77
国家自然科学基金委员会 工程与材料科学部 2018年8月16日 关于国家自然科学基金资助项目批准及有关事项的通知 阮敏 先生/女士: 根据《国家自然科学基金条例》的规定和专家评审意见,国家自然科学基金委 员会(以下简称自然科学基金委)决定批准资助您的申请项目。项目批准号: ,项目名称: 51801058 密度泛函理论研究:修饰剂与湿度对铝、锌超疏水表面结/ ,直接费用: 万元,项目起止年月: 月至 防冰行为的影响 23.00 2019 01 2021 月,有关项目的评审意见及修改意见附后。 12 请尽早登录科学基金网络信息系统(https://isisn.nsfc.gov.cn),获取《 国家自然科学基金资助项目计划书》(以下简称计划书)并按要求填写。对于有修 改意见的项目,请按修改意见及时调整计划书相关内容;如对修改意见有异议,须 在计划书电子版报送截止日期前提出。 计划书电子版通过科学基金网络信息系统(https://isisn.nsfc.gov.cn)上 传,由依托单位审核后提交至自然科学基金委进行审核。审核未通过者,返回修改 后再行提交;审核通过者,打印为计划书纸质版(一式两份,双面打印),由依托 单位审核并加盖单位公章后报送至自然科学基金委项目材料接收工作组。计划书电 子版和纸质版内容应当保证一致。向自然科学基金委提交和报送计划书截止时间节 点如下: 1、提交计划书电子版截止时间为 (视为计划书正式提交时 2018年9月11日16点 间); 2、提交计划书电子修改版截止时间为 2018年9月18日16点 3、报送计划书纸质版截止时间为 2018年9月26日16点 请按照以上规定及时提交计划书电子版,并报送计划书纸质版,未说明理由且 逾期不报计划书者,视为自动放弃接受资助。 附件:项目评审意见及修改意见表

关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

国家自然科学基金委员会

工程与材料科学部

2018年8月16日

关于国家自然科学基金资助项目批准及有关事项的通知

阮敏   先生/女士:

根据《国家自然科学基金条例》的规定和专家评审意见,国家自然科学基金委

员会(以下简称自然科学基金委)决定批准资助您的申请项目。项目批准号:

,项目名称:51801058 密度泛函理论研究:修饰剂与湿度对铝、锌超疏水表面结/

,直接费用: 万元,项目起止年月: 年 月至 年 防冰行为的影响 23.00 2019 01 2021

月,有关项目的评审意见及修改意见附后。12

请尽早登录科学基金网络信息系统(https://isisn.nsfc.gov.cn),获取《

国家自然科学基金资助项目计划书》(以下简称计划书)并按要求填写。对于有修

改意见的项目,请按修改意见及时调整计划书相关内容;如对修改意见有异议,须

在计划书电子版报送截止日期前提出。

计划书电子版通过科学基金网络信息系统(https://isisn.nsfc.gov.cn)上

传,由依托单位审核后提交至自然科学基金委进行审核。审核未通过者,返回修改

后再行提交;审核通过者,打印为计划书纸质版(一式两份,双面打印),由依托

单位审核并加盖单位公章后报送至自然科学基金委项目材料接收工作组。计划书电

子版和纸质版内容应当保证一致。向自然科学基金委提交和报送计划书截止时间节

点如下:

1、提交计划书电子版截止时间为 (视为计划书正式提交时2018年9月11日16点

间);

2、提交计划书电子修改版截止时间为 ;2018年9月18日16点

3、报送计划书纸质版截止时间为 。2018年9月26日16点

请按照以上规定及时提交计划书电子版,并报送计划书纸质版,未说明理由且

逾期不报计划书者,视为自动放弃接受资助。

附件:项目评审意见及修改意见表

Administrator
高亮
Page 2: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1
Page 3: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1
Page 4: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1
Page 5: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1
Page 6: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1
Page 7: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

Vol.:(0123456789)1 3

Theoretical Chemistry Accounts (2018) 137:181 https://doi.org/10.1007/s00214-018-2389-7

REGULAR ARTICLE

Computational study on the hydrolysis of halomethanes

Min Ruan1  · Hua Hou2 · Baoshan Wang2 · Wen Li1 · Yue Chen1 · Xiangyi Deng1 · Xiaohua Zuo1

Received: 18 August 2018 / Accepted: 16 November 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018

AbstractThe hydrolysis reactions of methane and halomethanes have been systematically investigated using density functional theory. These reactions may occur via a metathesis mechanism and a direct-elimination mechanism, metathesis being the predomi-nant pathway with the formation of methanol and HX (X = H, F, Cl, Br, I). The energy barriers of the predominant gas-phase hydrolysis pathway for CH4, CH3F, CH3Cl, CH3Br, and CH3I are 92.9, 19.3, 25.1, 18.8, and 20.8 kcal/mol, respectively. These values change to 92.6, 20.0, 22.8, 16.3, and 18.3 kcal/mol, respectively, when polarizable continuum model implicit solvent effect is employed. The catalytic influence of molecular water and the bulk solvent effect of water have been revealed. It was also determined that the energy barrier initially decreased and then increased with an increase in the number of water molecules. For CH4 and CH3F, there are four reactive H2O molecules taking part in the proton transfer during hydrolysis to form ten-member rings in the transition state, and two other H2O molecules participate as solvents in the predominant route. For CH3Cl, CH3Br, and CH3I, there are three H2O molecules that form eight-member rings transition state and other 2H2O molecules that act as solvent in the predominant hydrolysis pathway. Additional H2O molecules as an explicit solvent are investigated using the ONIOM model, and the coulomb interaction between adjacent atoms of the transition state is calculated to investigate the inherent reason for the formation of HF in the gas phase and (H3O+ + F−) in a solvent. These intrinsic mechanistic insights should facilitate a deeper understanding of halomethanes hydrolysis.

Keywords Hydrolysis · Halomethanes · Mechanism · Theoretical

1 Introduction

Halogenated organics are emitted into the atmosphere from a variety of natural and anthropogenic sources. Their uptake at the surface of aerosols can affect their reactivity [1]. The results of several studies have shown that halocarbons are important contributors to stratospheric bromine or chlorine

loading via their transportation and photodegradation pro-cesses [2, 3]. Habartová et al. [1] used classical molecular dynamics (MD) simulations to investigate the interaction of small halomethane molecules (CH3Cl, CH2Cl2, CHCl3, CH3Br, CH2Br2, and CHBr3) with a crystalline ice surface. It was determined that the adsorption energy increased with increase in the number of halogen atoms and brominated methanes exhibited stronger interaction with ice than their chlorinated analogs. Abbatt et al. [4] compiled a comprehen-sive review of the halogen activation in environmental ice and snow from the molecular to the regional scale. CH3Cl was measured in air [5]. Karlsson et al. [6] measured the volatile halogenated compounds (CHBr3, CH2Br2, HBr2Cl, and CH2ClI) in a water column and in sea ice. CH3Br was measured in air bubbles by Saltzman [7].

As one of the most abundant chlorinated compounds in the atmosphere, CH3Cl is a naturally occurring, ozone-depleting trace gas [8]. One ab initio study calculated the geometry and binding energy of the CHxCl4−x−H2O dimer (x = 0, 1, 2, 3), and it was suggested that the O–H…O acidic hydrogen bond in the molecules are the necessary conditions

Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s0021 4-018-2389-7) contains supplementary material, which is available to authorized users.

* Min Ruan [email protected]

* Xiaohua Zuo [email protected]

1 Institute of Materials Science and Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, Hubei, China

2 College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China

Page 8: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

Theoretical Chemistry Accounts (2018) 137:181

1 3

181 Page 2 of 10

for anesthetic activity [4]. Herrebout et al. [9] investigated the formation of halogen bonded complexes of the trifluoro-halomethanes (CF3Cl, CF3Br, and CF3I) with the halometh-anes (CH3F and CH3Cl) and the haloethanes (C2H5F and C2H5Cl) dissolved in liquid krypton using FTIR and Raman spectroscopy. Zou et al.[10] investigated the cooperative and vibrational properties of triangular halogen trimmers using density functional theory (DFT) method and found that electrostatic contribution played a major role in the halogen···halogen interactions in halogen trimers. Wang et  al. [11] studied the hydrogen abstraction mechanism of O(3P) with CH3F and CH2F2 using ab initio G2(MP2) theory. The reaction path for the CH3F + OH reaction was traced by Garcia et al. [12]. The hydrolysis reactions of halomethane molecules (CH3F, CH3Cl, CH3Br, CH3I) have been experimentally studied by Glew et al. [13], and it was determined that the energy barriers were 21.1, 22.7, 21.4, and 23.1 kcal/mol, respectively. In this study, the DFT method was employed to investigate the hydrolysis reaction paths of CH4, CH3F, CH3Cl, CH3Br, and CH3I. The catalyst/solvent effects of water molecules are a major consideration, and the influence of the number of water molecules is also studied in this work. The microscopic mechanisms of these halomethanes with methanol were investigated when H2O molecules were replaced with CH3OH molecules.

2 Computational method

The DFT calculations reported in this study were performed using the Gaussian 09 program package [14]. Fully opti-mized geometries, harmonic vibrational frequencies, and zero-point energy corrections (ZPE) of reactants, the tran-sition states, and products were calculated using the B3LYP [15, 16] density functional method. The 6-31G(d,p) basis [17–19] was used for C, H, O, F, and Cl atoms, and for bromine and iodine, the standard double-ζ contraction (Lan-L2DZ) of the Wadt and Hay basis set was used [20].

To improve the accuracy of the energies, higher-level sin-gle point energy calculations were performed at the CCSD(T) theoretical level [21]. The larger basis 6-311 + G(d,p) was used for C, H, O, F, Cl atoms and LanL2DZ for bromine and iodine. All of the calculations were based on close-shell approximations, and all transition states were verified with intrinsic reaction coordinate calculations [22].

3 Results and discussions

3.1 Assessment of the computational methods

To verify the accuracy of our theoretical approach, dif-ferent methods were employed as shown in Table 1. Sev-eral important species, including w1_R3a1, w1-TS1a1, w1-TS3a1′, w1-TS3a1′+HF, w1-TS3b1, and w1_P3b1 of CH3F + H2O reactions were optimized, and their single point energies were calculated at different levels. The data with the structures optimized at the B3LYP/6-311++G(2d,2p) and SPE level were calculated using the CBS-QB3 level as the reference. The mean absolute deviation (MAD) of each method was calculated, and the results are listed in Table 1. The MADs of MP2/6-311+G(2d,2p), MP2(full)/6-311+G(2d,2p), CBS-QB3//B3LYP/6-3−G(d,p), G4MP2, B3LYP/6-311+G(2d,2p), B3LYP/6-31G(d,p), B3LYP/AUG-CC-PVDZ, and B3LYP/AUG-CC-PVTZ methods are 0.4, 0.6, 0.8, 1.0, 2.9, 3.8, 3.5, and 2.5, respectively, and it is 1.5 for the CCSD(T)/6-311+ g(d,p)//B3LYP/6-31G(d,p) method. The CCSD(T)/6-311+ g(d,p)//B3LYP/6-31G(d,p) method was selected as the theoretical level for this study to improve calculation accuracy and conserve computational resources.

The geometrical parameters of the optimized structures of reactants CH3X (X = H, F, C1, Br, and I) are listed in Fig. S1 with the superscript “a.” In addition, the Stuttgart–Dresden-type (SDD) basis set [23] along with the quasi-relativistic MWB28 and MWB46 pseudopotentials was used for Br and

Table 1 The mean absolute deviation for several different methods based on the theoretical level of CBS-QB3//B3LYP/6-311 ++G(2d,2p)

Method w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1 MAD

CBS-QB3//B3LYP/6-311 ++G(2d,2p) − 2.738 69.084 85.129 84.038 115.639 0.814MP2/6-311 + G(2d,2p) − 2.775 68.120 85.215 83.828 115.892 − 0.268 0.4MP2(full)/6-311 + G(2d,2p) − 2.828 68.296 85.621 84.239 116.252 − 0.345 0.6CBS-QB3//B3LYP/6-31G(d,p) − 2.617 67.694 83.890 82.997 115.472 − 0.158 0.8G4MP2 − 1.19 68.08 84.04 82.69 113.95 0.37 1.0CCSD(T)/6-311 + g(d,p)//B3LYP/6-31G(d,p) − 1.703 69.634 82.209 81.312 115.078 − 0.467 1.5B3LYP/6-311 + G(2d,2p) − 2.011 60.800 83.399 82.981 111.370 1.885 2.9B3LYP/6-31G(d,p) − 4.419 60.505 88.237 88.868 114.322 4.155 3.8B3LYP/AUG-CC-PVDZ − 1.889 60.437 82.582 82.364 84.388 1.857 3.5B3LYP/AUG-CC-PVTZ − 1.645 62.246 84.188 83.753 74.032 2.389 2.5

Page 9: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

Theoretical Chemistry Accounts (2018) 137:181

1 3

Page 3 of 10 181

I, respectively, to investigate the influence of the basis set on Br and I atoms. The optimized parameters of CH3Br and CH3I are listed in Fig. S1 with the superscript “b.” These structure parameters of CH3X were compared with the results of other theoretical and experimental studies. The calcu-lated length of C–H, C–F, C–Cl are 1.092, 1.383, 1.802 Å, respectively, at the theoretical level of B3LYP/6-31G(d,p) and 1.091 [24], 1.383 [25], 1.776 [26] Å experimentally. The C–H length is 1.085 Å [27] at the theoretical level of MP2/6-31G ++G(2d,2p). It is evident that our results on the C–H length and ∠HCH are almost the same as the corresponding experimental data. The C–F length was obtained based on our work, and the data at B3LYP/6-31G(d) [28] level are sim-ilar to the experimental results. The C–F length was 0.013 Å [29] longer at the B3LYP/6-31 + G(d,p) level compared to the experimental results. The value of ∠FCH obtained in our work was 0.9° more than the experimentally obtained value of 108.8 [30]. The C–Br lengths of CH3Br were 2.016 and 2.004 Å at the theoretical level of B3LYP/6-31G(d,p)-Lan-L2DZ and B3LYP/6-31G(d,p)-SDD, respectively, compared to the experimental result of 1.934 Å [31]. The C-H length and ∠BrCH at the theoretical level of B3LYP/6-31G(d,p)-LanL2DZ and B3LYP/6-31G(d,p)-SDD are 1.087 Å and 107.1, respectively. The C–I lengths are 2.189 and 2.195 Å at the B3LYP/6-31G(d,p)-LanL2DZ and B3LYP/6-31G(d,p)-SDD level, respectively, compared to the experimental result of 2.132 Å [32]. These results show that the C-H lengths and the ∠XCH (X = Br and I) are almost the same for the B3LYP/6-31G(d,p)-LanL2DZ and B3LYP/6-31G(d,p)-SDD methods, so the LanL2DZ basis set was selected to describe the Br and I heavy atoms of the hydrolysis reaction system.

The hydrolysis reaction mechanisms of CH3F were ini-tially studied in the gas phase to identify the prominent routes of these reactions. DFT methods were then coupled with an implicit solvation model (polarizable continuum model, PCM) and calculations based on solvated molecules were used to take into account the solvent effects [33]. The ONIOM

[34] (B3LYP/6-31G(d,p)-PM3) method was employed to investigate the explicit solvent effect of the prominent route of the hydrolysis reaction of the CH3F + 4H2O system with the four water molecules reacting to produce HF and CH3OH through path 1. The molecular system under investigation is divided into two layers, where the selected atoms of the CH3F + 4H2O molecules implied in the reaction are included in the DFT description with the basis set of B3LYP/6-31G(d,p), and other explicit water molecules are treated using the PM3 semi-empirical method. The energy is calculated as E(ONIOM2) = E(High, Model) + E(Low, Real) − E(Low, Model) . The general scheme on the two-layer ONIOM method is illustrated as shown in Fig. 1.

Furthermore, Table 2 shows the experimental standard molar enthalpy for the hydrolysis reaction of CH3X and H2O [35] and the results of our theoretical calculations. The standard molar enthalpy of formation for the reactants and products were determined from a published report [35]. The experimental standard molar enthalpy for the hydrolysis reaction of CH3X and H2O at 298 K was 27.6, 1.4, 7.2, 9.2, and 12.5 kcal/mol for CH4, CH3F, CH3Br, and CH3I, respec-tively. The reaction of CH3F + H2O = CH3OH + HF can be considered as an example to show the reaction enthalpy based on the experimental formation enthalpy.

For the theoretical reaction enthalpy, the structures of the stationary points of the hydrolysis reactions of halomethanes were optimized at the level of B3LYP/6-31G(d,p) and the single point energies were calculated at the CCSD(T)/6-311 + G(d,p) and LanL2DZ basis for Br

ΔrH�

m(exp) = Σ�(B)Δf H

m(B)

= Δf H�

m

(

CH3OH)

+ Δf H�

m(HF)

− Δf H�

m

(

CH3F)

− Δf H�

m

(

H2O)

= [(−201.25) + (−268.60) − (−234.00)

− (−241.83)]∕4.18585 = 1.4 kcal∕mol

Fig. 1 The general scheme on the two-layer ONIOM method of CH3F + 10H2O. The atoms in the 1st layer are the high level atoms obtained with the B3LYP/6-31G(d,p) method labeled using “ball and stick” mode. The atoms in the 2nd layer are low level atoms and treated using the PM3 method in the “wireframe” mode

Page 10: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

Theoretical Chemistry Accounts (2018) 137:181

1 3

181 Page 4 of 10

and I. The calculated enthalpy of each compound is equal to the single point energy plus the thermal correction for the enthalpy. The values were 26.6, − 0.5, 6.6, 6.7, and 9.5 kcal/mol for the hydrolysis of CH4, CH3F, CH3Br, and CH3I, respectively, as shown in Table 2. The reaction of CH3F + H2O = CH3OH + HF is considered as an example to illustrate the calculation.

From the optimized geometric parameters of the CH3X structures and the calculated standard molar enthalpy of the reactions, it was confirmed that the CCSD(T)/6-311+G(d,p)//B3LYP/6-31G(d,p) (LanL2DZ basis for Br and I) theoretical level is appropriate for the hydrolysis reactionof CH3X (X = H, F, C1, Br, I) and H2O.

3.2 The hydrolysis reaction of  CH3F + H2O in the gas phase

3.2.1 The reaction mechanisms of  CH3F + H2O

There are two metathesis and direct-elimination reaction mechanisms with four different paths for the hydrolysis reac-tions of CH3X and H2O. Considering the reaction of CH3F and H2O as an example, the paths are described as shown in Fig. 2, and the transition state geometries of these paths are listed on the right-hand side. Paths 1 and 2 represent the metathesis mechanism. When the X atom of the CH3X molecule takes part in the reaction via path 1 to produce HX and CH3OH, the H atom of the CH3X molecule takes part in the reaction via path 2, resulting in the products of

ΔrH�

m(cal) = Σ�(B)Δ(ECCSD−T + H

corr)(B)

= [(−115.42) + (−100.27) − (−139.43)

− (−76.26)]∕627.5094 = − 0.5 kcal∕mol

H2 and FH2COH. Paths 3 and 4 are the direct-elimination mechanisms. In path 3, the F and the H atoms of the CH3F molecule form HF followed by the formation of CH3OH from CH2 and H2O. Two H atoms of CH3F bond to form H2 initially, followed by the formation of FH2COH from CHF radical and H2O via path 4.

In the hydrolysis reaction of CH3F + nH2O, one H2O mol-ecule is the reactant and other H2O molecules may have two different effects as either the catalysis or the solvent. As the catalyst, the water molecules take part in the hydrolysis reaction because of the transfer and regeneration of protons (the H atom of the H2O molecule can be transferred from one water molecule to another water molecule to change the reaction path, and this may lower the energy barrier). As the solvent, water molecules just look aside during the hydrolysis reaction.

Wn_TS(R/P)ma(b)c(d)(′) was used to describe the transi-tion states/reactants/products of the reactions where w rep-resents water, n represents the whole number of water mole-cules in the system, TS is the transition state, R the reactant, P the product, and m indicates the specific path among the possible four options. A means one mode of a path, and b is the other mode of the path. For example, the 2H atoms of CH3F can leave either from the same or the opposite side of the H2O molecule in path 4. If they leave from the same side, this represents the “a” mode; otherwise, it is the “b” mode. The structures of the reactants and products of path 4 are shown in Fig. S2. Note that C indicates the number of water molecules that took part in the hydrolysis reaction includ-ing the catalyst, whereas “d” represents the number of water molecules acting as a solvent. The comma on the upper right corner indicates that this is the second step in the hydroly-sis reaction. For example, w4_TS1a4 means that there are

Table 2 The standard molar enthalpy of the stable points along the reaction path (in kcal/mol) of CH3X (X = H, F, C1, Br, I) with H2O at 298 K

Hcalc = ECCSD(T) + Hcorr, Hcorr is the thermal correction to the enthalpy at the B3LYP/6-31G(d,p) level, ECCSD(T) is the single point energy at the CCSD(T)/6-311 + G(d,p) level

Systems Δf H�

m (exp) [35] ECCSD(T) Hcorr Hcalc ΔrH

m (exp) ΔrH

m (calc)

(CH3X + H2O)

H2O − 241.83 − 76.29 0.03 − 76.26CH3OH − 201.25 − 115.48 0.06 − 115.42H2 0.00 − 1.17 0.01 − 1.15HF − 268.60 − 100.28 0.01 − 100.27HCl − 92.31 − 460.26 0.01 − 460.25HBr − 36.24 − 13.54 0.01 − 13.53HI 25.90 − 11.79 0.01 − 11.78CH4 − 74.85 − 40.41 0.05 − 40.36 27.6 26.6CH3F − 234.00 − 139.47 0.04 − 139.43 1.4 − 0.5CH3Cl − 81.92 − 499.47 0.04 − 499.42 7.2 6.6CH3Br − 34.30 − 52.77 0.04 − 52.73 9.2 6.7CH3I 13.98 − 50.99 0.04 − 50.95 12.5 9.5

Page 11: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

Theoretical Chemistry Accounts (2018) 137:181

1 3

Page 5 of 10 181

4H2O molecules in the reaction system of path 1, and all of the water molecules take part in the hydrolysis reaction, i.e., there is one water molecule acting as the reactant and the other 3H2O molecules act as the catalyst. W4_TS1a31 means that the 3H2O molecules are reactive and the other 1H2O act as a solvent. The structures of the stationary points of w4_TS1a4 and w4_TS1a31 are shown in Fig. S3.

3.2.2 The reactions of  CH3F + H2O through path 1 in the gas phase

CH3F + nH2O reaction through path 1 was initially studied to investigate the hydrolysis mechanism of CH3X with H2O. All the water molecules were first considered to be cata-lysts, and the transition states were w1_TS1a1, w2_TS1a2, w3_TS1a3, w4_TS1a4, w5_TS1a5, w6_TS1a6. The energy barriers (corrected by zero-point energy) of these transition states are shown in Fig. S4(1). Evidently, the relative energy barrier which utilizes the reactant energy as a reference decreases along with the increase in the number of water molecules when n ≤ 4. This indicates that the catalytic effect is reduced more than the solvent effect when n ≤ 4, while the inverse is observed for n > 4. Quantitatively, the energy barrier decreases from 64.9 kcal/mol to 34.6 kcal/mol when the number of reactive H2O molecules increase from 1 to 4, and increases to 42.4 kcal/mol as the number of catalyzed H2O molecules increase to 6. Then the 4 + n mode (4H2O molecules take part in the hydrolysis reaction and the other n water molecules act as a solvent) of the CH3F hydrolysis reaction through path 1 was studied, and the energy barriers of the transition states are shown as Fig. S4(2). The lowest energy barrier of the transition state with a six-member ring was determined to be 19.3 kcal/mol with a 4 + 2 mode, i.e., 4H2O behaves as the catalyst and 2H2O acts as the solvent.

The energies of the reactants, the transition states relative to reactants and the products through path 1 are shown in Table S1.

3.2.3 The reactions of  CH3F + H2O through path 2 in gas phase

When the metathesis reaction of CH3F + H2O produces H2 through path 2 as shown in Fig. 3a, the energy barrier of the w1_TS2a1 transition states is 108.5 kcal/mol, and it is 109.6 kcal/mol when there are two reactive H2O molecules taking part in the reaction as shown in Fig. 3b. The catalytic H2O molecule clearly transferred an H atom to another water molecule during the hydrolysis reaction. The energy barrier of the transition state increases to 112.6 kcal/mol when there are 3H2O participating in the hydrolysis reaction. It can be

Fig. 2 The metathesis and direct-elimination mecha-nisms for the four routes of the CH3F + H2O hydrolysis reaction are illustrated and the corresponding transition states are listed on the right-hand side, respectively

w1_R2a1 w1_TS2a1 w1_P2a1

w2_R2a2 w2_TS2a2 w2_P2a2

(a)

(b)

Fig. 3 The metathesis reaction of CH3F + nH2O (n = 1, 2) to produce H2 through path 2. a CH3F + H2O, 2 CH3F + 2H2O

Page 12: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

Theoretical Chemistry Accounts (2018) 137:181

1 3

181 Page 6 of 10

concluded that the catalytic effects of water slightly increase the energy barrier of path 2, according to Table S2.

3.2.4 The reactions of  CH3F + H2O through path 3 in gas the phase

When the direct-elimination hydrolysis reaction of CH3F and H2O proceeds through path 3 to product HF, there will be two modes, w1_TS3a1 (HF is on the opposite side of H2O) and w1_TS3b1 (HF is on the same side of H2O) as shown in Fig. 4. There is only one H2O molecule that par-ticipates in the reaction through path 3. If there are more water molecules reacting in the system, the H atom of the product HF will no longer from CH3F but will instead from H2O as in the case of path 1.

The energies of the reactions, transition states, and products of the CH3F and nH2O reaction through path 3 in the gas phase are listed in Table S3. The energy barrier of w0_TS3a0 is 112.4 kcal/mol when H2O molecules do not take part in the direct-elimination of CH3F to produce HF. It decreases to 76.2 and 84.9 kcal/mol via w1_TS3a1 and w1_TS3b1 of path 3, respectively. We can see that the catalytic effect of the water molecule with respect to the degradation of CH3F significantly reduces the energy barriers of path 3.

3.2.5 The reactions of  CH3F + H2O through path 4 in the gas phase

The energy barriers of the reactions, transition states, and products of the CH3F + nH2O direct-elimination reaction to produce H2 through path 4 in the gas phase are listed in Table S4. In this path, the water molecules can act as a solvent. When there are 1, 2, 3, and 4H2O molecules that act as a solvent, the energy barriers are 93.4, 93.3, 92.8, and 92.3 kcal/mol, respectively. The energy barriers do not decrease due to the solvent effect for path 4, and there is little difference between the top and side modes.

It is evident from Table S1–S4 that the catalytic influence of the water molecules is significant during the metathesis hydrolysis reaction to produce HX and CH3OH through path

1. Only the metathesis reactions of CH3X (X = H, Cl, Br, and I) via path 1 are investigated in the following discussion.

3.3 The reactions of  CH3F + H2O in an implicit solvent

When the implicit solvent model is applied to the CH3F + H2O system, the influence of water solvent on the hydrolysis reaction through path 1 as depicted in Fig. S5 will be discussed. When all the 1–6H2O molecules are reac-tive, that is, one is a reactant and the others are catalysts, the energy barriers are 64.9, 63.1, 41.4, 34.6, 41.5, and 42.4 kcal/mol, respectively, in the previously discussed gas phase. These values decrease by 2.1, 5.3, 7.9, 5.4, 6.1, and 7.2 kcal/mol, respectively, in an implicit solvent compared to the gas phase, as shown in Fig. S5(1). When there is a total of 4H2O with 2 + 2, 3 + 1, and 4 + 0 modes in the hydrolysis reaction of CH3F, the energy barriers decrease by 3.3, 3.0, and 5.4 kcal/mol to be 55.4, 41.8, and 34.6 kcal/mol, respec-tively, in comparison with the gas phase. This is because the number of catalyst water molecules increases from 2 to 4 in the implicit solvent as shown in Fig. S5 (2).

When there are 4H2O molecules as a catalyst and 0–3H2O molecules as the solvent, the energy barrier is 34.6, 23.9, 19.3, and 21.5 kcal/mol in the gas phase. These values change to 29.2, 21.8, 20.0, and 25.1 kcal/mol, respectively, in the PCM model as shown in Fig. S5 (3). This means that the lowest energy barrier is 19.3 kcal/mol in the gas phase and 20.0 kcal/mol in the PCM model, and they all corre-spond to the 4 + 2 mode with 4H2O molecules as the catalyst and 2H2O molecules as the solvent via path 1.

When there is a total of 5H2O molecules in the hydrolysis of CH3F, i.e., (5 + 0), (4 + 1), and (3 + 2) three modes, the lowest energy barrier is 23.9 kcal/mol for the 4 + 1 mode as shown in Fig. S5 (4). The energy barrier decreases by 1.3, 3.0, and 6.1 kcal/mol, respectively, in the implicit solvent when there are 3, 4, and 5 reactive water molecules.

Fig S5 (5) shows the energy barriers when there is a total of 6H2O molecules with the modes 6 + 0, 5 + 1, 4 + 2, and 3 + 3 during the hydrolysis of CH3F. It evident that the

Fig. 4 Two different modes of CH3F + H2O direct-elimination hydrolysis reaction through path 3. a HF and H2O are at the opposite side, b HF and H2O are on the same side 1w1 _R3a1 w1 _TS 3a1 w1 _P3a 1 w1 _TS 3a1′ w1 _P3a

w1 _R3b1 w1 _TS3b1 w1 _TS3b1′ w1_P3b1

(a)

(b)

Page 13: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

Theoretical Chemistry Accounts (2018) 137:181

1 3

Page 7 of 10 181

lowest energy barrier is 19.3 kcal/mol in the gas phase with 4H2O reactive molecules and the other 2H2O molecules act-ing as the solvent. This barrier is also the lowest barrier with a value of 20.0 kcal/mol in PCM. It generally increases with an increase in the number of catalyst or solvent water molecules. The data are smaller in the PCM implicit solvent system than in the gas phase except for the 4 + 2 mode. It can be concluded that the hydrolysis reaction of CH3F has the lowest barrier of 20.0 kcal/mol in the implicit solvent mode, which is in good agreement with the experimental result of 21.2 kcal/mol [13].

3.4 The reactions of  CH3F + H2O in an explicit solvent

The ONIOM (B3LYP/6-31G(d,p): PM3) method is used in order to conserve calculation resources and to test the explicit solvent effect in the CH3F + 4H2O system with the four water reactive molecules via path 1. CH3F and 4H2O molecules are treated as the high layer, and the other water molecules are treated as the low layer. It was determined that the energy barrier can be lowered from 34.6 to 9.0 kcal/mol when the number of explicit water molecules is increased to 6. The energy barrier increased to 12.0 kcal/mol when 7H2Owater moles were present. References [26, 36] also show thatthe explicit water molecules can lower the energy barrier.

The product is HF + 3H2O + CH3OH for the reaction of CH3F + 4H2O with reactive four water molecules in the gas phase. When CH3F + 4H2O molecules are treated as the high layer and other 6H2O molecules are treated as the low layer in the explicit solvent in the ONIOM model, the products should be F− + H3O+ + 2H3O + CH3OH. In order to investigate the underlying cause of the for-mation of HF in the gas phase and H3O+ + F− in the sol-vent, the coulomb force between the two adjacent atoms in the transition state is calculated using the formula F = ke

qq�

r2

(

ke = 9 × 109 N ⋅m2∕C2)

, where q and q′ are the Mulliken charges of the selected atoms. The calculated cou-lomb force between the adjacent atoms of the two transition states w4_TS1a4 of the CH3F + 4H2O reaction via path 1 in the gas phase and the explicit solvent are listed in Fig. 5. The coulomb force between F and CH3 for the transition states in the gas phase and the water solvent is 0.32 × 10−9 and 1.77 × 10−9 N, respectively, and the values for F and the nearest H2O molecule are 2.99 × 10−9 and 0.71 × 10−9 N, respectively. The interaction between the nearby H2O mol-ecules is larger in the gas phase than in the solvent, which means that it is easier for H to transfer via H2O molecules to form an HF molecule in the gas phase. However, the resist-ance strength of the solvent results in the formation of H3O+ and F− in the solvent.

3.5 The reactions of  CH3F + CH3OH in the implicit solvent

The catalysis and solvent effect of path 1 were examined with H2O molecules replaced by CH3OH. The energy bar-riers of the n + 0 (n = 1–6) and 4 + n (n = 1–3) modes of CH3X + CH3OH reactions are shown as Fig. 6. When all the methanol molecules are reactive, the energy barrier is 62.2, 60.7, 38.6, 31.6, 30.7, and 30.9 kcal/mol, respectively, since the CH3OH molecules range from 1 to 6 in the gas phase. It is evident that the energies reach a plateau as the number of methane catalysts increases to 4. From Fig. 6a, we can see that the energy barrier of CH3F + 4CH3OH is 3.0 kcal/mol lower than that of CH3F + 4H2O in the gas phase. This means that the catalytic effect of CH3OH is greater than that of H2O. When the PCM model is employed in the CH3F + 4CH3OH system, the energy barrier decreases by 2.4 kcal/mol to 29.2 kcal/mol. In the case of the 4 + n mode as shown in Fig. 6b, it is clear that the 4 + 2 mode has the lowest energy barrier for both the 4H2O + CH3F and 4CH3OH + CH3F reactions. The values are 19.3 and 15.1 kcal/mol, respectively, for the gas phase and 20.0 and 15.0 kcal/mol, respectively, in the implicit solvent.

3.6 The reactions of  CH3X (X = H, F, Cl, Br, and I) + nH2O

Figure 7a shows the energy barriers of CH3X (X = H, F, Cl, Br, and I) + (1–6)H2O metathesis reactions via path 1. All of the water molecules are reactive and are in then + 0 mode. This indicates that the energy barrier can beinitially sharply lowered followed by a slight increase withan increase in the number of catalyzed water molecules.The energy barrier is very high for CH4. The lowest energybarrier for CH3F is with four reactive H2O molecules witha ten-member ring transition state. However, the transition

Fig. 5 The coulomb force between the adjacent atoms of the w4_TS1a4 transition state of the CH3F + 4H2O reaction via path 1 in (a) gas phase and b the explicit solvent

Page 14: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

Theoretical Chemistry Accounts (2018) 137:181

1 3

181 Page 8 of 10

state of CH3Cl, CH3Br, and CH3I is an eight-member ring with the lowest energy barriers of 27.5, 20.8, and 21.2 kcal/mol, respectively, in the gas phase with only three reactive H2O molecules. CH3Br has the lowest energy barrier which is 1.2 kcal/mol lower than that of CH3I. The modes with the lowest energy barrier for CH3F, CH3Cl, CH3Br, and CH3I are the 4 + 2, 3 + 2, 3 + 2, and 3 + 2 modes, respectively. As shown in Fig. 7b, these modes correspond to energy barriers of 19.3, 25.1, 18.8, and 20.8 kcal/mol in the gas phase, and 20.0, 22.8, 16.3, and 18.3 kcal/mol in as an implicit solvent. In comparison, the experimental data [13] are 21.1, 22.7, 21.4, 23.1 kcal/mol, respectively.

The metathesis hydrolysis reaction of CH4 and CH3F with four reactive H2O molecules and CH3Cl, CH3Br, and CH3I with three reactive H2O molecules via path 1 have the low-est energy barrier in the gas phase. The barriers are shown in Fig. S6 when the implicit solvent model is employed in

these systems. It is evident that the solvent has little effect on the magnitude of the barrier of the CH4 + 4H2O reaction and that they are 92.9, 92.6 kcal/mol, respectively, in the gas and implicit solvent model, respectively. The catalytic water molecules decrease the energy barrier from 34.6 to 29.2 kcal/mol for CH3F + 4H2O in an implicit solvent com-pared to the gas phase. For CH3Cl, CH3Br, and CH3I with a 3H2O reactive molecule, the energy barriers decrease by approximately 12 kcal/mol in an implicit solvent compared to the gas phase.

4 Conclusion

A microscopic hydrolysis mechanism of halomethanes has been systematically investigated using DFT. It was deter-mined that metathesis and direct-elimination mechanisms

Fig. 6 The energy barrier of (CH3F + (1 ~ 6)H2O/CH3OH) with (a) n and (b) (4   +  n) mode through path 1

Fig. 7 The reaction energy barrier of CH3X (X = H, F, Cl, Br, and I) + (1 ~ 6)H2O through path 1. a n mode in the gas phase, b the lowest barrier in gas, PCM, and exp [7]

Page 15: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

Theoretical Chemistry Accounts (2018) 137:181

1 3

Page 9 of 10 181

exist via four reaction paths, and the prominent route is the metathesis mechanism to produce methanol and HX (X = H, F, Cl, Br, and I). The energy barriers of the predominant hydrolysis pathway of CH4, CH3F, CH3Cl, CH3Br, CH3I were determined to be 92.9, 19.3, 25.1, 18.8, and 20.8 kcal/mol, respectively, in the gas phase, and 92.6, 20.0, 22.8, 16.3, 18.3 kcal/mol, respectively, when the PCM implicit solvent effect was employed. The catalytic influence of the water molecule and the bulk solvent effect of water were revealed. It was also determined that the energy barrier ini-tially decreased then increased when the number of water molecules was increased. For CH4 and CH3F, there are four reactive H2O molecules that part in proton transfer in the hydrolysis reactions. This results in the formation of a ten-member ring in the transition state, and two other H2O molecules act as the solvent in the predominant route. For CH3Cl, CH3Br, and CH3I, there are three H2O molecules that form an eight-member ring transition state and other 2H2O molecules that act as a solvent in the predominant route of the hydrolysis reactions. In addition, CH3OH mol-ecules are considered to replace H2O and it was determined that they have the lowest energy barrier when there exist reactive 4CH3OH and 2CH3OH as solvents. In this case, the energy barrier decreases by 5.0 kcal/mol to 15.0 kcal/mol compared to H2O. Additional H2O molecules as an explicit solvent were investigated with the ONIOM model and the coulomb interaction between adjacent atoms of the transi-tion state was calculated to investigate the inherent reason for the formation of HF in the gas phase and (H3O+ + F−) in the solvent.

Acknowledgements This work was financially supported by the National Natural Science Foundation of China (51801058; 51372077) and Science-Technology Innovative Research Team for Excellent Mid-dle-aged and Young Scientist in Higher Education Institutions of Hubei Province of China (T201626).

References

1. Habartová A, Hormain L, Pluhařová E, Briquez S, Monnerv-ille M, Toubin C, Roeselová M (2015) Molecular simula-tions of halomethanes at the air/ice interface. J Phys Chem A 119(39):10052–10059

2. Hossaini R, Chipperfield MP, Saiz-Lopez A, Harrison JJ, Glasow R, Sommariva R, Atlas E, Navarro M, Montzka SA, Feng W, Dhomse S, Harth C, Mühle J, Lunder C, O’Doherty S, Young D, Reimann S, Vollmer MK, Krummel PB, Bernath PF (2015) Growth in stratospheric chlorine from short-lived chemicals not controlled by the Montreal Protocol. Geophys Res Lett 42(11):4573–4580

3. Aschmann J, Sinnhuber BM (2013) Contribution of very short-lived substances to stratospheric bromine loading: uncertainties and constraints. Atmos Chem Phys 13(3):1203–1219

4. Abbatt JPD, Thomas JL, Abrahamsson K, Boxe C, Granfors A, Jones AE, King MD, Saiz-Lopez A, Shepson PB, Sodeau J, Toohey DW, Toubin C, von Glasow R, Wren SN, Yang X (2012)

Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions. Atmos Chem Phys 12(14):6237–6271

5. Verhulst KR, Aydin M, Saltzman ES (2013) Methyl chloride variability in the Taylor Dome ice core during the Holocene. J Geophys Res: Atmos 118(21):218–228

6. Karlsson A, Theorin M, Abrahamsson K (2013) Distribution, transport, and production of volatile halocarbons in the upper waters of the ice-covered high Arctic Ocean. Global Biogeochem Cy 27(4):1246–1261

7. Saltzman ES, Aydin M, Tatum C, Williams MB (2008) 2000-year record of atmospheric methyl bromide from a South Pole ice core. J Geophys Res: Atmos 113:(D5)

8. Harper K, Minofar B, Sierra-Hernandez MR, Casillas-Ituarte NN, Roeselova M, Allen HC (2009) Surface residence and uptake of methyl chloride and methyl alcohol at the air/water interface stud-ied by vibrational sum frequency spectroscopy and molecular dynamics. J Phys Chem A 113(10):2015–2024

9. Hauchecorne D, Herrebout WA (2013) Experimental characteriza-tion of C–X···Y–C (X=Br, I; Y=F, Cl) halogen-halogen bonds. J Phys Chem A 117(45):11548–11557

10. Lu Y, Zou J, Wang H, Yu Q, Zhang H, Jiang Y (2005) Triangular halogen trimers. A DFT study of the structure, cooperativity, and vibrational properties. J Phys Chem A 109(51):11956–11961

11. Wang B-S, Hou H, Gu Y-S (1999) Theoretical investigation of the reactions of O (3P) with CH 3 F and CH 2 F 2. Chem Phys 247(2):201–206

12. Espinosa-García J, Coitiño E-L, González-Lafont A, Lluch J-M (1998) Reaction-path and dual-level dynamics calculations of the CH3F + OH reaction. J Phys Chem A 102(52):10715–10722

13. Glew D, Moelwyn-Hughes E (1952) The kinetics of the acid and alkaline hydrolysis of methyl fluoride in water. Proc R Soc Lon-don, Ser A 211(1105):254–265

14. Frisch M, Trucks G, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GJI, Wallingford, CT (2009) Gaussian 09, revision a. 02, gaussian. 200

15. Becke A-D (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

16. Lee C, Yang W, Parr R-G (1988) Development of the Colle-Sal-vetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

17. Ditchfield R, Hehre WJ, Pople JA (1971) Self consistent molec-ular orbital Methods. IX. An extended Gaussian type basis for molecular orbital studies of organic molecules. J Chem Phys 54(2):724–728

18. Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent molec-ular orbital Methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic mol-ecules. J Chem Phys 56(5):2257–2261

19. Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) 6-31G* basis set for atoms K through Zn. J Chem Phys 109(4):1223–1229

20. Wadt W-R, Hay P-J (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82(1):284–298

21. Raghavachari K, Trucks G-W, Pople J-A, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation the-ories. Chem Phys Lett 157(6):479–483

22. Fukui K, Kato S, Fujimoto H (1975) Constituent analysis of the potential gradient along a reaction coordinate. Method and an application to methane + tritium reaction. J Am Chem Soc 97(1):1–7

23. Fuentealba P, Preuss H, Stoll H, Von Szentpály L (1982) A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds. Chem Phys Lett 89(5):418–422

Page 16: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

Theoretical Chemistry Accounts (2018) 137:181

1 3

181 Page 10 of 10

24. Chem A (1992) Janaf thermochemical tables. Anal Chem64(8):502A–502A

25. Egawa T, Yamamoto S, Nakata M, Kuchitsu K (1987) Averageand equilibrium structures of methyl flouride studied by electrondiffraction. A joint analysis with rotational constants and cubicforce constants. J Mol Struct: Theochem 156(3–4):213–228

26. Jensen P, Brodersen S, Guelachvili G (1981) Determination ofA0 for CH335Cl and CH337Cl from the ν4 infrared and Ramanbands. J Mol Spectrosc 88(2):378–393

27. Carme Rovira M, Novoa J-J, Whangbo M-H, Williams J-M(1995) Ab initio computation of the potential energy surfaces ofthe water·hydrocarbon complexes H2O·C2H2, H2O·C2H4 andH2O·CH4: minimum energy structures, vibrational frequenciesand hydrogen bond energies. Chem Phys 200(3):319–335

28. Zheng S, Xiong Y, Wang J (2010) Theoretical studies on identity S(N)2 reactions of lithium halide and methyl halide: a microhy-dration model. J Mol Model 16(12):1931–1937

29. Xiong Y, H-j Zhu, Ren Y (2003) A theoretical study of the gas-phase ion pair SN2 reactions of lithium halide and methyl halidewith inversion and retention mechanisms. J Mol Struct: Theochem 664–665:279–289

30. D. R. Linde (1991) CRC Handbook of Chemistry and Physics,72th edition

31. Graner G (1981) The methyl bromide molecule: a critical consid-eration of perturbations in spectra. J Mol Spectrosc 90(2):394–438

32. Harmony MD, Laurie VW, Kuczkowski RL, Schwendeman RH,Ramsay DA, Lovas FJ, Lafferty WJ, Maki AG (1979) Molecularstructures of gas-phase polyatomic molecules determined by spec-troscopic methods. J Phys Chem Ref Data 8(3):619–722

33. Kamerlin SCL, Haranczyk M, Warshel A (2009) Are mixedexplicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixedsolvation models. Chem Phys Chem 10(7):1125–1134

34. Svensson M, Humbel S, Froese R-DJ, Matsubara T, Sie-ber S, Morokuma K (1996) ONIOM: A multilayered inte-grated MO + MM method for geometry optimizations andsingle point energy predictions. A test for diels − alder reac-tions and Pt(P(t-Bu)3)2 + H2Oxidative addition. J Phys Chem100(50):19357–19363

35. Barin II (1989) Thermochemical data of pure substances, 3rd edn. VCH, Weinheim

36. Mushrif SH, Varghese JJ, Vlachos DG (2014) Insights into theCr(iii) catalyzed isomerization mechanism of glucose to fructose in the presence of water using ab initio molecular dynamics. Phys Chem Chem Phys 16(36):19564–19572

Page 17: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

Contents lists available at ScienceDirect

Chemical Physics Letters

journal homepage: www.elsevier.com/locate/cplett

Research paper

Theoretical study of oxygen molecules adsorption on M3C12S12 (M=Co,Rh)—Class 2D metal – organic frameworks

Min Ruana,⁎, Qing Yangb,⁎, Menghao Wub, Baoshan Wangc, Junming Liud

a Institute of Materials Science and Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi,Chinab School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, Hubei 430074, Chinac College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Chinad Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, China

H I G H L I G H T S

• O2 molecules are chemically bonded with Co and Rh atoms of the 2D Co3C12S12 and Rh3C12S12 surface.

• Oxygen molecules adsorption narrowed the band gap from semiconductive to be metallic.

• The spin magnetic moment on each Co and Rh atom decrease from 1.0 to 0.2 μB and increase from 0.0 to 0.1 μB respectively.

• It is selective functionalization of the 2D MOFs as their specific domains are exposed to atmosphere.

A R T I C L E I N F O

Keywords:2D MDTFirst-principles calculationsChemical adsorptionSelective functionalizations

A B S T R A C T

The influence of O2 molecules adsorption on 2D CoDT and RhDT surface were investigated via ab initio cal-culations. It turns out that upon the chemically adsorption of O2 molecules, semiconductive CoDT and RhDTwith a band gap of respectively 0.218 and 0.101 eV both become metallic, while their magnetic moment on eachmetal atom will respectively decrease from 1.0 to 0.2 μB and increase from 0.0 to 0.1 μB. This may render aconvenient approach of “oxygen doping/spintronics” at ambient conditions, where selective functionalizationsof 2D MOFs can be realized as their specific domains are exposed to atmosphere.

1. Introduction

Metal-organic frameworks (MOFs) have become a focus study inmaterials chemistry [1] and promise a wide range of potential appli-cations including gas sorption [2], separation materials [3], and che-mical sensors [4], owing to their exceptional porosity that is con-structed by joining metal-containing units with organic linkers usingstrong bonds forming open crystalline frameworks [5,6]. However,porous MOFs have received far less attention in a number of desirabletechnologies such as photonic, electronic devices, thermoelectrics, andresistive sensing because they usually exhibit with very low electricalconductivity [7,8].

A recent breakthrough is the synthesis of 2D MOFs with a honey-comb lattice akin to graphene [9–11] and attractive physical/chemicalproperties due to the planar pi-conjugation with full charge delocali-zation in the 2D plane [12]. They have been predicted to be potentialuseful in electronic devices, such as chemiresistive sensors [13],

supercapacitors [14] and organic topological insulators [15]. Thegeometric structures and the electronic properties of 2D MOFs can betuned using different combinations of various ligand molecules andmetal centers [16]. For example, 2D NiDT (nickel bis(dithiolene),Ni3C12S12) nanosheet that has been successfully synthesized by Kambeet al [17,18] is a semiconductor. Band structure calculation

shows that native undoped NiDT has a topological insulator (TI)state within a band gap of Dirac band opened up by spin–orbit coupling(SOC) at around 0.5 eV above the Fermi level [15,19]. Its electricalconductivity can be high up to 160 S cm−1 at 300 K in controllableoxidation states [20], analogous to 2D graphene/graphene oxide.Campbell et al. [21] demonstrated that conductive Cu3(HITP)2 na-nosheet display a chemiresistive response towards ammonia, whileNi3(HITP)2 do not display an observable response. Sarkar et al. [22]found that unabsorbed Cobalt bis(dithioline) and its saturated bis-COadsorbed molecule provide remarkably distinct Ι-V responses, whichbecomes a signal for detection of CO gas. Liu et al. [23] calculated the

https://doi.org/10.1016/j.cplett.2019.07.009Received 29 March 2019; Received in revised form 26 June 2019; Accepted 3 July 2019

⁎ Corresponding authors.E-mail addresses: [email protected] (M. Ruan), [email protected] (Q. Yang).

Chemical Physics Letters 731 (2019) 136581

Available online 04 July 20190009-2614/ © 2019 Elsevier B.V. All rights reserved.

T

Page 18: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

adsorption of single gas molecule on two-dimensional MDT (M=Fe,Co, Ni, Pd, and Pt) films. The geometric structure and the electronicproperties of 2D MOFs can be tuned using different combinations ofvarious ligand molecules and metal centers. Experimental studies haveshown that Ni atoms in NiDT may be replaced by other transition metalatoms [24,25], and some of them were also predicted to exhibit TI statearound 0.5 eV away from Fermi level [26,27].

If we can obtain a 2D MOF with electronic/magnetic propertiessensitive to the adsorption of oxygen molecules, it can exhibit twodistinct behaviors when separated from/exposed to the air. Such tuningis much more convenient compared with conventional doping orcovalent functionalizations. Selective functionalizations of 2D MOFscan be easily realized for interfacial devices as their specific domainsare exposed to atmosphere. Here we propose that 2D MDT (M=Co,Rh) are such candidates. Our results reveal that their magnetic andelectronic properties can be tuned by the adsorption of oxygen mole-cules, rendering a convenient approach of “oxygen doping/spintronics”at ambient conditions.

2. Methods

Periodic, density-functional theoretical (DFT) calculations im-plemented in the Dmol3 program [28] was applied for the slab calcu-lation. To accurately account for the van der Waals (vdW) interactions,self-consistent field (SCF) energies of the systems were corrected fordispersion forces using the DFT-D3 method developed by Grimme et al.[29] The Kohn-Sham equation was solved in a self-consistent mannerunder the generalized gradient approximation (GGA) [30]. The func-tional of GGA functionals is Perdew-Burke-Eruzerhof PBE [31] with theall-electron double numerical (DND) basis sets [32]. The Monkhorst-Pack k-meshes are set to 7×7×1 in the Brillouin zone and the nearestdistance between two adjacent layers is set to 18 Å. During the struc-tural relaxation, all the atoms were relaxed. The convergence criteriaapplied for geometry optimization were enforced to 10−5 au for energy,0.002 au/Å for force, and 0.005 Å for maximum displacement.

CoDT and RhDT 2D lattice structures were built by replacing the Niatoms of NiDT lattice structure with Co and Rh, respectively and thenoptimized with all atoms relaxed. To avoid unphysical interlayer in-teractions, the slabs were separated by a vacuum region of 18 Å. In thiswork, we calculated the adsorption energies according to the followingequation,

Eads=E (slab)+E (adsorbate)− E (slab+ adsorbate)

in which E (slab+ adsorbate), E (slab), and E(adsorbate) were the cal-culated electronic energies of species adsorbed on the sheets, the free-standing sheets, and the gas-phase molecules, respectively [33].

3. Results and discussion

3.1 Optimized lattice structure of CoDT and RhDT

The optimized 2D NiDT lattice structure was found to beL=14.76 Å, which was in good agreement with the experimental value(14–15 Å) [17]. After the replacement of Ni atoms with Co and Rhatoms, the optimized lattice structure with the lowest energy for 2DCoDT and RhDT was L=14.76 Å and 15.16 Å, respectively. The opti-mized lattice structures of 2D NiDT, CoDT, RhDT were shown as Fig. 1.The dashed gray diamond denotes the unit cell in the calculations of theelectronic properties. The structural, energetic, electronic and magneticeffects of absorbed oxygen molecules on CoDT and RhDT 2D surfacewere investigated.

3.2 O2 molecules adsorption at CoDT unit cell sheet

The optimized top and side views structures of CoDT surface withdifferent number (n=1, 2, 3 and 6) of adsorption oxygen molecules

were shown in Fig. 2. The geometric parameters, band gaps and mag-netic moments were listed in Table 1. The distance between Co and theadsorbed O atom is dCo-O, ΔdO–O is the OeO bonds lengths of the ad-sorbed O2 and the free O2 molecule. It can be seen that the OeO bondsall have been stretched about 0.03–0.05 Å compared to the free O2

system of 1.225 Å. Δd is the displacement of the metal atoms from themean benzene plane due to the relaxation of the atoms. The angle ofCoeOeO is ∠CoeOeO, and Eads is the adsorption energy per oneoxygen molecule adsorbed on the surface, which is defined as Eads =(ECoDT+nEO2− ECoDT(O2))/n. The spin states of O2 molecules wereconsidered during the calculation. It can be seen from Fig. 2 that all ofthe O2 molecules were chemically adsorbed on CoDT surface with theCoeO bond length of about 2 Å. The CoeO distances of one or three O2

molecules adsorption on one side of the 2D CoDT surface is about 1.9 Å,which is shorter 0.2 Å than that of 2 or 6 O2 molecules adsorption onboth sides of the surface symmetrically. The displacement of the Coatoms from the mean benzene plane of CoDT(O2) is 0.339 Å, which isbigger than others. When there were two and six O2 molecules ad-sorption on the surface, Δd is negative with the same spin states oxygencompare to the O2 molecules with opposite spin states. The ∠CoeOeOis also smaller with opposite spin states adsorption oxygen than that ofthe same spin states of about 120°. The adsorption energy per one O2

molecule for CoDT(O2), CoDT(2O2), CoDT(3O2) and CoDT(6O2) sheetsystem is 15.3, 9.5, 11.7 and 8.1 kCal/mol, respectively. For the op-posite spin states of O2 molecules of CoDT(2O2) and CoDT(6O2), theadsorption energy is 9.4 and 3.1 kCal/mol respectively, which issmaller than the same spin states of 9.5 and 8.1 kCal/mol. It was clearthat oxygen molecules were likely to absorb with the same spin states. Itconcluded that the energetic predominant adsorption states of nO2

(n= 2, 6) molecules was that all oxygen molecules were the same spinstates, which would be focused on in the discussion.

The adsorption of O2 changed the magnetic configurations obviouswith the magnetic moments listed in Table 1. The free-standing CoDTfilm are ferromagnetic with the magnetic moment of 2.9 μB per unitcell, consistent with Sarkar’s report [23], which means that 1.0 μB perCo atom. The magnetic moment of the CoDT system is localized aroundthe Co atoms, confirming that the ferromagnetism mainly arises fromthe one unpaired electron in the Co d orbital due to the dsp2 hy-bridization of Co metal atoms. The magnetic configurations of Co atomsdisplay various changes in terms of the number of adsorbed O2 mole-cules. When one oxygen molecule adsorbed on the Co atom, the mag-netic moment of the Co decreased to be 0.2 μB with others almost 1.0 μB,and it was 0.3 μB when there were 2O2 molecules with up spin statesadsorbed on the same Co atom with other 2Co atoms 1.0 μB. If the twoO2 molecules with opposite spin states adsorbed on the same Co atom,the magnetic moment would decreased to be 0.0 μB. The magneticmoments of all 3Co atoms decreased to be 0.3 μB when 3O2 moleculesabsorbed on 3Co atoms respectively. The magnetic moments of Coatoms decreased to be 0.2, 0.3 and 0.2 μB respectively when 6O2 mo-lecules absorbed on with the same spin states and to be 0.0 with three3O2 molecules up spin states and other 3O2 molecules down spin stateson the other side of the CoDT sheet. The interesting changes in themagnetic moments configurations encourage us to investigate theelectronic properties of O2 adsorbed CoDT films.

The electronic band structures along the GKM direction of the of theCoDT unit cell sheet Brillouin Zone with different number of O2 mo-lecules adsorption are shown as in Fig. 3. The chemisorptions of O2 onthe CoDT surface lead to a transition from the semiconducting state tothe metallic state. The band gap of the free-standing CoDT was0.218 eV, which is the same as references [15,16]. And it decreases to0.109 eV when there was one O2 molecule adsorbed on the surface. Theband gap decreased to be 0.054 eV when there were two oxygen mo-lecules adsorption with up spin states. It became to be metallic whenthere were 3O2 and 6O2 adsorption. The orbitals of O2 molecule, CoDTsurface and CoDT(O2) are shown as Fig. 3(a). It was clear that the π*

orbital of O2 hybridized strongly with the dxz/dyz orbital of CoDT film,

M. Ruan, et al. Chemical Physics Letters 731 (2019) 136581

2

Page 19: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

which induced a charge transfer from the O2 molecule to the na-nosheets, resluting in an upward shift of the Fermi level shown asFig. 3(b)–(f). It meant that the electronic characteristic of CoDT surfacecan be controlled by the number of chemically adsorbed O2 molecules.

3.3 O2 molecules adsorption at RhDT unit cell sheet

Geometric parameters, band gaps and magnetic moments of the O2-adsorbed nanosheets were listed in Table 2. There were two modes ofO2 molecule adsorption on RhDT unit cell sheet. One was that only oneO atom chemically adsorbed with Rh atom to form OeRh bond shownin Fig. 4(a), and the other was both of the two O atoms of O2 moleculeto form chemical bond with the same Rh atom shown in Fig. 4(b). Thesurface deformed dramatically of the second mode with the differenceof OeO bond with 0.099 Å compared with the free O2 molecule, and thedifferences of other modes were about 0.03 Å. The RheOeO angle was118.6° of the single RheO bond surface and it was 71.4° whose O2 wasalmost parrallel with the surface.

The binding energy of the first mode was 14.2 kCal/mol, and it wasonly 0.1 kCal/mol, which meant that the second mode was unstable. Itwas 10.8 kCal/mol per one O2 molecule when two O2 molecules ad-sorbed on RhDT surface with up states, and it was 8.6 kCal/mol when

the two O2 molecules with opposite spin states. The binding energy of3O2 adsorption on RhDT surface was 12.8 kCal/mol. The binding en-ergy was 10.6 kCal/mol when 6O2 with up spin states and was 8.6kCal/mol with opposite states. From the binding energy, it was clearthat oxygen molecules were more likely absorbed on the RhDT sheetwith the first adsorption mode with up spin states.

The magnetic moment of the free-standing RhDT sheet was only 0.0μB per Rh atom, which was much smaller than that of CoDT of 1.0 μB.The magnetic moment was unchanged when one O2 molecule adsorbedon. The magnetic moments of Rh atom increased to be 0.1 μB with twoO2 molecules adsorbed on with other two Rh atoms were 0.0 μB. Whenthere were 3O2 or 6O2 adsorbed on Rh atoms, the magnetic momentsincreased to be 0.1 μB for all of the Rh atoms. It was clear that themagnetic characteristic of the RhDT surface can also be controlled bythe number of chemically adsorbed O2 molecules.

The electronic band gap was 0.101 eV for the free-standing RhDTsurface, which was about half of the free-standing CoDT surface. Whenthere was one O2 molecule adsorbed on the sheet, the band gap de-creased dramatically to be 0.001 eV, and it was metallic when therewere more than two O2 molecules adsorbed on the surface. The orbitalof O2 molecule, RhDT surface and RhDT(O2) are shown as Fig. 5(a). Italso due to the orbital hybridization between O2 and the Rh d orbitals

Fig. 1. Optimized 2D lattice structure of (a) NiDT, (b) CoDT and (c) RhDT. Carbon, Sulfur, Nickel, Cobalt and Rhodium atoms are in grey, yellow, blue, purple andorange, respectively. The dashed gray diamond denotes the unit cell in the calculations. (For interpretation of the references to colour in this figure legend, the readeris referred to the web version of this article.)

Fig. 2. Top and side views of the optimized structures with different number of O2 molecules adsorption on CoDT unit cell surface. (a) 1O2, (b) 2O2, (c) 3O2, (d) 6O2.

Table 1Geometric parameters, band gaps and magnetic spin moments of the O2-adsorbed nanosheets. DCo–O is the distance between the metal atoms and the adsorbed Oatom, ΔdO–O is the difference between the OeO bonds length for the adsorbed and free O2 molecule, Δd is the displacement of the metal atoms from the meanbenzene plane, and the angle of CoeOeO, and the adsorption energy Eads are given. Eads is the adsorption energy per O2 molecule adsorbed on the surface, which isdefined as Eads = (ECoDT+ nEO2 − ECoDT(O2))/n (n= 1, 2, 3, 6).

Substrates dCo–O (Å) ΔdO–O (Å) Δd (Å) ∠CoeOeO (°) Eads (kCal/mol) Magnetic spin moment per Co atom (μB) Band gap (eV)

CoDT 1.0, 1.0, 1.0 0.218CoDT(O2) 1.909 0.038 0.339 119.0 15.3 0.2, 1.1, 1.0 0.109CoDT(2O2) 2.096 0.027 0.071 120.1 9.5 0.3, 1.0, 1.0 0.054CoDT(2O2)updown 1.963 0.054 −0.003 110.5 9.4 0.0, 1.1, 1.1 0.136CoDT(3O2) 1.919 0.037 0.098 118.9 11.7 0.3, 0.3, 0.3 MetallicCoDT(6O2) 2.075 0.029 0.032 119.7 8.1 0.2, 0.3, 0.2 MetallicCoDT(6O2) updown 2.056 0.033 −0.123 113.8 3.1 0.0, 0.0, 0.0 Metallic

M. Ruan, et al. Chemical Physics Letters 731 (2019) 136581

3

Page 20: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

Fig. 3. (a) Orbitals of O2, CoDT and CoDT(O2). The band gap structures along the GKM direction of the of CoDT unit cell surface Brillouin Zone with different numberof O2 molecules with up spin states adsorbed on. (b) free-standing sheet; (c) 1O2; (d) 2O2; (e) 3O2; (f) 6O2. Fermi level is marked by a thin green line. The black andred line corresponds to the band gap structures of alfa (spin up) and beta (spin down) electrons, respectively. (For interpretation of the references to colour in thisfigure legend, the reader is referred to the web version of this article.)

Table 2Geometric parameters, band gaps and magnetic spin moments of the O2-absorbed nanosheets. DRh–O is the distance between the metal atoms and the adsorbed Oatom, dO–O is the OeO bond length of the adsorbed O2 molecule, Δd is the displacement of the metal atoms from the mean benzene plane, and the angle of RheOeO,and the adsorption energy Eads are given. Eads is the adsorption energy per O2 molecule adsorbed on the surface, which is defined as Eads = (ERhDT+ nEO2 −ERhDT(O2))/n (n= 1, 2, 3, 6).

Substrates dRh–O (Å) ΔdO–O (Å) Δd (Å) ∠RheOeO (°) Eads (kCal/mol) Magnetic spin moment (μB) Band gap (eV)

RhDT 0.0, 0.0, 0.0 0.101RhDT(O2) 2.068 0.032 0.266 118.6 14.2 0.0, 0.0, 0.0 0.001RhDT(=O2) 2.097 0.099 0.637 71.4 0.1 0.0, 0.0, 0.0 0.163RhDT(2O2) 2.180 0.028 0.050 119.1 10.8 0.1, 0.0, 0.0 MetallicRhDT(2O2) updown 2.174 0.034 0.034 119.0 8.6 0.0, 0.0, 0.0 MetallicRhDT(3O2) 2.096 0.032 0.094 118.8 12.8 0.1, 0.1, 0.1 MetallicRhDT(6O2) 2.190 0.036 0.035 119.1 10.6 0.1, 0.1, 0.1 MetallicRhDT(6O2) updown 2.167 0.034 0.008 119.1 8.6 0.0, 0.0, 0.0 Metallic

(a) (b) (c) (d) (e)

Top

Side

Fig. 4. Optimized structures of O2 molecules with different spin states adsorbed on RhDT unit cell surface. (a) 1O2, (b) two O atoms of O2 double bond with Rh atom,(c) 2O2 with up spin states, (d) 3O2, (e) 6O2 with up states.

M. Ruan, et al. Chemical Physics Letters 731 (2019) 136581

4

Page 21: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

which can generates more electronic bands around Fermi level whichfacilitate electron transport leading to a dramatic conductivity en-hancement in the O2-adsorbed films. The band gap structures along theGKM direction of the of RhDT unit cell surface Brillouin Zone withdifferent O2 molecules adsorbed on were shown as in Fig. 5(b)–(f).

4. Conclusions

The influences of O2 molecules adsorption on the electric andmagnetic properties of CoDT and RhDT nanosheets were investigated.The results showed that O atom chemically bonded with Co/Rh atomwith the bond length of about 2 Å. The binding energy per O2 moleculewas the biggest of 15.2 and 14.2 kCal/mol with only one O2 moleculeadsorbed on CoDT and RhDT films respectively. The smallest bindingenergy per O2 molecule was for 6O2 molecules adsorption, and it was8.1 and 10.6 kCal/mol for CoDT and RhDT film respectively. It wasferromagnetic of the free-standing CoDT sheet with 1.0 μB per Co atom.The magnetic moment of the Co atom decreased to be 0.2/0.3 μB whenthe Co atom bonded with O atom of the O2 molecules adsorbed on. Thefree-standing RhDT is a non-magnetic system, but the adsorption of O2

molecules can induce spin polarizations for the RhDT(O2) system withmagnetic moments of 0.1 μB per Rh atom. The band gap for the free-standing CoDT and RhDT surface was 0.218 and 0.101 eV, respectively.When there was one O2 adsorbed on, the band gap decreased to be0.109 and 0.001 eV for CoDT and RhDT sheet respectively. The bandgap was narrowed to be 0.054 eV for CoDT and metallic for RhDT with2O2 adsorbed on. CoDT and RhDT were all metallic with 3O2 or 6O2

absorption. Our results reveal that their electronic and magneticproperties can be tuned by the adsorption of oxygen molecules, ren-dering a convenient approach of “oxygen doping/spintronics” at am-bient conditions.

Declaration of Competing Interest

The authors declared that there is no conflict of interest.

Acknowledgments

This work was financially supported by the National Natural ScienceFoundation of China (No. 51801058).

References

[1] A. Schoedel, M. Li, D. Li, M. O'Keeffe, O.M. Yaghi, Chem. Rev. 116 (2016) 12466.[2] J.A. Mason, M. Veenstra, J.R. Long, Chem. Sci. 5 (2014) 32.[3] J.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 112 (2011) 869.[4] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Chem.

Rev 112 (2012) 1105.[5] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, Science 341 (2013) 1230444.[6] O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature 423

(2003) 705.[7] L. Sun, M.G. Campbell, M. Dinca, Angew. Chem. 55 (2016) 3566.[8] V. Stavila, A.A. Talin, M.D. Allendorf, Chem. Soc. Rev. 43 (2014) 5994.[9] K.S. Novoselov, V.I. Fal, L.C. FalKo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490

(2012) 192.[10] X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 7

(2011) 1876.[11] S. Chen, J. Dai, X.C. Zeng, Phys. Chem. Chem. Phys. 17 (2015) 5954.[12] J. Cui, Z. Xu, Chem. Commun. 50 (2014) 3986.[13] M. Campbell, M. Dincă, Sensors 17 (2017) 1108.[14] D. Sheberla, J.C. Bachman, J.S. Elias, C.-J. Sun, Y. Shao-Horn, M. Dincă, Nat. Mater.

16 (2016) 220.[15] Z.F. Wang, N. Su, F. Liu, Nano Lett. 13 (2013) 2842.[16] H. Liu, X. Li, C. Shi, D. Wang, L. Chen, Y. He, J. Zhao, PCCP 20 (2018) 16939.[17] T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.H. Ryu, S. Sasaki,

J. Kim, K. Nakazato, M. Takata, H. Nishihara, J. Am. Chem. Soc. 135 (2013) 2462.[18] T. Kambe, R. Sakamoto, T. Kusamoto, T. Pal, N. Fukui, K. Hoshiko, T. Shimojima,

Z. Wang, T. Hirahara, K. Ishizaka, S. Hasegawa, F. Liu, H. Nishihara, J. Am. Chem.Soc. 136 (2014) 14357.

[19] M. Wu, Z. Wang, J. Liu, W. Li, H. Fu, L. Sun, X. Liu, M. Pan, H. Weng, M. Dincă,L. Fu, J. Li, 2D Materials 4 (2016) 015015.

[20] J.J. Adjizian, P. Briddon, B. Humbert, J.L. Duvail, P. Wagner, C. Adda, C. Ewels,

Fig. 5. (a) Orbitals of O2, RhDT and RhDT(O2). The band gap structures along the GKM direction of the of RhDT unit cell surface Brillouin Zone with different O2

molecules with up spin states adsorbed on. (b) free-standing sheet; (c) 1O2; (d) 2O2; (e) 3O2; (f) 6O2. Fermi level is marked by a thin green line. The black and red linecorresponds to the band gap structures of alfa (spin up) and beta (spin down) electrons, respectively. (For interpretation of the references to colour in this figurelegend, the reader is referred to the web version of this article.)

M. Ruan, et al. Chemical Physics Letters 731 (2019) 136581

5

Page 22: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

Nat. Commun. 5 (2014) 5842.[21] M.G. Campbell, D. Sheberla, S.F. Liu, T.M. Swager, M. Dincă, Angew. Chem. Int. Ed.

54 (2015) 4349.[22] M.-S. Yao, X.-J. Lv, Z.-H. Fu, W.-H. Li, W.-H. Deng, G.-D. Wu, G. Xu, Angew. Chem.

Int. Ed. 56 (2017) 16510.[23] C. Chakravarty, B. Mandal, P. Sarkar, J. Phys. Chem. C 120 (2016) 28307.[24] M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang,

L. Liao, F. Zhou, E. Perre, V. Ozolins, K. Suenaga, X. Duan, B. Dunn, Y. Yamamto,O. Terasaki, O.M. Yaghi, Chem. Mater. 24 (2012) 3511.

[25] H. Alves, D. Simão, I. Cordeiro Santos, V. Gama, R. Teives Henriques, H. Novais,

M. Almeida, Eur. J. Inorg. Chem. (2004, 2004,) 1318.[26] B. Zhao, J. Zhang, W. Feng, Y. Yao, Z. Yang, Phys. Rev. B 90 (2014) 201403.[27] Q. Zhou, J. Wang, T.S. Chwee, G. Wu, X. Wang, Q. Ye, J. Xu, S.-W. Yang, Nanoscale

7 (2015) 727.[28] B. Delley, J. Chem. Phys. 113 (2000) 7756.[29] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104.[30] J. White, D. Bird, Phys. Rev. B 50 (1994) 4954.[31] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.[32] A.D. Becke, J. Chem. Phys. 88 (1988) 2547.[33] M. Ruan, H. Hou, W. Li, B. Wang, J. Phys. Chem. C 118 (2014) 20889.

M. Ruan, et al. Chemical Physics Letters 731 (2019) 136581

6

Page 23: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

Computational and Theoretical Chemistry 1130 (2018) 63–67

Contents lists available at ScienceDirect

Computational and Theoretical Chemistry

journal homepage: www.elsevier .com/locate /comptc

H proton intramolecular transformation in OH-OO�-isoprene radicals

https://doi.org/10.1016/j.comptc.2018.03.0062210-271X/� 2018 Elsevier B.V. All rights reserved.

⇑ Corresponding authors.E-mail addresses: [email protected] (M. Ruan), [email protected] (H. Hou),

[email protected] (W. Li), [email protected] (X. Zuo), [email protected](Y. Chen), [email protected] (B. Wang), [email protected] (X. Deng).

Min Ruan a, Hua Hou b, Wen Li a, Xiaohua Zuo a, Yue Chen a, Baoshan Wang b,⇑,Xiangyi Deng a,⇑a Institute of Materials Science and Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, ChinabCollege of Chemistry and Molecular Sciences, Wuhan Universtiy, Wuhan, China

a r t i c l e i n f o

Article history:Received 3 January 2018Received in revised form 24 February 2018Accepted 8 March 2018Available online 9 March 2018

Keywords:OH-OO�-isoprene radicalIntramolecular transformationAb initioCalculation

a b s t r a c t

In this study, ab initio calculations have been performed to investigate the H proton intramolecular trans-formation in OH-OO�-isoprene radicals. Geometry optimizations and transition states were performedusing density functional theory at the UB3LYP/6–31+G⁄⁄ and M06-2X/6-311++G⁄⁄ level. It was found thatthe migration H atoms was all from the hydroxy-H in the predominant energetic route of 1-OH-2-OO�-isoprene and 4-OH-3-OO�-isoprene radicals with the energy barrier of 17.7 and 17.0 kcal/mol at theUB3LYP/6-31+G⁄⁄ level, respectively. The migration H atoms were all from the CH2 groups next tohydroxy of Z-1-OH-4-OO�-isoprene and Z-4-OH-1-OO�-isoprene radicals in the energetic predominantroutes with the energy barrier of 14.9 and 25.9 kcal/mol at the UB3LYP/6-31+G⁄⁄ level, respectively, thenthe intermediates overcome 7.7 and 7.2 kcal/mol to react with O2 molecule to regenerate HO2.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

Approximately 80% of our air pollution stems from hydrocar-bons released by vegetation [1]. Isoprene (2-methyl-1,3-butadiene, CH2@C(CH3)ACH@CH2) is the most abundant hydrocar-bons emitted by the terrestrial biosphere during the daylight hourswith a global average production rate of �550 Tg C yr�1 [2,3]whose annual emission is about half of the total Biogenic VolatileOrganic Compounds (BVOC) emissions [4,5], and is comparableto the total emission of methane from all sources [6].

The atmospheric degradation of isoprene occurs via a multi-step chemical process and is initiated by an attack from OH radical,O3, or NO3 radical [7,8]. The dominant pathway is the additionreaction of OH to the carbon–carbon double bonds, yielding a ther-modynamically favored hydroxyalkyl radicals [9,10], which fol-lowed by the reaction with oxygen molecules to fromhydroxyalkyl peroxy radicals under atmospheric conditions [11].Peroxy species are key intermediates in chemical reactions in bothcombustion and troposphere [12].

The trans- structure of isoprene is the more stable dominantconformer, however, the OH-addition reaction of isoprene releases38 kcal/mol, which makes the interconvert of trans- andcis-hydroxyisoprene radical more easily with barriers of only

14–15 kcal/mol [13]. North et al. calculated the high-pressure rateconstants for hydroxyisoprene radical formation with RRKM/MEmethod and found that the 1-OH, 2-OH, 3-OH and 4-OH branchingratio of hydroxyisoprene radical is 56%, 2.3%, 4.6% and 37%, respec-tively [14]. The relative energy of OH-addition reaction of isopreneis 34.8, 24.2, 22.3, 32.3 kcal/mol, respectively, at the level of CCSD(T)/6-311G⁄⁄//B3LYP/6-31G⁄⁄ [9] and 37.9, 25.6, 24.2, 35.4 kcal/mol at level of PMP4W/6-311G⁄⁄//MP2/6-311G⁄⁄ [15].

In this work, only the 1-OH and 4-OH two major adducts areconsidered as the initial structure to form OH-perroxy-isopreneradicals, and their resulting peroxys denoted as, E-1-OH-4-OO�-isoprene, Z-1-OH-4-OO�-isoprene, 1-OH-2-OO�-isoprene, E-4-OH-1-OO�-isoprene, Z-4-OH-1-OO�-isoprene and 4-OH-3-OO�-isoprene. For instance, Z-1-OH-4-OO�-isopreneis for the4-peroxyradical from Z-1-OH-isoprene. The H proton transforma-tion mechanism in the oxidation of OH-peroxy-isoprene wasinvestigated using density functional theory.

2. Methodologies

All minima and transition states discussed here were calculatedusing UB3LYP density functional theory for geometries, vibrationalfrequencies and energies, combined with 6-31+G⁄⁄ basis sets. Theconclusions were verified at the calculated level of M06-2X/6-311++G⁄⁄ [16]. All quantum chemical calculations were performedusing the Guassian program suite [17]. Vibrational frequency cal-culations were also performed at the same level in order to obtainzero point correction energies.

Page 24: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

OOOOOH

OO

HO

E-1-OH-4-OO 1-OH-2-OO Z-1-OH-4-OO

HO

OH

OO OHHOOO

OO

E-4-OH-1-OO 4-OH-3-OO Z-4-OH-1-OO

Fig. 1. Six kinds of OH-peroxy-isoprene radicals.

64 M. Ruan et al. / Computational and Theoretical Chemistry 1130 (2018) 63–67

3. The initial OH-peroxy-isoprene radicals

The OH-peroxy-isoprene radicals derived from 1-OH and 4-OHtwo major adducts are considered as the initial structures in thiswork, and they are denoted as E-1-OH-4-OO�-isoprene, Z-1-OH-4-OO�-isoprene, 1-OH-2-OO�-isoprene, E-4-OH-1-OO�-isoprene,Z-4-OH-1-OO�-isoprene and 4-OH-3-OO�-isoprene, respectively asshown in Fig. 1. Between the six kinds of OH-peroxy-isopreneradicals, when OH and peroxy radicals are located on the adjacentcarbons as in 1-OH-2-OO�-isoprene and 4-OH-3-OO�-isoprene, theyare named b-OH-peroxy-isoprene radicals with stabilizationenergies of �50.4 and �51.0 kcal/mol respectively. As d-OH-peroxy-isoprene radicals, E-1-OH-4-OO�-isoprene, Z-1-OH-4-OO�-isoprene, E-4-OH-1-OO�-isoprene and Z-4-OH-1-OO�-isoprene havethe stabilization energies of �46.5, �50.5, �46.0 and �49.6 kcal/mol, respectively. From the stabilization energies of d-OH-peroxy-isoprene radicals, it can be seen that the cis-conformationof Z-1-OH-4-OO�-isoprene and Z-4-OH-1-OO�-isoprene are about4 kcal/mol lower than the -trans of E-1-OH-4-OO�-isoprene andE-4-OH-1-OO�-isoprene is more stable than the trans. Only the-cis conformations are considered in the H regeneration reactions.

Fig. 2. Predominant energetic route at B3LYP/6-31+G** level

4. Hydrogen regeneration of OH-OO-isoprene radicals

Fig. S1 shows the migration H sites of each route for the OHregeneration of OH-peroxy-isoprene radicals, and all of the H pro-ton transformation routes of OH-OO�-isoprene radicals are shownin Figs. S2–S5. The relative energies and Gibbs free energies ofthe reactants, transition states, intermediates and products of theH proton transformation in the oxidation of OH-peroxy-isopreneradicals at B3LYP/6-31+G⁄⁄ level are listed in Table S1. It can beseen from Figs. S2–S5 and Table S1 that the predominant energeticroutes of the H proton transformation for 1-OH-2-OO�-isoprene,4-OH-3-OO�-isoprene, Z-1-OH-4-OO�-isoprene and Z-4-OH-1-OO�-isoprene radicals are from the reactants of R1512, R1543, R1614and R1641, respectively. We performed the calculations of theOH transformation for 1-OH-2-OO�-isoprene and Z-1-OH-4-OO�-isoprene with M06-2X/6-311++G⁄⁄ calculated level, and the routesare shown as Figs. S6 and S7 respectively. The electronic energiesand Gibbs free energies of the stationary points are listed inTable S2 and it can be seen that the predominant energetic routesis the same as at B3LYP/6-31+G⁄⁄ level. The geometries of station-ary points for the OH regeneration of 1-OH-2-OO�-isoprene andZ-1-OH-4-OO�-isoprene radicals with both methods are listedin Fig. S8, and the geometries of the predominant energeticroutes are listed in Fig. 6. The predominant energetic routes atB3LYP/6-31+G⁄⁄ level are shown in Figs. 2–5 for 1-OH-2-OO�-isoprene, 4-OH-3-OO�-isoprene, Z-1-OH-4-OO�- isoprene andZ-4-OH-1-OO� - isoprene radicals, respectively.

Fig. 2 shows the predominant energetic route at B3LYP/6-31+G⁄⁄ level of the H proton transformation route of1-OH-2-OO�-isoprene. The migration of the hydroxy-H to the per-oxy radical site leads to the elimination formaldehyde [18] andan a-OOH alkyl radical which have been shown to be thermally unsta-ble [19] and eliminate an methylvinylketone (MVK) and an OH radicalwithout barrier. The energy of this transition state is 17.7 and22.4 kcal/mol for B3LYP/6-31+G⁄⁄ and M06-2X/6-311++G⁄⁄ levelrespectively compared to the R12 reactant. The bond between themigration H atom and hydroxy oxygen is 1.35 and 1.31 Å and that is1.09 and 1.10 Å between H with peroxy oxygen atom forB3LYP/6-31+G⁄⁄ and M06-2X/6-311++G⁄⁄ level respectively.

for the OH generation of 1-OH-2-OO�-isoprene radical.

Page 25: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

Fig. 3. Predominant energetic route at B3LYP/6-31+G** level for the OH regeneration of 4-OH-3-OO�-isoprene radical.

Fig. 4. Predominant energetic route at B3LYP/6-31+G** level for the OH regeneration of Z-1-OH-4-OO�-isoprene radical.

M. Ruan et al. / Computational and Theoretical Chemistry 1130 (2018) 63–67 65

Fig. 3 shows the predominant energetic route of the H protontransformation route of 4-OH-3-OO�-isoprene at B3LYP/6-31+G⁄⁄

level. The migration of the hydroxy-H to the peroxy radical siteleads to the elimination formaldehyde and an a-OOH alkyl radicalwhich have been shown to be thermally unstable and eliminate anmethacrolein (MACR) and an OH radical with a very low barrier.Structure - activity relationship (SAR) predictions on the alkoxyradical decomposition indicates a very low barrier of 1.8 kcal/molor less for this step [20]. The energy of this transition state is17.0 kcal/mol compared to the R43 reactant, and the bond betweenthe migration H atom and hydroxy oxygen is 1.33 Å and that is1.10 Å between H with peroxy oxygen atom.

For the predominant energetic route of H proton transformationof Z-1-OH-4-OO�-isoprene at B3LYP/6-31+G⁄⁄ level, the migration

H atom is from CH2 next to hydroxy O. The energy of this transitionstate is 14.9 and 17.6 kcal/mol for B3LYP/6-31+G⁄⁄ and M06-2X/6-311++G⁄⁄ level respectively compared to the R14 reactant, and thebond between the migration H atom and CH2 carbon atom is 1.31 Åand that is 1.25 Å between the H atom and the peroxy oxygenatom. The two bonds are 1.28 and 1.27 Å at M06-2X/6-311++G⁄⁄

level. The energy of the intermediate of HOACHAC(CH3)ACH2-ACH2AOOH is �6.5 kcal/mol, then O2 molecule reacts with it over-coming the energy barrier of 7.7 kcal/mol to generate HO2 andO@CHAC(CH3)ACH2ACH2AOOH with energy of �13.5 kcal/mol.

For the predominant energetic route of H proton transformationof Z-4-OH-1-OO�-isoprene, the migration H atom is also from CH2

next to hydroxy O. The energy of this transition state is 25.9 kcal/mol compared to the R41 reactant, and the bond between the

Page 26: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

Fig. 6. The geometries of stationary points for the OH regeneration of the predominant energetic routes of 1-OH-2-OO�-isoprene and Z-1-OH-4-OO�-isoprene radicals. Bonddistances are in angstroms, and angles are in degrees. The data of the first and second line are at B3LYP/6-31+G** and M06-2X/6-311++G** level respectively.

Fig. 5. Predominant energetic route at B3LYP/6-31+G** level for the OH regeneration of Z-4-OH-1-OO�-isoprene radical.

66 M. Ruan et al. / Computational and Theoretical Chemistry 1130 (2018) 63–67

migration H atom and CH2 carbon atom is 1.31 Å and that is 1.27 Åbetween the H atom and the peroxy oxygen atom. The energy ofthe intermediate of HOACHACH2AC(CH3)ACH2AOOH is�6.7 kcal/mol, then O2 molecule reacts with it overcoming theenergy barrier of 7.2 kcal/mol to generate HO2 and O@CHACH2AC(CH3)ACH2AOOH with energy of -15.0 kcal/mol.

5. Conclusions

In this study, the H migration of the most stable OH-OO�-isoprene radicals, that is, 1-OH-2-OO�-isoprene, 4-OH-3-OO�-isoprene, Z-1-OH-4-OO�- isoprene and Z-4-OH-1-OO�-isoprene

radicals are calculated theoretically. The results show that thepredominant energetic routes for 1-OH-2-OO�-isoprene and4-OH-3-OO�-isoprene radicals are 1512 and 1543, respectively.The migration H atoms are all from the hydroxy-H leading to thedirect formation of OH + CH2O+MVK and OH + CH2O+MACR, withthe energy barrier of 17.7 and 17.0 kcal/mol, respectively. For Z-1-OH-4-OO�- isoprene and Z-4-OH-1-OO�-isoprene radicals, thepredominant energetic route are 1614 and 1641, respectively.The migration H atom is from the CH2 group that next to hydroxywith the energy barrier of 14.9 and 25.9 kcal/mol and the interme-diate of HOACHAC(CH3)ACH2ACH2AOOH and HOACHACH2AC(CH3)ACH2AOOH with energy of �6.5 and �6.7 kcal/mol, respec-

Page 27: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

M. Ruan et al. / Computational and Theoretical Chemistry 1130 (2018) 63–67 67

tively. Then O2 molecule reacts with intermediates with the energybarrier of 7.7 and 7.2 kcal/mol to generate HO2+O@CHAC(CH3)ACH2ACH2AOOH and HO2+O@CHACH2AC(CH3)ACH2AOOH withenergy of �13.5 and �15.0 kcal/mol, respectively.

Acknowledgements

This work was financially supported by the Science-TechnologyInnovative Research Team for Excellent Middile-aged and YoungScientist in Higher Education Institutions of Hubei Province ofChina (T201423, T201626) and NSFC (51372077).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, inthe online version, at https://doi.org/10.1016/j.comptc.2018.03.006. These data include MOL files and InChiKeys of the mostimportant compounds described in this article.

References

[1] C. Pope, The candidates and the issues, Sierra 65 (1980) 15–17.[2] M. Madronich, A. Harte, G. Schade, Effects of drought stress and ozone

exposure on isoprene emissions from oak seedlings in texas, in: AGU FallMeeting Abstracts, 2014, p. 3290.

[3] A. Mellouki, T.J. Wallington, J. Chen, Atmospheric chemistry of oxygenatedvolatile organic compounds: impacts on air quality and climate, Chem. Rev.115 (2015) 3984–4014.

[4] C. Calfapietra, S. Fares, F. Manes, A. Morani, G. Sgrigna, F. Loreto, Role ofbiogenic volatile organic compounds (BVOC) emitted by urban trees on ozoneconcentration in cities: a review, Environ. Pollut. 183 (2013) 71–80.

[5] L. Su, E.G. Patton, J. Vilà-Guerau de Arellano, A.B. Guenther, L. Kaser, B. Yuan, F.Xiong, P.B. Shepson, L. Zhang, D.O. Miller, W.H. Brune, K. Baumann, E. Edgerton,A. Weinheimer, P.K. Misztal, J.-H. Park, A.H. Goldstein, K.M. Skog, F.N. Keutsch,J.E. Mak, Understanding isoprene photooxidation using observations andmodeling over a subtropical forest in the southeastern US, Atmos. Chem. Phys.16 (2016) 7725–7741.

[6] T.D. Sharkey, A.E. Wiberley, A.R. Donohue, Isoprene emission from plants: whyand how, Ann. Bot. 101 (2008) 5–18.

[7] N.L. Ng, S.S. Brown, A.T. Archibald, E. Atlas, R.C. Cohen, J.N. Crowley, D.A. Day,N.M. Donahue, J.L. Fry, H. Fuchs, R.J. Griffin, M.I. Guzman, H. Herrmann, A.Hodzic, Y. Iinuma, J.L. Jimenez, A. Kiendler-Scharr, B.H. Lee, D.J. Luecken, J. Mao,R. McLaren, A. Mutzel, H.D. Osthoff, B. Ouyang, B. Picquet-Varrault, U. Platt, H.O.T. Pye, Y. Rudich, R.H. Schwantes, M. Shiraiwa, J. Stutz, J.A. Thornton, A.Tilgner, B.J. Williams, R.A. Zaveri, Nitrate radicals and biogenic volatile organiccompounds: oxidation, mechanisms, and organic aerosol, Atmos. Chem. Phys.17 (2017) 2103–2162.

[8] K.C. Barsanti, J.H. Kroll, J.A. Thornton, Formation of low-volatility organiccompounds in the atmosphere: recent advancements and insights, J. Phys.Chem. Lett. 8 (2017) 1503–1511.

[9] W. Lei, A. Derecskei-Kovacs, R. Zhang, Ab initio study of OH addition reactionto isoprene, J. Chem. Phys. 113 (2000) 5354–5360.

[10] R.F. Hansen, T.R. Lewis, L. Graham, L.K. Whalley, P.W. Seakins, D.E. Heard, M.A.Blitz, OH production from the photolysis of isoprene-derived peroxy radicals:cross-sections, quantum yields and atmospheric implications, Phys. Chem.Chem. Phys. 19 (2017) 2332–2345.

[11] W. Lei, R. Zhang, W.S. McGivern, A. Derecskei-Kovacs, S.W. North, Theoreticalstudy of OH-O2-isoprene peroxy radicals, J. Phys. Chem. A 105 (2001) 471–477.

[12] K.T. Kuwata, Computational treatments of peroxy radicals in combustion andatmospheric reactions, Patai’s Chemistry of Functional Groups, 2014.

[13] J. Peeters, T.L. Nguyen, L. Vereecken, HOx radical regeneration in the oxidationof isoprene, Phys. Chem. Chem. Phys. 11 (2009) 5935–5939.

[14] W.S. McGivern, I. Suh, A.D. Clinkenbeard, R. Zhang, S.W. North, Experimentaland computational study of the OH-isoprene reaction: isomeric branching andlow-pressure behavior, J. Phys. Chem. A 104 (2000) 6609–6616.

[15] P.S. Stevens, E. Seymour, Z. Li, Theoretical and experimental studies of thereaction of OH with isoprene, J. Phys. Chem. A 104 (2000) 5989–5997.

[16] Y. Zhao, D.G. Truhlar, Comparative DFT Study of van der Waals complexes:rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers, J.Phys. Chem. A 110 (2006) 5121–5129.

[17] M. Frisch, G. Trucks, H.B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G.Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision A. 02,Gaussian Inc, Wallingford, CT, 200, 2009.

[18] G.M. Wolfe, J. Kaiser, T.F. Hanisco, F.N. Keutsch, J.A. de Gouw, J.B. Gilman, M.Graus, C.D. Hatch, J. Holloway, L.W. Horowitz, B.H. Lee, B.M. Lerner, F. Lopez-Hilifiker, J. Mao, M.R. Marvin, J. Peischl, I.B. Pollack, J.M. Roberts, T.B. Ryerson, J.A. Thornton, P.R. Veres, C. Warneke, Formaldehyde production from isopreneoxidation across NOx regimes, Atmos. Chem. Phys. 16 (2016) 2597–2610.

[19] L. Vereecken, T.L. Nguyen, I. Hermans, J. Peeters, Computational study of thestability of a-hydroperoxyl- or a-alkylperoxyl substituted alkyl radicals,Chem. Phys. Lett. 393 (2004) 432–436.

[20] J. Peeters, W. Boullart, V. Pultau, S. Vandenberk, L. Vereecken,Structure�activity relationship for the addition of OH to (poly)alkenes: site-specific and total rate constants, J. Phys. Chem. A 111 (2007) 1618–1631.

Page 28: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

湖理工发〔2019〕96 号

关于公布校级重点学科、校级重点(培育)学科、

重点学科建设点评审结果的通知

为深入贯彻落实国务院《关于统筹推进世界一流大学和

一流学科建设总体方案》和湖北省人民政府《湖北省推进一

流大学和一流学科建设实施办法的通知》精神,进一步完善

我校学科建设与科研工作管理,落实相关政策,明确建设目

标,提升学科建设和科研工作水平,推动我校育人质量和办

学层次再上新台阶,努力把我校建设成为“高水平、应用型”

大学,我校组织了新一轮的学科申报与评审,现将评审结果

予以公布。

请各有关部门以此为契机,认真做好学科规划,凝聚学

科优势与特色,强化学科内涵发展,进一步加强重点学科建

Page 29: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

设,为提高我校核心竞争力,促进区域经济建设与社会发展

做出积极贡献。

特此通知。

附件:1、湖北理工学院校级重点学科名单

2、湖北理工学院校级重点(培育)学科名单

3、湖北理工学院校级重点学科建设点名单

湖北理工学院

2019 年 10 月 16 日

湖北理工学院办公室 2019年 10月 16日印发

Page 30: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

附件 1:

湖北理工学院校级重点学科名单

学科代码 学科名称 学科门类 所属部门 负责人

0814 土木工程 工学 土木建筑工程学院 程 涛

0808 电气工程 工学 电气与电子信息工程学院 胡国珍

1202 工商管理 管理学 经济与管理学院 戴 伟

0805 材料科学与工程 工学 材料科学与工程学院 陈 跃

0812 计算机科学与技术 工学 计算机学院 刘志远

0501 中国语言文学 文学 师范学院 李社教

0817 化学工程与技术 工学 化学与化工学院 卢小菊

Page 31: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

附件 2 :

湖北理工学院校级重点(培育)学科名单

学科代码 学科名称 学科门类 所属部门 负责人

0403 体育学 教育学 体育部 吴新炎

0305 马克思主义理论 法学 马克思主义学院 余国政

1305 设计学 艺术学 艺术学院 余卫华

Page 32: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

附件 3 :

湖北理工学院校级重点学科建设点名单

学科代码 学科名称 学科门类 所属部门 负责人

0702 物理学 理学 数理学院 余宏生

0502 外国语言文学 文学 外国语学院 张 健

1001 基础医学 医学 医学院 苏振宏

Page 33: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

湖北理工学院

校级重点学科建设申报表

申请学科名称: 材料科学与工程

申请建设层次: 校级重点学科(重点)

学科带头人: 陈 跃

带头人所在学院: 材料科学与工程

湖北理工学院学科建设办公室制

填表日期: 2019 年 10 月 10 日

Page 34: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

填 表 说 明

1. 申请学科名称必须按照《授予博士、硕士学位和培养研究生的学科、专业

目录》中的一级学科名称填写,可校内多学院联合申请。研究方向名称由申请学

院的学术委员会根据学科内涵讨论确定,字数不超过 10 个。

2. 湖北理工学院重点学科学科建设层次暂分为省级重点学科(群)(特色、

培育)、校级重点学科(重点、培育、建设点)。

3. 所统计的科研成果数据应确属本申请学科。所填报各项内容的统计时间均

为 2016 年 10 月 1 日至 2019 年 9 月 30 日。

4. 科研项目经费必须是到账经费,对于涉及多个学科的科研项目,请按实际

经费使用情况在各学科之间分配,不应在不同学科或研究方向中重复计算。

5. 发表论文或被索引收录论文均只计算第一作者,及第一作者为研究生且通

讯作者为导师的论文。出版学术专著、译著(著或编著)、教材,需注明作者排名。

6. 所有科研成果获奖均不重复计算,只取最高级别的奖励进行统计,如某项

成果既获得国家级二等奖,又获得省部级一等奖,则只计国家级二等奖,不计省

部级一等奖。

7. A4 规格正反面打印。

Page 35: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

1

I 学科人员配备基本情况

I-1 申请学科带头人基本情况

学科带头人

姓名 陈 跃 所在院部 材料科学与工程

职称 教授

满足基本

条件

其中校级重点学科(含培育)带头人还必须获

得过省级以上科技、教学奖励或主持过国家社

科、自科基金项目 1 项或主持过省级社科、自

科基金项目 2 项或在省级以上学术机构任常务

理事以上职务。

学历/学位 博士研究生

行政职务 院长

I-2 申请学科团队现有人员结构

专业技术职务 人数小计 35 岁以下 36 至 55 岁 56 岁以上

教授 4 0 3 1

副教授 12 2 10 0

讲师 8 7 1 0

I-3 学科团队情况简介(近三年)

总人数 具有博士学位

人数

硕士生导师

人数 省部级科研项目

团队成员

发表论文数

人均科研经费

(万元)

省级以上

成果奖励

24 20 3 11 38 32.4 0

II 分年度学科建设进展情况

建设

内涵 建设内容

数量

2016 年 2017 年 2018 年 2019 年 合计

1-

新增湖北名师工作室(个) 0 0 0 0 0

新增国际高水平大学优秀博士 0 0 0 1 1

引进博士 徐先锋、

雷家柳

胡志刚、

付勇军、

廖庆玲

陆成龙、

李明 程栋材 8

2-

获批国家级创新创业教育改革示范高校(个) 0 0 0 0 0

新增高等教育国家级教学成果奖(项) 0 0 0 0 0

新增湖北省高等学校教学成果奖(项) 0 0 0 0 0

新增国家精品在线开放课程认定(门) 0 0 0 0 0

学生获国家级中国“互联网+”大学生创新创业

大赛奖项数量(项) 0 0 0 0 0

Page 36: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

2

学生获省级中国“互联网+”大学生创新创业大

赛奖项数量(项) 0 1 0 1 2

学生获全国大学生金相技能大赛奖项数量 0 0 0 2 2

学生获全国大学生炼钢轧钢大赛奖项数量 0 1 2 0 3

其他(自主填写不超过 5 项)

3-

新增国家级科研平台(个) 0 0 0 0 0

新增省部级科研平台(个) 1 0 0 0 0

新增国家科技奖(项) 0 0 0 0 0

新增省部级科技奖励(项) 0 0 0 0 0

新增国家科技重大专项/国家重点研发计划重点

专项等重大项目(项) 0 0 0 0 0

新增国家自然科学基金项目(项) 冯伟 雷家柳 阮敏 0 3

新增国家社会科学基金项目(项) 0 0 0 0 0

NATURE\SCIENCE\CELL 发表论文(不含子

刊)数量(篇) 0 0 0 0 0

SCI/EI 检索论文 4 11 5 1 21

4-

横向科研项目到账经费总额(企、事业单位委

托经费)(万元) 61.6 116 138.8 316.4

服务湖北横向科研项目到账经费总额(企、事

业单位委托经费)(万元) 56 77.60 83.80 217.4

新增国家授权发明专利(项) 1 4 0 0 5

国际授权发明专利(项) 0 0 0 0 0

软件著作权(项) 0 0 0 0 0

主持或参与制定国家标准(项) 0 0 0 0 0

主持或参与制定行业标准(项) 0 0 0 0 0

获得新药临床研究批件(种) 0 0 0 0 0

专利转化的技术市场交易额(万元) 0 0 0 0 0

被省级及以上部门采纳的决策咨询报告数(篇) 0 0 0 0 0

其他(自主填写不超过 5 项)

5-

新增 3 个月及以上出国(境)访学(研修)教

师数(人) 马福民

刘爱红、

阮敏 郑朦秋 4

新增高水平中外合作办学项目(项) 0 0 0 0 0

承担国际合作重大/重点项目(项) 0 0 0 0 0

主办国际学术会议(次) 0 0 0 0 0

在校留学生数(人) 0 0 0 0 0

3 个月及以上出境学习的学生数(人) 0 0 0 0 0

其他(自主填写不超过 5 项)

Page 37: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

3

III 研究方向

III-1 研究方向名称: 绿色建筑材料

学术带头人 全体成员名单

陈 跃 范方禄、靖金球、涂传文、姜玉凤、陈凤、陆成龙、李明

本方向学术带头人与骨干成员共同完成的工作

序号 工作内容 完成时间 完成人排序情况

1 中央引导地方高校发展专项 2019 陈跃、姜玉凤、陆成龙、

李明

2 校企合作项目:随县青苔村石材废料生产机制砂

项目可行性分析 2016 陈跃、姜玉凤

3 湖北省自科基金面上项目:铁尾矿/水泥体系的水

热反应过程及机理研究( No. 2017CFB582. ). 2017 立项 陈跃、姜玉凤

4 湖北省中青年创新团队项目:固体废弃物资源化

技术与转移(No. T201626. ) 2016 立项 陈跃、姜玉凤、

本方向的特色、研究基础、横向支撑、科研成果、学科团队、学术活动及学科平台等情况:

绿色建筑材料是指在原料采取、产品制造、使用或者再循环以及废料处理等环节中对地球环境负

荷最小和有利于人类健康的建筑材料。绿色建筑材料学科方向,依托矿区环境污染控制与修复湖北省

重点实验室、环境科学与工程省级重点学科群,在“固体废弃物资源化技术与转移”和“新型功能材料

的设计制备、表面改性及环化行为”两个省级中青年创新团队基础上,联合中国十五冶金建设有限公

司、湖北大江环保科技股份有限公司、黄石市神州建材有限公司等一批区域知名企业,着力开发绿色

建材制备技术与应用、冶金固废高效资源化技术与应用和功能复合材料改性技术与应用,强调自主创

新与技术集成,使该学科成为建筑材料工业绿色化前瞻性技术研发基地、高层次应用型人才培养基地

和高新技术辐射基地。

该学科拥有先进的专业仪器设备,已构建起绿色建筑材料研发支撑平台,真空热压烧结炉、梭式

窑、蒸压釜、X 射线衍射仪、X 射线荧光光谱仪、激光粒度分析仪、TGA/DSC 同步热分析仪、扫描

电子显微镜、比表面积孔径测试仪、综合力学性能测试仪等满足材料制备、组成分析、结构与性能表

征的仪器设备链完整。该学科拥有一支结构合理、人员精干的高水平研发队伍。目前,固定人员 8

人,其中有 2 名教授,3 名副教授,3 名讲师,行业特聘教师 9 人,博士化率 50%。该学科团队先后

就“铁尾矿的活性激发”、“利用铁尾矿制备轻质保温墙体材料”、 “铁尾矿替代细骨料对水泥基材料抗

折强度的提升效应及机理”、 “掺用铁尾矿实现普通硅酸盐水泥制备高折压比路面材料”、“大比例掺

用铁尾矿自保温墙体的设计与施工技术”、“掺用铁尾矿制备轻质隔热型 GRC 免拆模板”等系列课题

进行了理论摸索和实验研究,发表有关固体废弃物综合利用的学术论文 10 余篇,申报国家发明专利

6 项,已全部授权。

Page 38: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

4

III-2 研究方向名称:先进金属材料

学术带头人 全体成员名单

徐先锋 胡志刚、雷家柳、付勇军、易惠华、赵栋楠、张玉成

本方向学术带头人与骨干成员共同完成的工作

序号 工作内容 完成时间 完成人排序情况

1 国家自然科学基金项目 2017 年 8 月(立项) 雷家柳、胡志刚、张玉成

2 湖北省教育厅项目 2019 年 6 月(结题) 雷家柳、赵栋楠、张玉成

3 湖北省自然科学基金项目 2018 年 1 月(立项) 赵栋楠、徐先锋、雷家柳

4 湖北省教育厅项目 2017 年 11 月(立项) 张玉成、徐先锋、易惠华

本方向的特色、研究基础、横向支撑、科研成果、学科团队、学术活动及学科平台等情况:

先进金属材料方向特色为:以钢铁材料和有色金属材料为研究重点,结合地方金属

企业发展特点,旨在实施技术改造,加快产业结构调整和优化升级,促进金属材料企业

可持续健康绿色发展。内容包括:(1)金属材料制备工艺;(2)金属材料成分设计及计

算;(3)金属材料的性能评价。

先进金属材料研究方向结合地方经济特色,与大冶有色金属集团有限公司、湖北大

江环保科技有限公司、中铝华中铜业等企业建立了良好的校企合作关系以及仪器设备共

享,加强学科建设,积极推进产学研合作教育,在提升自身科研水平、办学实力同时,

为区域经济建设发展服务。近三年成员成功申报国家级、省部级教科研项目 5 项,发表

学术论文 20 余篇,10 项发明专利获得授权,指导学生参加 “全国金相大赛”、“网络炼钢”

等学科竞赛活动,并取得优异成绩。先进金属材料方向现有教师 7 人,其中 2 名教授,3

名副教授,2 名讲师,博士化率 100%,年龄结构合理。近三年成员积极参加全国先进金

属材料相关的学术活动 10 余次,并作学术报告,同时积极加强与其他院校的合作与交流。

经过多年的建设与积累,先进金属材料科研平台,现有材料基础、材料工艺、材料

性能、金属材料表征、材料分析、材料工程模拟等专业实验室,建筑面积约 3000m2,拥

有 X 射线衍射仪、傅立叶变换红外光谱仪、气相色谱-质谱联用仪、原子吸收分光光度计、

激光粒度分析仪、X 荧光光谱分析仪、热重分析仪、差热分析仪、高温实验室、金相试

样制备实验室、金相显微镜、扫描电镜、湿法冶金系统等材料制备与性能测试、表征仪

器链。完全满足本学科方向的可持续发展需求。

Page 39: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

5

III-3 研究方向名称: 高性能复合材料

学术带头人 全体成员名单

冯伟 阮敏、马福民、胡成林、刘爱红、廖庆玲、于占龙、程栋材、郑朦秋

本方向学术带头人与骨干成员共同完成的工作

序号 工作内容 完成时间 完成人排序情况

1

密度泛函理论研究:修饰剂与湿度对铝、锌超疏水表面结/防冰行为的影响(国家自然科学基金)

2018 年立项 阮敏、马福民、于占龙

2 润湿性梯度与 Laplace 压力共同作用下的冷凝液滴自移除(国家自然科学基金)

2016.01-2015.12 冯伟、易慧华、于占龙

3 外力作用下超疏水表面精细结构与防冰性能间关系(湖北省自然科学基金)

2018 年结题 冯伟、阮敏、马福民、于占龙

4 各向异性超疏水表面的设计制备(国家自然科学基金)

2013.01-2015.12 马福民、阮敏、于占龙

本方向的特色、研究基础、横向支撑、科研成果、学科团队、学术活动及学科平台等情况:

高性能复合材料方向专任教师 9 人。有 6 名副教授,3 名讲师,博士化率 100%,以

年轻教师为主;科研活力强,在自清洁涂层领域已获国家自然科学项目三项,省自科项

目两项以及教育厅项目一项。同样的,在三元复合锂离子电池方向也取得了较好成果,

省级项目包括磷化铁和碳修饰磷酸铁锂作为动力电池正极材料的制备及性能研究、三维

分级结构磷酸锰锂正极材料的制备及电化学性能研究、磷酸锰锂在水溶液中电解质中的

电化学行为研究。近五年,发表学术论文 20 余篇,申请授权专利多项,指导学生发表论

文十余篇。在互联网+比赛、全国大学生创新创业大赛等学科竞赛活动中也屡获佳绩。

经过近几年的建设与积累,高性能复合材料方向已建有复合材料管材小型生产线、

3D 智能打印生产线,新能源材料实验室,基本实现从材料制备、性能分析检测的全链条,

已能较好日常教学和科研,满足本学科方向可持续发展需求。高性能复合材料领域主要

研究方向为:

① 防水防油自清洁材料改性技术与应用;

② 摩擦材料改性技术与应用;

③ 多孔陶瓷及吸附特性研究;

④ 锂离子电池改性技术及应用;

⑤ 动力电池回收再利用技术与应用。

该方向也十分注重与区域企业相关企事业的紧密合作,长期友好合作单位包括黄石

市经信委、黄石市摩擦材料原料协会、赛特摩擦材料有限公司、湖北奥莱斯轮胎股份有

限公司等。横向合作成果逐年递增,2018 年横向到账经费超 30 万。建立实习实训基地 6

个。

Page 40: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

6

IV 科学及教学成果

IV-1 申请学科近三年完成及承担的科研项目统计。

纵向项目总数(个) 13 经费总数(万元) 468

横向项目总数(个) 28 经费总数(万元) 311.40

IV-2 申请学科近三年完成及承担的科研项目清单。

序号 项目、课题名称

(下达编号)

项 目

来 源

项 目

起讫时间

科研经费

(万元)

带头人(姓名、

专业技术职务)

1 湖北省中央引导地方科技

发展专项(2019ZYYD006)

湖 北 省 财 政

厅、湖北省科

学技术厅

2019 100 陈跃

2 中央财政支持地方高校发

展专项

湖 北 省 财 政

厅、湖北省科

学技术厅

2019 120 陈跃

3 中央财政支持地方高校发

展专项

湖 北 省 财 政

厅、湖北省科

学技术厅

2017 180 陈跃

4

密度泛函理论研究:修饰剂

与湿度对铝、锌超疏水表面

结/防冰行为的影响

(51801058)

国家自然科学

基金青年项目 2018 25 阮敏

5

高碳帘线钢中钛夹杂的形

核机理、性质及其固溶行为

研究(51704105)

国家自然科学

基金青年项目 2017 19 雷家柳

6

基于钢铁固废的炼焦污水

高效净化剂的制备、结构表

征机理研究

(ZRMS2018000930)

湖北省自然科

学基金面上项

2018 3 赵栋楠

7

铁尾矿/水泥体系的水热反

应过程及机理研究

(2017CFB582)

湖北省自然科

学基金面上项

2017 3 姜玉凤

8

外力作用下超疏水表面精

细结构与防冰性能间关系

(2015CFB323)

湖北省自然科

学基金面上项

2016 结题 10 冯伟

9 利用钢铁企业固废制备高

效污水净化剂的研究()

湖北省重点实

验室项目 2017 2 赵栋楠

10 含锌资源的碱性处理综合

利用(FMRUlab18-2)

湖北省重点实

验室项目 2018 2 张玉成

Page 41: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

7

11

帘线钢中氮化钛夹杂析出

及固溶行为研究

(Q20174504)

湖北省教育厅

中青年人才项

2018 2 雷家柳

12

功能化介孔材料的制备及

对重金属离子的选择性吸

附研究(B2019225)

湖北省教育厅

项目 2018 0 廖庆玲

13 取向硅钢金相组织无损检

测技术(B2019227)

湖北省教育厅

项目 2018 0 付勇军

1 炼钢厂智能化平台设计和

研究(KY2018-044)

湖南镭目科

技有限公司 2018

60.00

胡志刚

2

大比例掺用铁尾矿自保温

墙体的设计与施工技术研

中国十五冶

金建设集团

有限公司

2019

35.10

陈跃

3 人工智能感知炼钢模型的

研究和开发(KY2019-018)

湖南镭目科

技有限公司 2019

20.00

胡志刚

4 铜板带加工工艺技术改进

(KY2019-012)

中铝华中铜

业有限公司 2019

19.20

徐先锋

5 铜加工产业研究技术咨询

(KY2017-132)

中铝华中铜

业有限公司 2017

10.00

徐先锋

6

轴瓦用新型金属基复合材

料 的 开 发 研 究

(KY2018-216)

湖北安达精

密工业有限

公司

2018

10.00

廖庆玲

7 联 合 技 术 攻 关 协 议 书

(KY2018-134)

黄石市摩擦

材料原料协

2018

9.90

陈跃

8 施工大临污水处理一体化

装置开发及应用

中国十五冶

金建设集团

有限公司

2017

9.60

姜玉凤

9 校企合作共建材料检测中

心合同书(KY2018-037)

湖北隆源冶

金集团有限

公司

2018

12.00

屈媛

10 轻质隔热型GRC免拆模板

的设计与施工技术

中国十五冶

金建设集团

有限公司

2016

5.60

范方禄

11 校企合作共建技术中心

(KY2018-015)

湖北隆源冶

金集团 2018

5.00

陈跃

Page 42: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

8

12 高硅钢制备、检测与数据

分析(KY2018-054)

北京科技大

学 2018

5.00

付勇军

13

高性能砂加气混凝土门窗

过梁成型后加工生产线的

设计与制作

黄石市神州

建材有限公

2016

5.00

陈跃

14 高性能无取向硅钢脱碳退

火机组开发

秦皇岛艾吉

特自动化设

备制造厂

2019

5.00

付勇军

15 校企合作共建技术中心

(KY2018-015)

湖北隆源冶

金集团有限

公司

2018

5.00

陈跃

16 校企合作共建技术中心协

议书(KY2019-005)

大冶市都鑫

摩擦粉体有

限公司

2019

5.00

陈跃

17 从电镀液中提取重金属的

技术研究(KY2018-301)

黄石市博汇

科技有限公

2018

4.00

易惠华

18 酒 厂 自 动 化 改 造 项 目

(KY2018-062)

湖北天华智

能装备股份

有限公司

2018

4.00

刘爱红

19 矿区尾矿库岩土力学性能

及灾变机理研究

广州中海达

定位技术有

限公司

2018

4.00

张玉成

20 黄石市十三五新材料发展

规划 市经信委 2017

3.50

陈跃

21 产 学 研 合 作 协 议 书

(KY2018-119)

大冶志联冶

金有限责任

公司

2018

3.00

徐先锋

22 热风炉在陶瓷生产中的应

用(KY2019-001)

湖北金炉节

能股份有限

公司

2019

3.00

靖金球

23

旺新环保&湖北理工校企

共 建 研 发 中 心 协 议 书

(KY2018-110)

黄石市旺新

环保科技有

限公司

2018

3.00

范方禄

24 校企合作共建技术中心协

议 富烽新材料 2019

3.00

徐先锋

25

掺用工业废渣的新型建筑

材 料 制 备 方 法

(KY2018-246)

黄石市旺新

环保科技有

限公司

2018

2.00

陈跃

Page 43: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

9

26 校企合作共建技术中心协

议(KY2018-154)

湖北三冶重

工科技有限

公司

2018

2.00

徐先锋

27 校企合作共建技术中心协

议 博大特钢 2019

2.00

徐先锋

28 技 术 咨 询 服 务

(KY2018-101)

黄石环瑞矿

冶有限公司 2018

0.50

杨洪春

IV-3 申请学科近三年发表的代表性论文(限填 10 篇)。

号 论文名称 作 者 发表刊物名称 发表时间 收录情况

1 Molecular Dynamics Simulation

of a RNA Aptasensor 阮敏

Journal of

Physical

Chemistry B

2017 SCI

2

Geometrical effect, optimal

design and controlled fabrication

of bio-inspired micro/

nanotextures for

superhydrophobic surfaces

马福民

Materials

Research

Express

2017

SCI

3

Catalytic CVD Growth of Carbon

Nanotubes by Electric Heating

Method

徐先锋

武汉理工学报-

材料科学英文

2017

SCI

4

Synthesis of shape-controlled

Fe5(PO4)4(OH)3·2H2O

microcrystal via one-step

hydrothermal method

刘爱红 Micro & Nano

Letters 2017

SCI

5

A low cost preparation of WO3

nanospheres film with improved

thermal stability of gasochromic

and its application in smart

windows

冯伟 Mater. Res.

Express 2017

SCI

6

Study on the Pyrolytic Carbon

Generated by the Electric Heating

CVD Method 徐先锋

Journal of

Wuhan

university of

echnology-Mater

. Sci. Ed.

2018

SCI

7

H proton intramolecular

transformation in OH-OO˙

-isoprene radicals 阮敏

Computational

and Theoretical

Chemistry 2018

SCI

Page 44: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

10

8

Enhancement of Cycling Stability

of LiMnPO4 at Elevated

Temperature by Fe-Mg

co-Substitution

胡成林

International

Journal of

Electrochemical

Science

2018

SCI

9 Computational study on the

hydrolysis of halomethanes 阮敏

Theoretical

Chemistry

Accounts

2018

SCI

10

Theoretical study of oxygen

molecules adsorption on

M3C12S12 (M=Co, Rh)—Class

2D metal – organic frameworks

阮敏 Chemical

Physics Letters 2019

SCI

IV-4 申请学科近三年获得的省部级以上科研奖励、教学成果奖以及高等学校科

学技术奖。

序号 项目名称 项目完成人员 获奖

时间

获奖类别名称和等级

获奖证书编号

或批文号

1

2

3

4

IV-5 申请学科近三年的代表性专著、教材、发明专利。

序号 专著、教材、发明专利名称 作者 时间 出版单位及 ISBN、

专利授权号

1 纳米相增强C/C复合材料的结构

与性能 徐先锋 2018

西南交通大学出版社

(9787564365714)

2 一种掺用铁尾矿的超轻珍珠岩

保温板及其制备方法

陈跃 2017

2017/10/31 授权

ZL 201510636119.2

3 一种掺用铁尾矿 GRC 型轻质保

温免拆模板及制备方法

陈跃 2017

2017/10/24 授权

ZL 201510328194.2

4 一种掺用铁尾矿浇注型自保温

墙体与制备方法

陈跃 2017

2017/05/10 授权

ZL 201510360562.1

5 一步激光法制备接触角可调的

超疏水表面材料的方法

马福明 2017

20170125 授权

CN104494134B

6 一种炭纤维表面快速定向生长

碳纳米纤维的方法

徐先锋 2016

20161026 授权

2014106164626

Page 45: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

11

V 学术交流及学科平台

V-1 申请学科师生参与省级及以上学会情况

号 学会名称 姓名 担任职务 起止时间

1

2

V-2 申请学科主办过本学科学术会议情况

序号 会议名称 级别 会议时间及地点 参会人数

1

2

V-3 申请学科人才培养和科学研究平台、基地情况

序号 平台、基地名称 级别 批准时间 批准单位 合作单位

1 研究生联合培养

基地 2016 武汉理工大学

武汉理工大学材料

科学与工程学院

2 研究生联合培养

基地 2016 华东交通大学

华东交通大学武汉

理工大学材料科学

与工程学院

3 研究生联合培养

基地 2016 北京科技大学

北京科技大学武汉

理工大学材料科学

与工程学院

4 研究生联合培养

基地 2016 华北理工大学

华北理工大学武汉

理工大学材料科学

与工程学院

5 研究生联合培养

基地 2017 武汉科技大学

武汉科技大学材料

与冶金学院

6 研究生联合培养

基地 2017 武汉科技大学

武汉科技大学耐火

材料国家重点实验

Page 46: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

12

VI 申请校级重点学科建设的目标、预期成果及具体措施

学 科

方 向

与 特

学科方向:

1、绿色建筑材料;

2、先进金属材料;

3、高性能复合材料。

围绕该三个方向,强化学科队伍学科建设和学科方向凝聚。加速专业

实验室建设,给师生提供适宜的科研环境。

学科特色:

与地方经济建设高度吻合。

绿色建筑材料方向继续深化相关校企合作,如十五冶、世纪新峰、神

州建材等;

先进金属材料方向继续深化相关校企合作,如大冶有色、华中铜、浩

运新材等;

高性能复合材料方向深化相关校企合作有赛特摩擦材料、黄石摩擦材

料原料协会、湖北奥莱斯轮胎有限公司等,同时开辟新的优质合作单位。

学术

队伍

教师队伍知识结构、年龄结构、学缘结构以及专业技术职务结构较合

理。绿色建筑材料方向教师 8 人,有 2 名教授,3 名副教授,3 名讲师,博

士化率 50%,年龄结构合理;先进金属材料方向教师 7 人,有 2 名教授,3

名副教授,2 名讲师,博士化率 100%,年龄结构合理;高性能复合材料方

向教师 9 人。有 6 名副教授,3 名讲师,博士化率 100%,以年轻教师为主;

主要措施:

除绿色建筑材料方向有 9 名企业兼职教师外,其他两个方向双师型教

师队伍的建设以及企业兼职教师的建设还需加强;

积极发展行业教师或企业兼职教师;

鼓励更多老师下企业,增加双师型教师队伍比例,比如科技特派员、

博士服务团的形式;

学科带头人的材料还需强化;

加大领军人才引进力度和重点培养人培养力度;

新增兼职硕士生导师 2~3 名;

人才

培养

以学生发展为核心,构建地方本科院校应用型人才培养体系,以行业

企业需求为导向,强化实践教学环节,着力培养学生工程实践能力;长期

聘请多名企业工程技术人员作为兼职教师或产业教授,推行本科生全方位

导师制,注重培养学生创新创业能力,使学生能更好满足企业的实际需求,

提高学生的就业竞争力。

无机非金属材料工程专业办学历史久,与经济社会需求紧密联系,注

重学生工程实践能力的培养,屡获用人单位好评,部分毕业生已成为行业

技术骨干和领军人物。部分校友还专门设立了材料学子奖学金,成为行业

特聘教师,参与人才培养方案的修订、完善,并将切身体会传递给在校学

生,形成了良好的互动。

冶金工程 2015 年开始招生,2019 年第一届毕业生反馈良好。

复合材料与工程 2016 年开始招生,暂无毕业生,毕业生培养质量有待

检验。

近几年研究生录取率均在 40%左右;

Page 47: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

13

本科生就业率 95%以上;

学生高水平获奖偏少;

省部级以上教学成果奖缺失;

主要措施:

积极筹划 2021 年省部级以上优秀教学成果奖申报;

加速精品课程建设;

力争如期完成无机非金属材料专业工程认证;

加速科研科研实验室建设,为硕士生培养提供良好的科研条件;

提前谋划布局硕士生培养理论教学环节;

重点寻找几家高质量就业单位,邀请其参与人才培养方案修订,依据

第三方麦瑞斯出具的就业调查报告,及时调整,真正做到以学生为中心,

注重学生能力的培养,使之更好为社会服务。

提前布局,力争高水平学科竞赛、互联网+比赛、创新创业比赛获得更

好层次;

扎实推进本科生全方位导师制,完善管理、考核制度;

培 养

环 境

及 条

近五年承担的纵向科研项目总数超 23 项,其中包括 3 项国家自然科学

基金,8 项省部级以上科研项目。总经费超过 250 万元(含配套)。

校企合作方面与黄石市经信委、湖北隆源集团,十五冶、华中铜、摩

擦材料协会等企事业合作密切,近几年横向到账经费超过 350 万。

有较大比例学生参与教师科研项目,近五年学生发表论文 13 篇,参与

专利多项;

近五年专任教师年均经费到账约 5 万,科研经费到账还需持续提高;

2017、2019 连续争取到中央财政支持,2019 年获中央引导项目资助 100

万。

整体而言,纵向项目还是数量偏少,尤其是国家自然科学基金立项少,

横向合作虽然数量较多,但大项目少。且多数成果集中在少数几个人身上,

其他人贡献率有待提高。师均论文不足 1 篇每年,代表性成果少,师均出

版专著数更少。

有邀请中科院、武汉理工等高校知名教授来鄂讲学,次数满足要求。

每年安排教师参加各种学术会议,但质量不高,几乎都未做主题报告。尚

未组织一次有影响力的学术活动。

学生参与国内外学术交流活动力度不够

主要措施:

持续攻克国家自然科学基金立项,从引进博士引进环节开始,注重学

术方向的凝练和合作(与外单位共同),提出重大项目时间节点,按期检查

进度;

继续深化校企合作力度,重点培养几家合作前景良好的企业,力争在

大项目上有所突破(力争科技进步奖的突破)。

继续推进考核制度,调动全体教师的积极性。

多渠道出击,邀请合适学者来鄂讲学;

鼓励教师做主题报告;

组织一次国内学术会议;

鼓励教师带领学生参加国内外学术交流,但需学校财政支持;

Page 48: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

14

其他

经过几年的建设,现有仪器设备总值超 400 万,包括材料制备、表征

及性能测试分析,为提高研究生培养质量,教学、科研实验室建设应逐步

分离,科研实验室建设需加强;

本科生奖助学金覆盖率超过 30%,还设有材料学子奖学金,在研究生

中几乎全覆盖;

外文数据库缺乏;

主要措施:

教学科研实验室分工、建设;

外文数据库建设;

Page 49: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

VII 学科申请审核

学科带头人意见:

本人确认本申请表所填内容真实。

带头人(签字):

年 月 日

学科带头人所在学院意见:

负责人(签字): (公章)

年 月 日

专家组组长签字:

年 月 日

负责人(签字): (公章)

年 月 日

Page 50: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

附件 2

湖北省高等学校教学团队推荐表

团队名称: 无机非金属材料工学

团队带头人: 陈 跃

所在学院(系部) 材料科学与工程学院

推荐高校: 湖北理工学院

推荐时间: 2019 年 05 月 23 日

湖北省教育厅制

2019 年 5 月

Page 51: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 2 —

填 表 说 明

1. 推荐表由推荐部门通知拟推荐的教学团队填写。所填内

容必须真实、可靠,如发现虚假信息,将取消该团队参评省级

教学团队的资格。

2. 表格中所涉及的项目、奖励、教材等数据,除特别说明

外,统计截止时间是 2011 年 1 月 1 日至 2019 年 4 月 30 日。

3. 如表格篇幅不够,可自行调整排版或另附页。需要佐证

的材料,由相关单位、部门提供并务必加盖公章,合订于表格

后平装成册。

Page 52: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 3 —

一、团队基本情况简介 (形成背景,教学建设任务、服务专业、特色和创新点,建设水平等,1500 字左右)

材料科学与工程学院无机非金属材料专业已有近 30 年的办学历史。无机非金属材

料工学课程群包含水泥工艺学、陶瓷工艺学和特种混凝土材料学三门专业核心课程,

以及无机化学与化学分析、材料工程基础、材料测试分析方法等学科基础课程。在师

资和课程内涵建设方面受到了学院大力指导和支持。通过本课程群的学习,要求学生

能掌握无机非金属材料(水泥、陶瓷、混凝土)的生产过程原理、生产工艺过程中的

共性、特点及产品性能以及生产过程中工艺的变化规律和特点,从而深入了解无机非

金属材料的组成、结构、性能之间联系,以及生产原理与工艺因素等相关理论和应用,

为解决在材料生产过程中遇到各类问题打下坚实的基础。在授课过程中,除了让学生

掌握各类产品及其工业生产技术基础知识,初步具备无机非金属材料的组成、工艺和

实验制备方法设计、性能测试以及计算机数据分析等能力外,还要求学生了解国家及

工业行业关于安全、环境等法律法规以及工程师的职业性质与责任、基本职业道德规

范。与此同时,要求学生结合基本专业知识,了解新型无机非金属材料工程领域前沿

发展现状和趋势,能对涉及到的复杂工程问题能进行分析并得出一定结论,即实现“学

以致用”。能够结合材料的性能的影响因素进行综合分析,具有解决复杂问题的能力,

为参加生产实践及科学研究作好必要的准备。

自 2011 年无机非金属材料工程专业成功入选湖北省普通高等学校战略性新兴(支

柱)产业人才培养计划以来,学院通过“校企协同培养”、“大类招生、意愿分流、本科

生全方位导师制”及“双创引领、师生协同发展”多管齐下,致力于将非金属材料专业建

设成为区域材料行业一线工程师的重要培养基地,强化师生科技服务能力,提升应用

型人才培养质量,配合学校大材料学科发展战略和学校“十三五”规划建设。

围绕“一线工程师”的人才培养目标,学院积极探索“校企协同培养”模式,建立并

完善校企联合培养人才的新机制,校企共同设计培养目标,制定培养方案,实施培养

Page 53: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 4 —

过程。先后与华新水泥股份有限公司、雷山世纪新峰水泥有限公司、中国十五冶金建

设集团就校企合作、教书育人等方面进行了多方的探讨,构建了基于校企合作的人才

培养新模式,并将其应用于人才培养的具体实践中。建立密切合作关系的实习实训基

地十余个,涵盖黄石、佛山、景德镇等行业发达城市,涉及企业包括华新、唯美、马

可波罗、简一等知名品牌。学生第七学期全部在企业实习,初步实现了校企合作培养、

理论与实践并重、专业学习与职业训练同步、学校企业双导师、学生与工程师无缝对

接的改革目标。

另一方面,学院也十分注重实验实践教学效果。在实验室建设方面积极向微型化

生产线倾斜,“一线材料工程师专业实践与双创训练基地建设”项目获 2017 年中央财政

支持地方高校发展专项资助,截止 2019 年已新建轻质保温墙体材料小微生产线。2018

年度还与专门从事碳酸钙生产的湖北隆源集团签订了校企合作共建研发中心和共建技

术检测中心,大幅改善了校材料学科的专业实践和技术研发条件,提高教学和科研水

平,促进学科与专业建设,提升我校非金属材料类专业办学水平。

近 5 年,近年来,学院在“双师型”教师队伍的建设及青年教师的培养上也卓有成

效。既招聘了胡志刚、赵栋楠、付勇军等多年服务于生产一线的工程师,也外聘了榕

州二厂彭子俊、华新集张国建、十五冶李汇等具有高级工程师以上的企业人员作为校

外实习实训指导老师,指导学生人数 150 余人。在青年教师引进上,也引进了专业相

关度极高的冯伟、陈凤、陆成龙、李明等博士。根据学院部署,实施青年教师导师制,

经验丰富的老教师一对一帮助新进青年教师尽快熟悉教学,适应高校教师的角色,跨

过教学关,提高青年教师的课堂教学能力和实践水平,提高自身的综合素养,养成良

好的教师职业道德。每一门课程,都有明确的负责人,采取每门课程集体讨论备课、

两名及两名以上教师共同讲授一门课程,充分发挥各自优势,取长补短,确保课程教

学质量;配备专业的实验、实践教师队伍。

Page 54: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 5 —

二、团队成员情况 1.团队构成情况

团队构

成情况

总人数 15 人 高级职称 11 人 中级职称 3 人

初级职称 1 人 省级以上高层次人

才、教学名师数 2

具有博士

学位人数、比例 9 (64.3%)

具有硕士学位

人数、比例 2 (13.3%)

担任本科生导师 14 人,占 93.3%。 “双师型”教师 3 人,占 20%;行业企业兼职教师 1

人,占 6.7%。

课程辅导团队 2 人。

实验教学或技术保障人员 2 人。

2.带头人情况

姓名 陈跃 出生年月 1968.11 参加工作时间 1991.07

政治面貌 中共党员 民族 汉 性别 男

最终学历(学位) 博士 授予单位 中国地质

大学 授予时间 2010.06

高校教龄 27 职称 教授 行政职务 教学院院长

本科连续

授课时间 20 年

办公电话 0714-6350386 移动电话 13807239528

电子邮件地址 [email protected]

教学科研成果、教学或学术组织兼职情况(省部级及以上)

1.担任湖北省高等学校优秀中青年科技创新团队负责人、武汉理工大学材料学硕士生导师、黄石市

墙材革新与建筑节能协会理事、黄石市混凝土协会技术顾问、中国十五冶集团公司科技特派员;

2. 以主要研究成员完成了湖北省教育科学规划课题研究 2016 年一般项目“基于供给侧改革的应用

型人才培养模式探索”与 2017 年重点课题“工程教育专业认证背景下本科生导师制的创新实践”;

3.先后主持湖北省教育厅重点项目, “铁尾矿制备轻质保温墙体材料技术研究”、湖北省自然科学基

金面上项目“铁尾矿替代细骨料制备高折压比路面水泥混凝土技术及机理研究”、湖北省中青年创新

团队项目“固体废弃物资源化技术与转移”等纵向课题研究,以及“铁尾矿制备轻质保温墙材技术与

应用研究”、“大比例掺用铁尾矿自保温墙体的设计与施工技术研究”、“轻质隔热型 GRC 免拆模板

Page 55: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 6 —

的设计与施工技术”、“施工大临污水处理一体化装置开发及应用”等横向课题开发;

4. 指导“大比例掺加铁尾矿轻质保温砖的生产与推广”、“掺用工业固废轻质保温预制件的生产与推

广模拟”2 项国家级大学生创业训练项目;

5. 以第 1 申请人拥有“大比例掺用铁尾矿的轻质保温材料及其制备方法”、“掺铁尾矿阻燃型轻质保

温墙体材料及其制备方法”、“一种掺用铁尾矿的 GRC 型轻质保温免拆模板及制备方法”、“一种掺

用铁尾矿浇注型自保温墙体及制备方法”、“一种掺铁尾矿超轻珍珠岩保温板及其制备方法”5 项授

权国家发明专利,与“一种混凝土构件模板固定组件”1 项国家实用新型专利;

6. 2013 年指导学生参加“湖北省第九届挑战杯•青春在沃大学生科技作品竞赛”获三等奖,2015 年

“首届全国保温材料设计大赛”获二等奖,2016 年指导学生参加“第二届全国保温材料设计大赛”获

二、三等奖,2016 年指导学生参加第七届全国混凝土设计大赛获三等状;

7. 指导的本科论文“两种碱性染料在可见光下的生物降解研究”与 “铁尾矿的活性激发技术研究”

获湖北省优秀学士学位论文.荣获湖北省优秀学士论文指导奖;

8. 2017 年“供给侧改革理念下本科生参与教师课题研究的科教融合探索与实践”项目获湖北理工学

教学成果二等奖;

9. 发表中外学术论文 40 余篇; 10. 获黄石市有突出贡献专家、湖北理工学院科研标兵、黄石市科技特派员先进个人等多项荣誉。

主要教学、科研简历

起止时间 工作单位(部门) 从事学科领域、专业或主讲课程等

1992.07~1994.08 材料系 主讲建筑材料与制品、材料物理性能课程

1994.07~2004.06 环化学院 主讲混凝土、材料物理性能,主要从事建

筑材料制备方向研究

2004.07~2014.04 化材学院 主讲材料物理性能、材料研究与测试技术,

主要从事固废资源化技术方向研究

2014 年至今 材料学院

主讲无机非金属材料工学、材料概论、材

料科学前沿,主要从事固废资源化技术与

环境友好型建筑材料制备方向的研究

3.成员情况:成员人数 14

姓 名 范方禄 性 别 男 出生年月 1964.1

专 业 无机材料 最终学历

(学位)

本科

学士

高校专任教

龄 30 年

职 称 教授 工作部门

材料科学

与工程学

行政职务 无

Page 56: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 7 —

主讲课程 《无机非金属材料工学Ⅰ》、《材料科学基础》、《无机非金属材料热工设备》

全国、全省性教学组

织、学术组织高级职

务(委员、编委、副

秘书长以上)

团队中主

要分工或

承担任务

承担主干课程的授课以及培养

方案、教学大纲的修订

教学成果(近 5 年承担省级及以上教学项目,奖励、表彰,课程教材建设,指导创新创业教育、

学科技能竞赛情况,指导本科生毕业论文、毕业设计情况等)

2015 年,指导 8 名本科生毕业论文;

2016 年,指导 8 名本科生毕业论文;

2017 年,指导 6 名本科生毕业论文;

2018 年,指导 6 名本科生毕业论文;

2019 年,指导 3 名本科生毕业论文。

本人签名:

(根据人数复制,一人一表,顺序填写)

姓 名 胡志刚 性 别 男 出生年月 1971 年 10 月

专 业 钢铁冶金 最终学历

(学位) 博士 高校专任教龄 2 年

职 称 教授 工作部门 材料学院 行政职务

主讲课程 《材料测试分析方法》

全国、全省性教

学组织、学术组

织高级职务(委

员、编委、副秘

书长以上)

团队中主

要分工或

承担任务

承担主干课程的授课以及培养方

案、教学大纲的修订

教学成果(近 5 年承担省级及以上教学项目,奖励、表彰,课程教材建设,指导创新创业教育、

学科技能竞赛情况,指导本科生毕业论文、毕业设计情况等)

2018 年,指导 2 名本科生毕业论文 《粉煤灰烧结过程中的热力学探讨》 《帘线钢精炼过程中的增钛行为研究》 本人签名:

(根据人数复制,一人一表,顺序填写)

Page 57: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 8 —

姓名 李汇 性别 男 出生年月 1976 年 06 月生

专业 材料学 最终学历

(学位)

研究生

(硕士) 高校专任教龄

职称 教授级高工 工作部门

中国十五

冶金建设

集团有限

公司

行政职务 技术总监

主讲课程 企业工程实践、认识实习、毕业设计(论文)

全国、全省性教

学组织、学术组

织高级职务(委

员、编委、副秘

书长以上)

团队中主

要分工或

承担任务

担任青年老师与学生实习实训的

企业导师

教学成果(近 5 年承担省级及以上教学项目,奖励、表彰,课程教材建设,指导创新创业教育、

学科技能竞赛情况,指导本科生毕业论文、毕业设计情况等)

1. 《冶炼工程施工成套技术创新平台建设》获得 2010 年度湖北省科技进步三等奖;

2. 《环保型铜精炼摇炉安装成套技术研究与应用》获 2016 年度中国施工企业管理协会科学技术奖

科技创新成果二等奖;

3.《轻金属冶炼安装工程施工及质量验收系列标准》获 2017 年度中国有色金属工业科学技术奖一

等奖;

4. 参编了《冶炼烟气制酸设备安装工程施工规范》等 8 项国家标准或行业标准;

5. 获得发明专利 10 项,实用新型专利 21 项;获得国家级工法 2 项。

本人签名:

(根据人数复制,一人一表,顺序填写)

姓 名 姜玉凤 性 别 女 出生年月 1972.09

专 业 材料学 最终学历

(学位)

研究生

(硕士)

高校专任教

龄 14

职 称 副教授 工作部门 材料与科

学学院 行政职务 无

主讲课程 无机非金属材料工学、材料工程基础、硅酸盐工业分析、高性能混凝土

Page 58: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 9 —

全国、全省性教

学组织、学术组

织高级职务(委

员、编委、副秘

书长以上)

团队中主

要分工或

承担任务

承担主干课程的授课以及培养方

案、教学大纲的修订

教学成果(近 5 年承担省级及以上教学项目,奖励、表彰,课程教材建设,指导创新创业教育、

学科技能竞赛情况,指导本科生毕业论文、毕业设计情况等) 1. 2016 年主持湖北省教育科学规划课题研究项目《基于供给侧改革的应用型人才培养模式探

索》;

2. 2015 年指导学生完成国家级大学生创新创业训练训练项目“掺用工业固废轻质保温预制件

的生产与推广模拟”;

3. 2016 年指导学生参加“华舟应急杯”湖北省大学生创新设计大赛优秀奖,2015 年、2016 年指

导学生参加全国保温材料设计大赛二、三等奖,2015 年、2017 年指导学生参加“互联网+”大学生

创新创业大赛分别获湖北理工学院实践组三等奖和创意组三等奖;

4. 2016 年指导的学士学位论文“铁尾矿地聚合物的制备”被评为湖北省优秀学士学位论文,

2014 年指导的学士学位论文“活化作用对铁尾矿胶凝活性的影响研究”、2016 年“铁尾矿地聚合物的

制备”、2017 年“高强透水混凝土的制备”、2018 年“纤维状硅灰石对水泥基材料性能影响研究”被评

为湖北理工学院本科毕业设计(论文)优秀奖;

5. 2018 年在湖北理工学院学报发表教改论文“供给侧改革”背景下专业建设的探索——以无机

非金属材料工程专业为例”;

6. 2016 年湖北理工学院优秀教学成果三等奖。

本人签名:

(根据人数复制,一人一表,顺序填写)

姓 名 靖金球 性 别 男 出生年月 1965.2

专 业 硅酸盐工程 最终学历

(学位) 本科/学士 高校专任教龄 31

职 称 副教授 工作部门 材料学院 行政职务 总支副书记

主讲课程 《无机非金属材料机械设备》、《陶瓷工艺学》

Page 59: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 10 —

全国、全省性教

学组织、学术组

织高级职务(委

员、编委、副秘

书长以上)

团 队 中 主

要 分 工 或

承担任务

承担主干课程的授课以及培养方

案、教学大纲的修订

教学成果(近 5 年承担省级及以上教学项目,奖励、表彰,课程教材建设,指导创新创业教育、

学科技能竞赛情况,指导本科生毕业论文、毕业设计情况等)

2015 年,指导 8 名本科生毕业论文;

2016 年,指导 8 名本科生毕业论文;

2017 年,指导 6 名本科生毕业论文;

2018 年,指导 6 名本科生毕业论文;

2019 年,指导 4 名本科生毕业论文。

本人签名:

(根据人数复制,一人一表,顺序填写)

姓 名 刘爱红 性 别 女 出生年月 1981.01

专 业 材料学 最终学历

(学位) 博士 高校专任教龄 11

职 称 副教授 工作部门 材料学院 行政职务 无

主讲课程 《陶瓷工艺学》、《材料研究与测试方法》、《材料科学基础》

全国、全省性教

学组织、学术组

织高级职务(委

员、编委、副秘

书长以上)

团队中主

要分工或

承担任务

承担主干课程的授课以及培养方

案、教学大纲的修订

1. 工程教育专业认证背景下本科生导师制的创新实践,湖北省教育科学规划重点项目 1 项

(2017GA040),负责人

2. 第二届全国无机非金属材料青年教师讲课比赛三等奖,2017 年

3. 基于“海绵城市”概念的生态透水混凝土设计与制备 ,湖北省大学生创新创业计划项目

(201710920044),指导老师

4.橘子采摘机械伸缩架,2018 年湖北省大学生机械创新设计大赛竞赛三等奖

5.碳纳米管/石墨烯纳米片协同增强水泥基复合材料的力学性能,2015 年湖北省优秀学士论文,

指导老师。

本人签名:

(根据人数复制,一人一表,顺序填写)

Page 60: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 11 —

姓 名 冯伟 性 别 男 出生年月 1984.11

专 业 物理化学 最终学历

(学位) 博士

高校专任教

龄 5 年

职 称 副教授 工作部门

非金属

材料教

研室

行政职务 无

主讲课程 《水泥工艺学》、《材料工程基础》

全国、全省性教学

组织、学术组织高

级职务(委员、编

委、副秘书长以上)

团队中主

要分工或

承担任务

承担主干课程的授课以及培养方

案、教学大纲的修订

教学成果(近 5 年承担省级及以上教学项目,奖励、表彰,课程教材建设,指导创新创业教育、

学科技能竞赛情况,指导本科生毕业论文、毕业设计情况等)

1、 指导学生以第一作者发表 SCI 论文一篇,中文核心一篇,校报一篇,实用新型授权专利一项;

2、 指导国家级大学生创新创业训练项目一项,已顺利结题

2016 年,指导 6 名本科生毕业论文;2017 年,指导 6 名本科生毕业论文;

2018 年,指导 6 名本科生毕业论文;2019 年,指导 5 名本科生毕业论文。

本人签名:

姓 名 陈凤 性 别 女 出生年月 1986.09

专 业 物理化学 最终学历

(学位) 博士

高校专任教

龄 4 年

职 称 讲师 工作部门

非金属

材料教

研室

行政职务 无

主讲课程 《陶瓷工艺学》、《硅酸盐工业分析》、《粉体科学与工程》

全国、全省性

教学组织、学

术组织高级职

务(委员、编

委、副秘书长

以上)

团队中主

要分工或

承担任务

承担主干课程的授课以及培养方案、教

学大纲的修订

Page 61: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 12 —

教学成果(近 5 年承担省级及以上教学项目,奖励、表彰,课程教材建设,指导创新创业教育、

学科技能竞赛情况,指导本科生毕业论文、毕业设计情况等)

2016 年,指导 6 名本科生毕业论文;

2017 年,指导 6 名本科生毕业论文;

2018 年,指导 6 名本科生毕业论文;

2019 年,指导 5 名本科生毕业论文。

本人签名:

(根据人数复制,一人一表,顺序填写)

姓 名 赵栋楠 性 别 男 出生年月 1981.03

专 业 材料 最终学历

(学位)

博士研究

生 高校专任教龄 4

职 称 讲师 工作部门 行政职务 无

主讲课程 《材料工程基础》、《材料科学基础》

全国、全省性教

学组织、学术组

织高级职务(委

员、编委、副秘

书长以上)

团队中主

要分工或

承担任务

承担主干课程的授课以及培养方

案、教学大纲的修订

教学成果(近 5 年承担省级及以上教学项目,奖励、表彰,课程教材建设,指导创新创业教育、

学科技能竞赛情况,指导本科生毕业论文、毕业设计情况等)

2016 年,指导 6 名本科生毕业论文;

2017 年,指导 6 名本科生毕业论文;

2018 年,指导 6 名本科生毕业论文;

2019 年,指导 5 名本科生毕业论文。

本人签名:

(根据人数复制,一人一表,顺序填写)

姓 名 雷家柳 性 别 男 出生年月 1987 年 7 月

专 业 冶金工程 最终学历

(学位) 博士 高校专任教龄 3 年

职 称 副教授 工作部门 材料学院 行政职务

主讲课程 《无机化学与分析》

Page 62: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 13 —

全国、全省性教

学组织、学术组

织高级职务(委

员、编委、副秘

书长以上)

团队中主

要分工或

承担任务

承担主干课程的授课以及培养方

案、教学大纲的修订

教学成果(近 5 年承担省级及以上教学项目,奖励、表彰,课程教材建设,指导创新创业教育、

学科技能竞赛情况,指导本科生毕业论文、毕业设计情况等) 1. 2018-2020 年,获批一项国家自然科学基金项目。

2. 2017 年, 指导学生获全国转炉网络炼钢比赛三等奖。

3. 2018 年,指导学生获全国转炉网络炼钢比赛团体三等奖。

4. 指导一位毕业生论文,荣获校级优秀论文。

本人签名:

(根据人数复制,一人一表,顺序填写)

姓 名 付勇军 性 别 男 出生年月 1977.12

专 业 材料学 最终学历

(学位) 博士 高校专任教龄 1 年

职 称 高工 工作部门 材料学院 行政职务 无

主讲课程 《材料分析与测试方法》

全国、全省性教学

组织、学术组织高

级职务(委员、编

委、副秘书长以上)

团队中主

要分工或

承担任务

承担主干课程的授课以及培养方

案、教学大纲的修订

教学成果(近 5 年承担省级及以上教学项目,奖励、表彰,课程教材建设,指导创新创业教育、

学科技能竞赛情况,指导本科生毕业论文、毕业设计情况等)

任教以来,指导学生参加“全国大学生炼钢-轧钢大赛”获轧钢组三等奖及团体三等奖,指导

本科毕业生 7 人次,指导创新创业项目 1 项。

本人签名:

(根据人数复制,一人一表,顺序填写)

姓 名 阮敏 性 别 女 出生年月 1981.10

专 业 物理化学 最终学历 博士 高校专任教 12

Page 63: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 14 —

(学位) 龄

职 称 副教授 工作部门

湖 北 理

工 学 院

材 料 科

学 与 工

程学院

行政职务

主讲课程 《物理化学》、《无机化学》

全国、全省性教学

组织、学术组织高

级职务(委员、编

委、副秘书长以上)

团队中主

要分工或

承担任务

承担主干课程的授课以及培养

方案、教学大纲的修订

教学成果(近 5 年承担省级及以上教学项目,奖励、表彰,课程教材建设,指导创新创业教育、

学科技能竞赛情况,指导本科生毕业论文、毕业设计情况等)

指导省级创新创业项目:蔡培根:硬质酚醛泡沫保温板(201610920028)

卢进峰:膨胀珍珠岩保温板的制备

本人签名:

(根据人数复制,一人一表,顺序填写)

姓 名 屈 媛 性 别 女 出生年月 1980.08

专 业 化工工艺 最终学历

(学位)

大学本科

(学士)

高校专任教

龄 17

职 称 讲 师 工作部门 材料与科

学学院 行政职务 无

主讲课程 化工原理、材料工程基础实验、无机化学及分析实验

全国、全省性教

学组织、学术组

织高级职务(委

员、编委、副秘

书长以上)

团队中主

要分工或

承担任务

承担实验课程的授课以及培养方

案、实验教学大纲的修订

Page 64: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 15 —

教学成果(近 5 年承担省级及以上教学项目,奖励、表彰,课程教材建设,指导创新创业教育、

学科技能竞赛情况,指导本科生毕业论文、毕业设计情况等)

1. 2015 年指导学生参加“互联网+”大学生创新创业大赛获湖北理工学院创意组二等奖;

2. 2015 年指导学生学士学位论文“年产 300 万套轿车刹车片的生产工艺设计”被评为湖北理工学

院“优秀”本科毕业设计;

3. 2017 年指导学生参加全国大学生“互联网+”创新大赛暨第五届“发现杯”全国大学生互联网软件

设计大奖赛中荣获本科组网络营销技能赛项区域赛“三等奖”;

4. 2018 年指导学生双创项目“搭建校企材料测试与信息交互平台”被评为国家级大学生双创训练

项目,目前项目进展顺利;

5. 2018 年指导学生参加“2018 年中国技能大赛-第 45 届世界技能大赛”湖北省选拔赛化学实验室

技术项目比赛三等奖;

6. 2017 年在教育教学论坛发表论文:基于转型发展高校材料类专业实验室开放模式的探索;

本人签名:

(根据人数复制,一人一表,顺序填写)

姓 名 李幸泽 性 别 女 出生年月 1986.12

专 业 食品科学与

营养

最终学历

(学位)

研究生

(硕士)

高校专任教

龄 9

职 称 实验师 工作部门

材料科学

与工程学

行政职务 无

主讲课程 无无机化学与分析实验、材料科学基础实验、材料分析测试技术实验

全国、全省性教

学组织、学术组

织高级职务(委

员、编委、副秘

书长以上)

团队中主

要分工或

承担任务

承担实验课程的授课以及培养方

案、实验教学大纲的修订

1. 2015 年指导学生学生参加互联网+大学生创新创业大赛获湖北理工学院三等奖;

2. 2016 年所在学院实验中心获湖北理工学院优秀教学基层单位;

3. 2018 年在课程教育研究期刊发表教改论文“高校无机化学实验教学方法的改进策略”;

4. 2018 年在湖北理工学院实验课说课比赛中获三等奖。

本人签名:

Page 65: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

三、教学情况 1. 近 5 年授课情况(含实验实训课,由教务部门审核)

课程名称 授课人 起止时间 总课时

无机非金属材料工学Ⅰ

(水泥工艺学) 范方禄、冯伟 2016 年至今 48

无机非金属材料工学Ⅱ

(陶瓷工艺学)

靖金球、刘爱红、陈

凤 2016 年至今 48

无机非金属材料工学Ⅲ

(特种混凝土材料学) 陈跃、姜玉风 2015 年至今 48

无机非金属材料综合实

范方禄、冯伟、靖金

球、刘爱红、陈凤 2016 年至今 3 周

无机非金属材料热工设

备 范方禄、涂传文 2015 年至今 48

水泥生产模拟实训 范方禄、冯伟 2016 年至今 1 周

材料工程基础 冯伟、赵栋楠、屈媛 2016 年至今 56

材料分析与测试方法 胡志刚、付勇军、刘

爱红 2015 年至今 32

无机化学与化学分析级

实验

阮敏、雷家柳、李幸

泽、屈媛 2016 年至今 48

2.教材建设情况 (1)教材编写、获奖情况

教材名称

作者(主

编或排

名)

出版社 出版时间 入选规划或获奖情况

(2)主要专业课程的教材选用情况

课程名称 选用教材

名称 使用专业 出版社 说明

Page 66: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 17 —

3.教学成果获奖情况(省级及以上奖励)

项目名称 奖励名称 奖励级别 时间 参与人员及

排名

4.教学改革建设项目(省部级及以上) (“十二五”以来,如专业综合改革试点、卓越人才培养计划专业、试点学院改革、

精品视频公开课程、精品资源共享课程、精品在线开放课程、教育部国家规划教材、

实验教学示范中心、虚拟仿真实验教学中心、虚拟仿真实验教学项目、实习实训基

地、教学改革研究项目等,限 20 项)

项目名称 经费 项目来源 起止时间 参与人员及

排名

工程教育专业认证背景下本科生导师制

的创新实践 10000

省教育科学规划

项目

2016 年

~2017 年

刘爱红、陈

跃、靖金球、

徐先锋、冯

基于供给侧改革的应用型人才培养模式

探索姜 6000

省教育科学规划

项目

2017 年~201

姜玉凤、陈

跃、靖金球、

李汇、冯伟

5.教学改革特色(团队运行机制、激励保障特色,专业或课程特色,切实可行的创

新性改革措施,实验教学或实践性教学,教学资源建设、教学平台建设等)

1、创新人才培养模式,注重实验实践教学效果。在实验室建设方面积极向微型化生产线倾斜。

2、创新实验实践教学方式,建立并完善校企联合培养人才的新机制,校企共同设计培养目标,

制定培养方案,实施培养过程。聘任有丰富实践经验和相应学术水平,并具备一定指导能力的高

级工程技术人员作为企业导师,初步实现了校企合作培养、理论与实践并重、专业学习与职业训

练同步、学校企业双导师、学生与工程师无缝对接的改革目标;

3、综合性实验、课程设计、毕业设计(论文)等实践教学的选题大部分来源于企业生产实践,

给学生“真题真做”的锻炼机会,而且安排校内教师与企业工程师实行“双导师”指导,如 15 级的胡

磊、邱玲同学长期参与到陈跃、姜玉凤老师与黄石旺新科技环保公司新产品的研发课题,在课题

完成过程中也受了企业指导老师张国建的切实指导,这一举措促使学生提前了解企业,缩短了毕

业生进入企业的适应期。近 3 年,教研室聘请了榕州二厂彭子俊、华新集张国建、十五冶李汇等

具有高级工程师以上的企业人员作为校外实习实训指导老师,指导学生人数 150 余人。

Page 67: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 18 —

4、每门课程都有较为固定的任课老师,有课程负责人,采取每门课程集体讨论备课、两名及

两名以上教师共同讲授一门课程,充分发挥各自优势,取长补短,确保课程教学质量;

5、大力提倡、鼓励教师将自己的科研资源向本科生开放并将最新研究成果及学科前沿知识融

入教学;全面提倡将学生引导到参与企业的科研项目中。共有 100 余人次(20%以上)学生参与到

教师的 5 项国家自然科学基金项目、2 项湖北省优秀中青年科技创新团队、3 项国家重点实验室开

放基金、3 项湖北省自然科学基金重点项目、3 项湖北省自然科学基金指导性项目、3 项湖北省教

育厅项目、1 项湖北省大学生创新计划项目、15 项横向项目、8 项校级大学生科技创新项目、3 项

校级大学生实验室开放基金项目,以及 1 项大学生创新创业项目。

6.教学改革成果应用推广情况

1、在《材料科学前沿》课程教学过程中,冯伟通过角色互换的形式让学生充当

教师的角色上台讲解,而教师负责组织学生从材料制备、结构表征、实验平台搭建、

实验数据分析与结果讨论等环节入手,按照小组分工完成文献资料搜集、整理,方案

确定,教案准备,课件制作,课堂交流等任务。该授课形式在 2017 年度学校青年教师

教学比赛中获第二名。学生以此为契机,申报了“微环境可控冷凝结冰可视化数字平

台”,获 2017 年度湖北省大学生创新创业训练项目立项。

2、在课程建设方面,完成了无机非金属材料工学Ⅰ、无机非金属材料工学Ⅱ给与无

机非金属材料工学Ⅲ的视频录制课程,申报了无机非金属材料工学Ⅱ校级精品课程建

设,正在建设完善无机非金属材料工学Ⅰ与无机非金属材料工学Ⅲ的网上课程建设,并

制订的材料工程基础与材料科学基础两门课程的视频录制与课程上线计划,计划到

2020年建成无机非金属材料工学课程完整的网络学习内容与其它 3门主干专业课程的

网络学习视频。

3、靖金球、陈凤、陆成龙、涂传文 4 位教师仅 2018 年就先后 2 次赴广东简一公

司与唯美陶瓷有限公司,与企业就提高学生实习教学效果与实习基地建设等相关情况

进行了深入交流,听取了企业对实习实践教学改革的宝贵意见。并据此修订了 2018

专业人才版培养方案。

4、在教学改革方面,获得了省教育科学规划课题 “基于供给侧改革的应用型人才

培养模式探索”一般课题与“”重大课题 2 项教改项目立项,3 项校级教学研究课题立项,

发表“供给侧改革”背景下专业建设的探索—以无机非金属材料工程专业为例、《材料科

Page 68: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 19 —

学前沿》合作式、研究性教学改革与实践、应用型高校《陶瓷工艺学》课程改革与探

索、 高校无机化学实验教学方法的改进策略、大型贵重仪器设备开放平台的建设与利

用、高校实验教育文化变革的阻力及其化解、终端监控视角下高校大型仪器管理系统

的应用教改论文 7 篇。

7.教学改革论文(独立发表或第一作者,限 20 项)

论文(著)题目 作者 期刊名称、卷次 时间

《材料科学前沿》合作式、

研究性教学改革与实践 冯伟 课程教育研究 2018

供给侧改革背景下专业建

设的探索 姜玉风 湖北理工学报 2018

“高校无机化学实验教学方

法的改进策略” 李幸泽 课程教育研究 2018

大型贵重仪器设备开放平

台的建设与利用 李幸泽 科技创新与应用 2018

高校实验教育文化变革的

阻力及其化解 李幸泽 现代职业教育 2018

终端监控视角下高校大型

仪器管理系统的应用 李幸泽 课程教育研究 2018

应用型高校《陶瓷工艺学》

课程改革与探索 刘爱红 广州化工 2016

四、青年教师培养、交流情况 1、全面执行青年教师导师,并出台教师导师制相关要求和考核

新进青年教师 导师

张玉成 柳舟通

冯伟 范方禄

陈凤 靖金球

雷家柳 陈跃

陆成龙 范方禄

2、制定青年教师能力提升计划,利用每周例会后的时间,循环安排一到两位老师针对所承担

Page 69: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

— 20 —

的课程进行说课,由全体教师进行点评并提出相应的建议;青年教师教学能力提升明显。刘

爱红在 2017 年度第二届全国高校无机非金属材料专业青年教师讲课比赛中荣获三等奖,冯伟

老师在 2017 年度新模式教学比赛中获二等奖。张玉成获 2018 年度学校教学比赛三等奖,李

幸泽获实验说课比赛三等奖。校督导反馈意见也表明教学团队的青年教师教学水平进步较大。

3、针对每个主干课程,确定了课程负责人,采取每门课程集体讨论备课、两名及两名以上教

师共同讲授一门课程的形式,充分发挥各自优势,取长补短,确保课程教学质量。

4、阮敏、马福民、刘爱红先后赴法国、英国和新加坡学习一年;

5、刘爱红、屈媛赴武汉理工学习;

6、实验中心每年都有相关学习安排;近年来参加的学习包括:帕纳科 X 射线分析仪器技术

研讨会、岛津 2015 年大型分析仪器技术研讨会、华中科技大学贵重仪器操作培训、岛津公司

分析中心荧光培训、高校危化学品与实验室安全精细化管理提升研修班等;

7、陈跃、姜玉风等老师多年来一直担任黄石地区企业科技特派员;

8、雷家柳在大冶有色攻读博士后;

Page 70: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

五、科研情况 1. 近 5 年科研项目(限 10 项)

项目名称 经费 项目来源 起止时间

密度泛函理论研究超疏水材料表面湿度及修饰剂对

其疏冰性能的影响 25

国家自然科学基

金委 2018~2021

高碳帘线钢中钛夹杂的形核机理、性质及其固溶行

为研究 19

国家自然科学基

金委 2017~2020

润湿性梯度和 Laplace 压力共同作用下的冷凝液滴

自移除 20

国家自然科学基

金委 2016~2019

铁尾矿/水泥体系的水热反应过程及机理研究 3 湖北省自然科学

基金委 2017~2019

基于钢铁固废的炼焦污水高效净化剂的制备、结构

表征机理研究 3

湖北省自然科学

基金委 2018~2020

外力作用下超疏水表面精细结构与防冰性能间关系 5 湖北省自然科学

基金委 2015~2017

磷化铁和碳修饰磷酸铁锂作为动力电池正极材料的

制备及性能研究 10

湖北省自然科学

基金委 2015~2017

超低温条件下铝合金基超疏水材料的抗覆冰性能 2 湖北省教育厅 2015~2017

植物油基可生物降解聚酰胺酯的合成制备与结构性

能 2 湖北省教育厅 2016~2018

多离子共掺杂磷酸锰锂的可控合成及性能研究 1 湖北省教育厅 2014~2016

2.获得省部级及以上奖励(集体奖限填负责人是本团队成员的成果,限 10 项)

成果名称 奖励名称 等级 获奖人 授予单位 授予时间

Page 71: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

3.科研转化教学情况 (立项科研项目转化为课程、教材、讲义、案例、实验项目、专题讲座、学生论文选

题等)

1、在 2018 版新修订的培养方案中,新增了专创融合课程《固体废弃物资源化利用》,这就是

团队负责人带领团队骨干成员,多年科研实践基础上,提出来的新课程。后期相应的拟出版自编

教材、讲义;

2、每年毕业论文选题中,绝大多数都和教师的科研项目有关,剩下的来源于合作企业实践,

如《尼龙粉体上色工艺研究》以及《黄石地区铁尾矿的综合利用》等等;

3、在《材料科学前沿》课程教学过程中,冯伟结合国家自然科学基金项目,以“超疏水表面

水滴冷凝、结冰行为研究”为题,通过角色互换的形式让学生充当教师的角色上台讲解,而教师负

责组织学生从材料制备、结构表征、实验平台搭建、实验数据分析与结果讨论等环节入手,按照

小组分工完成文献资料搜集、整理,方案确定,教案准备,课件制作,课堂交流等任务。该授课

形式在 2017 年度学校青年教师教学比赛中获第二名。学生以此为契机,申报了“微环境可控冷凝

结冰可视化数字平台”,获 2017 年度湖北省大学生创新创业训练项目立项。近年来,与之相关的

毕业论文包括《特殊润湿性表面的实现及防冰性能判定》、《铜基疏水表面冷凝行为研究》、《不同

润湿性表面的冷凝防冰特性研究》、《疏水锌片表面冷凝动力学》、《氧化铜纳米针的电化学法制备

及冷凝特性》、《氧化锌纳米棒的水热法制备及防冰特性》;

4、阮敏密度泛函理论研究超疏水材料表面湿度及修饰剂对其疏冰性能的影响。与之相关的毕

业论文包括《修饰剂极性对疏水性能的影响》。

5、在 2018 版新修订的培养方案中,为提高学生的专业认识度,将《材料科学前沿》安排在

第一学期,以讲座的形式,由八位任课老师,结合自身科研实践,引导学生进入神奇的材料世界。

2018-2019 学年第一学期《材料科学前沿(讲座)》安排表 周次 任课教师 讲座主题 备注 1 雷家柳 新型钢铁材料的应用及发展 2 陈跃 固体废弃物的资源化利用 3 刘爱红 3D 打印技术及其应用 4 冯伟 仿生功能材料介绍 5 马福民 新型超疏水材料的制备技术及其应用 6 于占龙 超支化聚合物与包裹性能 7 徐先锋 纳米纤维改性炭基复合材料的结构与性能 8 范方禄 水泥生产及应用

Page 72: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1

六、团队未来三年建设计划 (包括但不限于团队提升、经费保障、教学建设、教学改革、教学平台、资源共享等)

1、 继续深化青年教师导师制,培养李明、陆成等新进博士,构建年龄、学缘结构更加合理的教

学团队;

2、 从学院日常运行经费和以学院为平台的横向项目中,划拨部分经费,鼓励支持团队教师含实

验老师,定期外出培训,尤其是参加“工程教育专业认证”相关会议;

3、 继续深化校企合作联合培养机制,依据行业企业需求,及时修改人才培养方案和教学大纲;

4、 加大外聘教师授课力度;

5、 注重双师型教师队伍的引进与培养;

6、 完善实验、实践教学平台;

7、 完成《胶凝材料学》自编教材的出版和使用;

8、 全面贯彻落实本科生导师制,引导所有学生进实验室、进项目、进企业;

七、推荐意见 学校推荐意见

(应审查确认团队所有成员无违反教学规范、师德师风和学术不端行为)

学校名称(公章)

2019 年 月 日

Page 73: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1
Page 74: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1
Page 75: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1
Page 76: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1
Page 77: 关于国家自然科学基金资助项目批准及有关事项的通知 - hbpu ...rsc.hbpu.edu.cn/z6ruanming.pdfMethod w1_R3a1 w1_TS1a1 w1_TS3a1′ w1_TS3a1′ + HF w1_TS3b1 w1_P3b1