ground up rather than with the inefficient top-down approach taken today. As part of a project involving molecular scale electronic devices, we are exploring the synthesis of potential rectifiers. A rectifier functions to convert alternating current (AC) to direct current (DC) by allowing unidirectional electron flow. Our target molecules contain electron-rich dimethoxybenzene donor rings and electron-poor quinone acceptor rings separated by single bonds. Figure 1. Br 2 -HBQ Here is shown the design of Dibromohemibiquinone (Br 2 -HBQ), the precursor molecule which exhibits the acceptor and donor features (orange and blue, respectively) as well as bromine substitution sites (white). It was posited by Aviram and Ratner in 1974 that such a molecule, if synthesized, could rectify. Their hypothesis was that an electron-rich ring and an electron-poor ring separated by a long enough insulator would allow a molecule to conduct electricity. While their theoretical molecule possessed a two-carbon bridge as an example of such an insulator, our molecules of interest possess only a single bond (here shown in green). Objectives Our goals were to: Synthesis and Methods Optimization Data HOMO/LUMO Calculations Conclusions/Moving Forward The proof-of-concept reaction suggests that our substitutions may in fact be possible. By finding an optimized synthesis reaction, we were able to improve yield, reduce waste, and more efficiently synthesize materials for our further experiments. In the future, we will attempt further substitutions and test how well the derivatives bond to a gold surface. Each of these derivatives’ HOMO/LUMO calculations will be compared to spectral and electrochemical data gathered by J. Meany. These calculations will be compiled in order to find the optimum HOMO/LUMO levels for use with a gold electrode (work function 5.1 eV). Reaction Name Addition ACN/H 2 O Ratio Separate Dissolution % Yield KSW 1-08 quick 1:1 (100 mL ACN/g) No 26% KSW 1-09 slow 1:1 (50 mL ACN/g) No 21% KSW 1-10 quick 2:1 (100 mL ACN/g) No 26% KSW 1-12 slow 1:1 (50 mL ACN/g) No 37% KSW 1-22 quick 1:3 (25 mL ACN/g) Yes 22% KSW 1-24 quick 1:3 (50 mL ACN/g) Yes 31% KSW 1-36* quick 1:3 (50 mL ACN/g) Yes 66% KED 1-05 slow 1:1 (100 mL ACN/g) No 25% KED 1-06 quick 1:1 (100 mL ACN/g) Yes 29% KED 1-07 quick 1:2 (100 mL ACN/g) Yes 34% KED 1-24 quick 2:9 (40 mL ACN/g) Yes 26% KED 1-30 quick 1:3 (25 mL ACN/g) Yes 11% KED 1-32 quick 1:3 (50 mL ACN/g) Yes 20% KED 1-50* quick 1:3 (50 mL ACN/g) Yes 50% *Replication of JEM 3-63, a confirmation of OCR 1-13 Figure 2. Alkylation using 1-bromohexane For proof-of-concept, alkyl substitution was carried out using 1-bromohexane. This showed the feasibility of future substitutions for assemblage. Figure 3. Substitution using cyanobenzoyl Cyanobenzoyl presents a potential substituent capable of bonding to a gold surface. The cyano-group nitrogen has a lone pair which may serve this purpose. Characterization is ongoing. Figure 4. Br 2 -HBQ HOMO Figure 5. Br 2 -HBQ LUMO Figure 6. Cyanobenzoyl- substituted HOMO Figure 7. Cyanobenzoyl- substituted LUMO Compound Br 2 -HBQ NH 2 ,Br- HBQ Alkyl Sub Cyanobenzoyl Sub HOMO (eV) -8.96 -8.85 -8.83 -8.92 LUMO (eV) -1.94 -1.55 -1.54 -1.83 Optimize the synthesis of Br 2 -HBQ from 2,5-dimethoxy-1-bromobenzene Perform proof-of-concept substitution reactions of NH 2 ,Br-HBQ Add a substituent capable of bonding to a gold electrode surface Model highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) characteristics Calculate HOMO and LUMO energies Table 1. Optimization of Br 2 -HBQ synthesis Table 2. PM3 calculations of HOMO and LUMO energies This data is in reference to the optimization of reaction two of the synthesis scheme shown above. Prior to these attempts, yield was between 20 and 30%. Multiple iterations were performed, varying the rate of addition, type of dissolution (2,5-dimethoxy-1- bromobenzene separately from vs. together with cerium ammonium nitrate), and ratios of the solvents (acetonitrile and water) each time. Highlighted reactions were the most successful – these were replications of a promising reaction attempted by O. Roe, a lab colleague. The optimum addition method appears to be the quick addition of 2,5- dimethoxy-1-bromobenzene and cerium ammonium nitrate, each separately dissolved in acetonitrile (overall 50 mL per gram of 2,5-dimethoxy-1-bromobenzene) and water (overall 150 mL per gram of 2,5-dimethoxy-1-bromobenzene). While these yields include some minor impurities, they are overall more efficient than the previous iterations. References “Does molecular electronics compute?” Editorial. Nature Nanotechnology. 8, 377 (2013). Aradhya, S. & Venkatamaran, L. Single-molecule junctions beyond electronic transport. Nature Nanotechnology. 8, 399- 410 (2013). Aviram, A. & Ratner, M. A. Molecular Rectifiers. Chemical Physics Letters. 29, 277- 283 (1974). Ratner, M. A brief history of molecular electronics. Nature Nanotechnology. 8, 378-381 (2013). Acknowledgements Special thanks to The University of Alabama, the College of Arts and Sciences, the Department of Chemistry, and the Computer-Based Honors Program. O H N O OMe OMe Br O NH 2 O OMe OMe Br NaH, 1-bromohexane THF O NH 2 O OMe OMe Br NaH, cyanobenzoyl chloride DMF O H N O OMe OMe Br N O OMe OMe OMe OMe Br NBS O Br O OMe OMe Br 1.75 Ce(NH 4 ) 2 (NO 3 ) 6 CH 3 CN, H 2 O, RT CH 3 CN NaN 3 iPrOH, H 2 O O N 3 O OMe OMe Br NaBH 4 iPrOH, H 2 O O NH 2 O OMe OMe Br O Br O OMe OMe Br

CBH Poster S14a (1)

Embed Size (px)

Citation preview

Page 1: CBH Poster S14a (1)

Molecular Electronics: Synthesizing the Technology of the FutureKindle S. Williams, Katherine E. Donaldson, Joseph E. Meany, and Stephen A. Woski

Department of ChemistryThe University of Alabama, Tuscaloosa, AL 35487

  

IntroductionThe  field  of  molecular  electronics  centers  around  the synthesis  of  single-molecule  electronic  components.  These components  have  the  potential  to  one  day  replace  their silicon-based  counterparts,  resulting  in  both  smaller  and more  efficient  devices  which  can  be  assembled  from  the ground  up  rather  than  with  the  inefficient  top-down approach  taken  today.  As  part  of  a  project  involving molecular  scale  electronic  devices,  we  are  exploring  the synthesis  of  potential  rectifiers.  A  rectifier  functions  to convert  alternating  current  (AC)  to  direct  current  (DC)  by allowing  unidirectional  electron  flow.  Our  target  molecules contain  electron-rich  dimethoxybenzene  donor  rings  and electron-poor  quinone  acceptor  rings  separated  by  single bonds. 

Figure 1. Br2-HBQHere  is  shown  the  design  of  Dibromohemibiquinone  (Br2-HBQ),  the  precursor  molecule  which  exhibits  the  acceptor and donor features (orange and blue, respectively) as well as bromine  substitution  sites  (white).  It  was  posited  by  Aviram and  Ratner  in  1974  that    such  a  molecule,  if  synthesized, could rectify. Their hypothesis was  that an electron-rich  ring and  an  electron-poor  ring  separated  by  a  long  enough insulator would allow a molecule to conduct electricity. While their  theoretical molecule possessed a two-carbon bridge as an  example  of  such  an  insulator,  our  molecules  of  interest possess only a single bond (here shown in green).

ObjectivesOur goals were to:

Synthesis and Methods

Optimization Data

HOMO/LUMO Calculations

Conclusions/Moving ForwardThe proof-of-concept reaction suggests that our substitutions may  in  fact  be  possible.  By  finding  an  optimized  synthesis reaction,  we  were  able  to  improve  yield,  reduce  waste,  and more  efficiently  synthesize  materials  for  our  further experiments.  In  the  future,  we  will  attempt  further substitutions and test how well the derivatives bond to a gold surface. Each of these derivatives’ HOMO/LUMO calculations will  be  compared  to  spectral  and  electrochemical  data gathered by  J. Meany. These calculations will be compiled  in order to find the optimum HOMO/LUMO levels for use with a gold electrode (work function 5.1 eV). 

Reaction Name Addition ACN/H2O Ratio Separate Dissolution % YieldKSW 1-08 quick 1:1 (100 mL ACN/g) No 26%KSW 1-09 slow 1:1 (50 mL ACN/g) No 21%KSW 1-10 quick 2:1 (100 mL ACN/g) No 26%KSW 1-12 slow 1:1 (50 mL ACN/g) No 37%KSW 1-22 quick 1:3 (25 mL ACN/g) Yes 22%KSW 1-24 quick 1:3 (50 mL ACN/g) Yes 31%KSW 1-36* quick 1:3 (50 mL ACN/g) Yes 66%KED 1-05 slow 1:1 (100 mL ACN/g) No 25%KED 1-06 quick 1:1 (100 mL ACN/g) Yes 29%KED 1-07 quick 1:2 (100 mL ACN/g) Yes 34%KED 1-24 quick 2:9 (40 mL ACN/g) Yes 26%KED 1-30 quick 1:3 (25 mL ACN/g) Yes 11%KED 1-32 quick 1:3 (50 mL ACN/g) Yes 20%KED 1-50* quick 1:3 (50 mL ACN/g) Yes 50%

*Replication of JEM 3-63, a confirmation of OCR 1-13

O HN

O

OMe

OMeBr

ONH2

O

OMe

OMeBr

NaH, 1-bromohexane

THF

Figure 2. Alkylation using 1-bromohexane

For proof-of-concept, alkyl substitution was carried out using 1-bromohexane.  This  showed  the  feasibility  of  future substitutions for assemblage.  

ONH2

O

OMe

OMeBr

NaH, cyanobenzoyl chloride

DMF

O HN

O

OMe

OMeBr

N

O

Figure 3. Substitution using cyanobenzoyl

Cyanobenzoyl  presents  a  potential  substituent  capable  of bonding to a gold surface. The cyano-group nitrogen has a lone pair which may serve this purpose. Characterization is ongoing. 

Figure 4. Br2-HBQ HOMO Figure 5. Br2-HBQ LUMO

Figure 6. Cyanobenzoyl-substituted HOMO

Figure 7. Cyanobenzoyl-substituted LUMO

  Compound Br2-HBQ NH2,Br-HBQ Alkyl Sub Cyanobenzoyl Sub

HOMO (eV) -8.96 -8.85 -8.83 -8.92

LUMO (eV) -1.94 -1.55 -1.54 -1.83

• Optimize the synthesis of Br2-HBQ from 2,5-dimethoxy-1-bromobenzene 

• Perform proof-of-concept substitution reactions of NH2,Br-HBQ

• Add a substituent capable of bonding to a gold electrode surface

• Model highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) characteristics

• Calculate HOMO and LUMO energies

Table 1. Optimization of Br2-HBQ synthesis

Table 2. PM3 calculations of HOMO and LUMO energies

This data is in reference to the optimization of reaction two of the synthesis scheme shown above. Prior to these attempts, yield was between 20 and 30%. Multiple iterations were performed, varying the rate of addition, type of dissolution (2,5-dimethoxy-1-bromobenzene separately  from vs.  together with cerium ammonium nitrate), and ratios of  the solvents  (acetonitrile and water) each time. Highlighted reactions were the most successful – these were replications of a promising reaction attempted by O. Roe, a lab  colleague.  The  optimum  addition  method  appears  to  be  the  quick  addition  of  2,5-dimethoxy-1-bromobenzene  and  cerium ammonium nitrate, each separately dissolved in acetonitrile (overall 50 mL per gram of 2,5-dimethoxy-1-bromobenzene) and water (overall 150 mL per gram of 2,5-dimethoxy-1-bromobenzene). While these yields include some minor impurities, they are overall more efficient than the previous iterations.

References• “Does molecular electronics compute?” Editorial. Nature 

Nanotechnology. 8, 377 (2013). • Aradhya, S. & Venkatamaran, L. Single-molecule junctions beyond 

electronic transport. Nature Nanotechnology. 8, 399- 410 (2013). • Aviram, A. & Ratner, M. A. Molecular Rectifiers. Chemical Physics 

Letters. 29, 277-283 (1974). • Ratner, M. A brief history of molecular electronics. Nature 

Nanotechnology. 8, 378-381 (2013). 

AcknowledgementsSpecial  thanks  to  The  University  of  Alabama,  the  College  of  Arts  and Sciences,  the  Department  of  Chemistry,  and  the  Computer-Based Honors Program.

OMe

OMe

OMe

OMe

BrNBS

OBr

O

OMe

OMeBr

1.75 Ce(NH4)2(NO3)6

CH3CN, H2O, RTCH3CN

NaN3

iPrOH, H2O

ON3

O

OMe

OMeBr

NaBH4

iPrOH, H2O

ONH2

O

OMe

OMeBr

OBr

O

OMe

OMeBr