48
Electrochemistry Chapter 19

Chapter 19 2018. 4. 3. · 2 (g) 2MgO (s) 2Mg 2Mg2+ + 4e-O 2-+ 4e 2O2-Oxidation half-reaction (lose e-) Reduction half-reaction (gain e-) 전기화학 반응 oxidation-reduction reactions

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Electrochemistry

    Chapter 19

  • 산화환원 반응과 전기화학

    1. 산화환원 반응과 산화수

    2. 갈바니 전지

    3. 표준환원전위

    4. 산화환원 반응의 자발성. 전위차와 자유에너지

    5. 전위차와 농도, Nernst 방정식

    6. 전지

    7. 부식

    8. 전기분해

    9. 전기야금

  • 2Mg (s) + O2 (g) 2MgO (s)

    2Mg 2Mg2+ + 4e-

    O2 + 4e- 2O2-

    Oxidation half-reaction (lose e-)

    Reduction half-reaction (gain e-)

    전기화학 반응

    oxidation-reduction reactions in which:

    • 자유에너지의 감소 => electrical energy : 갈바니 전지

    • electrical energy => 자유에너지의 증가 : 전해 전지

    0 0 2+ 2-

  • 갈바니 전지(Galvanic Cells)

    spontaneous

    redox reaction

    anode

    oxidation

    cathode

    reduction

    + -

  • H+

    MnO4-

    Fe+2

    Galvanic Cell

    Salt

    Bridge

    allows

    current

    to flow

  • H+

    MnO4-

    Fe+2 e-

    Electricity travels in a complete circuit

  • H+

    MnO4-

    Fe+2

    Porous

    Disk

    Instead of a salt bridge

    ../../Desktop/simulations/voltaicCell20.html

  • Reducing

    Agent

    Oxidizing

    Agent

    e-

    e-

    e- e-

    e-

    e-

    Anode Cathode

  • The difference in electrical

    potential between the anode

    and cathode is called:

    • cell voltage

    • electromotive force (emf)

    • cell potential

    Cell Diagram

    Zn (s) + Cu2+ (aq) Cu (s) + Zn2+ (aq)

    [Cu2+] = 1 M & [Zn2+] = 1 M

    Zn (s) | Zn2+ (1 M) || Cu2+ (1 M) | Cu (s)

    anode cathode

    갈바니 전지(Galvanic Cells)

    산화 환원

  • Zn (s) | Zn2+ (1 M) || H+ (1 M) | H2 (1 atm) | Pt (s)

    2e- + 2H+ (1 M) H2 (1 atm)

    Zn (s) Zn2+ (1 M) + 2e- Anode (oxidation):

    Cathode (reduction):

    Zn (s) + 2H+ (1 M) Zn2+ + H2 (1 atm)

    Anode: 산화극

    Cathode: 환원극

    + -

    표준전극전위(Standard Electrode Potentials)

  • Standard reduction potential (E0) is the voltage associated

    with a reduction reaction at an electrode when all solutes

    are 1 M and all gases are at 1 atm.

    E0 = 0 V

    Standard hydrogen electrode (SHE)

    2e- + 2H+ (1 M) H2 (1 atm)

    Reduction Reaction

    표준전극전위(Standard Electrode Potentials)

  • E0 = 0.76 V cell

    Standard emf (E0 ) cell

    0.76 V = 0 - EZn /Zn 0

    2+

    EZn /Zn = -0.76 V 0

    2+

    Zn2+ (1 M) + 2e- Zn E0 = -0.76 V

    E0 = EH /H - EZn /Zn cell 0 0

    + 2+ 2

    E0 = Ecathode - Eanode cell 0 0

    Zn (s) | Zn2+ (1 M) || H+ (1 M) | H2 (1 atm) | Pt (s)

    표준전극전위(Standard Electrode Potentials)

  • Pt (s) | H2 (1 atm) | H+ (1 M) || Cu2+ (1 M) | Cu (s)

    2e- + Cu2+ (1 M) Cu (s)

    H2 (1 atm) 2H+ (1 M) + 2e- Anode (oxidation):

    Cathode (reduction):

    H2 (1 atm) + Cu2+ (1 M) Cu (s) + 2H+ (1 M)

    E0 = Ecathode - Eanode cell 0 0

    E0 = 0.34 V cell

    Ecell = ECu /Cu – EH /H 2+ + 2 0 0 0

    0.34 = ECu /Cu - 0 0

    2+

    ECu /Cu = 0.34 V 2+ 0

    표준전극전위(Standard Electrode Potentials)

    표준환원전극전위

  • Standard Reduction Potentials at 25oC* Half-Reaction E0 (V) Half-Reaction E0 (V)

    F2(g) + 2 e- → F-(aq) 2.87

    O3(g) + 2 H+(aq) + 2 e- → O2(g) + H2O 2.07

    Co3+(aq) + e- → Co2+(aq) 1.82 2 H+(aq) + 2 e- → H2(g) 0.00

    H2O2(aq) + 2 H+(aq) + 2 e- → 2 H2O 1.77 Pb

    2+(aq) + 2 e- → Pb(s) -0.13

    PbO2(s) + 4 H+(aq) + SO4

    2-(aq) + 2 e- → PbSO4(s) + 2 H2O 1.70 Sn2+(aq) + 2 e- → Sn(s) -0.14

    Ce4+(aq) + e- → Ce3+(aq) 1.61 Ni2+(aq) + 2 e- → Ni(s) -0.25

    MnO4-(aq) + 8 H+(aq) + 5 e- → Mn2+(aq) + 4 H2O 1.51 Co

    2+(aq) + 2 e- → Co(s) -0.28

    Au3+(aq) + 3 e- → Au(s) 1.50 PbSO4(s) + 2 e- → Pb(s) + SO4

    2-(aq) -0.31

    Cl2(g) + 2 e- → 2 Cl-(aq) 1.36 Cd2+(aq) + 2 e- → Cd(s) -0.40

    Cr2O72-(aq) + 14 H+(aq) + 6 e- → 2 Cr3+(aq) + 7 H2O 1.33 Fe

    2+(aq) + 2 e- → Fe(s) -0.44

    MnO2(s) + 4 H+(aq) + 2 e- → Mn2+(aq) + 2 H2O 1.23 Cr

    3+(aq) + 3 e- → Cr(s) -0.74

    O2(g) + 4 H+(aq) + 4 e- → 2 H2O 1.23 Zn

    2+(aq) + 2 e- → Zn(s) -0.76

    Br2(l) + 2 e- → 2 Br-(aq) 1.07 2 H2O + 2 e

    - → H2(g) + 2 OH-(aq) -0.83

    NO3-(aq) + 4 H+(aq) + 3 e- → NO(g) + 2 H2O 0.96 Mn

    2+(aq) + 2 e- → Mn(s) -1.18

    2 Hg2+(aq) + 2 e- → Hg22+(aq) 0.92 Al3+(aq) + 3 e- → Al(s) -1.66

    Hg22+(aq) + 2 e- → 2 Hg(l) 0.85 Be2+(aq) + 2 e- → Be(s) -1.85

    Ag+(aq) + e- → Ag(s) 0.80 Mg2+(aq) + 2 e- → Mg(s) -2.37

    Fe3+(aq) + e- → Fe2+(aq) 0.77 Na+(aq) + e- → Na(s) -2.71

    O2(g) + 2 H+(aq) + 2 e- → H2O2(aq) 0.68 Ca

    2+(aq) + 2 e- → Ca(s) -2.87 MnO4

    -(aq) + 2 H2O + 3 e- → MnO2(s) + 4 OH

    -(aq) 0.59 Sr2+(aq) + 2 e- → Sr(s) -2.89 I2(s) + 2 e

    - → 2 I-(aq) 0.53 Ba2+(aq) + 2 e- → Ba(s) -2.90 O2(g) + 2 H2 + 4 e

    - → 4 OH-(aq) 0.40 K+(aq) + e- → K(s) -2.93 Cu2+(aq) + 2 e- → Cu(s) 0.34 Li+(aq) + e- → Li(s) -3.05 AgCl(s) + e- → Ag(s) + Cl-(aq) 0.22 SO4

    2-(aq) + 4 H+(aq) + 2 e- → SO2(g) + 2 H2O 0.20

    Cu2+(aq) + e- → Cu+(aq) 0.13

    Sn4+(aq) + 2 e- → Sn2+(aq) 0.13

    Easie

    r to re

    du

    ce

    . Stro

    ng

    er o

    xid

    izer E

    asie

    r to

    oxid

    ize.

    Str

    onger

    reducer

  • 갈바니 전지에 대한 전위 계산

    E0 = Ecathode - Eanode cell 0 0 1.

    2. 열역학 방법, using DG = -nFE

  • Potential, Work and DG

    • DGº = -nFEº

    • if Eº > 0, then DGº < 0 spontaneous

    • if Eº< 0, then DGº > 0 nonspontaneous

    • In fact, reverse is spontaneous.

    • Calculate DGº for the following reaction:

    • Cu+2(aq)+ Fe(s) ® Cu(s)+ Fe+2(aq)

    • Fe+2(aq) + e-® Fe(s) Eº = 0.44 V

    • Cu+2(aq)+2e- ® Cu(s) Eº = 0.34 V

  • 3Cd2+ (aq) + 6e- → 3Cd (s)

    2Cr3+ (aq) + 6e- → 2Cr (s)

    2Cr (s) + 3Cd2+ (1 M) → 3Cd (s) + 2Cr3+ (1 M)

    another approach

    DG10 = -nF Eh

    0 = -6F(-0.40) V

    DG20 = -nF Eh

    0 = -6F(-0.74) V

    DG0 = DG10 - DG2

    0 = -6F(-0.40+0.74) V =-6F E0

    E0 = 0.34 V cell

    cell

  • Cu2+ (aq) + 2e- Cu (s) E0 = 0.340 V

    Cu+ (aq) + e- Cu (s) E0 = 0.522 V

    Anode (oxidation):

    Cathode (reduction): 2e- + Cu2+ Cu (s)

    Cu (s) Cu+ + e-

    Cu2+ + e- Cu+

    E0 = Ecathode - Eanode cell 0 0

    E0 = 0.340– (0.522) = -0.184 V ? hcell

    Cu2+ (aq) + e- → Cu+ (aq) E0 = ?

  • Cu2+ (aq) + 2e- Cu (s)

    Cu+ (aq) + e- Cu (s)

    Cu2+ (aq) + e- → Cu+ (aq) Eh0 = ?

    DG10 = -nF Eh

    0 = -2F(0.340) V

    DG20 = -nF Eh

    0 = -F(0.522) V

    DG0 = DG10 - DG2

    0 = -F(2(0.340)-0.522) V =-F Eh0

    Eh0 = 0.158 V

    Cu2+ → Cu+ (aq) → Cu 0.158 V 0.522 V

    0.340 V

  • Fe2+ (aq) + 2e- Fe (s)

    Fe3+ (aq) + e- Fe2+(aq)

    Fe3+ (aq) + 3e- → Fe (s) Eh0 = ?

    Eh0 = ?

    Fe3+ → Fe2+ (aq) → Fe +0.771 V -0.440 V

    ?

    Eh0 = -0.440 V

    Eh0 = +0.771 V

  • 산화환원 반응의 열역학

    DG = -nFEcell

    DG0 = -nFEcell 0

    n = number of moles of electrons in reaction

    F = 96,485 J

    V • mol = 96,485 C/mol

    DG0 = -RT ln K = -nFEcell 0

    Ecell 0 =

    RT

    nF ln K

    (8.314 J/K•mol)(298 K)

    n (96,485 J/V•mol) ln K =

    = 0.0257 V

    n ln K Ecell

    0

    = 0.0592 V

    n log K Ecell

    0

  • 산화환원 반응의 열역학

  • 전지의 전위에 미치는 농도의 효과

    DG = DG0 + RT ln Q DG = -nFE DG0 = -nFE 0

    -nFE = -nFE0 + RT ln Q

    E = E0 - ln Q RT

    nF Nernst equation At 298

    - 0.0257 V

    n ln Q E 0 E = -

    0.0592 V n

    log Q E 0 E =

  • The Nernst Equation

    DG = DGº +RTln(Q)

    • -nFE = -nFEº + RTln(Q)

    • E = Eº - RT ln(Q)

    nF

    • 2Al(s) + 3Mn+2(aq) 2Al+3(aq) + 3Mn(s)

    Eº = 0.48 V

    • Always have to figure out n by balancing.

    • If concentration can gives voltage, then from voltage we can tell concentration.

  • The emf of the cell made up of the glass electrode and

    the reference electrode is measured with a voltmeter that

    is calibrated in pH units.

    Measurement of pH: the glass electrode

    Very thin glass membrane

    that is permeable to H+ ions.

    A potential difference develops

    between the two sides of the

    membrane.

  • Glass pH Electrodes

    1. a sensing part of electrode, a bulb made from a specific glass

    2. sometimes the electrode contains a small amount of AgCl precipitate inside the glass electrode

    3. internal solution, usually 0.1M HCl for pH electrodes

    4. internal electrode, usually silver chloride electrode or calomel electrode

    5. body of electrode, made from non-conductive glass or plastics.

    6. reference electrode, usually the same type as 4

    7. junction with studied solution, usually made from ceramics or capillary with asbestos or quartz fiber.

    Ag/AgCl reference electrode Glass pH electrode

    + -

  • 전지

    Leclanché cell

    Dry cell

    Zn (s) Zn2+ (aq) + 2e- Anode:

    Cathode: 2NH4 (aq) + 2MnO2 (s) + 2e- Mn2O3 (s) + 2NH3 (aq) + H2O (l)

    +

    Zn (s) + 2NH4+ (aq) + 2MnO2 (s) Zn

    2+ (aq) + 2NH3 (aq) + H2O (l) + Mn2O3 (s)

  • Zn(Hg) + 2OH- (aq) ZnO (s) + H2O (l) + 2e- Anode:

    Cathode: HgO (s) + H2O (l) + 2e- Hg (l) + 2OH- (aq)

    Zn(Hg) + HgO (s) ZnO (s) + Hg (l)

    Mercury Battery

    전지

    Location Reaction Potential

    Anode Zn + 2OH- > Zn(OH)2 + 2e- 1.25 V

    Cathode HgO +H2O + 2e- > Hg + 2OH- 0.098 V

    Overall Zn + HgO + H2O > Zn(OH)2 + Hg 1.35 V

  • Anode:

    Cathode:

    Lead storage

    battery

    PbO2 (s) + 4H+ (aq) + SO2- (aq) + 2e- PbSO4 (s) + 2H2O (l) 4

    Pb (s) + SO2- (aq) PbSO4 (s) + 2e- 4

    Pb (s) + PbO2 (s) + 4H+ (aq) + 2SO2- (aq) 2PbSO4 (s) + 2H2O (l) 4

    전지

    Lead-acid

    battery

  • Solid State Lithium Battery

    전지

  • 연료전지(Fuel Cell ) converts chemical energy into electricity.

    In contrast to storage battery, fuel cell does not need to involve a

    reversible reaction since the reactant are supplied to the cell as

    needed from an external source. This technology has been used in

    the Gemini, Apollo and Space Shuttle program.

    Half reactions: E°Cell = 0.9 V

    Advantage: Clean, portable and product is water. Efficient (75%) contrast to 20-25% car, 35-40% from coal electrical plant Disadvantage: Needs continuous flow of reactant, Electrodes are short lived and expensive.

    Anode:

    Cathode: O2 (g) + 2H2O (l) + 4e- 4OH- (aq)

    2H2 (g) + 4OH- (aq) 4H2O (l) + 4e

    -

    2H2 (g) + O2 (g) 2H2O (l)

  • Relative Energy Density of Some Common

    Secondary Cell Chemistries

  • Current Science: microbial fuel cell (MFC) technology

    From: Andrew Kato Marcus, arizona State Univ.,

    http://researchstories.asu.edu/2008/01/post_1.htmlhttp://researchstories.asu.edu/2008/01/post_1.htmlhttp://researchstories.asu.edu/2008/01/post_1.htmlhttp://researchstories.asu.edu/2008/01/post_1.html

  • Electrolysis is the process in which electrical energy is used

    to cause a nonspontaneous chemical reaction to occur.

    전기분해

  • Electrolysis of Water

    2H2O(l) → 2 H2(g) + O2(g)

  • Electrolysis of Water

    2H2O(l) → 2 H2(g) + O2(g) DG0 = 474.4 kJ/mol

    Anode:

    2 H2O(l) → O2 + 4 H+(aq) + 4 e- Eoox = -1.23 V

    2 SO42- → S2O8

    2- + 2 e- Eoox = -2.05 V

    39 kWh of electricity and 8.9 liters of water are required

    to produce 1 kg of hydrogen at 25°C and 1 atm. In reality, 50.3-70.1 kWh of electricity is required.

    Cathode:

    2 H+(aq) + 2 e- → H2(g) Eo

    red = 0.00 V

  • Electrolysis of NaCl(aq)

    2H2O(l) + 2 Cl-(aq) → H2(g) + Cl2(g) + 2 OH

    -(aq)

  • Electrolysis of NaCl(aq)

    Anode:

    (1) 2 H2O(l) → O2 + 4 H+(aq) + 4 e- Eoox = -1.23 V

    (2) 2 Cl- → Cl2 + 2 e- Eoox = -1.36 V

    Cathode:

    (1) 2 H+(aq) + 2 e- → H2(g) Eo

    red = 0.00 V

    (2) Na+ + e- → Na Eored = -2.71 V

    (3) 2 H2O + 2 e- → H2 + 2 OH

    - Eored = -0.83 V

    (1) is favored at standard state, but [H+] is so low in the

    solution, so (3) is the reaction taking place.

    (1) is favored if ideal, but overvoltage for (1) is so high

    in reality, so (2) is the reaction taking place.

  • Electrolysis and Mass Changes

    charge (C) = current (A) x time (s)

    1 mole e- = 96,485.34 C

  • Dry Cell or LeClanche Cell Dry Cells

    Invented in the 1860’s the common dry cell or LeClanche cell, has become a familiar household

    item. An active zinc anode in the form of a can house a mixture of MnO2 and an acidic electrolytic

    paste, consisting of NH4Cl, ZnCl2, H2O and starch powdered graphite improves conductivity. The

    inactive cathode is a graphite rod.

    Anode (oxidation)

    Zn(s) g Zn2+

    (aq) + 2e-

    Cathode (reduction). The cathodic half-reaction is complex and even today, is

    still being studied. MnO2(s) is reduced to Mn2O3(s) through a series of steps that

    may involve the presence of Mn2+ and an acid-base reaction between NH4+ and

    OH- :

    2MnO2 (s) + 2NH4+

    (aq) + 2e- g Mn2O3(s) + 2NH3(aq) + H2O (l)

    The ammonia, some of which may be gaseous, forms a complex ion with Zn2+,

    which crystallize in contact Cl- ion:

    Zn2+(aq) + 2NH3 (aq) + 2Cl

    -(aq) g Zn(NH3)2Cl2(s)

    Overall Cell reaction:

    2MnO2 (s) + 2NH4Cl(aq) + Zn(s) g Zn(NH3)2Cl2(s) + H2O (l) + Mn2O3(s) Ecell = 1.5 V

    Uses: common household items, such as portable radios, toys, flashlights,

    Advantage; Inexpensive, safe, available in many sizes

    Disadvantages: At high current drain, NH3(g) builds up causing drop in voltage,

    short shelf life because zinc anode reacts with the acidic NH4+ ions.

  • Dry Cell or LeClanche Cell

    Invented by George Leclanche, a French Chemist.

    Acid version: Zinc inner case that acts as the anode and a carbon rod in contact with a moist paste of solid MnO2 , solid NH4Cl, and carbon

    that acts as the cathode. As battery wear down, Conc. of Zn+2 and NH3 (aq)

    increases thereby decreasing the voltage.

    Half reactions: E°Cell = 1.5 V

    Anode: Zn(s) g Zn+2(aq) + 2e-

    Cathode: 2NH4+(aq) + MnO2(s) + 2e

    - g Mn2O3(s) + 2NH3(aq) + H2O(l)

    Advantage: Inexpensive, safe, many sizes Disadvantage: High current drain, NH3(g) build up, short shelf life

  • Alkaline Battery Alkaline Battery

    The alkaline battery is an improved dry cell. The half-reactions are similar, but the

    electrolyte is a basic KOH paste, which eliminates the buildup of gases and maintains the

    Zn electrode.

    Anode (oxidation)

    Zn(s) + 2OH- (aq) g ZnO(s) + H2O (l) + 2e-

    Cathode (reduction).

    2MnO2 (s) + 2H2O (l) + 2e- g Mn(OH)2(s) + 2OH

    -(aq)

    Overall Cell reaction:

    2MnO2 (s) + H2O (l) + Zn(s) g ZnO(s) + Mn(OH)2(s) Ecell = 1.5 V

    Uses: Same as for dry cell.

    Advantages: No voltage drop and longer shell life than dry cell

    because of alkaline electrolyte; sale ,amu sizes.

    Disadvantages; More expensive than common dry cell.

  • Alkaline Battery

    Leclanche Battery: Alkaline Version

    In alkaline version; solid NH4Cl is replaced with KOH or NaOH. This

    makes cell last longer mainly because the zinc anode corrodes less

    rapidly under basic conditions versus acidic conditions.

    E°Cell = 1.5 V

    Anode: Zn(s) + 2OH-(aq) g ZnO(s) + H2O(l) + 2e

    -

    Cathode: MnO2 (s) + H2O(l) + 2e- g MnO3 (s) + 2OH

    -(aq)

    Nernst equation: E = E° - [(0.592/n)log Q], Q is constant !!

    Advantage: No voltage drop, longer shelf life. Disadvantage: More expensive

  • Mercury Button Battery

    Mercury and Silver batteries are similar.

    Like the alkaline dry cell, both of these batteries use zinc in a basic

    medium as the anode. The solid reactants are each compressed with

    KOH, and moist paper acts as a salt bridge.

    E°Cell = 1.6 V

    Anode: Zn(s) + 2OH-(aq) g ZnO(s) + H2O(l) + 2e

    -

    Cathode (Hg): HgO (s) + 2H2O(l) + 2e- g Hg(s) + 2OH

    -(aq)

    Cathode (Ag): Ag2O (s) + H2O(l) + 2e- g 2Ag(s) + 2OH

    -(aq)

    Advantage: Small, large potential, silver is nontoxic. Disadvantage: Mercury is toxic, silver is expensive.

  • Lead Storage Battery

    •Lead-Acid Battery. A typical 12-V lead-acid battery has six cells connected in series, each of which delivers about 2 V. Each cell contains

    two lead grids packed with the electrode material: the anode is spongy Pb,

    and the cathode is powered PbO2. The grids are immersed in an

    electrolyte solution of 4.5 M H2SO4. Fiberglass sheets between the grids

    prevents shorting by accidental physical contact. When the cell

    discharges, it generates electrical energy as a voltaic cell.

    Half reactions: E°Cell = 2.0 V

    Anode: Pb(s) + SO42- g PbSO4 (s) +2 e- E° = 0.356

    Cathode (Hg): PbO2 (s) + SO42- + 4H+ + 2e- g

    PbSO4 (s) + 2 H2O E° = 1.685V

    Net: PbO2 (s) + Pb(s) + 2H2SO4 g PbSO4 (s) + 2 H2O E°Cell = 2.0 V

    Note hat both half-reaction produce Pb2+ ion, one through

    oxidation of Pb, the other through reduction of PbO2. At both

    electrodes, the Pb2+ react with SO42- to form PbSO4(s)

  • Nickel-Cadmium Battery

    Battery for the Technological Age

    Rechargeable, lightweight “ni-cad” are used for variety of cordless appliances.

    Main advantage is that the oxidizing and reducing agent can be regenerated

    easily when recharged. These produce constant potential.

    Half reactions: E°Cell = 1.4 V

    Anode: Cd(s) + 2OH-(aq) g Cd(OH)2 (s) + 2e

    - Cathode: 2Ni(OH) (s) + 2H2O(l) + 2e

    - g Ni(OH)2 (s) + 2 OH-(aq)

  • 보통 anode를 "양극", cathode를 "음극"이라고 번역한다. 우리가 흔히 사용하는 CRT (cathode ray tube)를 음극관이라고 한다. 그러나 이러한 명칭이 혼돈을 주는 경우도 있다. 우리가 일상에서 접하는 배터리의 플러스 극은 cathode이고 마이너스 극은 anode이다.

    다음을 명심하면 혼돈을 피할 수 있다.

    1) 갈바니 전지와 전해전지에서 모두 산화가 일어나는 전극은 "anode"이고, 환원이 일어나는 전극은 "cathode"이다.

    2) 갈바니 전지는 자발적인 반응이고, 전해전지는 비자발적인 변화를 강제로 일으키는 것이다.

    3)전류는 전위가 높은 곳에서 낮은 곳으로 흐르며, 전자의 이동 방향은 전류의 방향과는 반대이다.

    갈바니 전지에서는 산화가 일어나는 anode에서 전자가 나와서 환원이 일어나는 cathode로 흘러 들어가게 되므로, 전류는 cathode에서 anode로 흐른다. 그래서 cathode의 전위가 더 높다. cathode는 플러스극이고 anode는 마이너스 극이 된다.

    전해 전지에서도 anode에서 전자가 나오고, cathode로 전자가 들어간다. 그러나 이 때의 전자는 자발적으로 흐르는 것이 아니라 외부에 설치한 전류 공급원에서 강제로 흘려주는 것이다. 그러므로 외부의 전류 공급원의 전위가 낮은 쪽에서 흘러나온 전자가 cathode로 들어가고, 전위가 더 높은 쪽에서는 anode에서 전자를 강제로 빼앗아 온다. 따라서 이 경우에는 cathode의 전위가 anode의 전위보다 더 낮다.

    대한화학회에서는 anode를 "산화극", cathode를 "환원극"이라고도 번역한다.