48
Copyright 2005-2007 by Prof. Jong Won Yun Enzyme Enzyme Department of Biotechnology, Daegu University 2007-1 2007-1 생생생생생생 생생생생생생 (1) (1) 생6생

Copyright 2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Embed Size (px)

Citation preview

Page 1: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Copyright 2005-2007 by Prof. Jong Won Yun

Enzyme Enzyme

Department of Biotechnology,Daegu University

2007-1 2007-1 생명공학기초생명공학기초 (1)(1)제 6 장

Page 2: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Why enzyme in biotechnology ?Why enzyme in biotechnology ?

세포배양

효소생산

효소분리 효소생산 효소반응

제품생산

Well BeingCells

Page 3: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

1.1. 효소의 역사 효소의 역사 / History of enzyme/ History of enzyme

효소의 발견 및 발전역사 개요 o  BC: 약 7000 년 동안 동물의 위에서 chymosin 을 이용 , 치즈를 만들어 먹었음 .

o 1850s, Louis Pasteur :     fermentation of sugar into alcohol by yeast is catalyzed by "ferments".      ........inseparable from living cells. o  1878, Kuhne : first used term "enzyme"(Greek "in yeast") o  1894, Emil Fischer : enzyme specificity('lock and key' hypothesis) o  1897, Eduard Buchner :     succeeded in extracting in soluble enzyme(sugar→alcohol) o  1926, James Sumner :     isolation of enzyme(urease) in crystalline form. "enzyme consists of protein" o  1930s, John Northrop :     crystallized pepsin and trypsin. found them proteins → widly accepted 1958 : Koshland 에 의해 Induced fit model 발표 

Page 4: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

1.1. 효소의 역사 효소의 역사 / History of enzyme (/ History of enzyme ( 계속계속 ))

o 1960 : amino acid sequence of ribonuclease o  1965 : three-dimensional structure of lysozyme (by X-ray crystallography) allosteric model 발표o 1969 : 화학합성법에 의한 효소합성기술 보고o  1980's - present : protein engineering (enzyme design, directed evolution 기술개발 ) 분자생물학 기술이 접목되어 , 효소생산성을 크게 증가 .

o  1990's - present : proteomics (proteome analysis) : 생명체 내의 전체 단백질 ( 효소 )

연구o 2004 : Computer designed enzyme 보고

21 세기 : 식품보다 의약품 설계 및 생산에 관심이 크게 증가 .

Page 5: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

효효소의 정의 소의 정의 (Definition)(Definition)

• What is Enzyme ? biological catalyst. highly specialized proteins with catalytic activity catalyst: speed up the rates of reactions without themselves undergoing any permanent change. ( 자기 자신은 변하지 않고 반응속도만 증가 )      

• Activation energy of enzyme: the amount of energy in calories required to bring     all the molecules in 1 mol of a substrate at a given temperature to the     transition state at the top of the energy of the barrier.

Page 6: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

효소의 분류 효소의 분류 (Nomenclature and Classification(Nomenclature and Classification )

o the suffix "-ase" is added either to the substrate name or reaction.    (ex) urease.....urea decomposition into CO2 and ammonia

       alcohol dehydrogenase......oxidative dehydrogenation reaction of alcohol

효소의 분류 효소의 분류 (Enzyme Commission Classification System)(Enzyme Commission Classification System)

효소를 분류해야 하는 너무나 당연한 이유 ? • 동일한 기능을 수행하는 효소를 두고 서로 다른 명칭이 붙는다면 ?• 한국에서 덴마크 Novo 사에 효소를 구매할 경우 효소의 이름만으로 구매 신청을 하게 되면 유사한 기능을 수행하는 원하지 않는 효소를 입수 할 가능성이 있다 . • 원하는 효소의 기능이 정해지면 정확한 분류번호가 있을 경우 , 효소를 구매할 때 효소의 이름과 분류번호를 동시에 말해주면 원하는 효소를 구입 할 수 있다 .

Page 7: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

효소의 분류 효소의 분류 (Enzyme Classification)(Enzyme Classification)

http://www.chem.qmw.ac.uk/iubmb/enzyme/index.html ( 반드시 방문해 보기 )

  1) 산화환원계 효소 / Oxidoreductase (oxidation-reduction reactions)        : Transfer of H, O atoms or electrons          transfer of H to O2: oxidase/ to other than O2: dehydrogenase

       1.1. acting on -CH-OH (alcohol)        1.2. acting on -C=O (aldehyde or ketone)        1.3. acting on -CH=CH-        1.4. acting on -CH-NH2 (primary amine)

       1.5. acting on -CH-NH- (secondary amine)        1.6. acting on NAD(P)H

    2) 전이효소 / Transferase (transfer of functional groups: AX+B=BX+A)         donor: acceptor transferase         X-transferase or trans-X-ase (ex) fructosyltransferase = transfructosylase        2.1. one-carbon groups        2.2. aldehydic or ketonic groups        2.3. acyl groups        2.4. glycosyl groups        2.7. phosphate groups : phosphotransferase = "-kinase"        2.8. S-containing groups

Page 8: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

3) 가수분해효소 / Hydrolase (hydrolysis reactions)        3.1. esters (esterase)        3.2. glycosidic bonds (glucosidase)        3.4. peptide bonds (peptidase)        3.5. other C-N bonds        3.6. Acid anhydrides

    4) 용해효소 / Lyases : Non-hydrolytic removal of groups from substrate, often leaving double  bonds or adding groups to double bonds)       4.1. -C-C- (bond broken)        4.2. -C-O       "        4.3. -C-N       "        4.4. -C-S       "

    5) 이성화효소 / Isomerase (isomerization reactions)       5.1. Racemization or epimerization(racemase, epimerase)       5.2. Cis-trans isomerase       5.3. intramolecular oxidoreductase       5.4. intramolecular transfer reaction

   6) 결합효소 / Ligase (formation of new bonds with ATP cleavage)        X+Y+ATP = X-Y+ADP+Pi       6.1. C-O,  6.2. C-S,   6.3. C-N,  6.4. C-C

Page 9: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Enzyme Commission (EC) Number – ExampleEnzyme Commission (EC) Number – Example

     ATP:glucose phosphotransferase → EC 2.7.1.1           where, 2: class name(transferase)                 7: subclass(phosphotransferase)                1: sub-subclass(phosphotransferase with a hydroxyl group as acceptor)                 1: for D-glucose as the phosphate-group acceptor

Systematic name and Trivial name for enzymesSystematic name and Trivial name for enzymes      (ex)  ATP:glucose phosphotransferase → kexokinase                    (systematic)              (trivial)

학술적으로 사용하는 이름 현장에서 사용하는 이름

Page 10: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Amino acid, Amino acid, a building block of proteina building block of protein

N-terminus

C-terminus

효소의 기본단위 “아미노산”을 잘 알자

아미노산 번호 붙이는 순서

N

Page 11: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Amino acid, Amino acid, a building block of proteina building block of protein

Nonpolar (hydrophobic)

Page 12: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Amino acid, Amino acid, a building block of proteina building block of protein

Polar (hydrophilic)

Ionizable, acidic Nonionizable, polar

Page 13: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Amino acid, Amino acid, a building block of proteina building block of protein

Ionizable, basic

Polar (hydrophilic)

Page 14: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Amino acid, Amino acid, a building block of proteina building block of protein

Nonionizable, polar

Nonpolar (hydrophobic)

Page 15: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Amino acid, Amino acid, a building block of proteina building block of protein

Nonpolar Nonionizable,

polar

Nonpolar

Nonpolar Nonpolar

Page 16: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Peptide bond formationPeptide bond formation

Protein = (peptide)m+ (disulfide)n

Resonance

Enzyme structure & functions

Page 17: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Peptide bondPeptide bond

Page 18: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Disulfide bond (-S-S-) formationDisulfide bond (-S-S-) formation

Page 19: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

효소의 구조 효소의 구조 (Enzyme Structure)(Enzyme Structure)

Page 20: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

11 차 구조의 중요성 차 구조의 중요성 (amino acid sequence)(amino acid sequence)

Page 21: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Water & H-bondWater & H-bond

Page 22: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Hydrogen bonds

Page 23: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Bonds in ProteinBonds in Protein

Page 24: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

22 차구조 차구조 (Secondary structures)(Secondary structures)

-helix-helix

(Pleated) (Pleated) -sheet-sheet

대부분의 단백질들은 α-helix, β-sheet 모두로 구성되어 있고 , 이들 중 어느 하나로만 구 성 되 어 있 는 단 백 질 은 길 고 가 는 형 태 의 섬 유 상 단 백 질 (fibrous protein) 이 다 .  짤막짤막한 α-helix, β-sheet 구조가 함께 조밀하게 존재할 때는 단백질의 형태는 보통 구형단백질 (globular protein) 이다 .

Page 25: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

33 차 구조 차 구조 (Tertiary structures)(Tertiary structures)

All -helix

All -sheet

-helix + -sheet

44 차 구조 차 구조 (Quertary structures) (Quertary structures) Assemblies of tertiary structural units

Page 26: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

단백질 접힘 단백질 접힘 (folding)(folding)Polypeptide chain 은 합성 후 곧 접혀진다 .  이러한 접히는 과정을 folding 이라고 하며 , 대부분의 경우에 화학적 변형 (chemical modification) 이 일어나 단백질을 생성해낸다 .  이론적으로 어떤 폴리펩타이드가 n 개의 가지 사슬 (residue) 을 가지고 있다고 하면 , 8n 개 만큼 변형된 형태가 생겨날 수 있다 .  하지만 일반적으로 어떤 종류의 단백질이든 모든 분자들은 하나의 형태만 허용한다 .  이를 정상상태 (native state) 라고 하며 , 분자가 가장 안정된 형태로 접혀져 있는 상태를 말한다 .  잘못 접혀져서 (misfolding) 비정상적 (non-native) 형태가 되는 것을 막는 기전에는 두 가지가 있다 .  분자 수준에서 보면 단백질은 중간단계가 몇 개 없는 경로를 선호하여 이 경로로 folding 을 한다 .  더 나아가서 세포 수준에서 보면 단백질의 생존 기간에 제한을 주는 특별한 서열이 잘못 접혀진 단백질을 표적으로 삼아서 활성을 감소시키게 한다 .

Protein fProtein foldingolding 은은 아미노산 서열에 의해 결정 아미노산 서열에 의해 결정단백질의 아미노산 서열이 folding 에 영향을 미친다는 사실을 시험관 내에서 (in vitro) 실험을 하여 알아내었다 . 열에너지나 pH 에 의해 아미노산 가지사슬의 전하가 변할 수도 있고 , urea 나 6-8 M 의 guanidine hydrochloride 과 같은 화학약품에 의해 비공유결합이 깨져서 단백질이 비정상적 형태로 바뀔 수도 있다 .  이와 같이 단백질이 형태가 변형되고 활성을 잃게 되는 것을 변성 (denaturation) 이라 한다 .  대부분의 변성된 단백질은 용액 내에서 침강하게 되는데 , 이는 평상시에는 분자의 안쪽에 존재하던 소수성기들이 접힘이 풀리면서 (unfolding) 서로 엉겨 붙게 되어 물에 녹지 않고 가라앉기 때문이다 .

Page 27: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

효소의 변성과 활성회복 효소의 변성과 활성회복 denaturation and renaturation of proteins

8M 농도의 요소나 β-mercaptoethanol 과 같은 화학약품들은 황결합 (disulfide bond, -S-S-) 을 환원시켜 주어 단백질의 접힘을 완전히 펴주는 역할을 한다 .  그러나 투석 (dialysis) 에 의해 이 와 같 은 화 학 물 질 들 을 제 거 하 면 다 시 원래대로 단백질이 접히게 된다 (refold).  이를 탈변성 (renaturation) 이라고 하며 , 탈변성이 일 어 나 는 동 안 모 든 황 , 수 소 , 소 수 성 결합들이 정상적 형태로 돌아와 안정하게 된다 .  그러므로 이러한 경우의 단백질들은 변성과 탈변성의 주기를 통해 파괴되었던 단백질이 다시 원래의 구조와 기능을 회복하게 된다는 것을 알 수 있다 .  그리고 적어도 시험관 내에서는 탈변성 과정 중에 보조인자나 다른 단백질이 필요하지 않기 때문에 단백질의 접힘(folding) 이 자가조립과정이라는 것을 알 수 있다 .

Page 28: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Post-translational regulation (modification) Post-translational regulation (modification) of proteinsof proteins Post-translational modification of a protein can have a profound effect on its structure, and consequently affect its activity or function. Phosphorylation (the covalent attachment of a phosphate group to either serine, threonine or tyrosine) is the most common modification, and is catalyzed by enzymes known as protein kinases. The human genome is thought to encode thousands of different protein kinases, which function to regulate virtually all aspects of a cells behavior, including chromatin structure (histone phosphorylation), gene expression (transcription factor activity), cell proliferation (growth factor receptors, cyclin dependent kinases, MAP kinases), metabolic activities, etc.

The additional negative charge of a phosphate group (or groups) alters the balance of non-covalent interactions which determine secondary, tertiary or even quaternary structure. The resulting change in conformation of the protein may cause (i) activation or inactivation of a biological function, or (ii) association or dissociation of sub-units. In the example below, phosphorylation of a serine residue in an inactive enzyme molecule results in a conformational change which exposes the catalytic site and activates the enzyme.

Page 29: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Functions of proteins

Catalysts (enzymes) : 3-D stereospecific chemical catalysts accelerate desired reactions by as much as 10 10 times over their spontaneous rates.

Rigid structure : collagen in connective tissue, bone; keratin in fingernails and hair; silk fibers

Transport : membrane transport proteins carry substances across cell membranes; blood transport proteins that move certain substances (e.g., iron, oxygen, cholesterol) throughout the body.

Hormones : chemical signals. Some hormones consist of as little as a single amino acid. Others are peptides or polypeptides. (Ex) insulin

Contraction : muscle fibers, cilia, spindle fibers in mitosis. (Ex) actin-myosin interaction to produce muscle contraction

Specific binding : (Ex) antibodies that bind specifically to foreign substances to identify them to the body's immune system

Page 30: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Hormone The metabolic effects of insulin

Small particles are glucose

Glucose transporters (GLUT)

Page 31: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Contraction muscle fibers, cilia, spindle fibers in mitosis

muscle contraction

Page 32: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Advantages and Disadvantages in Enzyme industryAdvantages and Disadvantages in Enzyme industry

  Advantages:  

1) substrate selectivity (specificity)

               2) mild reaction conditions (temp, pressure, media, etc.)

               3) high reaction yield, fast reaction rates

  Disadvantages:

1) use of low substrate concentration

               2) low thermal stability, low long-term stability

        3) formation of by-products → additional separation

process

Page 33: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Advantages and Disadvantages in Enzyme industryAdvantages and Disadvantages in Enzyme industry

 Example - Ethanol production processes

       Chemical process : hydration reaction of ethene and water

(use) chemical

       Biochemical process : fermentation from starch using either

baker's yeast (S. cerevisiae)

or bacteria Zymomonas mobilis

(use) liquor

Page 34: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

왜 미생물효소인가 왜 미생물효소인가 ? (Why Microbial Enzymes?)? (Why Microbial Enzymes?)

생물공학 제품 생산공정에서 생촉매 (biocatalysts) 로 사용될 수 있는 효소의 기원은 미생물 , 동물세포 , 식물세포 등이 있으나 그중 미생물효소가 가장 광범위하게 사용된다 . 그 이유는 1) 생산시간이 짧다 . 식물세포처럼 계절의 영향을 받지 않고 동물세포처럼 배양이 어렵지 얺기 때문이다 . 대장균이 20 분만에 딸세포를 만드는 것을 상상해 보라 .

미생물효소를 생산하여 사용할 때 다음과 같은 점들이 중요하다 .

① 현재 미생물이 원하는 효소를 최고농도로 생산하는가 ? 아니면 보다 우수한 미생물을 탐색할 필요가 있는 것인가 ? 또는 변이주를 만들어 이용할 필요가 있는가 ? ② 최적의 발효조건에서 효소를 생산하고 있는가 ? ③ 효소의 회수방법은 최선인가 ? ④ 효소가 미생물세포 어느 부분에 존재하는가 ? ⑤ 효소를 고정화하여 이용할 필요가 있는가 ? ⑦ 효소를 정제하여야 하는가 아니면 crude 상태로 사용가능한가 ?

위의 ④ , ⑤ 항은 원심분획 (centrifugal fractionation) 방법에 의해 효소의 존재위치를 파악할 수 있고 고정화 필요성 여부를 판단할 수 있다 . 대부분의 효소가 미생물의 cytosol 보다 periplasmic space 에 존재한다면 고정화가 유리하다 . 왜냐하면 기질 및 생성물의 물질전달이 용이하기 때문이다 .

Page 35: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Enzyme Reaction Models

1. Lock and Key Model

Page 36: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Enzyme Reaction Models

2. Induced Fit Model

Page 37: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Enzyme-Substrate ReactionEnzyme-Substrate Reaction

Page 38: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Active site(ex. Ribonuclease)

Page 39: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

What happens in active site ?

(ex) chymotrypsin

For serine protease, http://info.bio.cmu.edu/courses/03231/Protease/SerPro.htm

Page 40: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

                                                             

Page 41: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Why immobilized enzyme ?Why immobilized enzyme ?

How to stabilize enzyme?How to stabilize enzyme?

• Addition of substrate analogues

• Addition of sugar alcohols (e.g. sorbitol)

• Addition of cofactors (e.g. calcium ion)

• Immobilization : reuse & long-term stability !

Page 42: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Immobilization of Enzyme?Immobilization of Enzyme?Brief History    1961, invertase → charcoal adsorption    .........    1969, immobilized aminoacylase → DL-amino acids production    1971, Definition (1st Enzyme Engineering Conference)       "enzymes physically confined or localized in a certain defined region of space with retention of their catalytic activities, and which can be used repeatedly and continuously".

Advantageous conditions and factors 1) No purification of enzyme after production 2) High enzyme activity (high reactor activity) 3) Enhanced operational stability4) Low enzyme cost 5) Application of multienzyme reaction is possible

Page 43: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Enzyme ImmobilizationEnzyme Immobilization

Page 44: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Immobilization by EntrapmentImmobilization by Entrapment

                               주요 재료 : Alginate ..... CaCl2 ( 가장 일반적인 방법 )

                 κ-carrageenan....AlCl3 / polyacrylamide / agar 등을 사용 .

  Advantages:   o  long-term stability ( 장기 안정성 )                o  Easy preparation ( 제조하기 쉬움 )     Disadvantsges: o  poor mechanical stability ( 강도가 약함 )                o  compression and shear damage ( 약함 ) o transport limitation ( 물질전달 불리 )

Page 45: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Immobilization by BindingImmobilization by BindingAdsorption:Adsorption: Electrostatic interactions(van der Waals forces, ionic and hydrogen bonds betweeen the cell surface and the support materials        cell wall composition: determined by distribution of carboxyl and amino groups of the peptide amino acids of cell wall surface       (ex) yeast cells are negative charge, thus choose a positively charged support Advantages:    ability to regenerate the support Disadvantsges:  low stability (desorption of cells due to changes of pH  and/or ionic strength)

Covalent-binding methodsCovalent-binding methods Advantages:  o  free of diffusional limitations                    o  high operational stability                    o  uniform binding Disadvantages:  o toxicity of the coupling agents(loss of activity and cell       viability, not acceptable in food and pharmaceutical  fields)   o hard to regenerate the supports

Page 46: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Methods for Covalent Binding of EnzymeMethods for Covalent Binding of Enzyme

Diazotization :        --N=N--E Amide bond formation :          --CO-NH--E Alkylation and Arylation:         --CH2-NH-E

                                                  --CH2-S--E

Schiff's base formation :         --CH=N--E Amidation reaction :            --CNH-NH--E Thiol-Disulfide interchange:     --S-S--E Carrier binding with bifunctional reagents :                               -O(CH2)2 N=CH(CH2)3 CH=N-E

Support for enzyme binding E: Enzyme

효소를 지지체 (support material) 에 강력하게 고정화 시키기 위해서는 먼저 지지체를 화학처리하여 효소가 공유결합을 형성할 수 있도록 하여야 한다 . 여러 가지 화학물질이 이 목적으로 사용되는데 , Bromine cyanide, azide, carbodiamide, diazo 시약을 사용하는 방법이 효과적인 것으로 알려져 있다 . 단점은 이들 시약들이 식품공업에서는 독성을 나타낼 수 있다는 점이다 .

Page 47: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Carrier-free immobilization Carrier-free immobilization 1) Flocculation or pelletization of cells in the course of their fermentation or by secondary processes under appropriate parameter variations (e.g., ionic strength, pH, temp.)

  2) or use of flocculating agents      o  cationic polyelectrolytes.......polyamines      o  cationic polyacrylamides      o  anionic polyelectrolytes.......polystyrene sulfonate, polycarboxyl acids     o  metallic compounds....... hydroxides, sulfate, phosphates of Mg2+, Ca2+

  3) direct chemical cross-linking of cells with bivalent coupling reagents      (e.g., glutaraldehyde)

  Advantages:    very high cell(enzyme) density                operation under physiologically mild conditions   Disadvantages:  poor mechanical stability                   compression and shear damage                   transport limitation

Page 48: Copyright  2005-2007 by Prof. Jong Won Yun Enzyme Department of Biotechnology, Daegu University 2007-1 생명공학기초 (1) 제 6 장

Immobilized Enzyme Reactors- example 1Immobilized Enzyme Reactors- example 1

(Batch)CSTR

PBR

Membrane Bioreactor

FBR