56
Chap.1 Physics and Modelling of MOSFETs 반반반 반반반 반반반 반반반 2009 반 1 반 8 반

Chap.1 Physics and Modelling of MOSFETs

  • Upload
    ping

  • View
    162

  • Download
    2

Embed Size (px)

DESCRIPTION

Chap.1 Physics and Modelling of MOSFETs. 반도체 연구실 신입생 세미나 박 장 표 2009 년 1 월 8 일. Contents. Basic MOSFET Characteristics Current – Voltage Characteristics p-Channel MOSFETs Geometric Scaling Theory Small – Device Effects Small Device Model. 2. - PowerPoint PPT Presentation

Citation preview

Page 1: Chap.1 Physics and Modelling of MOSFETs

Chap.1 Physics and Modelling of MOSFETs

반도체 연구실 신입생 세미나

박 장 표

2009 년 1 월 8 일

Page 2: Chap.1 Physics and Modelling of MOSFETs

ContentsContents

Basic MOSFET Characteristics

Current – Voltage Characteristics

p-Channel MOSFETs

Geometric Scaling Theory

Small – Device Effects

Small Device Model

2

Page 3: Chap.1 Physics and Modelling of MOSFETs

1.1 Basic MOSFET Characteristics

The MOS Threshold Voltage

Body Bias

3

Page 4: Chap.1 Physics and Modelling of MOSFETs

Basic MOSFET Characteristics

MOSFET used as a Switch

ID determine by VGS & VDS ( also VSB affects lesser degree )

4

Page 5: Chap.1 Physics and Modelling of MOSFETs

Basic MOSFET Characteristics

W, L are important dimension for electrical characteristics

Aspect ratio : W / L

5

Page 6: Chap.1 Physics and Modelling of MOSFETs

Basic MOSFET Characteristics

VGS < VT : cutoff ( no current flow - ideally ) , VGS > VT : active mode

ID depends on the voltages applied

The MOS Threshold Voltage

: used to enhance the conduction between the drain and source

6

Page 7: Chap.1 Physics and Modelling of MOSFETs

Basic MOSFET Characteristics

MOS system : altering the charge distribution at the surface

soxG VV 7

Page 8: Chap.1 Physics and Modelling of MOSFETs

Basic MOSFET Characteristics

For small values of VG

Create depletion region referred to as bulk charge

The surface charge is made up entirely of bulk charge

Bulk charge consists of ionized acceptor atom, it is immobile

sasiB NqQ 2

BS QQ

8

Page 9: Chap.1 Physics and Modelling of MOSFETs

For VG > VT

initiates thin electron inversion layer when VG = VT

)ln()(22 i

aF

nBS

n

N

q

kT

QQQ

Basic MOSFET Characteristics

9

Page 10: Chap.1 Physics and Modelling of MOSFETs

implantion

adjustment threshold- 221

2

V theiongincorporat - 221

2

ideal - )2(21

2

FB

ox

IFasi

oxFFBT

Fasiox

FFBT

Fasiox

FT

C

qD)φ(Nqε

CφVV

)φ(NqεC

φVV

NqC

V

The MOS Threshold Voltage

Basic MOSFET Characteristics

10

Page 11: Chap.1 Physics and Modelling of MOSFETs

Basic MOSFET Characteristics

Body Bias

asiox

FSBFTT NqεC

γVVV 21

), 22(0

11

Page 12: Chap.1 Physics and Modelling of MOSFETs

1.2 Current – Voltage Characteristics

Square-Law Model

Bulk-Charge Model

12

Page 13: Chap.1 Physics and Modelling of MOSFETs

Current – Voltage Characteristics

Cutoff when VGS < VT

13

Page 14: Chap.1 Physics and Modelling of MOSFETs

Current – Voltage Characteristics

Active when VGS > VT

DSTGSnD

VV dvyVVV

L

WkI

0)]([)('

dx

dVμE, E(x) VvQI

yVVVWCQ

d

TGSoxd

,

)]([

14

Page 15: Chap.1 Physics and Modelling of MOSFETs

Current – Voltage Characteristics

Square-Law Model

Saturation - )(2

Triode - ])(2[2

2

2

TGSD

DSDSTGSD

VVI

VVVVI

15

Page 16: Chap.1 Physics and Modelling of MOSFETs

Current – Voltage Characteristics

)](1[)(2

2satDSTGSD VVVVI

)λVL

ΔL( iprelationsh assuming -

LL

ΔL1

ΔLL

1

L'

1

ΔLLL'

DS

Channel Length Modulation

16

Page 17: Chap.1 Physics and Modelling of MOSFETs

Current – Voltage Characteristics

17

Page 18: Chap.1 Physics and Modelling of MOSFETs

Current – Voltage Characteristics

2

)2

)(2

0 if

](1[)(2

TGSD

SATDSTGSD

VVI

VVVVI

18

Page 19: Chap.1 Physics and Modelling of MOSFETs

Current – Voltage Characteristics

Bulk-Charge Model

)))2()2((3

)2(2(2

0)]([

)2(21

2

)2(21

: ChargeBulk

22

3

2

3

DSFDSFDSox

IFFBGS

DS

TGSD

ox

IFasi

cxFFBT

Fasicx

VVVC

qDVV

V

VdvyVVVI

C

qDVNq

CVV

VNqC

19

Page 20: Chap.1 Physics and Modelling of MOSFETs

1.3 p-Channel MOSFETs

20

Page 21: Chap.1 Physics and Modelling of MOSFETs

p-Channel MOSFETs

p-Channel MOSFETs

21

Page 22: Chap.1 Physics and Modelling of MOSFETs

SpDDBSp

FpBSpFpppTTp

VVV

VVV

) 22(0

p-Channel MOSFETs

22

Page 23: Chap.1 Physics and Modelling of MOSFETs

Cutoff ( VSGp < l VTp l )

Active (VSGp > l VTp l )

Triode - ])(2[2

when

2SDpSDpTpSGp

pDp

SatSDp

VVVVI

VV

2

2

when

)

)(2

Saturation - )](1)[)(2

(

TpSGp

SatSDpTpSGpDp

SatSDp

TpSGpSat

VV

VVVVI

VV

VVV

p-Channel MOSFETs

23

Page 24: Chap.1 Physics and Modelling of MOSFETs

1.4 MOSFET Modelling

Drain-Source Resistance

MOSFET Capacitances

Junction Leakage Currents

24

Page 25: Chap.1 Physics and Modelling of MOSFETs

MOSFET Modelling

25

Page 26: Chap.1 Physics and Modelling of MOSFETs

MOSFET Modelling

Drain-Source Resistance

saturaion - )(

2

triode- ])(2[

2

TGS

DSn

DSTGSn

D

DSn

VV

Vr

VVVr

I

VR

))(('

1

)(

1

V V if )(

1

LTI_FETwhen

DD RefRef

TDDnTDD

Tn

D

DSn

VVL

WkVV

VVR

I

VR

26

Page 27: Chap.1 Physics and Modelling of MOSFETs

MOSFET Modelling

MOSFET Capacitances

27

Page 28: Chap.1 Physics and Modelling of MOSFETs

MOSFET Modelling

MOS-Based Capacitances

ooxo

ooxolg

oxG

LCC

WCWLCCC

LWLCC

)(22

2LL' ' o

28

Page 29: Chap.1 Physics and Modelling of MOSFETs

MOSFET Modelling

GGDGGS

GGS

GGB

CCCC

CC

CC

)2/1( and )2/1( : saturation-Non

)3/2( : Saturation

: Cutoff

D

GGD

S

GGS

V

QC

V

QC

29

Page 30: Chap.1 Physics and Modelling of MOSFETs

Depletion Capacitance

00 ),()(0

00

0

1ln ,

1)(

)(

2

RdRd

i

da

d

SIj

R

SI

Rd

SIRj

Vx)(Vxn

NN

q

kT

xC

VVxVC

MOSFET Modelling

30

Page 31: Chap.1 Physics and Modelling of MOSFETs

X)(WCWXC

CCC

Y)(X PPxCPCCWXCC

jswj

sidebotn

jswjjswsidejbot

2

2 ,

0

00

Depletion Capacitance in Drain & Source region

MOSFET Modelling

31

Page 32: Chap.1 Physics and Modelling of MOSFETs

X)(WCWXCC

PWXA

YWCWYCC

YXPWYA

jswjDB

D

jswjSB

SS

2

X)2(W ,

)(2

)(2 ,

00

D

00

Zero-bias source/drain bulk capacitance

MOSFET Modelling

32

Page 33: Chap.1 Physics and Modelling of MOSFETs

Cav using a simpler LTI element

)1(

0

1)1(

0

2

12

2

10

R122,1

213/1212/1

2

13/1

0sw

R

jsw2

12/1

0

R

j0

12

3/1

0sw

R

jsw

2/1

0

R

j0dep

,0

0

0212

112

)1()1())(1(

1

)V

(1

1

)(

1)(

),(),()

V(1

PC

)V

(1

AC{

)(

1

)V

(1

PC

)V

(1

ACC

)1(

)(

),()()(

mmR

mm

jswjoRRav

m

R

mjRj

jRRjav

VV

VVm

V

VdV

VVVVK

PCVVKACVVKdVV

VdV

V

VVVC

VC

VC

ACVVKVV dVVC

VV

AC

General model for voltage-dependent depletion capacitance m : grading coefficient, such that m<1

MOSFET Modelling

33

Page 34: Chap.1 Physics and Modelling of MOSFETs

Device Capacitance Model

DBGDDSBGSS CCCCCC ,

Use the LTI average of the depletion capacitance

MOSFET Modelling

34

Page 35: Chap.1 Physics and Modelling of MOSFETs

Junction Leakage Currents

gengeno

DepqkTV

oR

DepqkTV

o

III

IeIII

IeII

])1([

)1(

)//(

)//(

0

0

0 2 --- 1]- 1[

τ

xqAn I

VII

digo

Rgogen

MOSFET Modelling

35

Page 36: Chap.1 Physics and Modelling of MOSFETs

Drain / Source are always at a voltage greater than or equal to 0v

Bulk is will always exhibit leakage flows regardless of the state of the conduction of the transistor

MOSFET Modelling

36

Page 37: Chap.1 Physics and Modelling of MOSFETs

]1)1[(

]11[

0

0

mRgomgen

RgogenR

VII

φ

VIII

General doping profile ( m : grading coefficient )

MOSFET Modelling

37

Page 38: Chap.1 Physics and Modelling of MOSFETs

1.5 Geometric Scaling Theory

Full-Voltage Scaling

Constant-Voltage Scaling

Second-Order Scaling Effects

38

Page 39: Chap.1 Physics and Modelling of MOSFETs

2 invariant is ratioaspect -

'

' ' ,'

S

A A'

L

W

L

W

S

LL

S

WW

Geometric Scaling Theory

39

Page 40: Chap.1 Physics and Modelling of MOSFETs

Geometric Scaling Theory

invariant is ratioAspect

' , ,'

' ,' SSkk'SC

xC

S

xx ox

ox

oxox

oxox

40

Page 41: Chap.1 Physics and Modelling of MOSFETs

Geometric Scaling Theory

Full Voltage Scaling

S

I

S

V

S

V

S

V

S

VS

VVVVI

S

VV

S

VV

S

VV

VVVVI

SS

DDSDSTGS

DSDSTGSD

TT

GSGS

DSDS

DSDSTGSD

])(2[2

]'')''(2[2

''

,' ,'

])(2[2

flowcurrent saturated-Non

' ,'

2

2

2

2

S

IVVI

DTGSD 2)''(

2

''

flowcurrent Saturated

2'''

Power

SP

SV

SI

VIP

VIP

DSDDSD

DSD

41

Page 42: Chap.1 Physics and Modelling of MOSFETs

Constant-Voltage Scaling

Geometric Scaling Theory

D

TGSD

D

DSDSTGS

DSDSTGSD

SI

VVI

SI

VVVVS

VVVVI

S

)''(2

''

Current Saturated

])(2[2

]'')''(2[2

''

flowcurrent saturated-Non

' ,'

2

2

2

2

SP

VSI

VIP

DSD

DSD

'''

ndissipatioPower

42

Page 43: Chap.1 Physics and Modelling of MOSFETs

Second-Order Scaling Effects

Geometric Scaling Theory

First-Order Scaling Effects deals with MOSFET dimensions, doping level, voltages, and currents

Second-Order Scaling Effects for example of

'

0)(N

by increased impurity scattering

Second-Order Scaling Effects for example of in VT

ox

I

C

qD

)(1

,' oxfox

jj QQ

CS

xx In the flat band voltage as is scaled oxx

43

Page 44: Chap.1 Physics and Modelling of MOSFETs

1.7 Small-Device Effects

Threshold Voltage Modifications

Mobility Variations

Hot Electrons

44

Page 45: Chap.1 Physics and Modelling of MOSFETs

Small-Device Effect

Threshold Voltage Modifications

)2(21

2 VNqC

VV Fasicx

FFBT Basic threshold voltage

)()2(21

2WL

WLVNq

CVV Fasi

cxFFBT Charge – voltage relation by area

Gate voltage does not support all of the bulk char with an area of WL

45

Page 46: Chap.1 Physics and Modelling of MOSFETs

Short-Channel Effect

Small-Device Effect

a

Fsiddm

qNxx

LLL

)2(2

)(21

46

Page 47: Chap.1 Physics and Modelling of MOSFETs

Small-Device Effect

dmjjj

jdmdmj

xxxxL

Lxxxx

2

)()(

2

222

Using Pythagorean theorem

1

]12

1[1)(

1)(

ff

x

x

L

x

L

L

L

LL

WL

WL

j

dmj

47

Page 48: Chap.1 Physics and Modelling of MOSFETs

Small-Device Effect

SCETTSCET

j

dm

ox

BjSCET

Fasicx

FFBSCET

VVV

x

x

C

Q

L

xV

fVNqC

VV

)()(

]12

1[)(

)2(21

2)(

48

Page 49: Chap.1 Physics and Modelling of MOSFETs

Narrow Width Effect

11,)2(21

2

2

,

Wx

AggNq

CVV

AWxAAxqNAQ

dm

NWEFasi

cxFFBT

NWEdmccdmaCB

Small-Device Effect

total area of region

49

Page 50: Chap.1 Physics and Modelling of MOSFETs

Small-Device Effect

Since the area for

W

xg

dm

21

Another approach : empirical factor

)(1W

xg

dm

When W dmx

0)2(2

)(

)()(

WxC

QNqAV

VVV

oxdm

FasiNWENWET

NWETTNWET

4

2dmx

50

Page 51: Chap.1 Physics and Modelling of MOSFETs

Mobility Variations

Small-Device Effect

Evnqu

vJE

J

A

dydR

neIn

ev

c

,

densitycurrent : ,tyconductivi:

)](1[ TGS

nn

VV

Ignore the VGS induces the field effect will alter the local electric field

51

Page 52: Chap.1 Physics and Modelling of MOSFETs

Small-Device Effect

[Exam] L=0.5um, VDS=2V, estimate the Channel electric field

regionnonlinear in V/cm] [ 104105

2 45

L

VE

DS

Electron temperature

For low electric fields : cold electron region

curve goes nonlinear : warm electron region

reaches the : hot electron region

Tkvm B2

3

2

1 2*

by Particle kinetic energy to the thermal energy

)(Ev

v sv

52

Page 53: Chap.1 Physics and Modelling of MOSFETs

Small-Device Effect

Hot Electrons

Particularly important : L < 1 um

Highly energetic particles can leave the silicon and enter the gate oxide

leading to instability of the threshold voltage

Long-term reliability problems may result

May induce leakage gate currents and excessive substrate currents

oxQ

GI SI

The LDD MOSFET

si

ddxqNE

max

Particularly important : L < 1 um

Highly energetic particles can leave the silicon and enter the gate oxide

leading to instability of the threshold voltage

Long-term reliability problems may result

May induce leakage gate currents and excessive substrate currents

Maximum value of the built-in electric field

53

Page 54: Chap.1 Physics and Modelling of MOSFETs

1.7 Small Device Model

54

Page 55: Chap.1 Physics and Modelling of MOSFETs

Small Device Model

)/(1

)/(

1

c

cs

n

sc

s

n

nn

EE

EEvv

vE

v

E

Ev

Critical electric field

)( ],)(1

)()[(

,)/(1

dy

dVE

dydV

v

dydV

VVVWCvWQI

EvEE

s

n

n

TGSoxnnD

NLnC

nNL

Field-dependent velocity

55

Page 56: Chap.1 Physics and Modelling of MOSFETs

Small Device Model

Non-saturated current

)(

]1)(21[

)1(

])(2[ 2

TGSsoxD

TGSs

n

n

sSat

DSs

n

DSDSTGSnD

VVvWCI

VVLv

LvV

Vv

VVVVI

Saturation current for VDS > VSat

56