61
7/27/2019 Chiang Ch5.Ppt http://slidepdf.com/reader/full/chiang-ch5ppt 1/61 Ch. 5 Linear Models & Matrix  Algebra 5.1 Conditions for Nonsingularity of a Matrix 5.2 Test of Nonsingularity by Use of Determinant 5.3 Basic Properties of Determinants  5.4 Finding the Inverse Matrix  5.5 Cramer's Rule  5.6 Application to Market and National-Income Models 5.7 Leontief Input-Output Models  5.8 Limitations of Static Analysis 1

Chiang Ch5.Ppt

Embed Size (px)

Citation preview

Page 1: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 1/61

Ch. 5 Linear Models & Matrix

 Algebra5.1 Conditions for Nonsingularity of a Matrix

5.2 Test of Nonsingularity by Use of Determinant 

5.3 Basic Properties of Determinants 

5.4 Finding the Inverse Matrix 

5.5 Cramer's Rule 

5.6 Application to Market and National-Income Models 

5.7 Leontief Input-Output Models 5.8 Limitations of Static Analysis 

1

Page 2: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 2/61

5.1 Conditions for Nonsingularity of a Matrix 

3.4 Solution of a General-equilibrium System (p. 44)

x + y = 8

x + y = 9

(inconsistent &

dependent)

2x + y = 12

4x + 2y= 24

(dependent)

2x + 3y = 58

y = 18

x + y = 20

(over identified &

dependent)

9

8

11

11

 y

 x

24

12

24

12

 y

 x

2

20

1858

11

1032

 y x

Page 3: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 3/61

5.1 Conditions for Non-singularity of a Matrix 

3.4 Solution of a General-equilibrium System (p. 44) 

Sometimes

equations are not

consistent, and theyproduce two parallel

lines. (contradict)

Sometimes oneequation is a

multiple of the other.

(redundant) 3

y

x

x + y = 9

x + y = 8

y

12

For both theequations

Slope is -1

Page 4: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 4/61

5.1 Conditions for Non-singularity of a Matrix Necessary versus sufficient conditions 

Conditions for non-singularity  

Rank of a matrix 

 A) Square matrix , i.e., n. equations = n.

unknowns. Then we may haveunique solution. (nxn , necessary)

B) Rows (cols.) linearly

independent

(rank=n, sufficient)

 A & B (nxn, rank=n) (necessary &

sufficient), then nonsingular 

4

Page 5: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 5/61

5.1 Elementary Row Operations (p.

86)

Interchange any two rows in a matrix

Multiply or divide any row by a scalar k (k  

0)

 Addition of k times any row to another rowThese operations will:

◦ transform a matrix into a reduced echelon

matrix (or identity matrix if possible)

◦ not alter the rank of the matrix

◦ place all non-zero rows before the zero

rows in which non-zero rows reveal the

rank 5

Page 6: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 6/61

5.1 Conditions for Nonsingularity of a Matrix Conditions for non-singularity, Rank of a matrix (p. 86) 

6

121

1111120

4100

000

11410

0411

11*

001

1111120

4100

4110

11410

0411

112*

001

2110

4100

4110

22110

0411

2*

001

010

4100

4110

262

0411

41*

001

010

100

4110

262

014

3&1rowsswap100010

001

014262

4110

Page 7: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 7/61

5.1 Conditions for Non-singularity of a Matrix Conditions for non-singularity, Rank of a matrix (p. 96) 

7

1*

401

25210

100

1010

710

301

4*

001

25210

100

214

710

301

21*

001

510

100

214

1420

301

5*

001

010

100

214

125

301

3&1rowsswap

100

010001

301

125214

21613113537

21211

100010

001

3*216131

13537

100

100

010

301

7*216131

25210

100

100

710

301

31*23211

25210

100

300

710

301

operationsrowElementary

Page 8: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 8/61

5.1 Conditions for Nonsingularity of a Matrix Conditions for non-singularity, Rank of a matrix (p. 96) 

8

312-

61014-

3-3-6

6

1Aof Inverse

312-

61014-

3-3-6

 AAdjoint

363-

1103-2-14-6

Aof Cofactors

6Aof tDeterminan

 

301

125

214

 A

216131

13537

21211

100

010

001

3*216131

13537

100

100

010

301

7*216131

25210

100

100

710

301

31*23211

25210

100

300

710

301

Page 9: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 9/61

5.1 Conditions for Non-singularity of a Matrix Conditions for non-singularity, Rank of a matrix (p. 96) 

9

65z3;1y;21

3

44

312-

61014-3-3-6

6

1

z

yx

312-

61014-

3-3-6

6

1A

3

4

4

d;

z

y

x

x;

301

125

214

InversionMatrix

1-

1

 x

d  A x

 A

d  Ax

65

31

21

 ;5;2;3

 ;6

3

4

4

d;

z

y

x

x;

301

125

214

RulesCramer'

3

2

1

321

 A A z 

 A A y

 A A x

 A A A

 A

 A

d  Ax

Page 10: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 10/61

5.2 Test of Non-singularity by Use of Determinant Determinants and non-singularity  

Evaluating a third-order determinant 

Evaluating an nth order determent by Laplace expansion 

Determinant |A| is a uniquely defined scalar 

associated w/ a square matrix A(Chiang & Wainwright, p. 88)

|A| defined as the sum of all possibleproducts

t(-1)t a1j a2k…ang, where the series of 

second subscripts is a permutation of (1,..,

n) including the natural order (1, …, n), andt is the number of transpositions required to

change a permutation back into the original

order (Roberts & Schultz, p. 93-94)

t equals P(n,r)=n!/(n-r)!, i.e., the 10

Page 11: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 11/61

5.2 Test of Non-singularity by Use of 

Determinant  P(n,r) = n!/(n-r)! P(2,2) = 2!/(2-2)! = 2

There are only two ways of arrangingsubscripts (i,k) of product (-1)ta1ja2k either (1,2) or (2,1)

The first permutation is even & positive (-1)2 and second is odd and negative (-1)1 

0!=(1) = 11!=(1) = 12!=(2)(1) = 2

3!=(3)(2)(1) = 64!=(4)(3)(2)(1) = 245!=(5)(4)(3)(2)(1) = 1206!=(6)(4)(3)(2)(1) = 720…  … 

10! =3,628,800 11

Page 12: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 12/61

5.2 Test of Non-singularity by Use of 

Determinant and permutations: 2x2 and 3x3

 scalar aaaaaaaaa

aaaaaaaaa

aaa

aaa

aaa

 A

312213332112233211

322113312312332211

333231

232221

13

1211

 scalar aaaaaa

aa A 12212211

2221

1211

 scalar C a An

 j

 j j 1

21

12

Page 13: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 13/61

5.2 Test of Non-singularity by Use of 

Determinant : 4 x 4 permutations = 24

Abcd Bacd Cabd Dabc

Abdc Badc Cadb Dacb

Acbd Bcad Cbad Dbac

Acdb Bcda Cbda Dbca

Adbc Bdac Cdab Dcab

Adcb Bdca  Cdba Dcba

13

Page 14: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 14/61

5.2 Evaluating a third-order determinant 

Evaluating an 3 order determent by Laplace expansion 

Laplace Expansion by cofactors;if /A/ = 0, then /A/ is singular, i.e., under identified

3231

2221

13

3331

2321

12

3332

2322

11

aa

aa M 

aa

aa M 

aa

aa

 M 

14

333231

232221

131211

aaaaaa

aaa

 A

ij

 ji

ij M C 

1

n

 j j j C a A 111

Page 15: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 15/61

5.2 Determinants

Pattern of the signs for cofactor minors

15

ij

 ji

ij M C 

1

Page 16: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 16/61

Page 17: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 17/61

5.1 Conditions for Non-singularity of a Matrix Conditions for non-singularity, Rank of a matrix (p. 96) 

17

65z3;1y;21

3

44

312-

61014-3-3-6

6

1

z

yx

312-

61014-

3-3-6

6

1A

3

4

4

d;

z

y

x

x;

301

125

214

InversionMatrix

1-

1

 x

d  A x

 A

d  Ax

65

31

21

 ;5;2;3

 ;6

3

4

4

d;

z

y

x

x;

301

125

214

RulesCramer'

3

2

1

321

 A A z 

 A A y

 A A x

 A A A

 A

 A

d  Ax

Page 18: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 18/61

5.2 Evaluating a

determinant Laplace expansion of a 3rd order 

determinant by cofactors. If /A/ = 0, then

singular 

0214827151271268859

23

567

13

468

12

459

123

456

789

 A

18

Page 19: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 19/61

5.2 Test of Non-singularity by Use

of Determinant P(3,3) = 3!/(3-3)! = 6

|A| = 1(5)9 + 2(6)7 + 3(8)4-3(5)7 – 6(8)1 – 9(4)2

Expansion by cofactors|A|= (1)c11 + (2)c12 + (3)c13

C11 = 5(9) – 6(8)

C12 = -4(9) + 6(7)

C13 = 4(8) – 7(5)Expansion across any row or 

column will give the same# for the determinant

19

987

654

321

 A

Page 20: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 20/61

5.3 Basic Properties of Determinants Properties I to III (related to elementary row operations) 

20

I. The interchange of any two rows will

alter the sign but not its numerical

valueII. The multiplication of any one row by

a scalar k will change its value k-fold

III. The addition of a multiple of any rowto another row will leave it unaltered.

Page 21: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 21/61

5.3 Basic Properties of Determinants Properties IV to VI 

21

IV. The interchange of rows and columns

does not affect its value

V. If one row is a multiple of another row, the determinant is zero

VI. The expansion of a determinant by

alien cofactors produces a result of zero

Page 22: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 22/61

5.3 Basic Properties of Determinants Properties I to V  

/A/ = /A'/

Changing rows or col.

does not change # but

changes the sign of /A/

k(row) = k/A/

ka ± row or col.b =/A/

If row or col a=kb, then/A/ =0

22

• If /A/ 0

• Then

 – 

A is nonsingular  –  A-1 exists

 –  A unique solution

to

X=A-1d exists

Page 23: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 23/61

5.4 Finding the Inverse

aka “the hard way” 

Steps in computing the Inverse Matrix andsolving for x

1. Find the determinant |A| using expansion bycofactors.

If |A| =0, the inverse does not exist.2. Use cofactors from step 1 and complete the

cofactor matrix.

3. Transpose the cofactor matrix => adjA

4. Divide adj.A by |A| => A-1

5. Post multiply matrix A-1 by column vector of constants d to solve for the vector of variables x

23

Page 24: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 24/61

 g b

bT a I  g G

 g b

bT a g bI C 

 g bbT a I Y 

1

1

1

1

00

00

00

 g b

 g 

b A

1

10

01

111

24

10

01

111

 g 

b A= 

C= 

bb

 g  g 

 g b

11

11

1

C’= 

b g  g 

b g b

1

1

111

G

0

0

0

bT a

 I 

b g  g 

b g b

 g b 1

1

111

1

1

Page 25: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 25/61

5.4 Finding the Inverse Matrix Expansion of a determinant by alien cofactors,

Property VI, Matrix inversion 

Expansion by alien

cofactors yields

/A/=0

This property of 

determinants isimportant when

defining the inverse

(A-1)25

01

21

n

 j

 j j C a A

Page 26: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 26/61

5.4 A Inverse (A-1)

Inverse of A is A-1 

if and only if A is square (nxn) and

rank = n AA-1 = A-1 A = I

We are interested in

 A-1 because x=A-1d

26

Page 27: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 27/61

5.4 matrix A: matrix of parameters from

the equation Ax=d

nnnn

n

n

nxn

aaa

aaa

aaa

 A

21

22221

11211

27

Page 28: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 28/61

Page 29: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 29/61

C' or adjoint A: Transpose matrix of 

the cofactors of A

 Aadj

C C C 

C C C 

C C C 

nnnn

n

n

nxn

21

22212

12111

29

Page 30: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 30/61

Page 31: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 31/61

Matrix AC'

n

 j

njnj

n

 j

 jnj

n

 j

 jnj

n

 jnj j

n

 j j j

n

 j j j

n

 j

nj j

n

 j

 j j

n

 j

 j j

nxn

C aC aC a

C aC aC a

C aC aC a

C  A

11

2

1

1

12

122

112

1

1

1

21

1

11

31

Page 32: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 32/61

 A

 A A

C  A

00

0000

n I  A A

100

010001

32

Page 33: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 33/61

Inverse of A

n I  AC  A I  A A

C  A A 11

 I  AC  A

 I  A

C  A

33

1  A AC 

d  A

C  x *

Page 34: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 34/61

Solving for X using Matrix

Inversion

d  A

adjA x *

nnnnn

n

n

n d 

C C C 

C C C 

C C C 

 A

 x

 x

 x

2

1

21

22212

12111

2

1

1

34

Page 35: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 35/61

Page 36: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 36/61

Page 37: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 37/61

37

)(1

100

01

11

00*

000

0

 g b

bT a I 

 A

 AY 

bT a I bT a

 I 

 A

)(1

1

1

10

0

11

00*

000

0

 g b

bT a g bI 

 A

 AC 

bT a g bI 

 g 

bT ab

 I 

 A

)(1

00

1

11

00*

000

0

 g b

 I bT a g 

 A

 AG

 I bT a g 

 g 

bT ab

 I 

 A

G

G

Page 38: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 38/61

38

000

0

100

01

11

bT a I bT a

 I 

 AY 

000

0

1100

11

bT a g bI  g 

bT ab

 I 

 AC 

000

0

00

1

11

bT a I  g 

 g 

bT ab

 I 

 AG

Page 39: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 39/61

Page 40: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 40/61

5.4 Finding the Inverse

aka “the hard way” 

Steps in computing the Inverse Matrix andsolving for x

1. Find the determinant |A| using expansion bycofactors.

If |A| =0, the inverse does not exist.2. Use cofactors from step 1 and complete the

cofactor matrix.

3. Transpose the cofactor matrix => adjA

4. Divide adj.A by |A| => A-1

5. Post multiply matrix A-1 by column vector of constants d to solve for the vector of variables x

40

Page 41: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 41/61

Derivation of matrix inverse formula

|A| = ai1ci1  + …. + aincin (scalar) 

 Adj. A = transposed cofactor matrix of A

 A(adj.A)=|A|I (expansion by aliencofactors = 0 for off diagonal elements)

 A(adj.A)/|A| = I

 A-1 = (adj.A)/|A| QED Roberts & Schultz, p. 97-8) 

41

Page 42: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 42/61

5.4 Finding the Inverse

aka “the hard way” 

Steps in computing the Inverse Matrix andsolving for x

1. Find the determinant |A| using expansion bycofactors.

If |A| =0, the inverse does not exist.2. Use cofactors from step 1 and complete the

cofactor matrix.

3. Transpose the cofactor matrix => adjA

4. Divide adj.A by |A| => A-1

5. Post multiply matrix A-1 by column vector of constants d to solve for the vector of variables x

42

Page 43: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 43/61

5.4 A Inverse

 A(adj A) = |A|I

 A(adj A)/|A| = I( |A| is a scalar)

 A-1 A(adj A)/|A|= A-

1I

adj A/|A|= A-1 

43

n

 j

 j j C a A1

11

d  Aadj A

d  A x 11

Page 44: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 44/61

Finding the Determinant

1Y – 1C –1G = I0 -bY+1C+ 0G = a-bT0

-gY+0C+ 1G = 0

44

Y = C+I0+G

C = a + b(Y-T0)

G = gY

 g b

 g b g b

 g 

b D

1

)1)()(1()0)()(1()0)()(1())(1)(1()0)(0(1)1)(1(1

10

01

111

Page 45: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 45/61

Derivation of matrix inverse formula

|A| = ai1ci1  + …. + aincin (scalar) 

 Adj. A = transposed cofactor matrix of A

 A(adj.A)=|A|I (expansion by aliencofactors = 0 for off diagonal elements)

 A(adj.A)/|A| = I

 A-1 = (adj.A)/|A| QED Roberts & Schultz, p. 97-8) 

45

Page 46: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 46/61

5.4 Finding the Inverse

aka “the hard way” 

Steps in computing the Inverse Matrix andsolving for x

1. Find the determinant |A| using expansion bycofactors.

If |A| =0, the inverse does not exist.2. Use cofactors from step 1 and complete the

cofactor matrix.

3. Transpose the cofactor matrix => adjA

4. Divide adj.A by |A| => A-1

5. Post multiply matrix A-1 by column vector of constants d to solve for the vector of variables x

46

Page 47: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 47/61

Page 48: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 48/61

5.4 Inverse, an example

o

o

 P  P 

c P c P c

      

2211

2211

48

o

oc

 P 

 P cc

       2

1

21

21

1221

21

21    

    cc

cc A

12

12

ccC 

    

11

22

c

cadjA

  

  

o

occc

cc P  P 

    

  

     11

22

12212

1 1

Page 49: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 49/61

Finding the Determinant

1Y – 1C –1G = I0 -bY+1C+ 0G = a-bT0

-gY+0C+ 1G = 0

49

Y = C+I0+G

C = a + b(Y-T0)

G = gY

 g b

 g b g b

 g 

b D

1

)1)()(1()0)()(1()0)()(1())(1)(1()0)(0(1)1)(1(1

10

01

111

Page 50: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 50/61

The macro model

Y=C+I0+G 1Y - 1C – 1G = I0 C=a+b*(Y-T0) -bY + 1C + 0G = a-bT0

G=g*Y -gY + 0C +1G = 0

50

10

01

111

 g 

b

G

0

0

0

bT a

 I 

Page 51: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 51/61

Macro model

Section 3.5, Exercise 3.5-2 (a-d), p. 47

Section 5.6, Exercise 5.6-2 (a-b), p. 111

Given the following model

(a) Identify the endogenous variables

(b) Give the economic meaning of the parameter g

(c) Find the equilibrium national income

(substitution)

(d) What restriction on the parameters is needed

for a solution to exist?

Find Y, C, G by (a) matrix inversion (b) Cramer’s

rule51

Page 52: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 52/61

The macro model

Y=C+I0+G 1Y - 1C – 1G = I0 C=a+b*(Y-T0) -bY + 1C + 0G = a-bT0

G=g*Y -gY + 0C +1G = 0

52

10

01

111

 g 

b

G

0

0

0

bT a

 I 

Page 53: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 53/61

3 4 S l i f G l E

Page 54: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 54/61

3.4 Solution of General Eq.

System

(1)(1)-(1)(1) = 0

(inconsistent &

dependent)

(2)(2)-(1)(4) = 0

(dependent)

(2)(1)-(1)(3) = -1

(independent as

rewritten)

9

8

11

11

 y

 x

24

12

24

12

 y

 x

54

2058

1132

 y x

Page 55: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 55/61

5.7 Leontief Input-Output Models Structure of an input-output model 

 The open model, A numerical example 

Finding the inverse by approximation, The closed model 

nnnnnnn

nn

nn

d  xa xa xa x

d  xa xa xa x

d  xa xa xa x

2211

222221212

112121111

(I -A)x = d ; x = (I -A)-1 d

55

3

2

1

2

1

21

22221

11211

11

1

d d 

 x

 x

 x

aaaaaa

aaa

n

nnnn

n

n

Page 56: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 56/61

56

Miller and Blair 2-3, Table 2-3, p 15 Economic Flows ($ millions)  

 To Sector 1

(a1jx1 ) 

Sector 2

(a2jx2 ) 

Final

demand

(di ) 

 Total output

(xi ) 

Sector 1  150  500  350  1000 

Sector 2  200  100  1700  2000 

Factor

Payment (W i

 ) 650  1400  1100  3150 

 Total outlays

(X i ) 1000  2000  3150  6150 

 To Sector 1

(aij ) 

Sector 2

(aij ) 

Final

demand

(di

 ) 

 Total output

(xi ) 

Sector 1  0.15  0.25  350  1000 

Sector 2  0.20  0.05  1700  2000 

Factor

Payment (W i ) 0.65  0.70  1100  3150 

 Total outlaysX   

1.00  1.00  3150  6150 

Page 57: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 57/61

Leontief Input-output Analysis

iij

iiij

iiiji

iijii

iiiij

iiiij

d  A I  x

d  x A I 

d  x A x I 

 x A x I d 

 x I d  x A

 xd  x A

i

1*

57

21 d

Page 58: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 58/61

58

2

1

2

1

2

1

05.20.

25.15.

 x

 x

 x

 x

2

1

2

1

2

1

10

01

05.20.

25.15.

 x

 x

 x

 x

2

1

2

1

2

1

05.20.

25.15.

10

01

 x

 x

 x

 x

2

1

2

1

2

1

05.20.

25.15.

10

01

 x

 x

 x

 x

2

1

2

1

05.120.

25.15.1

 x

 x

2

1

1

2

1

95.20.

25.85.

 x

 x

2000

1000

1700

350

85.20.

25.95.

7575.

1

2

1

 x

 x

Page 59: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 59/61

5.8 Limitations of Static Analysis 

Static analysis solves for the

endogenous variables for one

equilibrium

Comparative statics show the shifts

between equilibriums

Dynamics analysis looks at the

attainability and stability of theequilibrium

59

3 4 S l ti f G l E

Page 60: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 60/61

3.4 Solution of General Eq.

System

(1)(1)-(1)(1) = 0

(inconsistent &

dependent)

(2)(2)-(1)(4) = 0

(dependent)

(2)(1)-(1)(3) = -1

(independent as

rewritten)

9

8

11

11

 y

 x

24

12

24

12

 y

 x

60

2058

1132

 y x

Page 61: Chiang Ch5.Ppt

7/27/2019 Chiang Ch5.Ppt

http://slidepdf.com/reader/full/chiang-ch5ppt 61/61