45
Dasar-dasar ventilasi mekanik Rudyanto Sedono ICU Department of Anesthesiology Faculty of Medicine Universitas Indonesia Cipto Mangunkusumo Hospital Jakarta Kemenristek/BRIN Jakarta - August 2020

Dasar-dasar ventilasi mekanik - iKnow

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dasar-dasar ventilasi mekanik - iKnow

Dasar-dasar ventilasi mekanik

Rudyanto Sedono

ICU Department of AnesthesiologyFaculty of Medicine Universitas Indonesia

Cipto Mangunkusumo HospitalJakarta

Kemenristek/BRINJakarta - August 2020

Page 2: Dasar-dasar ventilasi mekanik - iKnow

SISTIM RESPIRASI

MEMENUHI KEBUTUHAN METABOLISME SEL AKAN O2 DAN

MENGELUARKAN CO2 SEBAGAI SISA METABOLISME SEL

Page 3: Dasar-dasar ventilasi mekanik - iKnow

Oxygen transport

Page 4: Dasar-dasar ventilasi mekanik - iKnow

TrakeaBronkus primer

Bronkus sekunder

Bronkiolus terminalis

Saccus alveolii

Zona

kon

duks

iZo

na r

espira

si

Bronkus tersier

Bronkiolus

Bronkiolus respiratori

Dari lubang hidung sampai bronkiolus terminalis disebut area konduksi (penghantar), sedangkan dari bronkiolus sampai alveoli disebut area respirasi (tempat pertukaran gas)

Dari bronkiolus sampai br. Terminalis lebih banyak mengandung otot polos u/ regulasi aliran udara

Dari trakea sampai bronkiolus banyak mengandung supporting cartilage (tlg rawan) yg berfungsi menjaga agar jalan nafas tetap terbuka

STRUKTUR ANATOMI

CABANG BRONKUS

Page 5: Dasar-dasar ventilasi mekanik - iKnow

Guyton and Hall. Textbook of Medical Physiology. 13th ed. 2016

Page 6: Dasar-dasar ventilasi mekanik - iKnow

Fick’s law for gas diffusion

C x A x ( P1 - P2 )

T

Area

P1

P2

O2

CO2

Thickness

C =Solubility

MW

CO2 solubility 20x O2

Page 7: Dasar-dasar ventilasi mekanik - iKnow

PROSES MEKANIK, KELUAR MASUKNYA UDARA DARI LUAR KE DALAM PARU DAN SEBALIKNYA àYAITU BERNAFAS

TERJADI ANTARA UDARA DALAM ALVEOLUS DENGAN DARAH DALAM KAPILER, PROSESNYA DISEBUT DIFUSIPROSES

RESPIRASI

VENTILASI PARU

PERTUKARAN GASEKSTERNA

INTERNA

UTILISASI O2

PERTUKARAN GAS

PEMAKAIAN OKSIGEN DALAM SEL PADA REAKSI PELEPASAN ENERGI

PERTUKARAN GAS ANTARA DARAH DENGAN SEL JARINGAN/TISUE

Page 8: Dasar-dasar ventilasi mekanik - iKnow

Baker. Artificial Ventilation A Basic Clinical Guide. Springer 2016

Page 9: Dasar-dasar ventilasi mekanik - iKnow

DEFINISI

• Ventilasi: proses keluar masuknya udara (gas) dari dan ke dalam paru.

• Tidal Volume (VT): jumlah gas ekspirasi per kali nafas – biasanya 500 ml (5-8 ml/kgBB)

• Minute Volume (VE):

RR X TIDAL VOLUME

VENTILASI PARU

Page 10: Dasar-dasar ventilasi mekanik - iKnow
Page 11: Dasar-dasar ventilasi mekanik - iKnow
Page 12: Dasar-dasar ventilasi mekanik - iKnow
Page 13: Dasar-dasar ventilasi mekanik - iKnow
Page 14: Dasar-dasar ventilasi mekanik - iKnow
Page 15: Dasar-dasar ventilasi mekanik - iKnow

FiO2 :Tekanan parsial oksigen inspirasi yang diberikan (21% – 100%)

Volume tidal (VT):Jumlah gas/ udara yang masuk pada saat indpirasi dalam satuan ml/kg BB

Satu siklus nafas terdiri dari inspirasi dan ekspirasiI:E rasio adalah perbandingan waktu inspirasi dengan waktu ekspirasi pada satu siklus nafas

Terminologi dasar pada ventilasi mekanik

Frekuensi pernafasan (f) :Jumlah siklus nafas yang diberikan atau dilakukan dalam satu menit

Flow rate :Kecepatan aliran udara atau gas yang dihantarkan dalam satu menit

Baker. Artificial Ventilation A Basic Clinical Guide. Springer 2016

Page 16: Dasar-dasar ventilasi mekanik - iKnow

chapter 1: physiology of ventilation and gas exchangePr

essu

reI EIP

Peak inspiratory pressure, Ppeak

Initial plateau pressure, Pplat-i

Plateau pressure, Pplat

Time

Figure 1.7 A pressure and time profile during volume-targetedconstant flow mechanical ventilation.

For a delivered tidal volume of V mL, dynamic compliance isgiven by V/Ppeak and static compliance is given by V/Pplat. Thedifference between Ppeak and Pplat-i is due to airwaysresistance, while the difference between Pplat-i and Pplat is dueto inter-alveolar gas redistribution (pendelluft) and hysteresis.

when held at a set pressure is known as the lung’sstatic compliance. Put another way, if a set volumeof air is used to inflate a lung, pressure will riseaccordingly, but (with lung volume held) will thengradually fall by some 25% or so (Figure 1.7). Thiseffect is one of the contributing factors to a phe-nomenon known as hysteresis in which the lungtraces a different path on an expiratory plot of lungpressure (x-axis) against volume (y-axis) than itdoes during inflation (Figure 1.8). Other contrib-utors to hysteresis include the opening of previ-ously collapsed alveoli during inflation,6 displace-ment of lung blood at higher lung volumes, ‘stressrelaxation’ of lung elastic fibres, and perhaps mostimportantly, the surface-area-dependent effect ofsurfactant in reducing surface tension. In practice,what this means is that at any given inflation pres-sure, lung volume will be greater during expirationthan inspiration because the lungs are resistant toaccepting a new higher volume, and then resistantto giving it up again.

6 Commonly referred to as alveolar ‘recruitment’.

Pressure (cm water)

Volum

e (ml

)

End-expiratory lung volume

End-inspiratory lung volume

Hysteresis

InspirationExpiration

Figure 1.8 Inspiratory and expiratory volume/pressure loopduring positive pressure inflation showing the phenomenon ofhysteresis.

During inspiration (blue) of the lung, both pressure (x-axis)and volume (y-axis) increase, but this is non-linear. Duringexpiration, the volume/pressure curve traces a different path.The area subtended by the inspiratory and expiratory pathsrepresents the energy consumed by hysteresis.

LUNG VOLUMES

Total lung capacity (TLC) is the volume of intrapul-monary gas at the end of a maximal inspiration.Functional residual capacity (FRC) is the volumeremaining in the lungs at the end of normal expi-ration that rises with body size (as determined byheight) and on assumption of the upright pos-ture. In mechanically ventilated subjects, FRC isalso known as the end-expiratory lung volume(EELV). FRC is reducedwhen the lung is extrinsicallycompressed (from pleural fluid or abdominal dis-tension), when lung elastic recoil is increased, orwhen the lungs are fibrosed.

Gas exchangeOXYGEN UPTAKE

Oxygenation is accomplished through the diffu-sion of oxygen down its partial pressure gradient(Box 1.1) from the alveolus, across the alveolarepithelium, and thence across the closely apposedcapillary endothelium to the capillary blood, adistance of<0.3µm.The capacity to transfer oxygenfrom alveolus to red blood cell is determined by(1) the surface area for diffusion and (2) the ratio

9

A pressure and time profile during volume-targeted constant flow mechanical ventilation

Core Topics in Mechanical Ventilation, ed. Iain Mackenzie. Cambridge University Press 2008;1-20

Page 17: Dasar-dasar ventilasi mekanik - iKnow

chapter 1: physiology of ventilation and gas exchange

Pres

sure

I EIP

Peak inspiratory pressure, Ppeak

Initial plateau pressure, Pplat-i

Plateau pressure, Pplat

Time

Figure 1.7 A pressure and time profile during volume-targetedconstant flow mechanical ventilation.

For a delivered tidal volume of V mL, dynamic compliance isgiven by V/Ppeak and static compliance is given by V/Pplat. Thedifference between Ppeak and Pplat-i is due to airwaysresistance, while the difference between Pplat-i and Pplat is dueto inter-alveolar gas redistribution (pendelluft) and hysteresis.

when held at a set pressure is known as the lung’sstatic compliance. Put another way, if a set volumeof air is used to inflate a lung, pressure will riseaccordingly, but (with lung volume held) will thengradually fall by some 25% or so (Figure 1.7). Thiseffect is one of the contributing factors to a phe-nomenon known as hysteresis in which the lungtraces a different path on an expiratory plot of lungpressure (x-axis) against volume (y-axis) than itdoes during inflation (Figure 1.8). Other contrib-utors to hysteresis include the opening of previ-ously collapsed alveoli during inflation,6 displace-ment of lung blood at higher lung volumes, ‘stressrelaxation’ of lung elastic fibres, and perhaps mostimportantly, the surface-area-dependent effect ofsurfactant in reducing surface tension. In practice,what this means is that at any given inflation pres-sure, lung volume will be greater during expirationthan inspiration because the lungs are resistant toaccepting a new higher volume, and then resistantto giving it up again.

6 Commonly referred to as alveolar ‘recruitment’.

Pressure (cm water)

Volum

e (ml

)

End-expiratory lung volume

End-inspiratory lung volume

Hysteresis

InspirationExpiration

Figure 1.8 Inspiratory and expiratory volume/pressure loopduring positive pressure inflation showing the phenomenon ofhysteresis.

During inspiration (blue) of the lung, both pressure (x-axis)and volume (y-axis) increase, but this is non-linear. Duringexpiration, the volume/pressure curve traces a different path.The area subtended by the inspiratory and expiratory pathsrepresents the energy consumed by hysteresis.

LUNG VOLUMES

Total lung capacity (TLC) is the volume of intrapul-monary gas at the end of a maximal inspiration.Functional residual capacity (FRC) is the volumeremaining in the lungs at the end of normal expi-ration that rises with body size (as determined byheight) and on assumption of the upright pos-ture. In mechanically ventilated subjects, FRC isalso known as the end-expiratory lung volume(EELV). FRC is reducedwhen the lung is extrinsicallycompressed (from pleural fluid or abdominal dis-tension), when lung elastic recoil is increased, orwhen the lungs are fibrosed.

Gas exchangeOXYGEN UPTAKE

Oxygenation is accomplished through the diffu-sion of oxygen down its partial pressure gradient(Box 1.1) from the alveolus, across the alveolarepithelium, and thence across the closely apposedcapillary endothelium to the capillary blood, adistance of<0.3µm.The capacity to transfer oxygenfrom alveolus to red blood cell is determined by(1) the surface area for diffusion and (2) the ratio

9

Inspiratory and expiratory volume/pressure loop

Core Topics in Mechanical Ventilation, ed. Iain Mackenzie. Cambridge University Press 2008;1-20

Page 18: Dasar-dasar ventilasi mekanik - iKnow

Bila seorang pola ventilasi atau bernafas 10 kali per menit dengan volume tidal 500 ml dan I:E = 1:2, maka

Satu siklus nafas adalah 6o detik : 10 = 6 detikWaktu inspirasi adalah (1: 3) x 6 detik = 2 detikWaktu ekspirasi adalah (2 : 3) x 6 detik = 4 detikVolume tidal (500 ml) masuk pada saat inspirasi yaitu 2 detikFlow rate pernafasan orang tersebut adalah (60 detik : 2 detik) x 500 ml = 15.000 ml atau 15 literPeak Inspiratory Pressure terjadi karena volume tidal (500 ml) masuk dalam waktu 2 detik

Sedono, 2020

Page 19: Dasar-dasar ventilasi mekanik - iKnow

Bila seorang tersebut pola ventilasi atau nafas berubah menjadi 20 kali per menit dengan volume tidal tetap 500 ml dan I:E = 1:2, maka

Satu siklus nafas adalah 6o detik : 20 = 3 detikWaktu inspirasi adalah (1: 3) x 3 detik = 1 detikWaktu ekspirasi adalah (2 : 3) x 3 detik = 2 detikVolume tidal (500 ml) masuk pada saat inspirasi yaitu 1 detikFlow rate pernafasan orang tersebut menjadi (60 detik : 1 detik) x 500 ml = 30.000 ml atau 30 literPeak Inspiratory Pressure terjadi karena volume tidal (500 ml) masuk dalam waktu 1 detik, sehingga lebih tinggi dari kasus pertama

Sedono, 2020

Page 20: Dasar-dasar ventilasi mekanik - iKnow

Cycling Between the I and E Phase

Time Cycling In time cycling, the change from I to E occurs after a fixed time and is not influenced by the state of the patient’s lungs. This is the most common method of cycling used in modern ventilators, both portable and hospital devices. Time cycling is associated with preset volume in the case of many portable gas – powered ventilators.

Volume Cycling In volume cycling, the ventilator cycles between I and E when a predetermined Vt has been delivered. The duration of the I phase is determined by the flow rate of gas during the I phase.

Pressure Cycling In pressure cycling, the change from the I to E phases occurs when a preset pressure is reached. The time taken to reach this pressure is determined by the lung mechanics. Therefore the time taken to reach a preset pressure and therefore the duration of the I phase is much shorter when the airway resistance is high.

Baker. Artificial Ventilation A Basic Clinical Guide. Springer 2016

Page 21: Dasar-dasar ventilasi mekanik - iKnow

A. Inspiration is pressure-targeted and time-cycled. B. Flow is targeted, but volume is not, and inspiration is volume-cycled. C. Both volume and flow are targeted, and inspiration is time-cycled

Tobin. Principles and practice of mechanical ventilation, 3rd ed, 2015

Page 22: Dasar-dasar ventilasi mekanik - iKnow

Early ventilators

Page 23: Dasar-dasar ventilasi mekanik - iKnow

Jenis ventilator

Non invasif Invasif

CPAP non invasif

HFNC

Endotracheal tube

Page 24: Dasar-dasar ventilasi mekanik - iKnow

human factor is important, as well. Ascaregivers in one ICU gained experiencewith NIV, success rates remained stableeven as more severely ill patients weretreated (54).

Selection of an Interface. Selection ofa properly fit and comfortable interface iscritical to NIV success. Although patientsrate nasal masks as more comfortablethan full face masks (55), an RCT dem-onstrated that full face masks are bettertolerated than nasal masks for ARF be-cause of less air leaking through themouth (56).

Selection of a Ventilator and Ventila-tor Settings. Either critical care or bilevelpositive-pressure ventilators can be usedto administer NIV to ARF patients; nostudy has demonstrated superiority ofone type over the other. Although many

critical care ventilators now offer NIVmodes that provide pressure support ven-tilation with leak compensation and si-lencing of nuisance alarms, little data areavailable to demonstrate clinical efficacy.The determination of optimal ventilatorsettings also has been inadequately stud-ied, but is usually a process of balancingthe ability to reduce work of breathing byproviding an adequate level of pressuresupport (usually !8–10 cm H2O) againstthe discomfort and greater air leakingimposed by higher pressures. A commonmistake is to start with a low inspiratorypressure to facilitate tolerance and thento fail to titrate pressures upward to re-duce respiratory effort.

In COPD, the inspiratory thresholdload imposed by intrinsic PEEP is a majorcomponent of the work of breathing. Ex-ternal PEEP, usually not higher than 5cm H2O to 7 cm H2O, should be providedwith pressure support to these patients tominimize inspiratory effort (57).

In a study designed to determine op-timal NIV settings in patients with ALI, aPEEP of 10 cm H2O improved PaO2/FIO2more than a PEEP of 5 cm H2O (58). Apressure support of 15 cm H2O and aPEEP of 5 cm H2O decreased PaCO2, re-spiratory rate, and work of breathing, andimproved dyspnea more than a pressuresupport of 10 cm H2O and PEEP of 10 cmH2O, even though PaO2/FIO2 was betterwith the higher PEEP. This study showsthat adjusting settings may require a bal-ancing of beneficial and adverse effects tocome up with the best combination for agiven patient.

Monitoring of NIV. To assure the suc-cess of NIV, close monitoring is neces-sary, especially during the initiation pe-riod (Table 4). Favorable subjectiveresponses—including tolerance of themask and air pressure and reduction ofrespiratory distress and effort—are im-portant to establish early. Air leakingshould be sought and minimized, and gasexchange should be stabilized and im-proved.

The location of NIV delivery also isimportant to assure adequate monitor-ing. Most studies have monitored pa-tients in ICUs or respiratory step-downunits, but some have reported successfulapplication of NIV on general medicalwards (59, 60). Monitoring should be tai-lored to the acuity of illness. If the patientbecomes unstable within minutes ofmask removal, then close monitoring ismandatory, ideally in an ICU or respira-tory unit.

CONCLUSION

Strong evidence from randomized tri-als supports the use of NIV in the man-agement of ARF to prevent endotrachealintubation in patients with COPD exacer-bations or acute cardiogenic pulmonaryedema, and in immunocompromised pa-tients, as well as to facilitate extubationin patients with COPD. NIV should becontemplated in patients with postopera-tive respiratory failure or at high risk forpostextubation respiratory failure whoare otherwise good candidates for NIV,and as a means of preoxygenating criti-cally ill patients with hypoxemia beforeintubation. NIV can be considered in pa-tients with asthma exacerbations, pneu-monia, and ALI/ARDS, although the sup-porting evidence is fairly weak; these andother acutely ill patients should be mon-itored closely for signs of NIV failure untilstabilized. If there are signs of NIV fail-

Table 2. General guidelines for selection of patients for noninvasive ventilation

1. Need for ventilatory assistance? 2. Contraindications for NIV?Moderate to severe dyspnea Respiratory arrestTachypnea (!24 for hypercapnic, 30 for hypoxemic) Medically unstableAccessory muscle use Unable to protect airwayAbdominal paradox Excessive secretionsPaCO2 !45 mm Hg, pH "7.35 Agitated, uncooperativePaO2/FIO2 "200 Recent UGI or airway surgery

Unable to fit mask

NIV, noninvasive ventilation; UGI, upper gastrointestinal.

Table 3. Predictors of failure: Noninvasive ven-tilation (NIV) for acute respiratory failurea

COPDAir leakingAPACHE II !29b

AsynchronyCopious secretionsGlasgow Coma Score "11b

Lack of “compliance” or “tolerance”pH "7.25b

Respiratory rate !35 breaths/minb

Hypoxemic respiratory failureALI/ARDSSAPS II !35Metabolic acidosisPaO2/FIO2 "146 (or "175 for ARDS) after 1

hr of NIVPneumoniaSevere hypoxemiaShock

COPD, chronic obstructive pulmonary dis-ease; APACHE II, Acute Physiology and ChronicHealth Evaluation II; ALI, acute lung injury;ARDS, acute respiratory distress syndrome; SAPSII, Simplified Acute Physiology Score II.

aBased on composite from Ambrosino Thorax‘94Confalonieri, Rana, Antonelli ICM 2001, An-tonelli CCM 2006; b likelihood of failure !50%if any three and 82% if all four present at base-line; !75% if any three and 99% if all fourpresent after 2 hrs of NIV.

Table 4. Monitoring of noninvasive ventilationfor acute respiratory failure

SubjectiveMask comfortTolerance of ventilator settingsRespiratory distress

Physical findingsRespiratory rateOther vital signsAccessory muscle useAbdominal paradox

Ventilator parametersAir leakingAdequacy of pressure supportAdequacy of PEEPTidal volume (5–7 mL/kg)Patient-ventilator synchrony

Gas exchangeContinuous oximetry (until stable)ABGs, baseline and 1–2 hrs, then as indicated

LocationUsually ICU or respiratory care unit to startGeneral ward may be OK if patient stableDepends on monitoring needs of patients and

monitoring capabilities of unit

PEEP, positive end-expiratory pressure;ABGs, arterial blood gases; ICU, intensive careunit.

2405Crit Care Med 2007 Vol. 35, No. 10

Monitoring of NIV

Hill. Crit Care Med 2007; 35:2402–2407

Page 25: Dasar-dasar ventilasi mekanik - iKnow

Bag mask ventilation

Page 26: Dasar-dasar ventilasi mekanik - iKnow

A low cost mechanical ventilation for covid patient

Page 27: Dasar-dasar ventilasi mekanik - iKnow

Basic Principles of Ventilator Design Pneumatic Based

Tobin. Principles and practice of mechanical ventilation, 3rd ed, 2015

Page 28: Dasar-dasar ventilasi mekanik - iKnow

Use of mechanical ventilation

Patient “mode of ventilation”Ventilator “mode of ventilation”

Patient-ventilator asynchrony

Dangerous, Harmful, Unsafe, Hazardous etc Sedono, 2020

Page 29: Dasar-dasar ventilasi mekanik - iKnow

Trigger sensitivity

Setelan sensitifitas akan menentukan variabel trigger

Variabel trigger menentukan kapan ventilator mengenali adanya upaya nafas pasien

Ketika upaya nafas pasien dikenali, ventilator akan memberikan nafas

Variabel trigger dapat berupa pressure atau flow

Page 30: Dasar-dasar ventilasi mekanik - iKnow

Upaya nafas pasien dimulai saat terjadi kontraksi otot diafragma

Upaya nafas ini akan menurunkan tekanan (pressure) di dalam sirkuit ventilator (tubing)

Ketika pressure turun mencapai batas yang diset oleh dokter, ventilator akan mengenali usaha nafas dari pasien dan akan membuka katup inspirasi serta memberikan dukungan ventilasi sesuai yang diset oleh dokter

Pressure trigger

Page 31: Dasar-dasar ventilasi mekanik - iKnow

Pressure trigger

Page 32: Dasar-dasar ventilasi mekanik - iKnow

Ventilator secara kontinyu memberikan flow rendah ke dalam sirkuit pasien (open system)

Saat pasien bernafas beberapa bagian flow didiversi ke pasien

Flow trigger

Page 33: Dasar-dasar ventilasi mekanik - iKnow

PEEP

Positive End Expiratory Pressure

Page 34: Dasar-dasar ventilasi mekanik - iKnow

Ventilator Portable

1. Resucitation ventilators

These devices are designed to be very simple to operate.

They are powered by compressed oxygen or air and have only a single control for both tidal volume and frequency of ventilation.

Resuscitation ventilators can operate automatically or using a manual override to deliver individual breaths as part of CPR (a cycle of two breaths followed by 30 chest compressions, according to the ILCOR guidelines).

This type of ventilator usually has no monitoring but may be fitted with an audible high pressure alarm to indicate a high pressure in the patient circuit

Baker. Artificial Ventilation A Basic Clinical Guide. Springer 2016

Page 35: Dasar-dasar ventilasi mekanik - iKnow

Ventilator Portable

1. Resucitation ventilators

Baker. Artificial Ventilation A Basic Clinical Guide. Springer 2016

Page 36: Dasar-dasar ventilasi mekanik - iKnow

Ventilator Portable

2. Emergency Ventilators

These are portable ventilators with more controls and monitoring devices than a resuscitation ventilator.

They consist of a control unit, powered by compressed gas, connected to the patient by a patient circuit and a patient valve.

Emergency ventilators are designed to be used for longer term ventilation although they can also be used for resuscitation.

They have independent controls for frequency and tidal volume.

Monitoring shows the inflation pressure during the inspiratory phase.

Baker. Artificial Ventilation A Basic Clinical Guide. Springer 2016

Page 37: Dasar-dasar ventilasi mekanik - iKnow

Ventilator Portable

2. Emergency Ventilators

Baker. Artificial Ventilation A Basic Clinical Guide. Springer 2016

Page 38: Dasar-dasar ventilasi mekanik - iKnow

Ventilator Portable

3. Transport Ventilators

Transport ventilators are portable ventilators that are designed for the transport of patients who require artificial ventilation (but are not in an emergency situation) from one location to another.

In hospital transportation or inter hospital transportation (which may be anything from a few to many thousands of miles away)

Transport ventilators are usually more complex than emergency ventilators

They range from pneumatic ventilators with more variable controls than the emergency ventilators described above to computer – controlled devices that are in effect miniature versions of ventilators found the ICU and which are capable of delivering a wide range of ventilation modes.

The simplest transport ventilators are designed for use essentially by non specialists whereas the most sophisticated are used by transport teams that include a specialist anaesthetist or emergency physician

Baker. Artificial Ventilation A Basic Clinical Guide. Springer 2016

Page 39: Dasar-dasar ventilasi mekanik - iKnow

Ventilator Portable

3. Transport Ventilators

Baker. Artificial Ventilation A Basic Clinical Guide. Springer 2016

Page 40: Dasar-dasar ventilasi mekanik - iKnow

Komplikasi ventilasi mekanik

Barotrauma

Volutrauma

Oxygen toxicity

Baker. Artificial Ventilation A Basic Clinical Guide. Springer 2016

Page 41: Dasar-dasar ventilasi mekanik - iKnow

Ventilator Putra Bangsa

Pengembang BPFK Uji praklinis Kemenkes

Ijin edar

Proses ini untuk menjamin mutu, kualitas dan keamanan dari ventilator yang dikembangkan oleh putra bangsa

Masing-masing mempunyai standar prosedur sendiri yang independen tetapi tetap membangun komunikasi dan diskusi untuk membuat relaksasi dengan tetap menjamin kualitas dan keamanan ventilator yang dikembangkan oleh putra bangsa

Quality control untuk mampu bersaing dengan ventilator dari negara lain

Page 42: Dasar-dasar ventilasi mekanik - iKnow

Tahapan Jumlah AlkesBimtek 1 25 Aerosol 1 CPAP 3 HFNC 1 Respirator(PAPR) 2 Resuscitator Emergensi ( Automatic) 8 UV Strelizir 2 Ventilator 1 Ventilator Emergency 5Bimtek 2 7 CPAP 1 Resuscitator Emergensi ( Automatic) 4 Ventilator Emergency 2Lulus Uji Produk 15 CPAP 3 HFNC 1 Respirator(PAPR) 1 Resuscitator Emergensi ( Automatic) 7 Ventilator Emergency 3Tahap Uji Produk 8 Aerosol 1 HFNC 2 Resuscitator Emergensi ( Automatic) 2 UV Strelizir 1 Ventilator Emergency 2Uji Produk 1 CPAP 1Grand Total 56

Rekap Jenis Alkes Uji Prototipe BPFK Jakarta

Page 43: Dasar-dasar ventilasi mekanik - iKnow

No Instansi/Pengembang Jenis Alkes1  BPPT Serpong Resuscitator Emergensi 2 Polyjaya Resuscitator Emergensi     Ventilator Emergency3 PT. Dharma Cikarang  Ventilator Emergency4 Univ Indonesia Ventilator Emergency5 Univ. Al Azhar Respirator(PAPR)6 Robovent Resuscitator Emergensi     CPAP    Oxygen Concentrator7 LIPI dan Gerlik HFNC8 ITB Bandung (Salman) CPAP    HFNC9 PUDAK Scientific Bandung Resuscitator Emergensi 10 Litbang ESDM Resuscitator Emergensi 11 Sampoerna Kayoe Resuscitator Emergensi 12 PT. Pindad Bandung Resuscitator Emergensi 13 ITB Vent 76 CPAP14 ITB Dirgantara  Resuscitator Emergensi 15 PT. Agusta Resuscitator Emergensi 16 POLMAN ASTRA Respirator(PAPR)17 PT. Unggul Cipta Teknologi Resuscitator Emergensi 18 GPS Infrared / Heat source19 Surya Sarana Dinamika Resuscitator Emergensi 20 PRSG- BATAN Ventilator Emergency21 Poltekes Jakarta II HFNC22 LABS 247 Resuscitator Emergensi 23 PT. Fyrom International CPAP24 PT. Parametrik Resuscitator Emergensi 25 PT. AHM Resuscitator Emergensi     CPAP

Rekapitulasi Pengembang BPFK Jakarta

Page 44: Dasar-dasar ventilasi mekanik - iKnow

26 PT. ENNESERS Ventilator Emergency27 SGU Resuscitator Emergensi ( Automatic)28 PT. ASKI Aerosol29 PT. Medytra Ventilator Emergency30 PT. Xirka CPAP31 Deteksi Jasa Kelistrikan CPAP32 HAEI Resuscitator Emergensi ( Automatic)33 Sanggar Sarana Baja Resuscitator Emergensi ( Automatic)34 PT. Latitce Teknologi Mandiri Ventilator Emergency35 PT. Triputra Ventilator Emergency36 Poltekes Tasikmalaya Resuscitator Emergensi ( Automatic)37 Persatuan Insinyur Indonesia Resuscitator Emergensi ( Automatic)38 PT. Medcalindo Ventilator Emergency39 PT. Tatagata Meditech Indonesia HFNC40 PT. Global Utama Alkesindo Aerosol41 Univ Indonesia (Riset & Inovasi) Respirator(PAPR)42 PT. Kencana Indah Putra UV Strelizir43 PT. Simpul Reka Sarana Ventilator Emergency44 PT. LEN Industri CPAP45 Pindad Engineering Indonesia Resuscitator Emergensi ( Automatic)46 PT. Inti Karya Sukses Bersama Ventilator Emergency47 Eluma Consultant Ventilator48 PT.Ebconnect Ventilator Emergency49 Institut Teknologi Calvin Indonesia Resuscitator Emergensi ( Automatic)50 Trimega Abadi UV Strelizir51 LPIK ITB UV Strelizir

Rekapitulasi Pengembang BPFK Jakarta

Page 45: Dasar-dasar ventilasi mekanik - iKnow

1 UGM Ventilator Emergency

Ventilator ICU

2 ITS Ventilator Emergency

3 Universitas Telkom Surabaya Ventilator Emergency

4 Politeknik Malang Ventilator Emergency

5 PT Indo Prima Surabaya Ventilator Emergency

Rekapitulasi Pengembang BPFK Surabaya