33
特別研究報告 題目 基板温度制御可能かつ最小容積の DC パルスプラズマ CVD 装置の開発 Development of DC pulse plasma CVD system with minimum chamber volume and control of substrate temperature 学生番号:1185071 氏名:安岡 佑起 八田 章光 教授 古田 寛 准教授 平成 28 2 15 高知工科大学 工学研究科基盤工学専攻 電子・光システム工学コース

DC パルスプラズマ CVD - kochi-tech.ac.jp · 第2 章 ダイヤモンドライクカーボン(Diamond-Like Carbon: DLC) p2 2.1 DLC の特徴と応用 2.2 DLC の分類 2.3 DLC

Embed Size (px)

Citation preview

  • DC CVD

    Development of DC pulse plasma CVD system with minimum

    chamber volume and control of substrate temperature

    1185071

    28 2 15

  • 1 p1

    1.1

    2 (Diamond-Like Carbon: DLC) p2

    2.1 DLC

    2.2 DLC

    2.3 DLC

    2.3.1 FCVA(Filtered Cathodic Vaccum Arc)

    2.3.2 CVD(Chemical Vapor Deposition)

    2.4 DLC

    3 CVD p9

    3.1 CVD

    3.2 CVD

    3.3 DC

    3.4

    3.5

    3.6

    3.7

    4 DC DLC p21

    4.1 CO DLC

    4.1.1

    4.1.2 DC

    4.1.3

    4.2

    5 p28

  • 1

    1

    1.1

    Diamond-Like Carbon: DLC

    CD

    DLC

    2

    CVD DLC

    DLC

    tetrahedral amorphous

    carbon: ta-C80 GPa 3 g/cm3

    3.52 g/cm3 ta-C

    Filtered Cathodic Vaccum Arc: FCVA

    CVD

    DLC DLC CVD

    DLCC2H2 C6H6 C H

    50 atm%

    Konishi [1] CVD

    DLC 6 % DLC 2

    CVD

    (CO) DLC

    [2]CO DLC 15 GPa

    4 atm% 20 atm%

    CVD CVD

    DLC

    CVD

    CVD

    CO CVD ta-C

  • 2

    2 (Diamond-Like Carbon)

    DLC CVD ta-

    C

    2.1 DLC

    Diamond-Like Carbon: DLC

    sp3

    sp2

    DLC

    sp3 sp2

    Amorphous-CarbonDLC

    DLC 2.1 [3]DLC

    2.1 [3]

    2.1 DLC 2.2DLC

    DLC

    DLC

    DLC

    DLC

    (g/cm3) 2.26 1.52.5 3.52

    (HV) 100 10005000 800010000

    (cm) 410-3 1071014 10131016

    2.15 22.4 2.42

    (eV) - 12 5.5

    (GPa) - 100500 1150

    (W/cmK) 0.42.1 0.2 620

    () 600 300400 600

  • 3

    2.1 DLC [3]

    2.2 DLC [3]

    2.2 DLC

    2.2 2.3 DLC[4] 2.2 sp3

    DLC sp3

    ()ta-C(Tetrahedral amorphous Carbon) sp3 ()ta-

    C:H(Hydrogenated Tetrahedral amorphous Carbon)sp3 sp2

    ()a-C(Amorphous Carbon) sp3 sp2 ()a-

    C:H(Hydrogenated Amorphous Carbon) sp2

    ()GLC(Graphite Like Carbon) sp2()PLC(Polymer

    Like Carbon) DLCPLC(1.4 g/cm3)

    DLC

    PET

    ()

  • 4

    0.59 GPa[4] 70 %

    ()

    2.2 DLC [4]

    2.3 DLC [4]

    DLC

    sp3sp2sp3

    sp2

    2.3 DLC

    DLC

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0.1 1 10 100

    sp3

    [

    H [atm]

    sp

    3

    []

    H

    [atm]

    ta-C 50sp390 H5

    ta-C:H 50sp3100 5H50

    a-C H5

    a-C:H 5H50

    GLC 0sp320 (0H5)

    PLC - (50H70) sp3205H

    - (70H)

    20sp350

  • 5

    Physical Vapor DepositionPVDChemical Vapor DepositionCVD

    PVD

    CVD

    PVD DLC

    CVD

    DLCElectron cyclotron Resonance: ECR

    Radio Frequency: RF CVD CVD

    sp3 ta-C

    Filtered Cathodic Vaccum Arc: FCVA

    CVD

    2.3.1 FCVAFiltered Cathodic Vaccum Arc

    m

    DLC

    FCVA

    m

    [5] 2.3

    2.3.2 CVDChemical Vapor Deposition

    Chemical Vapor Deposition: CVD

    CVD CVD CVD CVD [6] 2.4

    RF 13.56MHzMW 2.45GHz

    CVD150300

    [7-8]DLC

    CH4 C2H2

  • 6

    CVD DLC

    CVD DLC

    a-C:H

    sp3

    5atm%ta-C 2590 GPa

    3.52.6g/cm3[4]sp3 550atm% ta-C:H

    935GPa 2.62.0g/cm3

    CVD a-C:H 1025GPa 2.0

    1.4g/cm3

    2.3 FCVA[5]

    Vaccum arc supply

    v

    vv

    +

    -

    ++

    +

    +

    +

    ++

    + +

    --

    --

    -

    -

    -

    +

    + +

    +

    +

    +

    +

    +

    +

    +

    + +

    +

    +

    +

    + Su

    bst

    rate

    Striker

    Filter field

    Focusing

    magnetic field

    Optical viewport

    Substrate bias

  • 7

    2.4 CVD[6]

    2.4 DLC

    DLCRobertson

    2.5

    sp3 -

    100 V sp38[9]

    DLC

    -100V sp3[10]

    FCVA(Arc Ion Plating: AIP)100

    eV sp3 9 DLC

    CVD

    CVD 100 eV

    200300 eV [11]

    sp3

    700 1000DLC 500

    FCVA

    200 CVD

    Konishi[1] CVDDLC

    26% 23%250 DLC

    2

    (13.56 MHz)

    + +--

  • 8

    2.5 [8]

    ta-C FCVA

    ta-C

    CVD a-C:H

    CVD ta-C DLC

    CVD ta-CDLC

    sp3

    DLC CO RF

    CVD DLC CO DLC 15 GPa

    4 atm% 20 atm%CO

    DLC

    RF CVD

    CVD

    CVD CO CVD ta-

    C

    relaxationpenetration

    direct

  • 9

    3 CVD

    CVD

    CVD DC

    3.1 CVD

    3.1 CVD

    3.2 CVD

    3.2

    3.2 CVD

    3.1 CVD

    DC

    RF

  • 10

    3.2 CVD

    3.2 CVD

    CVD 3.3

    1.6 L RF CVD[2] 1/17

    CVD

    4

    120 mm 3.4

    CVD (90 mm)CVD

    2 mm

    3.5

    DC

    RF

  • 11

    3.3 CVD

    3.4 CVD

    80 mm

    160 mm

    CVD90 mm)

  • 12

    3.5

    Ar 10 Pa

    V-130-5

    3.6 400400

    15 250 W 400

    60 W 1 400

    2 100

    3.6

    3.3 DC

    DC

    [12-13]DC

    100 200

    100

    200

    300

    0

    100

    200

    300

    400

    500

    0

    Po

    wer

    (W

    )

    Ele

    ctro

    de

    tem

    per

    atu

    re (

    )

    Time (min)

    Ar 10 Pa

  • 13

    [14] 3.7 P 2

    d V R

    DC

    Vb

    Vd RVb=Vd-RId

    Vd R 3.8 Id-Vd Id-Vd

    3.7 DC

    3.8 DC (Id-Vd)

    Vd R

    dP

    Vb

    Id

    Vd

    Id

    Vd-RId

    Id

  • 14

    3.9DCAr

    (MFC) Ar 100 sccm

    (TMP)(RP)

    2.666 kPaMKS

    4 (SUS304)

    10 k15

    k100 k200 k1 M 1 k

    +1 kDC TMK1.0-50

    PA500-0.1A(KENWOOD)

    (PC700: sanwa)PC Link 7: sanwa

    Ar 510

    152050100150 Pa 0

    0 1 1 5

    Ar 3.10

    3.9 Ar DC

    1k

    10 k, 15 k, 100 k,

    200 k or 1 M

    TMP RP

    MFC

    Ar

    V1 V2 0~-1k V

    PC

  • 15

    3.10 CVD DC Ar(50 Pa)

    3.4

    3.11 1 M 100 k 5 Pa

    10-4 mA 10-1 mA-700 V

    0.1 mA

    0.2 mA 1 mA

    1 mA-940 V 0.2 mA 1 mA

    1 2

    100 V

    3.11 5 Pa

    (a)1 M(b)100 k

    3.12 1 M200 k10 k 20 Pa

    10-3 mA 10-1 mA-320-300 V

    10-4 10-3 10-2 10-1 1000

    200

    400

    600

    800

    1000(a)1 M

    1st2nd3rd4th5th

    10-3 10-2 10-1 100 1010

    200

    400

    600

    800

    1000

    Current (mA)

    (b)100 k

    Vo

    ltag

    e (V

    )

    1st2nd3rd4th5th

  • 16

    0.15 mA 10 mA-480 V

    1 M5 Pa

    3.12 20 Pa

    (a)1 M(b)200 k(c)10 k

    3.13 150 Pa 10-2 mA 101 mA -300 V

    -220 V 10 mA

    100 mA-350 V 1

    3.13 150 Pa

    (a)1 M(b)200 k(c)10 k

    10-3 10-2 10-1 1000

    100

    200

    300

    400

    500(b)200 k

    1st2nd3rd4th5th

    10-3 10-2 10-1 100 1010

    100

    200

    300

    400

    500

    Current (mA)

    (c)10 k

    1st2nd3rd4th5th

    10-4 10-3 10-2 10-1 1000

    100

    200

    300

    400

    500

    1st2nd3rd4th5th

    (a)1 M

    Volt

    age

    (V)

    10-2 10-1 1000

    100

    200

    300

    400(b)200 k

    1st2nd3rd4th5th

    10-1 100 101 1020

    100

    200

    300

    400

    Current (mA)

    (c)10 k

    1st2nd3rd4th5th

    10-3 10-2 10-1 1000

    100

    200

    300

    400(a)1 M

    Volt

    age

    (V)

    1st2nd3rd4th5th

  • 17

    3.5

    3.14 5

    10-3 mA 102 mA

    5 Pa 20 Pa 10-3 mA 10-1 mA

    10-1 mA 50 Pa 150

    Pa 10-2 mA 100 mA100 mA

    V p d pd

    3.15 pd > (pd)min p

    V pd < (pd)

    min p

    V

    pd < (pd)min

    3.14

    510152050100150 Pa 10 k15 k100 k200 k1 M

    10-4 10-3 10-2 10-1 100 101 1020

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    Current (mA)

    Volt

    age

    (V)

    50 Pa 10 k50 Pa 200 k50 Pa 1 M

    20 Pa 10 k 20 Pa 200 k20 Pa 1 M

    100 Pa 10 k100 Pa 200 k100 Pa 1 M

    150 Pa 10 k150 Pa 200 k150 Pa 1 M

    15 Pa 15 k

    10 Pa 15 k10 Pa 100 k

    5 Pa 100 k5 Pa 1 M

  • 18

    3.15

    3.6

    3.16 Ar 20 Pa 100

    4 1

    3.17 20 Pa

    25

    10 mA-500 V 400-780 V

    3.16 100

    pd

    V

    pdmin

    Vmin

    10-4 10-3 10-2 10-1 100 1010

    200

    400

    600

    800

    10001st2nd3rd4th

    20 Pa 100

    Current (mA)

    Vo

    ltag

    e (V

    )

  • 19

    3.17

    3.7

    3.7.1

    1 1

    2

    nm2

    [15]

    2 [16] 1

    2

    2

    100

    3.7.2

    P V N

    k Tg Ts

    =

    n

    =

    =

    P Ts

    Tg V N

    10-4 10-3 10-2 10-1 100 1010

    200

    400

    600

    800

    1000

    Current (mA)

    Vo

    ltag

    e (V

    )

    40030020010025

  • 20

    n

  • 21

    4 DC DLC

    DC DLC

    [17-19]DLC

    CO DC CVD DLC

    MOSFET

    DLCRF CVD

    DLC

    4.1 CO DLC

    4.1.1

    CO 2.4

    0.010.2 ppm

    CH4

    COCO

    12.574. 2 vol%CO

    4.1 [20]

    4.1.2 DC

    4.1 DC DC

    DC MOSFET

    DLC 10 mA MOSFET

    28.0104

    -191.5

    [m3/kg](1atm, 21.1) 0.861

    0.967=1, 1atm, 0

    3.537cm3/100cm3 H2O (1atm, 0)

    CO2H2

  • 22

    4.1 DC

    4.1.3

    4.2 CO DC 4

    Sin < 0.02 cm

    4.2 CO 100 sccm (LG-11S:

    ANELVA)40 Pa 300 Pa 25 300

    25 kHz50 %40 Pa

    RF CVD CO DLC (80

    nm/min) 530

    300 Pa

    10

    532.08 nm HORIBA JOVIN IVON HR-800

  • 23

    4.2 DC

    4.2 DC

    4.3(a)40 Pa (b)300 Pa DC CO

    40 Pa300 Pa40 Pa

    300 Pa

    Si

    AC 100 VDMM

    5 Vp-p

    CO

    CO

    (sccm)

    (Pa)

    ()

    (kHz)

    (%)

    (min)

    1 25

    2 300

    3 25

    4 100

    5 200

    6 300

    100

    40 30

    300

    20 50

    10

  • 24

    4.3 (a)40 Pa(b)300 Pa DC CO

    CVD DC

    4.4 RF CVD 4.3CO

    MFC 100 sccm 40 Pa RF

    100 W 300 nm 4.4 RF

    CVD DLC

    4.4 RF CVD

    4.3 RF CVD DLC

    (a) 40 Pa (b) 300 Pa

    CO

    RF (13.56 MHz)

    Si RF

    G

    CO

    (sccm)

    (Pa)

    RF

    (W)

    (V)

    (min)

    100 40 100 -900 3.6

  • 25

    4.4 RF CVD DLC

    4.2

    4.5 DC Si CO DLC

    2 40 Pa 300 87 mm

    4.6(a)(b)

    DC 4.6(c)

    RF CVD CO DLC

    1300 cm-1 1600 cm-11360

    cm-1 1590 cm-1 DLC 1350 cm-1

    1580 cm-1 DG

    DLC

    4.5 DC Si CO DLC 40 Pa

    300

    C2H2 CO

    H(atm%)(RBS/ERDA) 27 4

    O(atm%)(RBS) 0 20

    (@550 nm) 2.3 2.1

    (@550 nm) 0.27 0.45

    (GPa) 21.5 15.1

    (cm) >109 0.2

  • 26

    4.6 DC (a)40 Pa(b)300 Pa RF(c)40 Pa

    4.7 DLC 2

    2

    1380 cm-1 D1580 cm-1

    G 4.8(a)G

    (cm-1)(b)G(cm-1) D I(D) G

    I(G)(c)I(D)/I(G) 40 Pa 300 Pa

    300 Pa GI(D)/I(G)

    300 Pa 40 Pa

    6 DLC

    RF

    CVD DLC 1 DLC

    RF GI(D)/I(G)

    1000 1500 2000

    (c) RF 40 Pa

    25

    300

    200

    300

    1000 1500 2000 1000 1500 2000

    (b) Pulse 300 Pa(a) Pulse 40 Pa

    25

    100

    Raman shift (cm-1

    )

    Inte

    nsi

    ty (

    arb

    . u

    nit

    )

  • 27

    4.7 DLC

    4.8 (a)G(cm-1)(b)G(cm-1)

    (c)I(D)/I(G)

    1000 1500 20000

    100

    200

    300

    Raman shift (cm-1

    )

    Inte

    nsi

    ty (

    arb.

    unit

    )

    D

    G

    40 Pa 25

    1560

    1590

    1620

    G p

    osi

    tio

    n (

    cm-1

    )

    100

    150

    200

    FW

    HM

    of

    G p

    eak

    (cm

    -1)

    0 100 200 300

    2

    4

    I(D

    )/I(

    G)

    (a)

    (b)

    (c)

    Pulse 40 PaPulse 300 PaRF 40 Pa

    Electrode temperature ()

  • 28

    5

    CO CVD ta-C

    CVD

    CVD

    DC Ar

    5 Pa 150 Pa

    1

    2

    2

    CVDDC CO DLC

    DLC

    DLC

    [1] Y. Konishi, et al., Nuclear Instrument and Methods in Physics Research Section B 118(1996) 312.

    [2] Y. Yasuoka et al., Japanese Journal of Applied Physics 54, 01AD04 (2015).

    [3] New Diamond Vol. 28 No. 3 (2012) p7.

    [4] New Diamond Vol.28 No.3 (2012) p17.

    [5] Shi Xu, L. K. Cheah, B. K. Tay, Thin Solid Films, 312, 1-2, (1998), 160.

    [6] , , 2011

    [7] Y. Liou, R. Weimer, D. Knight, and R. Messier, Appl. Phys. Lett., 56 (1990) 437.

    [8] N. Ohtake, T. Saito, Y. Kondo, S. Hosono, Y. Nakamura, and Y. Imanishi, Jpn. J. Appl. Phys. 43

    (2004) L1406.

    [9] J. Robertson, Diamond Relat. Mater. 2, 984(1993).

    [10] K. Yamamoto et al., Diamond Relat. Mater. 10, 895(2001).

    [11] J. Robertson, Diamond Relat. Mater. 3, 361(1994).

    [12] Y. P. Raizer, Gas Discharge Physics (Springer Verlag. 1991).

    [13] 1900

    [14] 69 33 1991

    [15] E.V. Alonso, R.A. Baragiola, J. Ferrn and A. Oliva-Florio, Rad. Effects 45,119 (1979).

    [16] S. Hiroki et al., JAERI-M 85-123 (1985).

  • 29

    [17] T. Michler et al., Diamond Relat. Mater. 7, 459 (1998).

    [18] H. Mori and H. Tachikawa, Surf. Coatings Technol. 149, 224 (2002).

    [19] 50, 401 (2008).

    [20] (1989)

    1. Y. Yasuoka , T. Harigai, J.-S. Oh, H. Furuta, A. Hatta, T. Suzuki, and H. Saitoh, Diamond-Like

    Carbon Films from CO Source Gas by RF Plasma CVD Method, Jpn. J. Appl. Phys. (accepted, 2014)

    2. T. Harigai, Y. Yasuoka, N. Nitta, H. Furuta, and A. Hatta, "X-ray Reflectivity Analysis on Initial Stage

    of Diamond-Like Carbon Film Deposition on Si Substrate by RF Plasma CVD and on Removal of the

    Sub-Surface Layer by Oxygen Plasma Etching", Diamond Relat. Mater. 38 (2013) 36.

    1. CO

    RF CVD DLC2014.03.19.

    2.

    DLC2014.07.07.

    3. CO DLC

    2014.09.19.

    1. Y. Yasuoka, M. Kakuta, J.-S. Oh, H. Furuta, A Hatta, Non-thermal atmospheric-pressure helium

    plasma jet etched DLC film in ambient air., ISSP 2015(2015.07.09)

  • 30