8
2019 年(第 39 卷)第10Vol. 39,No.10,75-82,2019 体育科学 CHINA CHINA SPORT SPORT SCIENCE SCIENCE 光遗传激活 DA 系统调节运动疲劳大鼠纹状体低频振荡 的电生理学研究 1 ,陈孟娇 1 ,赵旭东 1 ,陈福俊 2,3 ,刘晓莉 1 ,乔德才 1 ,侯莉娟 1* 1. 北京师范大学体育与运动学院,北京 1008752. 上海交通大学 Bio-X 研究院,上海 2002403. 上海交通大学体育系运动健康工程中心,上海 200240 要: 目的:探讨光遗传激活黑质多巴胺( DA )神经元对运动疲劳大鼠纹状体低频振荡的影响。方法:雄性 SD 大鼠 建立运动疲劳模型,分为安静对照组( SCG )、光敏蛋白安静组( OCG )、运动疲劳组( FG )、假手术运动疲劳组( SFG )和 光敏蛋白运动疲劳组( OFG );采用双病毒特异性转染黑质致密部( SNc DA 能神经元,记录 3 Hz20 Hz 蓝色激光 473 nm )激活 DA 能神经元时背外侧纹状体 LFPs 振荡的变化情况。结果: 1 )大鼠纹状体 α β 频段振荡随力竭时间 延长而增强, 7 天力竭运动后大鼠纹状体 αβ 频段功率谱密度( PSD )值显著升高( P0.05 ),恢复 24 h 后有降低; 2 OCG OFG 组镜下可见荧光信号表达,病毒转染正常,光遗传激活 DA 能神经元显著降低 OCG 组大鼠纹状体 αβ 段的 PSD 值( P0.05 ); 3 )与 3 Hz 相比, 20 Hz 光刺激显著降低 7 天重复力竭大鼠纹状体 αβ 频段 PSD 值( P0.05 )。 结论:运动疲劳后大鼠纹状体 α β 频段 PSD 值显著升高;光遗传激活黑质多巴胺系统可改善力竭大鼠自主行为活 动及纹状体 αβ 频段 PSD 值,而且与 3 Hz 相比, 20 Hz 刺激效应最为显著,提示 DA 放电模式改变引起运动疲劳纹状 体低频振荡变化是导致大鼠运动疲劳症状产生的原因之一。 关键词: 运动疲劳;黑质-纹状体多巴胺能系统;光遗传;神经编码;低频振荡 中图分类号: G804.2 文献标识码: A 运动疲劳是竞技运动中普遍存在的现象,也是制约运 动水平提高的关键因素。基底神经节接受来自大脑皮层 的神经冲动,分别构成直接通路、间接通路和超直接通路 对运动控制功能起调节作用。直接通路对运动皮层最终 信号输出起兴奋作用,间接通路对运动信息输出起抑制 作 用(乔 德 才 等 ,2014) 52 。黑质-纹状体 DA(Nigra-striatal dopamine,NSDA)系统通过影响直接和间接通路的活动调 节 基 底 神 经 节 信 息 输 出 ,平 衡 机 体 运 动 功 能(Rice et al., 2011)。 实 验 室 前 期 研 究 发 现 运 动 疲 劳 后 背 外 侧 纹 状 体 突 触 间 隙 增 宽 ,多 巴 胺 2 型 受 体(Dopamine 2 receptor, D2DR)激 动 剂 可 缓 解 大 鼠 活 动 能 力 的 降 低 ,皮 层 M1 和 纹 状体同步振荡增强,D2DR 表达下调(侯莉娟 等,2018) 45 提示运动疲劳引起的纹状体电活动变化可能与NSDA系 统有关。 “ 中 枢 疲 劳 修 正 假 说 ”认 为 五 羟 色 胺(5-hydroxy tryptamine,5-HT) /多 巴 胺(Dopamine,DA)比 值 升 高 与 中 枢 疲劳发生有关(Cordeiro et al.,2017)。DA 能神经元以两种 放 电 模 式 释 放 DA,“强 直 型(Tonic)”和“时 相 型(Pha‐ sic)”。时相型多巴胺释放由多巴胺神经元的动作电位驱 动,导致突触前膜多巴胺浓度快速增加。而强直型多巴 胺释放受其他神经元和神经递质再摄取调控,与突触前 动作电位无关。与时相型释放相比,强直型释放产生更 少的胞外多巴胺。DA强直型放电促进运动活力,时相型 多 巴 胺 放 电 有 助 于 特 定 动 作 的 发 起(Grace,2016)。 Mc‐ Morris 等(2018)研 究 认 为 ,DA 放 电 从 时 相 模 式 向 强 直 模 式的转变可能会降低机体维持目标导向活动的动机进而 引起疲劳,实验室前期研究发现运动疲劳后SNc区DA能 神经元放电频率下降,不规则性增强(乔德才 等,2014) 53 由 此 推 测 ,DA 放 电 模 式 变 化 可 能 是 NSDA 系 统 参 与 运 动 疲劳中枢调控的机制之一,然而,并未得到准确的实验证 明。光遗传技术利用光敏感蛋白的生物特性并结合病毒 转染技术,可以特异性操控目标神经元,模拟神经元的不 文章编号:1000-677X(2019)10-0075-08 DOI:10.16469/j.css.201910007 收稿日期:2019-06-20修订日期: 2019-10-06 基金项目:国家自然科学基金资助项目( 31971095 )。 第一作者简介: 李科( 1993- ),女,硕士,主要研究方向为运动生理与 神经生物学, E-mail[email protected]*通信作者简介: 侯莉娟( 1979- ),女,副教授,博士,主要研究方向为 运动生理与神经生物学, E-mail[email protected]75

光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡 ... - sport…images.sport.org.cn/File/2019/12/30/0917294078.pdf · 2019. 12. 30. · china sport science 光遗传激活da系统调节运动疲劳大鼠纹状体低频振荡

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡 ... - sport…images.sport.org.cn/File/2019/12/30/0917294078.pdf · 2019. 12. 30. · china sport science 光遗传激活da系统调节运动疲劳大鼠纹状体低频振荡

2019年(第39卷)第10期

Vol 39No1075-822019

体 育 科 学

CHINACHINA SPORTSPORT SCIENCESCIENCE

光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡的电生理学研究

李 科 1陈孟娇 1赵旭东 1陈福俊 23刘晓莉 1乔德才 1侯莉娟 1

(1 北京师范大学 体育与运动学院北京 100875

2 上海交通大学 Bio-X研究院上海 200240 3 上海交通大学 体育系运动健康工程中心上海 200240)

摘 要目的探讨光遗传激活黑质多巴胺(DA)神经元对运动疲劳大鼠纹状体低频振荡的影响方法雄性SD大鼠

建立运动疲劳模型分为安静对照组(SCG)光敏蛋白安静组(OCG)运动疲劳组(FG)假手术运动疲劳组(SFG)和

光敏蛋白运动疲劳组(OFG)采用双病毒特异性转染黑质致密部(SNc)DA 能神经元记录 3 Hz20 Hz 蓝色激光

(473 nm)激活 DA 能神经元时背外侧纹状体 LFPs振荡的变化情况结果1)大鼠纹状体 α及 β频段振荡随力竭时间

延长而增强7 天力竭运动后大鼠纹状体 αβ频段功率谱密度(PSD)值显著升高(P<005)恢复 24 h 后有降低2)

OCG及 OFG组镜下可见荧光信号表达病毒转染正常光遗传激活 DA能神经元显著降低 OCG组大鼠纹状体αβ频

段的 PSD 值(P<005)3)与 3 Hz 相比20 Hz 光刺激显著降低 7 天重复力竭大鼠纹状体 αβ频段 PSD 值(P<005)

结论运动疲劳后大鼠纹状体 α和 β频段 PSD 值显著升高光遗传激活黑质多巴胺系统可改善力竭大鼠自主行为活

动及纹状体 αβ频段 PSD 值而且与 3 Hz 相比20 Hz 刺激效应最为显著提示 DA 放电模式改变引起运动疲劳纹状

体低频振荡变化是导致大鼠运动疲劳症状产生的原因之一

关键词运动疲劳黑质-纹状体多巴胺能系统光遗传神经编码低频振荡

中图分类号G8042 文献标识码A

运动疲劳是竞技运动中普遍存在的现象也是制约运

动水平提高的关键因素基底神经节接受来自大脑皮层

的神经冲动分别构成直接通路间接通路和超直接通路

对运动控制功能起调节作用直接通路对运动皮层最终

信号输出起兴奋作用间接通路对运动信息输出起抑制

作用(乔德才 等2014)52黑质-纹状体 DA(Nigra-striatal

dopamineNSDA)系统通过影响直接和间接通路的活动调

节基底神经节信息输出平衡机体运动功能(Rice et al

2011)实验室前期研究发现运动疲劳后背外侧纹状体

突触间隙增宽多巴胺 2 型受体(Dopamine 2 receptor

D2DR)激动剂可缓解大鼠活动能力的降低皮层 M1和纹

状体同步振荡增强D2DR 表达下调(侯莉娟 等2018)45

提示运动疲劳引起的纹状体电活动变化可能与 NSDA 系

统有关

ldquo 中 枢 疲 劳 修 正 假 说 rdquo认 为 五 羟 色 胺(5-hydroxy

tryptamine5-HT)多巴胺(DopamineDA)比值升高与中枢

疲劳发生有关(Cordeiro et al2017)DA能神经元以两种

放电模式释放 DAldquo强直型(Tonic)rdquo和ldquo时相型(Pha‐

sic)rdquo时相型多巴胺释放由多巴胺神经元的动作电位驱

动导致突触前膜多巴胺浓度快速增加而强直型多巴

胺释放受其他神经元和神经递质再摄取调控与突触前

动作电位无关与时相型释放相比强直型释放产生更

少的胞外多巴胺DA强直型放电促进运动活力时相型

多巴胺放电有助于特定动作的发起(Grace2016)Mc‐

Morris 等(2018)研究认为DA 放电从时相模式向强直模

式的转变可能会降低机体维持目标导向活动的动机进而

引起疲劳实验室前期研究发现运动疲劳后 SNc区 DA能

神经元放电频率下降不规则性增强(乔德才 等2014)53

由此推测DA 放电模式变化可能是 NSDA 系统参与运动

疲劳中枢调控的机制之一然而并未得到准确的实验证

明光遗传技术利用光敏感蛋白的生物特性并结合病毒

转染技术可以特异性操控目标神经元模拟神经元的不

文章编号1000-677X(2019)10-0075-08 DOI1016469jcss201910007

收稿日期2019-06-20修订日期2019-10-06

基金项目国家自然科学基金资助项目(31971095)

第一作者简介李科(1993-)女硕士主要研究方向为运动生理与

神经生物学E-mail201621070035mailbnueducn

通信作者简介侯莉娟(1979-)女副教授博士主要研究方向为

运动生理与神经生物学E-mailhouljbnueducn

75

《体育科学》2019 年(第 39 卷)第 10 期

同放电模式被视为神经科学领域定向刺激变革性的一

项新技术(Rost et al2017)因此本研究采用病毒转染

加光遗传技术采用不同频率的时相型刺激模式特异性

激活黑质 DA能神经元观察其对运动疲劳大鼠纹状体低

频振荡的影响探讨NSDA系统在运动疲劳中枢调控中的

作用

1 研究对象与方法

11 研究对象与分组

健康雄性 Sprague-Dawley 大鼠(220~240 g)北京维

通利华公司提供[SCXK(京)2016mdash0004]大鼠分笼饲

养自由饮食自然光照适应性饲养1周后随机分为生理

盐水安静组(saline control groupSCG)光敏蛋白安静组

(optogenetics control groupOCG)运 动 疲 劳 组(fatigue

groupFG)假手术运动疲劳组(saline fatigue groupSFG)

和光敏蛋白运动疲劳组(optopgenetics fatigue groupOFG)

各组7只共35只

12 病毒转染及光纤电极埋植

大鼠腹腔注射 10 水合氯醛(035 ml100 g)麻醉后

将头部固定于立体定位仪本实验中OCGOFG组在 SNc

区(AP-53 mmR20 mmH-80 mm)注射 1 μl rAAV-

TH-NLS-Cre-WPRE-pA和rAAV-Ef1a-DIO-hChR2(H134R)-

mCherry-WPRE-pA(11)混 合 AAVSCGSFG 组 注 射

1 μl 生理盐水后在纹状体(AP02~12 mmR30~

40 mm)的位置钻一个1 mmtimes1 mm窗口在解剖显微镜下

植 入 梯 度 阵 列 电 极(Stablohm 675直 径 35 μm间 距

200 μm)10 mm 长的光纤陶瓷头埋植于病毒注射位点

处颅骨暴露脑组织处采用 WPI 生物硅胶封口牙科水

泥固定术后腹腔注射青霉素防治感染动物手术清醒

后单笼饲养自由饮水进食动物房采取 12 h光照12 h

黑暗交替温度与湿度恒定详细记录和观察动物的活动

状态实验结束后进行电极定位及光敏蛋白表达鉴定

剔除电极位置未落入背外侧纹状体的大鼠进入电生理

数据统计分析的信号通道数量为 SCG(N=24 通道3 只)

OCG(N=56通道7只)FG(N=40通道5只)SFG(N=24通

道3只)和OFG(N=56通道7只)共200个

13 运动疲劳模型建立

术后恢复 3周及 1周的适应性跑台训练后采用改良

的Bedford递增负荷运动方案(Hu et al2015)建立运动疲

劳模型运动负荷分为 3 级一级运动速度为 82 mmin

运动时间 15 min二级运动速度为 15 mmin运动时间

15 min三级运动速度为 20 mmin运动直至力竭连续进

行7天同时将安静组大鼠置于跑台一侧大鼠力竭标准

为不能维持预定跑速滞留于跑道挡板不动使用光电

声刺激驱赶仍无效并伴有呼吸急促俯卧跑台垂头不

起等行为表现

14 纹状体LFPs信号采集

信号通过 Cerebus-128 多通道信号采集系统采集采

样频率为 2 kHz通过 lowpass 250 Hz 滤波获得 LFPs并通

过 Neuromotive 系统同步追踪大鼠行为活动30 min次

将 SCGOCGSFGOFG 大鼠置于记录盒中分别给予

3 Hz刺激频率1个脉冲每个脉冲时间 8 ms总时长 10 s

(Howe et al2016)和 20 Hz 刺激频率10 个脉冲每个脉

冲时间 10 ms总时长 10 s(Da Silva et al2018)的蓝光

(473 nm)刺激刺激完成后给予50 s恢复时间FG不给光

刺激记录光激活黑质DA能神经元对SCGOCG及 1天7

天力竭即刻SFGOFG大鼠纹状体LFPs的影响

15 数据处理

利用 NeuroExplorer 5 x86 amp Matlab 2015a 平台对原始

LFPs 电生理数据进行分析采用 SPSS 200 统计软件进行

统计学分析Sigmaplot 125 软件作图实验结果以均数plusmn

标准差(MplusmnSD)表示采用方差分析(One-Way ANOVA)

运动疲劳对电生理指标及不同频率刺激效果的影响组

间均值差异选择 LSDTamhanersquos T2 检验采用配对样本 t

检验分析光遗传刺激对 PSD值的影响以 P<005表示差

异具有显著性

2 研究结果

21 SNc中光敏蛋白表达结果

注射携带 TH 启动子和 DIO-hChR2(H134R)-mCherry

的腺相关病毒(Adeno-associated virusAAV)经过 3 周以

上时间表达后转染结果如图1所示mCherry红色荧光在

SNc区出现根据病毒表达原理可知AAV只能在Cre重组

酶存在时正常表达而在 TH 启动子作用下仅有 DA 能神

经元能表达Cre重组酶故红色荧光只可能来自于使AAV

正常表达的DA能神经元该结果证明AAV病毒的立体

定位注射位置准确大鼠已成功表达ChR2

21 运动疲劳对大鼠纹状体LFPs的影响

节律性振荡是大脑研究中最广泛的现象之一哺乳动

物低频(<100 Hz)振荡通过协调不同脑区之间的信息传

递参与神经调控如认知运动等行为低频振荡作为基

底神经节中的一种生理现象同时也与运动调控有关(Foun‐

tas et al2017)1通过比较1天力竭与7天重复力竭后大

鼠纹状体LFPs数据变化分析运动疲劳程度累积对大鼠纹

状体低频振荡的影响结果如图 2 所示与 1 天力竭相

比7 天重复力竭大鼠纹状体低频段(<40 Hz)振荡功率

谱密度(power spectral densityPSD)值有所升高(图 2A)

但经过24 h恢复期后有所下降与1天力竭相比7天重复

力竭大鼠α频段(7~13 Hz)PSD值显著升高(P<005图

2B)与 1天力竭相比7天重复力竭大鼠 β 频段(15~30

Hz)PSD值显著升高(P<005图2C)

76

李科等光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡的电生理学研究

22 不同频率光刺激对运动疲劳大鼠纹状体LFPs的影响

不同光刺激对OCG和 SCG大鼠纹状体LFPs的影响如

图 34 所示与 SCG 相比3 Hz20 Hz 光刺激会降低 OCG

大鼠 α 频段 PSD 值(P<005图 3CD)与 SCG 相比

3 Hz20 Hz 光刺激会降低 OCG 大鼠 β 频段 PSD 值(P<

005图 4CD)不同光刺激对 OFG 和 SFG 大鼠纹状体

LFPs的影响如图 567所示3 Hz20 Hz光刺激会降低 1

天力竭 OFG 大鼠 STR 的 α 和 β 频段 PSD 值(P<005图

5)20 Hz光刺激会降低 7天重复力竭 OFG 大鼠 STR 的 α

和β频段PSD值(P<005)而 3 Hz光刺激降低效应不明

显(P>005图 6)与3 Hz刺激相比20 Hz光刺激改善7

天重复力竭大鼠纹状体异常低频振荡的效应更明显(P<

005图7)

图1 SNc区DA能神经元ChR2基于 cre重组酶的特异性表达

Figure 1 ChR2 Selectively Expressed in DA Neuron with Cre Recombinase

注A纹状体电极植入及病毒注射位置(矢状面)Str纹状体SNc黑质致密部B病毒序列及刺激模式ChR2 是表达于神经元表面

的光敏感阳离子通道蛋白受到光刺激时通道开启使胞外的钠离子进入神经元产生去极化作用最终引发神经元的动作电位C

ChR2蛋白在SNc转染结果图箭头所指出为ChR2表达位置

图2 运动疲劳对大鼠纹状体LFPs的影响

Figure 2 Effects of Exercise-induced Fatigue on LFPs in Striatum

注1天1天力竭7天7天重复力竭post24 H7天重复力竭后恢复24 h表示差异具有显著性(P<005)

图3 不同频率光刺激对正常状态纹状体α频段振荡的影响

Figure 3 Effect of Different Optogenetics Stimulation on the Power Spectral Density of α Band in Normal Rats

注Normal正常状态AB代表不同频率光刺激对STR α频段原始电信号(Raw data)的影响蓝色的方框代表光刺激CD代表不同频率光刺

激对STR α频段PSD值的影响左侧为3 Hz刺激右侧为20 Hz刺激表示差异具有显著性(P<005)

77

《体育科学》2019 年(第 39 卷)第 10 期

图5 不同频率光刺激对1天力竭大鼠纹状体LFPs的影响

Figure 5 Effect of Different Optogenetics Stimulation on the Power

Spectral Density of 1D Exhausted Rats

注1天1天力竭AB为 3 HzCD为 20 Hz白色方框范围内代表光

刺激表示差异具有显著性(P<005)

图6 不同频率光刺激对7天重复力竭大鼠纹状体LFPs的影响

Figure 6 Effect of Different Optogenetics Stimulation on the Pow‐

er Spectral Density of 7D Exhausted Rats

注7 天7 天重复力竭AB 为 3 HzCD 为 20 Hz白色方框范围内

代表光刺激表示差异具有显著性(P<005)

图4 不同频率光刺激对正常状态纹状体β振荡的影响

Figure 4 Effect of Different Optogenetics Stimulation on the Power Spectral Density of β Band in Normal Rats

注AB 代表不同频率光刺激对 STR β频段原始电信号(Raw data)的影响蓝色的方框代表光刺激CD 代表不同频率光刺激对 STR β频段

PSD值的影响左侧为3 Hz刺激右侧为20 Hz刺激表示差异具有显著性(P<005)

78

李科等光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡的电生理学研究

3 讨论与分析

31 DA放电模式改变参与运动疲劳中枢调控

皮层-基底神经节环路中的β振荡活动(13~30 Hz)

与强直收缩和姿势控制相关(Brittain et al2014)高幅

β振荡是皮层广泛抑制的表现抑制GABA神经递质的再

摄取会增加 β 振幅和运动相关 β 振荡减弱β 振荡调

节指标mdashmdash运动后 β 振荡回弹(Post-movement beta re‐

boundPMBR)与 GABA 能神经元抑制相关(Gaetz et al

2011)Fry等(2017)研究证实以次最大收缩强度达到疲

劳时PMBR 增加α 频段振荡通常认为具有抑制效应

Haegens 等(2011)研究发现在 M1 区中 α 频段活动与神

经元放电频率变化相反α 频段活动在运动执行前呈去

同步化在运动执行时呈同步化状态(Brinkman et al

20142016)但也有研究认为皮层感觉运动区域的 α

频段活动下降是信息处理的标志进行单侧运动时对侧

感觉运动皮层 α 频段振幅减小(Fry et al2017)371亨廷

顿症病理机制研究显示是患者 α 振荡幅度降低基底神

经节低频α频段(8~10 Hz)振荡活动增加也是帕金森病

(Parkinsonrsquos diseasePD)的病理表现之一(Bender et al

2018Nimmrich et al2015)PD 模型大鼠皮层 M1M2 区

及苍白球外侧部 GPe中 α 频段(5~13 Hz)活动明显增高

(Ge et al2012)α和β频段节律都有一种事件相关去

同 步 化 效 应 在 运 动 执 行 时 活 动 减 弱(Brittain et al

2014)3实验室前期研究大鼠在运动过程中皮层脑电 α

频段所占比例显著增加(侯莉娟 等2018)51本部分研究

证实运动疲劳后纹状体α频段β频段活动增强且增高

幅度与疲劳累积程度相关

在正常状态下强直型和时相型多巴胺释放相结合以

维持高水平的多巴胺并且 β 振荡也处于生理范围在

PD中DA能神经元的缺失意味着释放到纹状体和STN突

触前的多巴胺较少净多巴胺总量(强直型和时相型多巴

胺释放模式的总和)处于低水平因此β振荡升高并超过

生理水平用左旋多巴或多巴胺激动剂治疗PD患者促进

时相型多巴胺释放改变了净多巴胺的水平此时 β 振荡

接 近 于 正 常 水 平(Brittain et al2014Jenkinson et al

2011)而DA替代疗法可通过降低异常的β振荡而减少

PD 患者的运动迟缓和身体僵硬等运动障碍(Wang et al

2017)因此β 振荡水平变化可能与 DA 时相型释放相

关而 DA 也可减少 α 振荡(Kim et al2014)与视觉刺

激相关的DA增多可以使PD患者丘脑底核STN中α频段

去同步化(Huebl et al2014)DA 神经元时相型放电可

有 效 激 活 D2DR(Marcott et al2014)DA 与 高 活 性 的

D2DR结合还可通过抑制间接通路从而降低异常β振荡

(Rice et al2008)D2DR激动剂阿扑吗啡能抑制PD患者

和 PD 动物模型过高的 β 振荡(Berke2009)前期研究

图7 不同频率光刺激对大鼠纹状体LFPs标准化比值的影响(OnPre)Figure 7 Effect of Different Optogenetics Stimulation on the Nor‐

malized Ratio of Power Spectral Density of Rats with Exercise-in‐

duced Fatigue

注AB 为 α频段CD 为 β频段与正常状态1 天力竭相比7 天重

复力竭后 3 Hz 刺激的改善效应明显降低而 20 Hz 的改善效应明显

升高表示差异具有显著性(P<005)

图8 DA系统参与运动疲劳大鼠低频振荡调控的可能机制示意图

Figure 8 DA Neurons in SNc Regulates Oscillation on Exercise-induced Fatigue Rats

注运动疲劳后STR出现低频振荡(A)时相型光遗传激活DA能神经元可能通过影响D2DR降低异常低频振荡发挥行为改善作用(B)

79

《体育科学》2019 年(第 39 卷)第 10 期

发现D2DR 激动剂干预可降低运动疲劳大鼠纹状体 α

β频段PSD值DA时相型放电模式还有助于动作发起和

执行(Da Silva et al2018Howe et al2016)本部分实验

研究发现1D力竭时两种时相型释放都可降低运动疲劳

大鼠纹状体αβ频段PSD值而7D重复力竭时给以低

频时相型刺激低幅度 DA 释放对大鼠纹状体 αβ 频段

PSD值的影响差异不具有显著性而高频时相型刺激高

幅度 DA 释放可显著降低 7D 重复力竭大鼠的纹状体 α

β频段PSD值这证实DA放电模式通过含量影响运动疲

劳纹状体αβ频段PSD值参与运动疲劳中枢调控

32 光激活 DA 系统影响纹状体低频振荡可能的生理学

机制

LFPs是指记录电极尖端附近局部区域兴奋性和抑制

性突触后电位的总和振荡主要发生在LFPs信号中是由

局部神经元同步的阈下电活动引起β频段振荡活动降

低与运动控制核团的去抑制活动有关计算模型显示 α

频段振荡主要影响间接通路通过快速去抑制实现对黑

质网状部 SNr 的抑制进而促进间接通路信息传输发挥运

动抑制作用(Fountas et al2017)16皮层-纹状体突触可

塑性中由内源性大麻素(endocannabinoideCB)介导的长

时 程 抑 制(long-term depressionLTD)也 依 赖 于 DA 及

D2DR(Xu et al2018)D2DR 被 DA 激活后抑制 cAMP

PKA活性导致 G-蛋白信号转导调节子-4磷酸化水平降

低使代谢型谷氨酸受体 15耦联的 Gq蛋白去抑制从而

促进 eCB 生成与突触前膜上的 CB1 受体结合后诱发

eCB-LTD(Cerovic et al2013)纹状体 D2DR 敲除或使用

D2DR 拮 抗 剂 均 不 能 成 功 诱 导 出 LTD(Kreitzer et al

2007)实验室前期研究结果发现运动疲劳后皮层-纹状

体 eCB-LTD受损D2DR表达下调(侯莉娟 等2018Ma et

al2018)45由此推测运动疲劳后基底神经节间接通路

过度兴奋

离体实验证实MSN 膜电位的离子电导受 DA 调节

DA可使MSN静息电位保持在钾离子平衡电位附近NS‐

DA系统受损大鼠纹状体神经元钾离子电流活性降低膜

电位以去极化为主放电频率增加兴奋性增强而D2DR

可通过抑制 L型钙通道电流从而降低纹状体神经元兴奋

性(Tseng et al2001)间接通路中型多棘神经元(Indi‐

rect pathway medium spiny neuroniMSN)兴 奋 性 主 要 受

D2DR 和腺苷酸 A2A 受体(Adenosine 2A receptorsA2AR)

共同调节A2AR 拮抗剂 SCH-58261 可显著改善 DA 缺失

小鼠 iMSN 的兴奋性抑制突触后电流减轻谷氨酸的兴

奋性毒性作用DA缺失后 A2AR上调 RGS4表达引起 M4

自身受体功能减弱和胆碱能信号传导增强而A2AR拮抗

剂可慢阻止这种升高(Peterson et al2012)激活纹状体

胆碱能神经元受体也会使β振荡幅度增高(Pittman-pol‐

letta et al2018)SCH58261 和 D2DR 激动剂喹吡罗经纹

状体微注射后可以抑制运动疲劳时 iMSN 的过度兴奋

降低 βγ 频段振幅延缓疲劳发生(Hou et al2017)

A2AR 也参与 iMSN 中长时程增强(Long-term potentiation

LTP)诱导A2AR 发挥与 D1DR 相似的作用通过激活

PKA引起 DARPP-32 磷酸化参与 LTP 形成DARPP-32

通过不同残基的磷酸化将 DA腺苷和 Glu 等递质或调质

对纹状体的调控整合在一起A2AR和D2DR还可通过调

节 Thr34-DARPP-32 磷酸化程度而使其下游靶点磷酸化

增加蛋白合成增多受体活化等发挥对运动疲劳的调控

作用(Nishi et al2005)由此推测7D 力竭后高频时相

刺激引起 DA 释放通过 D2DRA2AR 影响抑制纹状体兴奋

性发挥改善运动疲劳大鼠行为活动的作用

4 研究结论

运动疲劳后大鼠纹状体 αβ 频段振荡显著升高光

遗传激活黑质 DA系统可改善 1天力竭大鼠纹状体 αβ

频段PSD值与3 Hz相比20 Hz刺激可显著改善7天重复

力竭大鼠纹状体 αβ 频段 PSD 值提示 DA 放电模式改

变引起运动疲劳纹状体低频振荡变化是导致大鼠运动疲

劳症状产生的原因之一运动疲劳使大鼠纹状体αβ频

段兴奋性增高与 DA 放电模式有关DA 时相型放电通过

影响 iMSN 中 A2AR 及 D2DR 活性改善大鼠异常低频振荡

参与运动疲劳中枢调控

参考文献

侯莉娟王晓昕成佳俐等2018运动疲劳对大鼠皮层-纹状体通路

同步电振荡活动及 DA 信号系统影响的研究[J] 体育科学38

(4)45-53

乔德才刘军刘晓莉2014运动疲劳的中枢机制研究进展基于基

底神经节-皮层环路紊乱的视角[J]北京体育大学学报37(2)

51-58

BENDER FKOROTKOVA TPONOMARENKO A2018 Optoge‐

netic entrainment of hippocampal theta oscillations in behaving mice

[J] J Vis Exp7(136)

BERKE J D2009 Fast oscillations in cortical-striatal networks

switch frequency following rewarding events and stimulant drugs

[J] Eur J Neurosci30(5)848-859

BRINKMAN LSTOLK ADIJKERMAN H Cet al2014 Dis‐

tinct roles for alpha- and beta-band oscillations during mental simu‐

lation of goal-directed actions[J] J Neurosci34(44)14783-

14792

BRINKMAN LSTOLK AMARSHALL T Ret al2016 Indepen‐

dent causal contributions of alpha- and beta-band oscillations during

movement selection[J] J Neurosci36(33)8726-8733

BRITTAIN J SBROWN P2014 Oscillations and the basal ganglia

Motor control and beyond[J] Neuroimage85 Pt2637-647

BRITTAIN J SSHAROTT ABROWN P2014 The highs and

lows of beta activity in cortico-basal ganglia loops[J] Eur J Neuro‐

sci39(11)1951-1959

CEROVIC MDISA RTONINI R2013 Molecular and cellular

80

李科等光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡的电生理学研究

mechanisms of dopamine-mediated behavioral plasticity in the stria‐

tum[J] Neurobiol Learn Mem10563-80

CORDEIRO L M SRABELO P C RMORAES M Met al2017

Physical exercise-induced fatigueThe role of serotonergic and do‐

paminergic systems[J] Braz J Med Biol Res50(12)e6432

DA SILVA J A TECUAPETLA FPAIXAtildeO Vet al2018 Dopa‐

mine neuron activity before action initiation gates and invigorates fu‐

ture movements[J] Nature554(7691)244-248

FOUNTAS ZSHANAHAN M2017 The role of cortical oscilla‐

tions in a spiking neural network model of the basal ganglia[J]

PLoS One12(12)e0189109

FRY AMULLINGER K JONEILL G Cet al2017 The effect of

physical fatigue on oscillatory dynamics of the sensorimotor cortex

[J] Acta Physiol(Oxf)220(3)370-381

GAETZ WEDGAR J CWANG D Jet al2011 Relating MEG

measured motor cortical oscillations to resting c-aminobutyric acid

(GABA)concentration[J] Neuroimage55(2)616-621

GE SYANG CLI Met al2012 Dopamine depletion increases the

power and coherence of high-voltage spindles in the globus pallidus

and motor cortex of freely moving rats[J] Brain Res146566-79

GRACE A A2016 Dysregulation of the dopamine system in the

pathophysiology of schizophrenia and depression[J] Nat Rev Neu‐

rosci17(8)524-532

HAEGENS SNACHER VLUNA Ret al2011 alpha-Oscilla‐

tions in the monkey sensorimotor network influence discrimination

performance by rhythmical inhibition of neuronal spiking[J] Proc

Natl Acad Sci U S A108(48)19377-19382

HOU LCHEN WLIU Xet al2017 Exercise-induced neuropro‐

tection of the nigrostriatal dopamine system in Parkinsonrsquos disease

[J] Front Aging Neurosci9358

HOWE M WDOMBECK D A2016 Rapid signalling in distinct do‐

paminergic axons during locomotion and reward[J] Nature535

(7613)505-510

HU YLIU XQIAO D2015Increased extracellular dopamine and

5-hydroxytryptamine levels contribute to enhanced subthalamic nu‐

cleus neural activity during exhausting exercise[J] Biol Sport 32

(3)187-192

HUEBL JSPITZER BBRUCKE Cet al2014 Oscillatory sub‐

thalamic nucleus activity is modulated by dopamine during emotion‐

al processing in Parkinsons disease[J] Cortex6069-81

JENKINSON NBROWN P2011 New insights into the relationship

between dopaminebeta oscillations and motor function[J] Trends

Neurosci34(12)611-618

KIM B SLEE JBANG Met al2014 Differential regulation of

observational fear and neural oscillations by serotonin and dopamine

in the mouse anterior cingulate cortex[J] Psychopharmacology

(Berl)231(22)4371-4381

KREITZER A CMALENKA R C2007 Endocannabinoid-mediated

rescue of striatal LTD and motor deficits in Parkinsonrsquos disease

models[J] Nature445(7128)643-647

MA JCHEN HLIU Xet al2018 Exercise-induced fatigue im‐

pairs bidirectional corticostriatal synaptic plasticity[J] Front Cell

Neurosci1214

MARCOTT P FMAMALIGAS A AFORD C P2014 Phasic dopa‐

mine release drives rapid activation of striatal D2-receptors[J] Neu‐

ron84(1)164-176

MCMORRIS TBARWOOD MCORBETT J2018 Central fatigue

theory and endurance exerciseToward an interoceptive model[J]

Neurosci Biobehav Rev9393-107

NIMMRICH VDRAGUHN AAXMACHER N2015 Neuronal

network oscillations in neurodegenerative diseases[J] Neuromolec‐

ular Med17(3)270-284

NISHI AWATANABE YHIGASHI Het al2005 Glutamate reg‐

ulation of DARPP-32 phosphorylation in neostriatal neurons in‐

volves activation of multiple signaling cascades[J] Proc Natl Acad

Sci USA102(4)1199-1204

PETERSON J DGOLDBERG J ASURMEIER D J2012 Adenos‐

ine A2a receptor antagonists attenuate striatal adaptations following

dopamine depletion[J] Neurobiol Dis45(1)409-416

PITTMAN-POLLETTA B RQUACH AMOHAMMED A Iet al

2018 Striatal cholinergic receptor activation causes a rapidselec‐

tive and state-dependent rise in cortico-striatal beta activity[J] Eur

J Neurosci48(8)2857-2868

RICE M ECRAGG S J2008 Dopamine spillover after quantal re‐

leaseRethinking dopamine transmission in the nigrostriatal path‐

way[J] Brain Res Rev58(2)303-313

RICE M EPATEL J CCRAGG S J2011 Dopamine release in the

basal ganglia[J] Neuroscience198112-137

ROST B RSCHNEIDER-WARME FSCHMITZ Det al2017

Optogenetic tools for subcellular applications in neuroscience[J]

Neuron96(3)572-603

TSENG K YKASANETZ FKARGIEMAN Let al2001 Corti‐

cal slow oscillatory activity is reflected in the membrane potential

and spike trains of striatal neurons in rats with chronic nigrostriatal

lesions[J] J Neurosci21(16)6430-6439

WANG QLI MXIE Zet al2017 Granger causality supports ab‐

normal functional connectivity of beta oscillations in the dorsolateral

striatum and substantia nigra pars reticulata in hemiparkinsonian rats

[J] Exp Brain Res235(11)3357-3365

XU HPEREZ SCORNIL Aet al2018 Dopamine-endocannabi‐

noid interactions mediate spike-timing-dependent potentiation in the

striatum[J] Nat Commun9(1)4118

Optogenetic Activation DA Neurons in SNc Modulates Striatum Low-frequency

Oscillation in Exercise-induced Fatigue Rats

LI Ke1CHEN Mengjiao1ZHAO Xudong1CHEN Fujun23LIU Xiaoli1QIAO Decai1HOU Lijuan1

1 College of P E and Sports Beijing Normal University Beijing 100875 China 2 Bio-X Institutes Shanghai Jiao Tong

81

《体育科学》2019 年(第 39 卷)第 10 期

University Shanghai 200240 China 3 Exercise Health and Technology Center Department of Physical Education Shanghai Jiao

Tong University Shanghai 200240China

AbstractObjectiveTo investigate the effect of optogenetic activation of SNc DA neurons on the low frequency oscillations instriatum of exercise-induced fatigue rats MethodsMale SD rats were randomly divided into 5 groupssaline control group(SCG)optogenetic control group(OCG)exercise-induced fatigue group(FG)saline fatigue group(SFG)and optogeneticfatigue group(OFG) Dual viral solution was injected in unilateral SNc to selectively transfect dopaminergic neurons in OCG andSFG groups The 473nm light stimulation was delivered at a frequency of 3 Hz and 20 Hzwhile LFP signals were recorded fromthe dorsolateral striatum Results1)The elevation of striatal α and β oscillations was detected by comparing with the power spectraldensity(PSD)in the fatigue group The PSD changes were significantly after 7 days exhaustive exercise(1D vs 7DP<005)2)The mCherryChR2 expression was successfully obtained only in the viral injected rats Light stimulation of SNc DA neurons inOCG significantly reduced the striatal PSD in both α and β band(P<005)3)The 20 Hz stimulation was more effective inreduction of striatal α and β oscillation than that of 3 Hz in 7D exhausted rats(P<005) ConclusionThe exercise-induced fatiguecould alter electrophysiological activity in striatumwhich reduced the ratrsquos mobility The abnormal changes of α and β oscillationcould be significantly reduced by optogenetic activation of nigrostriatal DA system The 20 Hz stimulation had more prominenteffect on prolonged fatigueKeywordsexercise-induced fatigue nigra-striatum DA system optogenetic neural coding low-frequency oscillation

(上接第55页)

and explore the optimization of the implementation of sports consumption policy in China It is found that in the process ofimplementing the sports consumption policy in China there are some practical problems such as insufficient cognition of the statusand function of sports unbalanced implementation of the policy imperfect construction of the evaluation index system and notformed long-term incentive mechanism for promoting the development of industry Countermeasures Promoting the nationalstrategy of sports development to improve the awareness level of the whole society on sports function strengthening the top-leveldesign and overall arrangement of sports consumption policy to improve the effectiveness and applicability of policyimplementation refining the implementation plan according to specific objectives to ensure the pertinence and operability of policyimplementation improving the evaluation index system of sports consumption policy implementation to help scientific evaluation ofpolicy implementation establishing a long-term incentive mechanism for sports industry promotion to consolidate the basis andconditions for the implementation of sports consumption policy improving the governance efficiency of sports industry to promotethe level and quality of sports consumptionKeywords Chinasports industrysports consumptionpolicyimplementationproblemscountermeasures

105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882

105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210510101050882105088210508821050882105088210508821050882105088210508821050882105088210508821051010105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210510101050882105088210508821050882

1050882105088210508821050882

1050882105088210508821050882

1051010

本刊声明《体育科学》为国家社会科学基金资助期刊不收取任何费用

特此声明

《体育科学》编辑部

2019年10月10日

82

Page 2: 光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡 ... - sport…images.sport.org.cn/File/2019/12/30/0917294078.pdf · 2019. 12. 30. · china sport science 光遗传激活da系统调节运动疲劳大鼠纹状体低频振荡

《体育科学》2019 年(第 39 卷)第 10 期

同放电模式被视为神经科学领域定向刺激变革性的一

项新技术(Rost et al2017)因此本研究采用病毒转染

加光遗传技术采用不同频率的时相型刺激模式特异性

激活黑质 DA能神经元观察其对运动疲劳大鼠纹状体低

频振荡的影响探讨NSDA系统在运动疲劳中枢调控中的

作用

1 研究对象与方法

11 研究对象与分组

健康雄性 Sprague-Dawley 大鼠(220~240 g)北京维

通利华公司提供[SCXK(京)2016mdash0004]大鼠分笼饲

养自由饮食自然光照适应性饲养1周后随机分为生理

盐水安静组(saline control groupSCG)光敏蛋白安静组

(optogenetics control groupOCG)运 动 疲 劳 组(fatigue

groupFG)假手术运动疲劳组(saline fatigue groupSFG)

和光敏蛋白运动疲劳组(optopgenetics fatigue groupOFG)

各组7只共35只

12 病毒转染及光纤电极埋植

大鼠腹腔注射 10 水合氯醛(035 ml100 g)麻醉后

将头部固定于立体定位仪本实验中OCGOFG组在 SNc

区(AP-53 mmR20 mmH-80 mm)注射 1 μl rAAV-

TH-NLS-Cre-WPRE-pA和rAAV-Ef1a-DIO-hChR2(H134R)-

mCherry-WPRE-pA(11)混 合 AAVSCGSFG 组 注 射

1 μl 生理盐水后在纹状体(AP02~12 mmR30~

40 mm)的位置钻一个1 mmtimes1 mm窗口在解剖显微镜下

植 入 梯 度 阵 列 电 极(Stablohm 675直 径 35 μm间 距

200 μm)10 mm 长的光纤陶瓷头埋植于病毒注射位点

处颅骨暴露脑组织处采用 WPI 生物硅胶封口牙科水

泥固定术后腹腔注射青霉素防治感染动物手术清醒

后单笼饲养自由饮水进食动物房采取 12 h光照12 h

黑暗交替温度与湿度恒定详细记录和观察动物的活动

状态实验结束后进行电极定位及光敏蛋白表达鉴定

剔除电极位置未落入背外侧纹状体的大鼠进入电生理

数据统计分析的信号通道数量为 SCG(N=24 通道3 只)

OCG(N=56通道7只)FG(N=40通道5只)SFG(N=24通

道3只)和OFG(N=56通道7只)共200个

13 运动疲劳模型建立

术后恢复 3周及 1周的适应性跑台训练后采用改良

的Bedford递增负荷运动方案(Hu et al2015)建立运动疲

劳模型运动负荷分为 3 级一级运动速度为 82 mmin

运动时间 15 min二级运动速度为 15 mmin运动时间

15 min三级运动速度为 20 mmin运动直至力竭连续进

行7天同时将安静组大鼠置于跑台一侧大鼠力竭标准

为不能维持预定跑速滞留于跑道挡板不动使用光电

声刺激驱赶仍无效并伴有呼吸急促俯卧跑台垂头不

起等行为表现

14 纹状体LFPs信号采集

信号通过 Cerebus-128 多通道信号采集系统采集采

样频率为 2 kHz通过 lowpass 250 Hz 滤波获得 LFPs并通

过 Neuromotive 系统同步追踪大鼠行为活动30 min次

将 SCGOCGSFGOFG 大鼠置于记录盒中分别给予

3 Hz刺激频率1个脉冲每个脉冲时间 8 ms总时长 10 s

(Howe et al2016)和 20 Hz 刺激频率10 个脉冲每个脉

冲时间 10 ms总时长 10 s(Da Silva et al2018)的蓝光

(473 nm)刺激刺激完成后给予50 s恢复时间FG不给光

刺激记录光激活黑质DA能神经元对SCGOCG及 1天7

天力竭即刻SFGOFG大鼠纹状体LFPs的影响

15 数据处理

利用 NeuroExplorer 5 x86 amp Matlab 2015a 平台对原始

LFPs 电生理数据进行分析采用 SPSS 200 统计软件进行

统计学分析Sigmaplot 125 软件作图实验结果以均数plusmn

标准差(MplusmnSD)表示采用方差分析(One-Way ANOVA)

运动疲劳对电生理指标及不同频率刺激效果的影响组

间均值差异选择 LSDTamhanersquos T2 检验采用配对样本 t

检验分析光遗传刺激对 PSD值的影响以 P<005表示差

异具有显著性

2 研究结果

21 SNc中光敏蛋白表达结果

注射携带 TH 启动子和 DIO-hChR2(H134R)-mCherry

的腺相关病毒(Adeno-associated virusAAV)经过 3 周以

上时间表达后转染结果如图1所示mCherry红色荧光在

SNc区出现根据病毒表达原理可知AAV只能在Cre重组

酶存在时正常表达而在 TH 启动子作用下仅有 DA 能神

经元能表达Cre重组酶故红色荧光只可能来自于使AAV

正常表达的DA能神经元该结果证明AAV病毒的立体

定位注射位置准确大鼠已成功表达ChR2

21 运动疲劳对大鼠纹状体LFPs的影响

节律性振荡是大脑研究中最广泛的现象之一哺乳动

物低频(<100 Hz)振荡通过协调不同脑区之间的信息传

递参与神经调控如认知运动等行为低频振荡作为基

底神经节中的一种生理现象同时也与运动调控有关(Foun‐

tas et al2017)1通过比较1天力竭与7天重复力竭后大

鼠纹状体LFPs数据变化分析运动疲劳程度累积对大鼠纹

状体低频振荡的影响结果如图 2 所示与 1 天力竭相

比7 天重复力竭大鼠纹状体低频段(<40 Hz)振荡功率

谱密度(power spectral densityPSD)值有所升高(图 2A)

但经过24 h恢复期后有所下降与1天力竭相比7天重复

力竭大鼠α频段(7~13 Hz)PSD值显著升高(P<005图

2B)与 1天力竭相比7天重复力竭大鼠 β 频段(15~30

Hz)PSD值显著升高(P<005图2C)

76

李科等光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡的电生理学研究

22 不同频率光刺激对运动疲劳大鼠纹状体LFPs的影响

不同光刺激对OCG和 SCG大鼠纹状体LFPs的影响如

图 34 所示与 SCG 相比3 Hz20 Hz 光刺激会降低 OCG

大鼠 α 频段 PSD 值(P<005图 3CD)与 SCG 相比

3 Hz20 Hz 光刺激会降低 OCG 大鼠 β 频段 PSD 值(P<

005图 4CD)不同光刺激对 OFG 和 SFG 大鼠纹状体

LFPs的影响如图 567所示3 Hz20 Hz光刺激会降低 1

天力竭 OFG 大鼠 STR 的 α 和 β 频段 PSD 值(P<005图

5)20 Hz光刺激会降低 7天重复力竭 OFG 大鼠 STR 的 α

和β频段PSD值(P<005)而 3 Hz光刺激降低效应不明

显(P>005图 6)与3 Hz刺激相比20 Hz光刺激改善7

天重复力竭大鼠纹状体异常低频振荡的效应更明显(P<

005图7)

图1 SNc区DA能神经元ChR2基于 cre重组酶的特异性表达

Figure 1 ChR2 Selectively Expressed in DA Neuron with Cre Recombinase

注A纹状体电极植入及病毒注射位置(矢状面)Str纹状体SNc黑质致密部B病毒序列及刺激模式ChR2 是表达于神经元表面

的光敏感阳离子通道蛋白受到光刺激时通道开启使胞外的钠离子进入神经元产生去极化作用最终引发神经元的动作电位C

ChR2蛋白在SNc转染结果图箭头所指出为ChR2表达位置

图2 运动疲劳对大鼠纹状体LFPs的影响

Figure 2 Effects of Exercise-induced Fatigue on LFPs in Striatum

注1天1天力竭7天7天重复力竭post24 H7天重复力竭后恢复24 h表示差异具有显著性(P<005)

图3 不同频率光刺激对正常状态纹状体α频段振荡的影响

Figure 3 Effect of Different Optogenetics Stimulation on the Power Spectral Density of α Band in Normal Rats

注Normal正常状态AB代表不同频率光刺激对STR α频段原始电信号(Raw data)的影响蓝色的方框代表光刺激CD代表不同频率光刺

激对STR α频段PSD值的影响左侧为3 Hz刺激右侧为20 Hz刺激表示差异具有显著性(P<005)

77

《体育科学》2019 年(第 39 卷)第 10 期

图5 不同频率光刺激对1天力竭大鼠纹状体LFPs的影响

Figure 5 Effect of Different Optogenetics Stimulation on the Power

Spectral Density of 1D Exhausted Rats

注1天1天力竭AB为 3 HzCD为 20 Hz白色方框范围内代表光

刺激表示差异具有显著性(P<005)

图6 不同频率光刺激对7天重复力竭大鼠纹状体LFPs的影响

Figure 6 Effect of Different Optogenetics Stimulation on the Pow‐

er Spectral Density of 7D Exhausted Rats

注7 天7 天重复力竭AB 为 3 HzCD 为 20 Hz白色方框范围内

代表光刺激表示差异具有显著性(P<005)

图4 不同频率光刺激对正常状态纹状体β振荡的影响

Figure 4 Effect of Different Optogenetics Stimulation on the Power Spectral Density of β Band in Normal Rats

注AB 代表不同频率光刺激对 STR β频段原始电信号(Raw data)的影响蓝色的方框代表光刺激CD 代表不同频率光刺激对 STR β频段

PSD值的影响左侧为3 Hz刺激右侧为20 Hz刺激表示差异具有显著性(P<005)

78

李科等光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡的电生理学研究

3 讨论与分析

31 DA放电模式改变参与运动疲劳中枢调控

皮层-基底神经节环路中的β振荡活动(13~30 Hz)

与强直收缩和姿势控制相关(Brittain et al2014)高幅

β振荡是皮层广泛抑制的表现抑制GABA神经递质的再

摄取会增加 β 振幅和运动相关 β 振荡减弱β 振荡调

节指标mdashmdash运动后 β 振荡回弹(Post-movement beta re‐

boundPMBR)与 GABA 能神经元抑制相关(Gaetz et al

2011)Fry等(2017)研究证实以次最大收缩强度达到疲

劳时PMBR 增加α 频段振荡通常认为具有抑制效应

Haegens 等(2011)研究发现在 M1 区中 α 频段活动与神

经元放电频率变化相反α 频段活动在运动执行前呈去

同步化在运动执行时呈同步化状态(Brinkman et al

20142016)但也有研究认为皮层感觉运动区域的 α

频段活动下降是信息处理的标志进行单侧运动时对侧

感觉运动皮层 α 频段振幅减小(Fry et al2017)371亨廷

顿症病理机制研究显示是患者 α 振荡幅度降低基底神

经节低频α频段(8~10 Hz)振荡活动增加也是帕金森病

(Parkinsonrsquos diseasePD)的病理表现之一(Bender et al

2018Nimmrich et al2015)PD 模型大鼠皮层 M1M2 区

及苍白球外侧部 GPe中 α 频段(5~13 Hz)活动明显增高

(Ge et al2012)α和β频段节律都有一种事件相关去

同 步 化 效 应 在 运 动 执 行 时 活 动 减 弱(Brittain et al

2014)3实验室前期研究大鼠在运动过程中皮层脑电 α

频段所占比例显著增加(侯莉娟 等2018)51本部分研究

证实运动疲劳后纹状体α频段β频段活动增强且增高

幅度与疲劳累积程度相关

在正常状态下强直型和时相型多巴胺释放相结合以

维持高水平的多巴胺并且 β 振荡也处于生理范围在

PD中DA能神经元的缺失意味着释放到纹状体和STN突

触前的多巴胺较少净多巴胺总量(强直型和时相型多巴

胺释放模式的总和)处于低水平因此β振荡升高并超过

生理水平用左旋多巴或多巴胺激动剂治疗PD患者促进

时相型多巴胺释放改变了净多巴胺的水平此时 β 振荡

接 近 于 正 常 水 平(Brittain et al2014Jenkinson et al

2011)而DA替代疗法可通过降低异常的β振荡而减少

PD 患者的运动迟缓和身体僵硬等运动障碍(Wang et al

2017)因此β 振荡水平变化可能与 DA 时相型释放相

关而 DA 也可减少 α 振荡(Kim et al2014)与视觉刺

激相关的DA增多可以使PD患者丘脑底核STN中α频段

去同步化(Huebl et al2014)DA 神经元时相型放电可

有 效 激 活 D2DR(Marcott et al2014)DA 与 高 活 性 的

D2DR结合还可通过抑制间接通路从而降低异常β振荡

(Rice et al2008)D2DR激动剂阿扑吗啡能抑制PD患者

和 PD 动物模型过高的 β 振荡(Berke2009)前期研究

图7 不同频率光刺激对大鼠纹状体LFPs标准化比值的影响(OnPre)Figure 7 Effect of Different Optogenetics Stimulation on the Nor‐

malized Ratio of Power Spectral Density of Rats with Exercise-in‐

duced Fatigue

注AB 为 α频段CD 为 β频段与正常状态1 天力竭相比7 天重

复力竭后 3 Hz 刺激的改善效应明显降低而 20 Hz 的改善效应明显

升高表示差异具有显著性(P<005)

图8 DA系统参与运动疲劳大鼠低频振荡调控的可能机制示意图

Figure 8 DA Neurons in SNc Regulates Oscillation on Exercise-induced Fatigue Rats

注运动疲劳后STR出现低频振荡(A)时相型光遗传激活DA能神经元可能通过影响D2DR降低异常低频振荡发挥行为改善作用(B)

79

《体育科学》2019 年(第 39 卷)第 10 期

发现D2DR 激动剂干预可降低运动疲劳大鼠纹状体 α

β频段PSD值DA时相型放电模式还有助于动作发起和

执行(Da Silva et al2018Howe et al2016)本部分实验

研究发现1D力竭时两种时相型释放都可降低运动疲劳

大鼠纹状体αβ频段PSD值而7D重复力竭时给以低

频时相型刺激低幅度 DA 释放对大鼠纹状体 αβ 频段

PSD值的影响差异不具有显著性而高频时相型刺激高

幅度 DA 释放可显著降低 7D 重复力竭大鼠的纹状体 α

β频段PSD值这证实DA放电模式通过含量影响运动疲

劳纹状体αβ频段PSD值参与运动疲劳中枢调控

32 光激活 DA 系统影响纹状体低频振荡可能的生理学

机制

LFPs是指记录电极尖端附近局部区域兴奋性和抑制

性突触后电位的总和振荡主要发生在LFPs信号中是由

局部神经元同步的阈下电活动引起β频段振荡活动降

低与运动控制核团的去抑制活动有关计算模型显示 α

频段振荡主要影响间接通路通过快速去抑制实现对黑

质网状部 SNr 的抑制进而促进间接通路信息传输发挥运

动抑制作用(Fountas et al2017)16皮层-纹状体突触可

塑性中由内源性大麻素(endocannabinoideCB)介导的长

时 程 抑 制(long-term depressionLTD)也 依 赖 于 DA 及

D2DR(Xu et al2018)D2DR 被 DA 激活后抑制 cAMP

PKA活性导致 G-蛋白信号转导调节子-4磷酸化水平降

低使代谢型谷氨酸受体 15耦联的 Gq蛋白去抑制从而

促进 eCB 生成与突触前膜上的 CB1 受体结合后诱发

eCB-LTD(Cerovic et al2013)纹状体 D2DR 敲除或使用

D2DR 拮 抗 剂 均 不 能 成 功 诱 导 出 LTD(Kreitzer et al

2007)实验室前期研究结果发现运动疲劳后皮层-纹状

体 eCB-LTD受损D2DR表达下调(侯莉娟 等2018Ma et

al2018)45由此推测运动疲劳后基底神经节间接通路

过度兴奋

离体实验证实MSN 膜电位的离子电导受 DA 调节

DA可使MSN静息电位保持在钾离子平衡电位附近NS‐

DA系统受损大鼠纹状体神经元钾离子电流活性降低膜

电位以去极化为主放电频率增加兴奋性增强而D2DR

可通过抑制 L型钙通道电流从而降低纹状体神经元兴奋

性(Tseng et al2001)间接通路中型多棘神经元(Indi‐

rect pathway medium spiny neuroniMSN)兴 奋 性 主 要 受

D2DR 和腺苷酸 A2A 受体(Adenosine 2A receptorsA2AR)

共同调节A2AR 拮抗剂 SCH-58261 可显著改善 DA 缺失

小鼠 iMSN 的兴奋性抑制突触后电流减轻谷氨酸的兴

奋性毒性作用DA缺失后 A2AR上调 RGS4表达引起 M4

自身受体功能减弱和胆碱能信号传导增强而A2AR拮抗

剂可慢阻止这种升高(Peterson et al2012)激活纹状体

胆碱能神经元受体也会使β振荡幅度增高(Pittman-pol‐

letta et al2018)SCH58261 和 D2DR 激动剂喹吡罗经纹

状体微注射后可以抑制运动疲劳时 iMSN 的过度兴奋

降低 βγ 频段振幅延缓疲劳发生(Hou et al2017)

A2AR 也参与 iMSN 中长时程增强(Long-term potentiation

LTP)诱导A2AR 发挥与 D1DR 相似的作用通过激活

PKA引起 DARPP-32 磷酸化参与 LTP 形成DARPP-32

通过不同残基的磷酸化将 DA腺苷和 Glu 等递质或调质

对纹状体的调控整合在一起A2AR和D2DR还可通过调

节 Thr34-DARPP-32 磷酸化程度而使其下游靶点磷酸化

增加蛋白合成增多受体活化等发挥对运动疲劳的调控

作用(Nishi et al2005)由此推测7D 力竭后高频时相

刺激引起 DA 释放通过 D2DRA2AR 影响抑制纹状体兴奋

性发挥改善运动疲劳大鼠行为活动的作用

4 研究结论

运动疲劳后大鼠纹状体 αβ 频段振荡显著升高光

遗传激活黑质 DA系统可改善 1天力竭大鼠纹状体 αβ

频段PSD值与3 Hz相比20 Hz刺激可显著改善7天重复

力竭大鼠纹状体 αβ 频段 PSD 值提示 DA 放电模式改

变引起运动疲劳纹状体低频振荡变化是导致大鼠运动疲

劳症状产生的原因之一运动疲劳使大鼠纹状体αβ频

段兴奋性增高与 DA 放电模式有关DA 时相型放电通过

影响 iMSN 中 A2AR 及 D2DR 活性改善大鼠异常低频振荡

参与运动疲劳中枢调控

参考文献

侯莉娟王晓昕成佳俐等2018运动疲劳对大鼠皮层-纹状体通路

同步电振荡活动及 DA 信号系统影响的研究[J] 体育科学38

(4)45-53

乔德才刘军刘晓莉2014运动疲劳的中枢机制研究进展基于基

底神经节-皮层环路紊乱的视角[J]北京体育大学学报37(2)

51-58

BENDER FKOROTKOVA TPONOMARENKO A2018 Optoge‐

netic entrainment of hippocampal theta oscillations in behaving mice

[J] J Vis Exp7(136)

BERKE J D2009 Fast oscillations in cortical-striatal networks

switch frequency following rewarding events and stimulant drugs

[J] Eur J Neurosci30(5)848-859

BRINKMAN LSTOLK ADIJKERMAN H Cet al2014 Dis‐

tinct roles for alpha- and beta-band oscillations during mental simu‐

lation of goal-directed actions[J] J Neurosci34(44)14783-

14792

BRINKMAN LSTOLK AMARSHALL T Ret al2016 Indepen‐

dent causal contributions of alpha- and beta-band oscillations during

movement selection[J] J Neurosci36(33)8726-8733

BRITTAIN J SBROWN P2014 Oscillations and the basal ganglia

Motor control and beyond[J] Neuroimage85 Pt2637-647

BRITTAIN J SSHAROTT ABROWN P2014 The highs and

lows of beta activity in cortico-basal ganglia loops[J] Eur J Neuro‐

sci39(11)1951-1959

CEROVIC MDISA RTONINI R2013 Molecular and cellular

80

李科等光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡的电生理学研究

mechanisms of dopamine-mediated behavioral plasticity in the stria‐

tum[J] Neurobiol Learn Mem10563-80

CORDEIRO L M SRABELO P C RMORAES M Met al2017

Physical exercise-induced fatigueThe role of serotonergic and do‐

paminergic systems[J] Braz J Med Biol Res50(12)e6432

DA SILVA J A TECUAPETLA FPAIXAtildeO Vet al2018 Dopa‐

mine neuron activity before action initiation gates and invigorates fu‐

ture movements[J] Nature554(7691)244-248

FOUNTAS ZSHANAHAN M2017 The role of cortical oscilla‐

tions in a spiking neural network model of the basal ganglia[J]

PLoS One12(12)e0189109

FRY AMULLINGER K JONEILL G Cet al2017 The effect of

physical fatigue on oscillatory dynamics of the sensorimotor cortex

[J] Acta Physiol(Oxf)220(3)370-381

GAETZ WEDGAR J CWANG D Jet al2011 Relating MEG

measured motor cortical oscillations to resting c-aminobutyric acid

(GABA)concentration[J] Neuroimage55(2)616-621

GE SYANG CLI Met al2012 Dopamine depletion increases the

power and coherence of high-voltage spindles in the globus pallidus

and motor cortex of freely moving rats[J] Brain Res146566-79

GRACE A A2016 Dysregulation of the dopamine system in the

pathophysiology of schizophrenia and depression[J] Nat Rev Neu‐

rosci17(8)524-532

HAEGENS SNACHER VLUNA Ret al2011 alpha-Oscilla‐

tions in the monkey sensorimotor network influence discrimination

performance by rhythmical inhibition of neuronal spiking[J] Proc

Natl Acad Sci U S A108(48)19377-19382

HOU LCHEN WLIU Xet al2017 Exercise-induced neuropro‐

tection of the nigrostriatal dopamine system in Parkinsonrsquos disease

[J] Front Aging Neurosci9358

HOWE M WDOMBECK D A2016 Rapid signalling in distinct do‐

paminergic axons during locomotion and reward[J] Nature535

(7613)505-510

HU YLIU XQIAO D2015Increased extracellular dopamine and

5-hydroxytryptamine levels contribute to enhanced subthalamic nu‐

cleus neural activity during exhausting exercise[J] Biol Sport 32

(3)187-192

HUEBL JSPITZER BBRUCKE Cet al2014 Oscillatory sub‐

thalamic nucleus activity is modulated by dopamine during emotion‐

al processing in Parkinsons disease[J] Cortex6069-81

JENKINSON NBROWN P2011 New insights into the relationship

between dopaminebeta oscillations and motor function[J] Trends

Neurosci34(12)611-618

KIM B SLEE JBANG Met al2014 Differential regulation of

observational fear and neural oscillations by serotonin and dopamine

in the mouse anterior cingulate cortex[J] Psychopharmacology

(Berl)231(22)4371-4381

KREITZER A CMALENKA R C2007 Endocannabinoid-mediated

rescue of striatal LTD and motor deficits in Parkinsonrsquos disease

models[J] Nature445(7128)643-647

MA JCHEN HLIU Xet al2018 Exercise-induced fatigue im‐

pairs bidirectional corticostriatal synaptic plasticity[J] Front Cell

Neurosci1214

MARCOTT P FMAMALIGAS A AFORD C P2014 Phasic dopa‐

mine release drives rapid activation of striatal D2-receptors[J] Neu‐

ron84(1)164-176

MCMORRIS TBARWOOD MCORBETT J2018 Central fatigue

theory and endurance exerciseToward an interoceptive model[J]

Neurosci Biobehav Rev9393-107

NIMMRICH VDRAGUHN AAXMACHER N2015 Neuronal

network oscillations in neurodegenerative diseases[J] Neuromolec‐

ular Med17(3)270-284

NISHI AWATANABE YHIGASHI Het al2005 Glutamate reg‐

ulation of DARPP-32 phosphorylation in neostriatal neurons in‐

volves activation of multiple signaling cascades[J] Proc Natl Acad

Sci USA102(4)1199-1204

PETERSON J DGOLDBERG J ASURMEIER D J2012 Adenos‐

ine A2a receptor antagonists attenuate striatal adaptations following

dopamine depletion[J] Neurobiol Dis45(1)409-416

PITTMAN-POLLETTA B RQUACH AMOHAMMED A Iet al

2018 Striatal cholinergic receptor activation causes a rapidselec‐

tive and state-dependent rise in cortico-striatal beta activity[J] Eur

J Neurosci48(8)2857-2868

RICE M ECRAGG S J2008 Dopamine spillover after quantal re‐

leaseRethinking dopamine transmission in the nigrostriatal path‐

way[J] Brain Res Rev58(2)303-313

RICE M EPATEL J CCRAGG S J2011 Dopamine release in the

basal ganglia[J] Neuroscience198112-137

ROST B RSCHNEIDER-WARME FSCHMITZ Det al2017

Optogenetic tools for subcellular applications in neuroscience[J]

Neuron96(3)572-603

TSENG K YKASANETZ FKARGIEMAN Let al2001 Corti‐

cal slow oscillatory activity is reflected in the membrane potential

and spike trains of striatal neurons in rats with chronic nigrostriatal

lesions[J] J Neurosci21(16)6430-6439

WANG QLI MXIE Zet al2017 Granger causality supports ab‐

normal functional connectivity of beta oscillations in the dorsolateral

striatum and substantia nigra pars reticulata in hemiparkinsonian rats

[J] Exp Brain Res235(11)3357-3365

XU HPEREZ SCORNIL Aet al2018 Dopamine-endocannabi‐

noid interactions mediate spike-timing-dependent potentiation in the

striatum[J] Nat Commun9(1)4118

Optogenetic Activation DA Neurons in SNc Modulates Striatum Low-frequency

Oscillation in Exercise-induced Fatigue Rats

LI Ke1CHEN Mengjiao1ZHAO Xudong1CHEN Fujun23LIU Xiaoli1QIAO Decai1HOU Lijuan1

1 College of P E and Sports Beijing Normal University Beijing 100875 China 2 Bio-X Institutes Shanghai Jiao Tong

81

《体育科学》2019 年(第 39 卷)第 10 期

University Shanghai 200240 China 3 Exercise Health and Technology Center Department of Physical Education Shanghai Jiao

Tong University Shanghai 200240China

AbstractObjectiveTo investigate the effect of optogenetic activation of SNc DA neurons on the low frequency oscillations instriatum of exercise-induced fatigue rats MethodsMale SD rats were randomly divided into 5 groupssaline control group(SCG)optogenetic control group(OCG)exercise-induced fatigue group(FG)saline fatigue group(SFG)and optogeneticfatigue group(OFG) Dual viral solution was injected in unilateral SNc to selectively transfect dopaminergic neurons in OCG andSFG groups The 473nm light stimulation was delivered at a frequency of 3 Hz and 20 Hzwhile LFP signals were recorded fromthe dorsolateral striatum Results1)The elevation of striatal α and β oscillations was detected by comparing with the power spectraldensity(PSD)in the fatigue group The PSD changes were significantly after 7 days exhaustive exercise(1D vs 7DP<005)2)The mCherryChR2 expression was successfully obtained only in the viral injected rats Light stimulation of SNc DA neurons inOCG significantly reduced the striatal PSD in both α and β band(P<005)3)The 20 Hz stimulation was more effective inreduction of striatal α and β oscillation than that of 3 Hz in 7D exhausted rats(P<005) ConclusionThe exercise-induced fatiguecould alter electrophysiological activity in striatumwhich reduced the ratrsquos mobility The abnormal changes of α and β oscillationcould be significantly reduced by optogenetic activation of nigrostriatal DA system The 20 Hz stimulation had more prominenteffect on prolonged fatigueKeywordsexercise-induced fatigue nigra-striatum DA system optogenetic neural coding low-frequency oscillation

(上接第55页)

and explore the optimization of the implementation of sports consumption policy in China It is found that in the process ofimplementing the sports consumption policy in China there are some practical problems such as insufficient cognition of the statusand function of sports unbalanced implementation of the policy imperfect construction of the evaluation index system and notformed long-term incentive mechanism for promoting the development of industry Countermeasures Promoting the nationalstrategy of sports development to improve the awareness level of the whole society on sports function strengthening the top-leveldesign and overall arrangement of sports consumption policy to improve the effectiveness and applicability of policyimplementation refining the implementation plan according to specific objectives to ensure the pertinence and operability of policyimplementation improving the evaluation index system of sports consumption policy implementation to help scientific evaluation ofpolicy implementation establishing a long-term incentive mechanism for sports industry promotion to consolidate the basis andconditions for the implementation of sports consumption policy improving the governance efficiency of sports industry to promotethe level and quality of sports consumptionKeywords Chinasports industrysports consumptionpolicyimplementationproblemscountermeasures

105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882

105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210510101050882105088210508821050882105088210508821050882105088210508821050882105088210508821051010105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210510101050882105088210508821050882

1050882105088210508821050882

1050882105088210508821050882

1051010

本刊声明《体育科学》为国家社会科学基金资助期刊不收取任何费用

特此声明

《体育科学》编辑部

2019年10月10日

82

Page 3: 光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡 ... - sport…images.sport.org.cn/File/2019/12/30/0917294078.pdf · 2019. 12. 30. · china sport science 光遗传激活da系统调节运动疲劳大鼠纹状体低频振荡

李科等光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡的电生理学研究

22 不同频率光刺激对运动疲劳大鼠纹状体LFPs的影响

不同光刺激对OCG和 SCG大鼠纹状体LFPs的影响如

图 34 所示与 SCG 相比3 Hz20 Hz 光刺激会降低 OCG

大鼠 α 频段 PSD 值(P<005图 3CD)与 SCG 相比

3 Hz20 Hz 光刺激会降低 OCG 大鼠 β 频段 PSD 值(P<

005图 4CD)不同光刺激对 OFG 和 SFG 大鼠纹状体

LFPs的影响如图 567所示3 Hz20 Hz光刺激会降低 1

天力竭 OFG 大鼠 STR 的 α 和 β 频段 PSD 值(P<005图

5)20 Hz光刺激会降低 7天重复力竭 OFG 大鼠 STR 的 α

和β频段PSD值(P<005)而 3 Hz光刺激降低效应不明

显(P>005图 6)与3 Hz刺激相比20 Hz光刺激改善7

天重复力竭大鼠纹状体异常低频振荡的效应更明显(P<

005图7)

图1 SNc区DA能神经元ChR2基于 cre重组酶的特异性表达

Figure 1 ChR2 Selectively Expressed in DA Neuron with Cre Recombinase

注A纹状体电极植入及病毒注射位置(矢状面)Str纹状体SNc黑质致密部B病毒序列及刺激模式ChR2 是表达于神经元表面

的光敏感阳离子通道蛋白受到光刺激时通道开启使胞外的钠离子进入神经元产生去极化作用最终引发神经元的动作电位C

ChR2蛋白在SNc转染结果图箭头所指出为ChR2表达位置

图2 运动疲劳对大鼠纹状体LFPs的影响

Figure 2 Effects of Exercise-induced Fatigue on LFPs in Striatum

注1天1天力竭7天7天重复力竭post24 H7天重复力竭后恢复24 h表示差异具有显著性(P<005)

图3 不同频率光刺激对正常状态纹状体α频段振荡的影响

Figure 3 Effect of Different Optogenetics Stimulation on the Power Spectral Density of α Band in Normal Rats

注Normal正常状态AB代表不同频率光刺激对STR α频段原始电信号(Raw data)的影响蓝色的方框代表光刺激CD代表不同频率光刺

激对STR α频段PSD值的影响左侧为3 Hz刺激右侧为20 Hz刺激表示差异具有显著性(P<005)

77

《体育科学》2019 年(第 39 卷)第 10 期

图5 不同频率光刺激对1天力竭大鼠纹状体LFPs的影响

Figure 5 Effect of Different Optogenetics Stimulation on the Power

Spectral Density of 1D Exhausted Rats

注1天1天力竭AB为 3 HzCD为 20 Hz白色方框范围内代表光

刺激表示差异具有显著性(P<005)

图6 不同频率光刺激对7天重复力竭大鼠纹状体LFPs的影响

Figure 6 Effect of Different Optogenetics Stimulation on the Pow‐

er Spectral Density of 7D Exhausted Rats

注7 天7 天重复力竭AB 为 3 HzCD 为 20 Hz白色方框范围内

代表光刺激表示差异具有显著性(P<005)

图4 不同频率光刺激对正常状态纹状体β振荡的影响

Figure 4 Effect of Different Optogenetics Stimulation on the Power Spectral Density of β Band in Normal Rats

注AB 代表不同频率光刺激对 STR β频段原始电信号(Raw data)的影响蓝色的方框代表光刺激CD 代表不同频率光刺激对 STR β频段

PSD值的影响左侧为3 Hz刺激右侧为20 Hz刺激表示差异具有显著性(P<005)

78

李科等光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡的电生理学研究

3 讨论与分析

31 DA放电模式改变参与运动疲劳中枢调控

皮层-基底神经节环路中的β振荡活动(13~30 Hz)

与强直收缩和姿势控制相关(Brittain et al2014)高幅

β振荡是皮层广泛抑制的表现抑制GABA神经递质的再

摄取会增加 β 振幅和运动相关 β 振荡减弱β 振荡调

节指标mdashmdash运动后 β 振荡回弹(Post-movement beta re‐

boundPMBR)与 GABA 能神经元抑制相关(Gaetz et al

2011)Fry等(2017)研究证实以次最大收缩强度达到疲

劳时PMBR 增加α 频段振荡通常认为具有抑制效应

Haegens 等(2011)研究发现在 M1 区中 α 频段活动与神

经元放电频率变化相反α 频段活动在运动执行前呈去

同步化在运动执行时呈同步化状态(Brinkman et al

20142016)但也有研究认为皮层感觉运动区域的 α

频段活动下降是信息处理的标志进行单侧运动时对侧

感觉运动皮层 α 频段振幅减小(Fry et al2017)371亨廷

顿症病理机制研究显示是患者 α 振荡幅度降低基底神

经节低频α频段(8~10 Hz)振荡活动增加也是帕金森病

(Parkinsonrsquos diseasePD)的病理表现之一(Bender et al

2018Nimmrich et al2015)PD 模型大鼠皮层 M1M2 区

及苍白球外侧部 GPe中 α 频段(5~13 Hz)活动明显增高

(Ge et al2012)α和β频段节律都有一种事件相关去

同 步 化 效 应 在 运 动 执 行 时 活 动 减 弱(Brittain et al

2014)3实验室前期研究大鼠在运动过程中皮层脑电 α

频段所占比例显著增加(侯莉娟 等2018)51本部分研究

证实运动疲劳后纹状体α频段β频段活动增强且增高

幅度与疲劳累积程度相关

在正常状态下强直型和时相型多巴胺释放相结合以

维持高水平的多巴胺并且 β 振荡也处于生理范围在

PD中DA能神经元的缺失意味着释放到纹状体和STN突

触前的多巴胺较少净多巴胺总量(强直型和时相型多巴

胺释放模式的总和)处于低水平因此β振荡升高并超过

生理水平用左旋多巴或多巴胺激动剂治疗PD患者促进

时相型多巴胺释放改变了净多巴胺的水平此时 β 振荡

接 近 于 正 常 水 平(Brittain et al2014Jenkinson et al

2011)而DA替代疗法可通过降低异常的β振荡而减少

PD 患者的运动迟缓和身体僵硬等运动障碍(Wang et al

2017)因此β 振荡水平变化可能与 DA 时相型释放相

关而 DA 也可减少 α 振荡(Kim et al2014)与视觉刺

激相关的DA增多可以使PD患者丘脑底核STN中α频段

去同步化(Huebl et al2014)DA 神经元时相型放电可

有 效 激 活 D2DR(Marcott et al2014)DA 与 高 活 性 的

D2DR结合还可通过抑制间接通路从而降低异常β振荡

(Rice et al2008)D2DR激动剂阿扑吗啡能抑制PD患者

和 PD 动物模型过高的 β 振荡(Berke2009)前期研究

图7 不同频率光刺激对大鼠纹状体LFPs标准化比值的影响(OnPre)Figure 7 Effect of Different Optogenetics Stimulation on the Nor‐

malized Ratio of Power Spectral Density of Rats with Exercise-in‐

duced Fatigue

注AB 为 α频段CD 为 β频段与正常状态1 天力竭相比7 天重

复力竭后 3 Hz 刺激的改善效应明显降低而 20 Hz 的改善效应明显

升高表示差异具有显著性(P<005)

图8 DA系统参与运动疲劳大鼠低频振荡调控的可能机制示意图

Figure 8 DA Neurons in SNc Regulates Oscillation on Exercise-induced Fatigue Rats

注运动疲劳后STR出现低频振荡(A)时相型光遗传激活DA能神经元可能通过影响D2DR降低异常低频振荡发挥行为改善作用(B)

79

《体育科学》2019 年(第 39 卷)第 10 期

发现D2DR 激动剂干预可降低运动疲劳大鼠纹状体 α

β频段PSD值DA时相型放电模式还有助于动作发起和

执行(Da Silva et al2018Howe et al2016)本部分实验

研究发现1D力竭时两种时相型释放都可降低运动疲劳

大鼠纹状体αβ频段PSD值而7D重复力竭时给以低

频时相型刺激低幅度 DA 释放对大鼠纹状体 αβ 频段

PSD值的影响差异不具有显著性而高频时相型刺激高

幅度 DA 释放可显著降低 7D 重复力竭大鼠的纹状体 α

β频段PSD值这证实DA放电模式通过含量影响运动疲

劳纹状体αβ频段PSD值参与运动疲劳中枢调控

32 光激活 DA 系统影响纹状体低频振荡可能的生理学

机制

LFPs是指记录电极尖端附近局部区域兴奋性和抑制

性突触后电位的总和振荡主要发生在LFPs信号中是由

局部神经元同步的阈下电活动引起β频段振荡活动降

低与运动控制核团的去抑制活动有关计算模型显示 α

频段振荡主要影响间接通路通过快速去抑制实现对黑

质网状部 SNr 的抑制进而促进间接通路信息传输发挥运

动抑制作用(Fountas et al2017)16皮层-纹状体突触可

塑性中由内源性大麻素(endocannabinoideCB)介导的长

时 程 抑 制(long-term depressionLTD)也 依 赖 于 DA 及

D2DR(Xu et al2018)D2DR 被 DA 激活后抑制 cAMP

PKA活性导致 G-蛋白信号转导调节子-4磷酸化水平降

低使代谢型谷氨酸受体 15耦联的 Gq蛋白去抑制从而

促进 eCB 生成与突触前膜上的 CB1 受体结合后诱发

eCB-LTD(Cerovic et al2013)纹状体 D2DR 敲除或使用

D2DR 拮 抗 剂 均 不 能 成 功 诱 导 出 LTD(Kreitzer et al

2007)实验室前期研究结果发现运动疲劳后皮层-纹状

体 eCB-LTD受损D2DR表达下调(侯莉娟 等2018Ma et

al2018)45由此推测运动疲劳后基底神经节间接通路

过度兴奋

离体实验证实MSN 膜电位的离子电导受 DA 调节

DA可使MSN静息电位保持在钾离子平衡电位附近NS‐

DA系统受损大鼠纹状体神经元钾离子电流活性降低膜

电位以去极化为主放电频率增加兴奋性增强而D2DR

可通过抑制 L型钙通道电流从而降低纹状体神经元兴奋

性(Tseng et al2001)间接通路中型多棘神经元(Indi‐

rect pathway medium spiny neuroniMSN)兴 奋 性 主 要 受

D2DR 和腺苷酸 A2A 受体(Adenosine 2A receptorsA2AR)

共同调节A2AR 拮抗剂 SCH-58261 可显著改善 DA 缺失

小鼠 iMSN 的兴奋性抑制突触后电流减轻谷氨酸的兴

奋性毒性作用DA缺失后 A2AR上调 RGS4表达引起 M4

自身受体功能减弱和胆碱能信号传导增强而A2AR拮抗

剂可慢阻止这种升高(Peterson et al2012)激活纹状体

胆碱能神经元受体也会使β振荡幅度增高(Pittman-pol‐

letta et al2018)SCH58261 和 D2DR 激动剂喹吡罗经纹

状体微注射后可以抑制运动疲劳时 iMSN 的过度兴奋

降低 βγ 频段振幅延缓疲劳发生(Hou et al2017)

A2AR 也参与 iMSN 中长时程增强(Long-term potentiation

LTP)诱导A2AR 发挥与 D1DR 相似的作用通过激活

PKA引起 DARPP-32 磷酸化参与 LTP 形成DARPP-32

通过不同残基的磷酸化将 DA腺苷和 Glu 等递质或调质

对纹状体的调控整合在一起A2AR和D2DR还可通过调

节 Thr34-DARPP-32 磷酸化程度而使其下游靶点磷酸化

增加蛋白合成增多受体活化等发挥对运动疲劳的调控

作用(Nishi et al2005)由此推测7D 力竭后高频时相

刺激引起 DA 释放通过 D2DRA2AR 影响抑制纹状体兴奋

性发挥改善运动疲劳大鼠行为活动的作用

4 研究结论

运动疲劳后大鼠纹状体 αβ 频段振荡显著升高光

遗传激活黑质 DA系统可改善 1天力竭大鼠纹状体 αβ

频段PSD值与3 Hz相比20 Hz刺激可显著改善7天重复

力竭大鼠纹状体 αβ 频段 PSD 值提示 DA 放电模式改

变引起运动疲劳纹状体低频振荡变化是导致大鼠运动疲

劳症状产生的原因之一运动疲劳使大鼠纹状体αβ频

段兴奋性增高与 DA 放电模式有关DA 时相型放电通过

影响 iMSN 中 A2AR 及 D2DR 活性改善大鼠异常低频振荡

参与运动疲劳中枢调控

参考文献

侯莉娟王晓昕成佳俐等2018运动疲劳对大鼠皮层-纹状体通路

同步电振荡活动及 DA 信号系统影响的研究[J] 体育科学38

(4)45-53

乔德才刘军刘晓莉2014运动疲劳的中枢机制研究进展基于基

底神经节-皮层环路紊乱的视角[J]北京体育大学学报37(2)

51-58

BENDER FKOROTKOVA TPONOMARENKO A2018 Optoge‐

netic entrainment of hippocampal theta oscillations in behaving mice

[J] J Vis Exp7(136)

BERKE J D2009 Fast oscillations in cortical-striatal networks

switch frequency following rewarding events and stimulant drugs

[J] Eur J Neurosci30(5)848-859

BRINKMAN LSTOLK ADIJKERMAN H Cet al2014 Dis‐

tinct roles for alpha- and beta-band oscillations during mental simu‐

lation of goal-directed actions[J] J Neurosci34(44)14783-

14792

BRINKMAN LSTOLK AMARSHALL T Ret al2016 Indepen‐

dent causal contributions of alpha- and beta-band oscillations during

movement selection[J] J Neurosci36(33)8726-8733

BRITTAIN J SBROWN P2014 Oscillations and the basal ganglia

Motor control and beyond[J] Neuroimage85 Pt2637-647

BRITTAIN J SSHAROTT ABROWN P2014 The highs and

lows of beta activity in cortico-basal ganglia loops[J] Eur J Neuro‐

sci39(11)1951-1959

CEROVIC MDISA RTONINI R2013 Molecular and cellular

80

李科等光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡的电生理学研究

mechanisms of dopamine-mediated behavioral plasticity in the stria‐

tum[J] Neurobiol Learn Mem10563-80

CORDEIRO L M SRABELO P C RMORAES M Met al2017

Physical exercise-induced fatigueThe role of serotonergic and do‐

paminergic systems[J] Braz J Med Biol Res50(12)e6432

DA SILVA J A TECUAPETLA FPAIXAtildeO Vet al2018 Dopa‐

mine neuron activity before action initiation gates and invigorates fu‐

ture movements[J] Nature554(7691)244-248

FOUNTAS ZSHANAHAN M2017 The role of cortical oscilla‐

tions in a spiking neural network model of the basal ganglia[J]

PLoS One12(12)e0189109

FRY AMULLINGER K JONEILL G Cet al2017 The effect of

physical fatigue on oscillatory dynamics of the sensorimotor cortex

[J] Acta Physiol(Oxf)220(3)370-381

GAETZ WEDGAR J CWANG D Jet al2011 Relating MEG

measured motor cortical oscillations to resting c-aminobutyric acid

(GABA)concentration[J] Neuroimage55(2)616-621

GE SYANG CLI Met al2012 Dopamine depletion increases the

power and coherence of high-voltage spindles in the globus pallidus

and motor cortex of freely moving rats[J] Brain Res146566-79

GRACE A A2016 Dysregulation of the dopamine system in the

pathophysiology of schizophrenia and depression[J] Nat Rev Neu‐

rosci17(8)524-532

HAEGENS SNACHER VLUNA Ret al2011 alpha-Oscilla‐

tions in the monkey sensorimotor network influence discrimination

performance by rhythmical inhibition of neuronal spiking[J] Proc

Natl Acad Sci U S A108(48)19377-19382

HOU LCHEN WLIU Xet al2017 Exercise-induced neuropro‐

tection of the nigrostriatal dopamine system in Parkinsonrsquos disease

[J] Front Aging Neurosci9358

HOWE M WDOMBECK D A2016 Rapid signalling in distinct do‐

paminergic axons during locomotion and reward[J] Nature535

(7613)505-510

HU YLIU XQIAO D2015Increased extracellular dopamine and

5-hydroxytryptamine levels contribute to enhanced subthalamic nu‐

cleus neural activity during exhausting exercise[J] Biol Sport 32

(3)187-192

HUEBL JSPITZER BBRUCKE Cet al2014 Oscillatory sub‐

thalamic nucleus activity is modulated by dopamine during emotion‐

al processing in Parkinsons disease[J] Cortex6069-81

JENKINSON NBROWN P2011 New insights into the relationship

between dopaminebeta oscillations and motor function[J] Trends

Neurosci34(12)611-618

KIM B SLEE JBANG Met al2014 Differential regulation of

observational fear and neural oscillations by serotonin and dopamine

in the mouse anterior cingulate cortex[J] Psychopharmacology

(Berl)231(22)4371-4381

KREITZER A CMALENKA R C2007 Endocannabinoid-mediated

rescue of striatal LTD and motor deficits in Parkinsonrsquos disease

models[J] Nature445(7128)643-647

MA JCHEN HLIU Xet al2018 Exercise-induced fatigue im‐

pairs bidirectional corticostriatal synaptic plasticity[J] Front Cell

Neurosci1214

MARCOTT P FMAMALIGAS A AFORD C P2014 Phasic dopa‐

mine release drives rapid activation of striatal D2-receptors[J] Neu‐

ron84(1)164-176

MCMORRIS TBARWOOD MCORBETT J2018 Central fatigue

theory and endurance exerciseToward an interoceptive model[J]

Neurosci Biobehav Rev9393-107

NIMMRICH VDRAGUHN AAXMACHER N2015 Neuronal

network oscillations in neurodegenerative diseases[J] Neuromolec‐

ular Med17(3)270-284

NISHI AWATANABE YHIGASHI Het al2005 Glutamate reg‐

ulation of DARPP-32 phosphorylation in neostriatal neurons in‐

volves activation of multiple signaling cascades[J] Proc Natl Acad

Sci USA102(4)1199-1204

PETERSON J DGOLDBERG J ASURMEIER D J2012 Adenos‐

ine A2a receptor antagonists attenuate striatal adaptations following

dopamine depletion[J] Neurobiol Dis45(1)409-416

PITTMAN-POLLETTA B RQUACH AMOHAMMED A Iet al

2018 Striatal cholinergic receptor activation causes a rapidselec‐

tive and state-dependent rise in cortico-striatal beta activity[J] Eur

J Neurosci48(8)2857-2868

RICE M ECRAGG S J2008 Dopamine spillover after quantal re‐

leaseRethinking dopamine transmission in the nigrostriatal path‐

way[J] Brain Res Rev58(2)303-313

RICE M EPATEL J CCRAGG S J2011 Dopamine release in the

basal ganglia[J] Neuroscience198112-137

ROST B RSCHNEIDER-WARME FSCHMITZ Det al2017

Optogenetic tools for subcellular applications in neuroscience[J]

Neuron96(3)572-603

TSENG K YKASANETZ FKARGIEMAN Let al2001 Corti‐

cal slow oscillatory activity is reflected in the membrane potential

and spike trains of striatal neurons in rats with chronic nigrostriatal

lesions[J] J Neurosci21(16)6430-6439

WANG QLI MXIE Zet al2017 Granger causality supports ab‐

normal functional connectivity of beta oscillations in the dorsolateral

striatum and substantia nigra pars reticulata in hemiparkinsonian rats

[J] Exp Brain Res235(11)3357-3365

XU HPEREZ SCORNIL Aet al2018 Dopamine-endocannabi‐

noid interactions mediate spike-timing-dependent potentiation in the

striatum[J] Nat Commun9(1)4118

Optogenetic Activation DA Neurons in SNc Modulates Striatum Low-frequency

Oscillation in Exercise-induced Fatigue Rats

LI Ke1CHEN Mengjiao1ZHAO Xudong1CHEN Fujun23LIU Xiaoli1QIAO Decai1HOU Lijuan1

1 College of P E and Sports Beijing Normal University Beijing 100875 China 2 Bio-X Institutes Shanghai Jiao Tong

81

《体育科学》2019 年(第 39 卷)第 10 期

University Shanghai 200240 China 3 Exercise Health and Technology Center Department of Physical Education Shanghai Jiao

Tong University Shanghai 200240China

AbstractObjectiveTo investigate the effect of optogenetic activation of SNc DA neurons on the low frequency oscillations instriatum of exercise-induced fatigue rats MethodsMale SD rats were randomly divided into 5 groupssaline control group(SCG)optogenetic control group(OCG)exercise-induced fatigue group(FG)saline fatigue group(SFG)and optogeneticfatigue group(OFG) Dual viral solution was injected in unilateral SNc to selectively transfect dopaminergic neurons in OCG andSFG groups The 473nm light stimulation was delivered at a frequency of 3 Hz and 20 Hzwhile LFP signals were recorded fromthe dorsolateral striatum Results1)The elevation of striatal α and β oscillations was detected by comparing with the power spectraldensity(PSD)in the fatigue group The PSD changes were significantly after 7 days exhaustive exercise(1D vs 7DP<005)2)The mCherryChR2 expression was successfully obtained only in the viral injected rats Light stimulation of SNc DA neurons inOCG significantly reduced the striatal PSD in both α and β band(P<005)3)The 20 Hz stimulation was more effective inreduction of striatal α and β oscillation than that of 3 Hz in 7D exhausted rats(P<005) ConclusionThe exercise-induced fatiguecould alter electrophysiological activity in striatumwhich reduced the ratrsquos mobility The abnormal changes of α and β oscillationcould be significantly reduced by optogenetic activation of nigrostriatal DA system The 20 Hz stimulation had more prominenteffect on prolonged fatigueKeywordsexercise-induced fatigue nigra-striatum DA system optogenetic neural coding low-frequency oscillation

(上接第55页)

and explore the optimization of the implementation of sports consumption policy in China It is found that in the process ofimplementing the sports consumption policy in China there are some practical problems such as insufficient cognition of the statusand function of sports unbalanced implementation of the policy imperfect construction of the evaluation index system and notformed long-term incentive mechanism for promoting the development of industry Countermeasures Promoting the nationalstrategy of sports development to improve the awareness level of the whole society on sports function strengthening the top-leveldesign and overall arrangement of sports consumption policy to improve the effectiveness and applicability of policyimplementation refining the implementation plan according to specific objectives to ensure the pertinence and operability of policyimplementation improving the evaluation index system of sports consumption policy implementation to help scientific evaluation ofpolicy implementation establishing a long-term incentive mechanism for sports industry promotion to consolidate the basis andconditions for the implementation of sports consumption policy improving the governance efficiency of sports industry to promotethe level and quality of sports consumptionKeywords Chinasports industrysports consumptionpolicyimplementationproblemscountermeasures

105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882

105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210510101050882105088210508821050882105088210508821050882105088210508821050882105088210508821051010105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210510101050882105088210508821050882

1050882105088210508821050882

1050882105088210508821050882

1051010

本刊声明《体育科学》为国家社会科学基金资助期刊不收取任何费用

特此声明

《体育科学》编辑部

2019年10月10日

82

Page 4: 光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡 ... - sport…images.sport.org.cn/File/2019/12/30/0917294078.pdf · 2019. 12. 30. · china sport science 光遗传激活da系统调节运动疲劳大鼠纹状体低频振荡

《体育科学》2019 年(第 39 卷)第 10 期

图5 不同频率光刺激对1天力竭大鼠纹状体LFPs的影响

Figure 5 Effect of Different Optogenetics Stimulation on the Power

Spectral Density of 1D Exhausted Rats

注1天1天力竭AB为 3 HzCD为 20 Hz白色方框范围内代表光

刺激表示差异具有显著性(P<005)

图6 不同频率光刺激对7天重复力竭大鼠纹状体LFPs的影响

Figure 6 Effect of Different Optogenetics Stimulation on the Pow‐

er Spectral Density of 7D Exhausted Rats

注7 天7 天重复力竭AB 为 3 HzCD 为 20 Hz白色方框范围内

代表光刺激表示差异具有显著性(P<005)

图4 不同频率光刺激对正常状态纹状体β振荡的影响

Figure 4 Effect of Different Optogenetics Stimulation on the Power Spectral Density of β Band in Normal Rats

注AB 代表不同频率光刺激对 STR β频段原始电信号(Raw data)的影响蓝色的方框代表光刺激CD 代表不同频率光刺激对 STR β频段

PSD值的影响左侧为3 Hz刺激右侧为20 Hz刺激表示差异具有显著性(P<005)

78

李科等光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡的电生理学研究

3 讨论与分析

31 DA放电模式改变参与运动疲劳中枢调控

皮层-基底神经节环路中的β振荡活动(13~30 Hz)

与强直收缩和姿势控制相关(Brittain et al2014)高幅

β振荡是皮层广泛抑制的表现抑制GABA神经递质的再

摄取会增加 β 振幅和运动相关 β 振荡减弱β 振荡调

节指标mdashmdash运动后 β 振荡回弹(Post-movement beta re‐

boundPMBR)与 GABA 能神经元抑制相关(Gaetz et al

2011)Fry等(2017)研究证实以次最大收缩强度达到疲

劳时PMBR 增加α 频段振荡通常认为具有抑制效应

Haegens 等(2011)研究发现在 M1 区中 α 频段活动与神

经元放电频率变化相反α 频段活动在运动执行前呈去

同步化在运动执行时呈同步化状态(Brinkman et al

20142016)但也有研究认为皮层感觉运动区域的 α

频段活动下降是信息处理的标志进行单侧运动时对侧

感觉运动皮层 α 频段振幅减小(Fry et al2017)371亨廷

顿症病理机制研究显示是患者 α 振荡幅度降低基底神

经节低频α频段(8~10 Hz)振荡活动增加也是帕金森病

(Parkinsonrsquos diseasePD)的病理表现之一(Bender et al

2018Nimmrich et al2015)PD 模型大鼠皮层 M1M2 区

及苍白球外侧部 GPe中 α 频段(5~13 Hz)活动明显增高

(Ge et al2012)α和β频段节律都有一种事件相关去

同 步 化 效 应 在 运 动 执 行 时 活 动 减 弱(Brittain et al

2014)3实验室前期研究大鼠在运动过程中皮层脑电 α

频段所占比例显著增加(侯莉娟 等2018)51本部分研究

证实运动疲劳后纹状体α频段β频段活动增强且增高

幅度与疲劳累积程度相关

在正常状态下强直型和时相型多巴胺释放相结合以

维持高水平的多巴胺并且 β 振荡也处于生理范围在

PD中DA能神经元的缺失意味着释放到纹状体和STN突

触前的多巴胺较少净多巴胺总量(强直型和时相型多巴

胺释放模式的总和)处于低水平因此β振荡升高并超过

生理水平用左旋多巴或多巴胺激动剂治疗PD患者促进

时相型多巴胺释放改变了净多巴胺的水平此时 β 振荡

接 近 于 正 常 水 平(Brittain et al2014Jenkinson et al

2011)而DA替代疗法可通过降低异常的β振荡而减少

PD 患者的运动迟缓和身体僵硬等运动障碍(Wang et al

2017)因此β 振荡水平变化可能与 DA 时相型释放相

关而 DA 也可减少 α 振荡(Kim et al2014)与视觉刺

激相关的DA增多可以使PD患者丘脑底核STN中α频段

去同步化(Huebl et al2014)DA 神经元时相型放电可

有 效 激 活 D2DR(Marcott et al2014)DA 与 高 活 性 的

D2DR结合还可通过抑制间接通路从而降低异常β振荡

(Rice et al2008)D2DR激动剂阿扑吗啡能抑制PD患者

和 PD 动物模型过高的 β 振荡(Berke2009)前期研究

图7 不同频率光刺激对大鼠纹状体LFPs标准化比值的影响(OnPre)Figure 7 Effect of Different Optogenetics Stimulation on the Nor‐

malized Ratio of Power Spectral Density of Rats with Exercise-in‐

duced Fatigue

注AB 为 α频段CD 为 β频段与正常状态1 天力竭相比7 天重

复力竭后 3 Hz 刺激的改善效应明显降低而 20 Hz 的改善效应明显

升高表示差异具有显著性(P<005)

图8 DA系统参与运动疲劳大鼠低频振荡调控的可能机制示意图

Figure 8 DA Neurons in SNc Regulates Oscillation on Exercise-induced Fatigue Rats

注运动疲劳后STR出现低频振荡(A)时相型光遗传激活DA能神经元可能通过影响D2DR降低异常低频振荡发挥行为改善作用(B)

79

《体育科学》2019 年(第 39 卷)第 10 期

发现D2DR 激动剂干预可降低运动疲劳大鼠纹状体 α

β频段PSD值DA时相型放电模式还有助于动作发起和

执行(Da Silva et al2018Howe et al2016)本部分实验

研究发现1D力竭时两种时相型释放都可降低运动疲劳

大鼠纹状体αβ频段PSD值而7D重复力竭时给以低

频时相型刺激低幅度 DA 释放对大鼠纹状体 αβ 频段

PSD值的影响差异不具有显著性而高频时相型刺激高

幅度 DA 释放可显著降低 7D 重复力竭大鼠的纹状体 α

β频段PSD值这证实DA放电模式通过含量影响运动疲

劳纹状体αβ频段PSD值参与运动疲劳中枢调控

32 光激活 DA 系统影响纹状体低频振荡可能的生理学

机制

LFPs是指记录电极尖端附近局部区域兴奋性和抑制

性突触后电位的总和振荡主要发生在LFPs信号中是由

局部神经元同步的阈下电活动引起β频段振荡活动降

低与运动控制核团的去抑制活动有关计算模型显示 α

频段振荡主要影响间接通路通过快速去抑制实现对黑

质网状部 SNr 的抑制进而促进间接通路信息传输发挥运

动抑制作用(Fountas et al2017)16皮层-纹状体突触可

塑性中由内源性大麻素(endocannabinoideCB)介导的长

时 程 抑 制(long-term depressionLTD)也 依 赖 于 DA 及

D2DR(Xu et al2018)D2DR 被 DA 激活后抑制 cAMP

PKA活性导致 G-蛋白信号转导调节子-4磷酸化水平降

低使代谢型谷氨酸受体 15耦联的 Gq蛋白去抑制从而

促进 eCB 生成与突触前膜上的 CB1 受体结合后诱发

eCB-LTD(Cerovic et al2013)纹状体 D2DR 敲除或使用

D2DR 拮 抗 剂 均 不 能 成 功 诱 导 出 LTD(Kreitzer et al

2007)实验室前期研究结果发现运动疲劳后皮层-纹状

体 eCB-LTD受损D2DR表达下调(侯莉娟 等2018Ma et

al2018)45由此推测运动疲劳后基底神经节间接通路

过度兴奋

离体实验证实MSN 膜电位的离子电导受 DA 调节

DA可使MSN静息电位保持在钾离子平衡电位附近NS‐

DA系统受损大鼠纹状体神经元钾离子电流活性降低膜

电位以去极化为主放电频率增加兴奋性增强而D2DR

可通过抑制 L型钙通道电流从而降低纹状体神经元兴奋

性(Tseng et al2001)间接通路中型多棘神经元(Indi‐

rect pathway medium spiny neuroniMSN)兴 奋 性 主 要 受

D2DR 和腺苷酸 A2A 受体(Adenosine 2A receptorsA2AR)

共同调节A2AR 拮抗剂 SCH-58261 可显著改善 DA 缺失

小鼠 iMSN 的兴奋性抑制突触后电流减轻谷氨酸的兴

奋性毒性作用DA缺失后 A2AR上调 RGS4表达引起 M4

自身受体功能减弱和胆碱能信号传导增强而A2AR拮抗

剂可慢阻止这种升高(Peterson et al2012)激活纹状体

胆碱能神经元受体也会使β振荡幅度增高(Pittman-pol‐

letta et al2018)SCH58261 和 D2DR 激动剂喹吡罗经纹

状体微注射后可以抑制运动疲劳时 iMSN 的过度兴奋

降低 βγ 频段振幅延缓疲劳发生(Hou et al2017)

A2AR 也参与 iMSN 中长时程增强(Long-term potentiation

LTP)诱导A2AR 发挥与 D1DR 相似的作用通过激活

PKA引起 DARPP-32 磷酸化参与 LTP 形成DARPP-32

通过不同残基的磷酸化将 DA腺苷和 Glu 等递质或调质

对纹状体的调控整合在一起A2AR和D2DR还可通过调

节 Thr34-DARPP-32 磷酸化程度而使其下游靶点磷酸化

增加蛋白合成增多受体活化等发挥对运动疲劳的调控

作用(Nishi et al2005)由此推测7D 力竭后高频时相

刺激引起 DA 释放通过 D2DRA2AR 影响抑制纹状体兴奋

性发挥改善运动疲劳大鼠行为活动的作用

4 研究结论

运动疲劳后大鼠纹状体 αβ 频段振荡显著升高光

遗传激活黑质 DA系统可改善 1天力竭大鼠纹状体 αβ

频段PSD值与3 Hz相比20 Hz刺激可显著改善7天重复

力竭大鼠纹状体 αβ 频段 PSD 值提示 DA 放电模式改

变引起运动疲劳纹状体低频振荡变化是导致大鼠运动疲

劳症状产生的原因之一运动疲劳使大鼠纹状体αβ频

段兴奋性增高与 DA 放电模式有关DA 时相型放电通过

影响 iMSN 中 A2AR 及 D2DR 活性改善大鼠异常低频振荡

参与运动疲劳中枢调控

参考文献

侯莉娟王晓昕成佳俐等2018运动疲劳对大鼠皮层-纹状体通路

同步电振荡活动及 DA 信号系统影响的研究[J] 体育科学38

(4)45-53

乔德才刘军刘晓莉2014运动疲劳的中枢机制研究进展基于基

底神经节-皮层环路紊乱的视角[J]北京体育大学学报37(2)

51-58

BENDER FKOROTKOVA TPONOMARENKO A2018 Optoge‐

netic entrainment of hippocampal theta oscillations in behaving mice

[J] J Vis Exp7(136)

BERKE J D2009 Fast oscillations in cortical-striatal networks

switch frequency following rewarding events and stimulant drugs

[J] Eur J Neurosci30(5)848-859

BRINKMAN LSTOLK ADIJKERMAN H Cet al2014 Dis‐

tinct roles for alpha- and beta-band oscillations during mental simu‐

lation of goal-directed actions[J] J Neurosci34(44)14783-

14792

BRINKMAN LSTOLK AMARSHALL T Ret al2016 Indepen‐

dent causal contributions of alpha- and beta-band oscillations during

movement selection[J] J Neurosci36(33)8726-8733

BRITTAIN J SBROWN P2014 Oscillations and the basal ganglia

Motor control and beyond[J] Neuroimage85 Pt2637-647

BRITTAIN J SSHAROTT ABROWN P2014 The highs and

lows of beta activity in cortico-basal ganglia loops[J] Eur J Neuro‐

sci39(11)1951-1959

CEROVIC MDISA RTONINI R2013 Molecular and cellular

80

李科等光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡的电生理学研究

mechanisms of dopamine-mediated behavioral plasticity in the stria‐

tum[J] Neurobiol Learn Mem10563-80

CORDEIRO L M SRABELO P C RMORAES M Met al2017

Physical exercise-induced fatigueThe role of serotonergic and do‐

paminergic systems[J] Braz J Med Biol Res50(12)e6432

DA SILVA J A TECUAPETLA FPAIXAtildeO Vet al2018 Dopa‐

mine neuron activity before action initiation gates and invigorates fu‐

ture movements[J] Nature554(7691)244-248

FOUNTAS ZSHANAHAN M2017 The role of cortical oscilla‐

tions in a spiking neural network model of the basal ganglia[J]

PLoS One12(12)e0189109

FRY AMULLINGER K JONEILL G Cet al2017 The effect of

physical fatigue on oscillatory dynamics of the sensorimotor cortex

[J] Acta Physiol(Oxf)220(3)370-381

GAETZ WEDGAR J CWANG D Jet al2011 Relating MEG

measured motor cortical oscillations to resting c-aminobutyric acid

(GABA)concentration[J] Neuroimage55(2)616-621

GE SYANG CLI Met al2012 Dopamine depletion increases the

power and coherence of high-voltage spindles in the globus pallidus

and motor cortex of freely moving rats[J] Brain Res146566-79

GRACE A A2016 Dysregulation of the dopamine system in the

pathophysiology of schizophrenia and depression[J] Nat Rev Neu‐

rosci17(8)524-532

HAEGENS SNACHER VLUNA Ret al2011 alpha-Oscilla‐

tions in the monkey sensorimotor network influence discrimination

performance by rhythmical inhibition of neuronal spiking[J] Proc

Natl Acad Sci U S A108(48)19377-19382

HOU LCHEN WLIU Xet al2017 Exercise-induced neuropro‐

tection of the nigrostriatal dopamine system in Parkinsonrsquos disease

[J] Front Aging Neurosci9358

HOWE M WDOMBECK D A2016 Rapid signalling in distinct do‐

paminergic axons during locomotion and reward[J] Nature535

(7613)505-510

HU YLIU XQIAO D2015Increased extracellular dopamine and

5-hydroxytryptamine levels contribute to enhanced subthalamic nu‐

cleus neural activity during exhausting exercise[J] Biol Sport 32

(3)187-192

HUEBL JSPITZER BBRUCKE Cet al2014 Oscillatory sub‐

thalamic nucleus activity is modulated by dopamine during emotion‐

al processing in Parkinsons disease[J] Cortex6069-81

JENKINSON NBROWN P2011 New insights into the relationship

between dopaminebeta oscillations and motor function[J] Trends

Neurosci34(12)611-618

KIM B SLEE JBANG Met al2014 Differential regulation of

observational fear and neural oscillations by serotonin and dopamine

in the mouse anterior cingulate cortex[J] Psychopharmacology

(Berl)231(22)4371-4381

KREITZER A CMALENKA R C2007 Endocannabinoid-mediated

rescue of striatal LTD and motor deficits in Parkinsonrsquos disease

models[J] Nature445(7128)643-647

MA JCHEN HLIU Xet al2018 Exercise-induced fatigue im‐

pairs bidirectional corticostriatal synaptic plasticity[J] Front Cell

Neurosci1214

MARCOTT P FMAMALIGAS A AFORD C P2014 Phasic dopa‐

mine release drives rapid activation of striatal D2-receptors[J] Neu‐

ron84(1)164-176

MCMORRIS TBARWOOD MCORBETT J2018 Central fatigue

theory and endurance exerciseToward an interoceptive model[J]

Neurosci Biobehav Rev9393-107

NIMMRICH VDRAGUHN AAXMACHER N2015 Neuronal

network oscillations in neurodegenerative diseases[J] Neuromolec‐

ular Med17(3)270-284

NISHI AWATANABE YHIGASHI Het al2005 Glutamate reg‐

ulation of DARPP-32 phosphorylation in neostriatal neurons in‐

volves activation of multiple signaling cascades[J] Proc Natl Acad

Sci USA102(4)1199-1204

PETERSON J DGOLDBERG J ASURMEIER D J2012 Adenos‐

ine A2a receptor antagonists attenuate striatal adaptations following

dopamine depletion[J] Neurobiol Dis45(1)409-416

PITTMAN-POLLETTA B RQUACH AMOHAMMED A Iet al

2018 Striatal cholinergic receptor activation causes a rapidselec‐

tive and state-dependent rise in cortico-striatal beta activity[J] Eur

J Neurosci48(8)2857-2868

RICE M ECRAGG S J2008 Dopamine spillover after quantal re‐

leaseRethinking dopamine transmission in the nigrostriatal path‐

way[J] Brain Res Rev58(2)303-313

RICE M EPATEL J CCRAGG S J2011 Dopamine release in the

basal ganglia[J] Neuroscience198112-137

ROST B RSCHNEIDER-WARME FSCHMITZ Det al2017

Optogenetic tools for subcellular applications in neuroscience[J]

Neuron96(3)572-603

TSENG K YKASANETZ FKARGIEMAN Let al2001 Corti‐

cal slow oscillatory activity is reflected in the membrane potential

and spike trains of striatal neurons in rats with chronic nigrostriatal

lesions[J] J Neurosci21(16)6430-6439

WANG QLI MXIE Zet al2017 Granger causality supports ab‐

normal functional connectivity of beta oscillations in the dorsolateral

striatum and substantia nigra pars reticulata in hemiparkinsonian rats

[J] Exp Brain Res235(11)3357-3365

XU HPEREZ SCORNIL Aet al2018 Dopamine-endocannabi‐

noid interactions mediate spike-timing-dependent potentiation in the

striatum[J] Nat Commun9(1)4118

Optogenetic Activation DA Neurons in SNc Modulates Striatum Low-frequency

Oscillation in Exercise-induced Fatigue Rats

LI Ke1CHEN Mengjiao1ZHAO Xudong1CHEN Fujun23LIU Xiaoli1QIAO Decai1HOU Lijuan1

1 College of P E and Sports Beijing Normal University Beijing 100875 China 2 Bio-X Institutes Shanghai Jiao Tong

81

《体育科学》2019 年(第 39 卷)第 10 期

University Shanghai 200240 China 3 Exercise Health and Technology Center Department of Physical Education Shanghai Jiao

Tong University Shanghai 200240China

AbstractObjectiveTo investigate the effect of optogenetic activation of SNc DA neurons on the low frequency oscillations instriatum of exercise-induced fatigue rats MethodsMale SD rats were randomly divided into 5 groupssaline control group(SCG)optogenetic control group(OCG)exercise-induced fatigue group(FG)saline fatigue group(SFG)and optogeneticfatigue group(OFG) Dual viral solution was injected in unilateral SNc to selectively transfect dopaminergic neurons in OCG andSFG groups The 473nm light stimulation was delivered at a frequency of 3 Hz and 20 Hzwhile LFP signals were recorded fromthe dorsolateral striatum Results1)The elevation of striatal α and β oscillations was detected by comparing with the power spectraldensity(PSD)in the fatigue group The PSD changes were significantly after 7 days exhaustive exercise(1D vs 7DP<005)2)The mCherryChR2 expression was successfully obtained only in the viral injected rats Light stimulation of SNc DA neurons inOCG significantly reduced the striatal PSD in both α and β band(P<005)3)The 20 Hz stimulation was more effective inreduction of striatal α and β oscillation than that of 3 Hz in 7D exhausted rats(P<005) ConclusionThe exercise-induced fatiguecould alter electrophysiological activity in striatumwhich reduced the ratrsquos mobility The abnormal changes of α and β oscillationcould be significantly reduced by optogenetic activation of nigrostriatal DA system The 20 Hz stimulation had more prominenteffect on prolonged fatigueKeywordsexercise-induced fatigue nigra-striatum DA system optogenetic neural coding low-frequency oscillation

(上接第55页)

and explore the optimization of the implementation of sports consumption policy in China It is found that in the process ofimplementing the sports consumption policy in China there are some practical problems such as insufficient cognition of the statusand function of sports unbalanced implementation of the policy imperfect construction of the evaluation index system and notformed long-term incentive mechanism for promoting the development of industry Countermeasures Promoting the nationalstrategy of sports development to improve the awareness level of the whole society on sports function strengthening the top-leveldesign and overall arrangement of sports consumption policy to improve the effectiveness and applicability of policyimplementation refining the implementation plan according to specific objectives to ensure the pertinence and operability of policyimplementation improving the evaluation index system of sports consumption policy implementation to help scientific evaluation ofpolicy implementation establishing a long-term incentive mechanism for sports industry promotion to consolidate the basis andconditions for the implementation of sports consumption policy improving the governance efficiency of sports industry to promotethe level and quality of sports consumptionKeywords Chinasports industrysports consumptionpolicyimplementationproblemscountermeasures

105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882

105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210510101050882105088210508821050882105088210508821050882105088210508821050882105088210508821051010105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210510101050882105088210508821050882

1050882105088210508821050882

1050882105088210508821050882

1051010

本刊声明《体育科学》为国家社会科学基金资助期刊不收取任何费用

特此声明

《体育科学》编辑部

2019年10月10日

82

Page 5: 光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡 ... - sport…images.sport.org.cn/File/2019/12/30/0917294078.pdf · 2019. 12. 30. · china sport science 光遗传激活da系统调节运动疲劳大鼠纹状体低频振荡

李科等光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡的电生理学研究

3 讨论与分析

31 DA放电模式改变参与运动疲劳中枢调控

皮层-基底神经节环路中的β振荡活动(13~30 Hz)

与强直收缩和姿势控制相关(Brittain et al2014)高幅

β振荡是皮层广泛抑制的表现抑制GABA神经递质的再

摄取会增加 β 振幅和运动相关 β 振荡减弱β 振荡调

节指标mdashmdash运动后 β 振荡回弹(Post-movement beta re‐

boundPMBR)与 GABA 能神经元抑制相关(Gaetz et al

2011)Fry等(2017)研究证实以次最大收缩强度达到疲

劳时PMBR 增加α 频段振荡通常认为具有抑制效应

Haegens 等(2011)研究发现在 M1 区中 α 频段活动与神

经元放电频率变化相反α 频段活动在运动执行前呈去

同步化在运动执行时呈同步化状态(Brinkman et al

20142016)但也有研究认为皮层感觉运动区域的 α

频段活动下降是信息处理的标志进行单侧运动时对侧

感觉运动皮层 α 频段振幅减小(Fry et al2017)371亨廷

顿症病理机制研究显示是患者 α 振荡幅度降低基底神

经节低频α频段(8~10 Hz)振荡活动增加也是帕金森病

(Parkinsonrsquos diseasePD)的病理表现之一(Bender et al

2018Nimmrich et al2015)PD 模型大鼠皮层 M1M2 区

及苍白球外侧部 GPe中 α 频段(5~13 Hz)活动明显增高

(Ge et al2012)α和β频段节律都有一种事件相关去

同 步 化 效 应 在 运 动 执 行 时 活 动 减 弱(Brittain et al

2014)3实验室前期研究大鼠在运动过程中皮层脑电 α

频段所占比例显著增加(侯莉娟 等2018)51本部分研究

证实运动疲劳后纹状体α频段β频段活动增强且增高

幅度与疲劳累积程度相关

在正常状态下强直型和时相型多巴胺释放相结合以

维持高水平的多巴胺并且 β 振荡也处于生理范围在

PD中DA能神经元的缺失意味着释放到纹状体和STN突

触前的多巴胺较少净多巴胺总量(强直型和时相型多巴

胺释放模式的总和)处于低水平因此β振荡升高并超过

生理水平用左旋多巴或多巴胺激动剂治疗PD患者促进

时相型多巴胺释放改变了净多巴胺的水平此时 β 振荡

接 近 于 正 常 水 平(Brittain et al2014Jenkinson et al

2011)而DA替代疗法可通过降低异常的β振荡而减少

PD 患者的运动迟缓和身体僵硬等运动障碍(Wang et al

2017)因此β 振荡水平变化可能与 DA 时相型释放相

关而 DA 也可减少 α 振荡(Kim et al2014)与视觉刺

激相关的DA增多可以使PD患者丘脑底核STN中α频段

去同步化(Huebl et al2014)DA 神经元时相型放电可

有 效 激 活 D2DR(Marcott et al2014)DA 与 高 活 性 的

D2DR结合还可通过抑制间接通路从而降低异常β振荡

(Rice et al2008)D2DR激动剂阿扑吗啡能抑制PD患者

和 PD 动物模型过高的 β 振荡(Berke2009)前期研究

图7 不同频率光刺激对大鼠纹状体LFPs标准化比值的影响(OnPre)Figure 7 Effect of Different Optogenetics Stimulation on the Nor‐

malized Ratio of Power Spectral Density of Rats with Exercise-in‐

duced Fatigue

注AB 为 α频段CD 为 β频段与正常状态1 天力竭相比7 天重

复力竭后 3 Hz 刺激的改善效应明显降低而 20 Hz 的改善效应明显

升高表示差异具有显著性(P<005)

图8 DA系统参与运动疲劳大鼠低频振荡调控的可能机制示意图

Figure 8 DA Neurons in SNc Regulates Oscillation on Exercise-induced Fatigue Rats

注运动疲劳后STR出现低频振荡(A)时相型光遗传激活DA能神经元可能通过影响D2DR降低异常低频振荡发挥行为改善作用(B)

79

《体育科学》2019 年(第 39 卷)第 10 期

发现D2DR 激动剂干预可降低运动疲劳大鼠纹状体 α

β频段PSD值DA时相型放电模式还有助于动作发起和

执行(Da Silva et al2018Howe et al2016)本部分实验

研究发现1D力竭时两种时相型释放都可降低运动疲劳

大鼠纹状体αβ频段PSD值而7D重复力竭时给以低

频时相型刺激低幅度 DA 释放对大鼠纹状体 αβ 频段

PSD值的影响差异不具有显著性而高频时相型刺激高

幅度 DA 释放可显著降低 7D 重复力竭大鼠的纹状体 α

β频段PSD值这证实DA放电模式通过含量影响运动疲

劳纹状体αβ频段PSD值参与运动疲劳中枢调控

32 光激活 DA 系统影响纹状体低频振荡可能的生理学

机制

LFPs是指记录电极尖端附近局部区域兴奋性和抑制

性突触后电位的总和振荡主要发生在LFPs信号中是由

局部神经元同步的阈下电活动引起β频段振荡活动降

低与运动控制核团的去抑制活动有关计算模型显示 α

频段振荡主要影响间接通路通过快速去抑制实现对黑

质网状部 SNr 的抑制进而促进间接通路信息传输发挥运

动抑制作用(Fountas et al2017)16皮层-纹状体突触可

塑性中由内源性大麻素(endocannabinoideCB)介导的长

时 程 抑 制(long-term depressionLTD)也 依 赖 于 DA 及

D2DR(Xu et al2018)D2DR 被 DA 激活后抑制 cAMP

PKA活性导致 G-蛋白信号转导调节子-4磷酸化水平降

低使代谢型谷氨酸受体 15耦联的 Gq蛋白去抑制从而

促进 eCB 生成与突触前膜上的 CB1 受体结合后诱发

eCB-LTD(Cerovic et al2013)纹状体 D2DR 敲除或使用

D2DR 拮 抗 剂 均 不 能 成 功 诱 导 出 LTD(Kreitzer et al

2007)实验室前期研究结果发现运动疲劳后皮层-纹状

体 eCB-LTD受损D2DR表达下调(侯莉娟 等2018Ma et

al2018)45由此推测运动疲劳后基底神经节间接通路

过度兴奋

离体实验证实MSN 膜电位的离子电导受 DA 调节

DA可使MSN静息电位保持在钾离子平衡电位附近NS‐

DA系统受损大鼠纹状体神经元钾离子电流活性降低膜

电位以去极化为主放电频率增加兴奋性增强而D2DR

可通过抑制 L型钙通道电流从而降低纹状体神经元兴奋

性(Tseng et al2001)间接通路中型多棘神经元(Indi‐

rect pathway medium spiny neuroniMSN)兴 奋 性 主 要 受

D2DR 和腺苷酸 A2A 受体(Adenosine 2A receptorsA2AR)

共同调节A2AR 拮抗剂 SCH-58261 可显著改善 DA 缺失

小鼠 iMSN 的兴奋性抑制突触后电流减轻谷氨酸的兴

奋性毒性作用DA缺失后 A2AR上调 RGS4表达引起 M4

自身受体功能减弱和胆碱能信号传导增强而A2AR拮抗

剂可慢阻止这种升高(Peterson et al2012)激活纹状体

胆碱能神经元受体也会使β振荡幅度增高(Pittman-pol‐

letta et al2018)SCH58261 和 D2DR 激动剂喹吡罗经纹

状体微注射后可以抑制运动疲劳时 iMSN 的过度兴奋

降低 βγ 频段振幅延缓疲劳发生(Hou et al2017)

A2AR 也参与 iMSN 中长时程增强(Long-term potentiation

LTP)诱导A2AR 发挥与 D1DR 相似的作用通过激活

PKA引起 DARPP-32 磷酸化参与 LTP 形成DARPP-32

通过不同残基的磷酸化将 DA腺苷和 Glu 等递质或调质

对纹状体的调控整合在一起A2AR和D2DR还可通过调

节 Thr34-DARPP-32 磷酸化程度而使其下游靶点磷酸化

增加蛋白合成增多受体活化等发挥对运动疲劳的调控

作用(Nishi et al2005)由此推测7D 力竭后高频时相

刺激引起 DA 释放通过 D2DRA2AR 影响抑制纹状体兴奋

性发挥改善运动疲劳大鼠行为活动的作用

4 研究结论

运动疲劳后大鼠纹状体 αβ 频段振荡显著升高光

遗传激活黑质 DA系统可改善 1天力竭大鼠纹状体 αβ

频段PSD值与3 Hz相比20 Hz刺激可显著改善7天重复

力竭大鼠纹状体 αβ 频段 PSD 值提示 DA 放电模式改

变引起运动疲劳纹状体低频振荡变化是导致大鼠运动疲

劳症状产生的原因之一运动疲劳使大鼠纹状体αβ频

段兴奋性增高与 DA 放电模式有关DA 时相型放电通过

影响 iMSN 中 A2AR 及 D2DR 活性改善大鼠异常低频振荡

参与运动疲劳中枢调控

参考文献

侯莉娟王晓昕成佳俐等2018运动疲劳对大鼠皮层-纹状体通路

同步电振荡活动及 DA 信号系统影响的研究[J] 体育科学38

(4)45-53

乔德才刘军刘晓莉2014运动疲劳的中枢机制研究进展基于基

底神经节-皮层环路紊乱的视角[J]北京体育大学学报37(2)

51-58

BENDER FKOROTKOVA TPONOMARENKO A2018 Optoge‐

netic entrainment of hippocampal theta oscillations in behaving mice

[J] J Vis Exp7(136)

BERKE J D2009 Fast oscillations in cortical-striatal networks

switch frequency following rewarding events and stimulant drugs

[J] Eur J Neurosci30(5)848-859

BRINKMAN LSTOLK ADIJKERMAN H Cet al2014 Dis‐

tinct roles for alpha- and beta-band oscillations during mental simu‐

lation of goal-directed actions[J] J Neurosci34(44)14783-

14792

BRINKMAN LSTOLK AMARSHALL T Ret al2016 Indepen‐

dent causal contributions of alpha- and beta-band oscillations during

movement selection[J] J Neurosci36(33)8726-8733

BRITTAIN J SBROWN P2014 Oscillations and the basal ganglia

Motor control and beyond[J] Neuroimage85 Pt2637-647

BRITTAIN J SSHAROTT ABROWN P2014 The highs and

lows of beta activity in cortico-basal ganglia loops[J] Eur J Neuro‐

sci39(11)1951-1959

CEROVIC MDISA RTONINI R2013 Molecular and cellular

80

李科等光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡的电生理学研究

mechanisms of dopamine-mediated behavioral plasticity in the stria‐

tum[J] Neurobiol Learn Mem10563-80

CORDEIRO L M SRABELO P C RMORAES M Met al2017

Physical exercise-induced fatigueThe role of serotonergic and do‐

paminergic systems[J] Braz J Med Biol Res50(12)e6432

DA SILVA J A TECUAPETLA FPAIXAtildeO Vet al2018 Dopa‐

mine neuron activity before action initiation gates and invigorates fu‐

ture movements[J] Nature554(7691)244-248

FOUNTAS ZSHANAHAN M2017 The role of cortical oscilla‐

tions in a spiking neural network model of the basal ganglia[J]

PLoS One12(12)e0189109

FRY AMULLINGER K JONEILL G Cet al2017 The effect of

physical fatigue on oscillatory dynamics of the sensorimotor cortex

[J] Acta Physiol(Oxf)220(3)370-381

GAETZ WEDGAR J CWANG D Jet al2011 Relating MEG

measured motor cortical oscillations to resting c-aminobutyric acid

(GABA)concentration[J] Neuroimage55(2)616-621

GE SYANG CLI Met al2012 Dopamine depletion increases the

power and coherence of high-voltage spindles in the globus pallidus

and motor cortex of freely moving rats[J] Brain Res146566-79

GRACE A A2016 Dysregulation of the dopamine system in the

pathophysiology of schizophrenia and depression[J] Nat Rev Neu‐

rosci17(8)524-532

HAEGENS SNACHER VLUNA Ret al2011 alpha-Oscilla‐

tions in the monkey sensorimotor network influence discrimination

performance by rhythmical inhibition of neuronal spiking[J] Proc

Natl Acad Sci U S A108(48)19377-19382

HOU LCHEN WLIU Xet al2017 Exercise-induced neuropro‐

tection of the nigrostriatal dopamine system in Parkinsonrsquos disease

[J] Front Aging Neurosci9358

HOWE M WDOMBECK D A2016 Rapid signalling in distinct do‐

paminergic axons during locomotion and reward[J] Nature535

(7613)505-510

HU YLIU XQIAO D2015Increased extracellular dopamine and

5-hydroxytryptamine levels contribute to enhanced subthalamic nu‐

cleus neural activity during exhausting exercise[J] Biol Sport 32

(3)187-192

HUEBL JSPITZER BBRUCKE Cet al2014 Oscillatory sub‐

thalamic nucleus activity is modulated by dopamine during emotion‐

al processing in Parkinsons disease[J] Cortex6069-81

JENKINSON NBROWN P2011 New insights into the relationship

between dopaminebeta oscillations and motor function[J] Trends

Neurosci34(12)611-618

KIM B SLEE JBANG Met al2014 Differential regulation of

observational fear and neural oscillations by serotonin and dopamine

in the mouse anterior cingulate cortex[J] Psychopharmacology

(Berl)231(22)4371-4381

KREITZER A CMALENKA R C2007 Endocannabinoid-mediated

rescue of striatal LTD and motor deficits in Parkinsonrsquos disease

models[J] Nature445(7128)643-647

MA JCHEN HLIU Xet al2018 Exercise-induced fatigue im‐

pairs bidirectional corticostriatal synaptic plasticity[J] Front Cell

Neurosci1214

MARCOTT P FMAMALIGAS A AFORD C P2014 Phasic dopa‐

mine release drives rapid activation of striatal D2-receptors[J] Neu‐

ron84(1)164-176

MCMORRIS TBARWOOD MCORBETT J2018 Central fatigue

theory and endurance exerciseToward an interoceptive model[J]

Neurosci Biobehav Rev9393-107

NIMMRICH VDRAGUHN AAXMACHER N2015 Neuronal

network oscillations in neurodegenerative diseases[J] Neuromolec‐

ular Med17(3)270-284

NISHI AWATANABE YHIGASHI Het al2005 Glutamate reg‐

ulation of DARPP-32 phosphorylation in neostriatal neurons in‐

volves activation of multiple signaling cascades[J] Proc Natl Acad

Sci USA102(4)1199-1204

PETERSON J DGOLDBERG J ASURMEIER D J2012 Adenos‐

ine A2a receptor antagonists attenuate striatal adaptations following

dopamine depletion[J] Neurobiol Dis45(1)409-416

PITTMAN-POLLETTA B RQUACH AMOHAMMED A Iet al

2018 Striatal cholinergic receptor activation causes a rapidselec‐

tive and state-dependent rise in cortico-striatal beta activity[J] Eur

J Neurosci48(8)2857-2868

RICE M ECRAGG S J2008 Dopamine spillover after quantal re‐

leaseRethinking dopamine transmission in the nigrostriatal path‐

way[J] Brain Res Rev58(2)303-313

RICE M EPATEL J CCRAGG S J2011 Dopamine release in the

basal ganglia[J] Neuroscience198112-137

ROST B RSCHNEIDER-WARME FSCHMITZ Det al2017

Optogenetic tools for subcellular applications in neuroscience[J]

Neuron96(3)572-603

TSENG K YKASANETZ FKARGIEMAN Let al2001 Corti‐

cal slow oscillatory activity is reflected in the membrane potential

and spike trains of striatal neurons in rats with chronic nigrostriatal

lesions[J] J Neurosci21(16)6430-6439

WANG QLI MXIE Zet al2017 Granger causality supports ab‐

normal functional connectivity of beta oscillations in the dorsolateral

striatum and substantia nigra pars reticulata in hemiparkinsonian rats

[J] Exp Brain Res235(11)3357-3365

XU HPEREZ SCORNIL Aet al2018 Dopamine-endocannabi‐

noid interactions mediate spike-timing-dependent potentiation in the

striatum[J] Nat Commun9(1)4118

Optogenetic Activation DA Neurons in SNc Modulates Striatum Low-frequency

Oscillation in Exercise-induced Fatigue Rats

LI Ke1CHEN Mengjiao1ZHAO Xudong1CHEN Fujun23LIU Xiaoli1QIAO Decai1HOU Lijuan1

1 College of P E and Sports Beijing Normal University Beijing 100875 China 2 Bio-X Institutes Shanghai Jiao Tong

81

《体育科学》2019 年(第 39 卷)第 10 期

University Shanghai 200240 China 3 Exercise Health and Technology Center Department of Physical Education Shanghai Jiao

Tong University Shanghai 200240China

AbstractObjectiveTo investigate the effect of optogenetic activation of SNc DA neurons on the low frequency oscillations instriatum of exercise-induced fatigue rats MethodsMale SD rats were randomly divided into 5 groupssaline control group(SCG)optogenetic control group(OCG)exercise-induced fatigue group(FG)saline fatigue group(SFG)and optogeneticfatigue group(OFG) Dual viral solution was injected in unilateral SNc to selectively transfect dopaminergic neurons in OCG andSFG groups The 473nm light stimulation was delivered at a frequency of 3 Hz and 20 Hzwhile LFP signals were recorded fromthe dorsolateral striatum Results1)The elevation of striatal α and β oscillations was detected by comparing with the power spectraldensity(PSD)in the fatigue group The PSD changes were significantly after 7 days exhaustive exercise(1D vs 7DP<005)2)The mCherryChR2 expression was successfully obtained only in the viral injected rats Light stimulation of SNc DA neurons inOCG significantly reduced the striatal PSD in both α and β band(P<005)3)The 20 Hz stimulation was more effective inreduction of striatal α and β oscillation than that of 3 Hz in 7D exhausted rats(P<005) ConclusionThe exercise-induced fatiguecould alter electrophysiological activity in striatumwhich reduced the ratrsquos mobility The abnormal changes of α and β oscillationcould be significantly reduced by optogenetic activation of nigrostriatal DA system The 20 Hz stimulation had more prominenteffect on prolonged fatigueKeywordsexercise-induced fatigue nigra-striatum DA system optogenetic neural coding low-frequency oscillation

(上接第55页)

and explore the optimization of the implementation of sports consumption policy in China It is found that in the process ofimplementing the sports consumption policy in China there are some practical problems such as insufficient cognition of the statusand function of sports unbalanced implementation of the policy imperfect construction of the evaluation index system and notformed long-term incentive mechanism for promoting the development of industry Countermeasures Promoting the nationalstrategy of sports development to improve the awareness level of the whole society on sports function strengthening the top-leveldesign and overall arrangement of sports consumption policy to improve the effectiveness and applicability of policyimplementation refining the implementation plan according to specific objectives to ensure the pertinence and operability of policyimplementation improving the evaluation index system of sports consumption policy implementation to help scientific evaluation ofpolicy implementation establishing a long-term incentive mechanism for sports industry promotion to consolidate the basis andconditions for the implementation of sports consumption policy improving the governance efficiency of sports industry to promotethe level and quality of sports consumptionKeywords Chinasports industrysports consumptionpolicyimplementationproblemscountermeasures

105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882

105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210510101050882105088210508821050882105088210508821050882105088210508821050882105088210508821051010105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210510101050882105088210508821050882

1050882105088210508821050882

1050882105088210508821050882

1051010

本刊声明《体育科学》为国家社会科学基金资助期刊不收取任何费用

特此声明

《体育科学》编辑部

2019年10月10日

82

Page 6: 光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡 ... - sport…images.sport.org.cn/File/2019/12/30/0917294078.pdf · 2019. 12. 30. · china sport science 光遗传激活da系统调节运动疲劳大鼠纹状体低频振荡

《体育科学》2019 年(第 39 卷)第 10 期

发现D2DR 激动剂干预可降低运动疲劳大鼠纹状体 α

β频段PSD值DA时相型放电模式还有助于动作发起和

执行(Da Silva et al2018Howe et al2016)本部分实验

研究发现1D力竭时两种时相型释放都可降低运动疲劳

大鼠纹状体αβ频段PSD值而7D重复力竭时给以低

频时相型刺激低幅度 DA 释放对大鼠纹状体 αβ 频段

PSD值的影响差异不具有显著性而高频时相型刺激高

幅度 DA 释放可显著降低 7D 重复力竭大鼠的纹状体 α

β频段PSD值这证实DA放电模式通过含量影响运动疲

劳纹状体αβ频段PSD值参与运动疲劳中枢调控

32 光激活 DA 系统影响纹状体低频振荡可能的生理学

机制

LFPs是指记录电极尖端附近局部区域兴奋性和抑制

性突触后电位的总和振荡主要发生在LFPs信号中是由

局部神经元同步的阈下电活动引起β频段振荡活动降

低与运动控制核团的去抑制活动有关计算模型显示 α

频段振荡主要影响间接通路通过快速去抑制实现对黑

质网状部 SNr 的抑制进而促进间接通路信息传输发挥运

动抑制作用(Fountas et al2017)16皮层-纹状体突触可

塑性中由内源性大麻素(endocannabinoideCB)介导的长

时 程 抑 制(long-term depressionLTD)也 依 赖 于 DA 及

D2DR(Xu et al2018)D2DR 被 DA 激活后抑制 cAMP

PKA活性导致 G-蛋白信号转导调节子-4磷酸化水平降

低使代谢型谷氨酸受体 15耦联的 Gq蛋白去抑制从而

促进 eCB 生成与突触前膜上的 CB1 受体结合后诱发

eCB-LTD(Cerovic et al2013)纹状体 D2DR 敲除或使用

D2DR 拮 抗 剂 均 不 能 成 功 诱 导 出 LTD(Kreitzer et al

2007)实验室前期研究结果发现运动疲劳后皮层-纹状

体 eCB-LTD受损D2DR表达下调(侯莉娟 等2018Ma et

al2018)45由此推测运动疲劳后基底神经节间接通路

过度兴奋

离体实验证实MSN 膜电位的离子电导受 DA 调节

DA可使MSN静息电位保持在钾离子平衡电位附近NS‐

DA系统受损大鼠纹状体神经元钾离子电流活性降低膜

电位以去极化为主放电频率增加兴奋性增强而D2DR

可通过抑制 L型钙通道电流从而降低纹状体神经元兴奋

性(Tseng et al2001)间接通路中型多棘神经元(Indi‐

rect pathway medium spiny neuroniMSN)兴 奋 性 主 要 受

D2DR 和腺苷酸 A2A 受体(Adenosine 2A receptorsA2AR)

共同调节A2AR 拮抗剂 SCH-58261 可显著改善 DA 缺失

小鼠 iMSN 的兴奋性抑制突触后电流减轻谷氨酸的兴

奋性毒性作用DA缺失后 A2AR上调 RGS4表达引起 M4

自身受体功能减弱和胆碱能信号传导增强而A2AR拮抗

剂可慢阻止这种升高(Peterson et al2012)激活纹状体

胆碱能神经元受体也会使β振荡幅度增高(Pittman-pol‐

letta et al2018)SCH58261 和 D2DR 激动剂喹吡罗经纹

状体微注射后可以抑制运动疲劳时 iMSN 的过度兴奋

降低 βγ 频段振幅延缓疲劳发生(Hou et al2017)

A2AR 也参与 iMSN 中长时程增强(Long-term potentiation

LTP)诱导A2AR 发挥与 D1DR 相似的作用通过激活

PKA引起 DARPP-32 磷酸化参与 LTP 形成DARPP-32

通过不同残基的磷酸化将 DA腺苷和 Glu 等递质或调质

对纹状体的调控整合在一起A2AR和D2DR还可通过调

节 Thr34-DARPP-32 磷酸化程度而使其下游靶点磷酸化

增加蛋白合成增多受体活化等发挥对运动疲劳的调控

作用(Nishi et al2005)由此推测7D 力竭后高频时相

刺激引起 DA 释放通过 D2DRA2AR 影响抑制纹状体兴奋

性发挥改善运动疲劳大鼠行为活动的作用

4 研究结论

运动疲劳后大鼠纹状体 αβ 频段振荡显著升高光

遗传激活黑质 DA系统可改善 1天力竭大鼠纹状体 αβ

频段PSD值与3 Hz相比20 Hz刺激可显著改善7天重复

力竭大鼠纹状体 αβ 频段 PSD 值提示 DA 放电模式改

变引起运动疲劳纹状体低频振荡变化是导致大鼠运动疲

劳症状产生的原因之一运动疲劳使大鼠纹状体αβ频

段兴奋性增高与 DA 放电模式有关DA 时相型放电通过

影响 iMSN 中 A2AR 及 D2DR 活性改善大鼠异常低频振荡

参与运动疲劳中枢调控

参考文献

侯莉娟王晓昕成佳俐等2018运动疲劳对大鼠皮层-纹状体通路

同步电振荡活动及 DA 信号系统影响的研究[J] 体育科学38

(4)45-53

乔德才刘军刘晓莉2014运动疲劳的中枢机制研究进展基于基

底神经节-皮层环路紊乱的视角[J]北京体育大学学报37(2)

51-58

BENDER FKOROTKOVA TPONOMARENKO A2018 Optoge‐

netic entrainment of hippocampal theta oscillations in behaving mice

[J] J Vis Exp7(136)

BERKE J D2009 Fast oscillations in cortical-striatal networks

switch frequency following rewarding events and stimulant drugs

[J] Eur J Neurosci30(5)848-859

BRINKMAN LSTOLK ADIJKERMAN H Cet al2014 Dis‐

tinct roles for alpha- and beta-band oscillations during mental simu‐

lation of goal-directed actions[J] J Neurosci34(44)14783-

14792

BRINKMAN LSTOLK AMARSHALL T Ret al2016 Indepen‐

dent causal contributions of alpha- and beta-band oscillations during

movement selection[J] J Neurosci36(33)8726-8733

BRITTAIN J SBROWN P2014 Oscillations and the basal ganglia

Motor control and beyond[J] Neuroimage85 Pt2637-647

BRITTAIN J SSHAROTT ABROWN P2014 The highs and

lows of beta activity in cortico-basal ganglia loops[J] Eur J Neuro‐

sci39(11)1951-1959

CEROVIC MDISA RTONINI R2013 Molecular and cellular

80

李科等光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡的电生理学研究

mechanisms of dopamine-mediated behavioral plasticity in the stria‐

tum[J] Neurobiol Learn Mem10563-80

CORDEIRO L M SRABELO P C RMORAES M Met al2017

Physical exercise-induced fatigueThe role of serotonergic and do‐

paminergic systems[J] Braz J Med Biol Res50(12)e6432

DA SILVA J A TECUAPETLA FPAIXAtildeO Vet al2018 Dopa‐

mine neuron activity before action initiation gates and invigorates fu‐

ture movements[J] Nature554(7691)244-248

FOUNTAS ZSHANAHAN M2017 The role of cortical oscilla‐

tions in a spiking neural network model of the basal ganglia[J]

PLoS One12(12)e0189109

FRY AMULLINGER K JONEILL G Cet al2017 The effect of

physical fatigue on oscillatory dynamics of the sensorimotor cortex

[J] Acta Physiol(Oxf)220(3)370-381

GAETZ WEDGAR J CWANG D Jet al2011 Relating MEG

measured motor cortical oscillations to resting c-aminobutyric acid

(GABA)concentration[J] Neuroimage55(2)616-621

GE SYANG CLI Met al2012 Dopamine depletion increases the

power and coherence of high-voltage spindles in the globus pallidus

and motor cortex of freely moving rats[J] Brain Res146566-79

GRACE A A2016 Dysregulation of the dopamine system in the

pathophysiology of schizophrenia and depression[J] Nat Rev Neu‐

rosci17(8)524-532

HAEGENS SNACHER VLUNA Ret al2011 alpha-Oscilla‐

tions in the monkey sensorimotor network influence discrimination

performance by rhythmical inhibition of neuronal spiking[J] Proc

Natl Acad Sci U S A108(48)19377-19382

HOU LCHEN WLIU Xet al2017 Exercise-induced neuropro‐

tection of the nigrostriatal dopamine system in Parkinsonrsquos disease

[J] Front Aging Neurosci9358

HOWE M WDOMBECK D A2016 Rapid signalling in distinct do‐

paminergic axons during locomotion and reward[J] Nature535

(7613)505-510

HU YLIU XQIAO D2015Increased extracellular dopamine and

5-hydroxytryptamine levels contribute to enhanced subthalamic nu‐

cleus neural activity during exhausting exercise[J] Biol Sport 32

(3)187-192

HUEBL JSPITZER BBRUCKE Cet al2014 Oscillatory sub‐

thalamic nucleus activity is modulated by dopamine during emotion‐

al processing in Parkinsons disease[J] Cortex6069-81

JENKINSON NBROWN P2011 New insights into the relationship

between dopaminebeta oscillations and motor function[J] Trends

Neurosci34(12)611-618

KIM B SLEE JBANG Met al2014 Differential regulation of

observational fear and neural oscillations by serotonin and dopamine

in the mouse anterior cingulate cortex[J] Psychopharmacology

(Berl)231(22)4371-4381

KREITZER A CMALENKA R C2007 Endocannabinoid-mediated

rescue of striatal LTD and motor deficits in Parkinsonrsquos disease

models[J] Nature445(7128)643-647

MA JCHEN HLIU Xet al2018 Exercise-induced fatigue im‐

pairs bidirectional corticostriatal synaptic plasticity[J] Front Cell

Neurosci1214

MARCOTT P FMAMALIGAS A AFORD C P2014 Phasic dopa‐

mine release drives rapid activation of striatal D2-receptors[J] Neu‐

ron84(1)164-176

MCMORRIS TBARWOOD MCORBETT J2018 Central fatigue

theory and endurance exerciseToward an interoceptive model[J]

Neurosci Biobehav Rev9393-107

NIMMRICH VDRAGUHN AAXMACHER N2015 Neuronal

network oscillations in neurodegenerative diseases[J] Neuromolec‐

ular Med17(3)270-284

NISHI AWATANABE YHIGASHI Het al2005 Glutamate reg‐

ulation of DARPP-32 phosphorylation in neostriatal neurons in‐

volves activation of multiple signaling cascades[J] Proc Natl Acad

Sci USA102(4)1199-1204

PETERSON J DGOLDBERG J ASURMEIER D J2012 Adenos‐

ine A2a receptor antagonists attenuate striatal adaptations following

dopamine depletion[J] Neurobiol Dis45(1)409-416

PITTMAN-POLLETTA B RQUACH AMOHAMMED A Iet al

2018 Striatal cholinergic receptor activation causes a rapidselec‐

tive and state-dependent rise in cortico-striatal beta activity[J] Eur

J Neurosci48(8)2857-2868

RICE M ECRAGG S J2008 Dopamine spillover after quantal re‐

leaseRethinking dopamine transmission in the nigrostriatal path‐

way[J] Brain Res Rev58(2)303-313

RICE M EPATEL J CCRAGG S J2011 Dopamine release in the

basal ganglia[J] Neuroscience198112-137

ROST B RSCHNEIDER-WARME FSCHMITZ Det al2017

Optogenetic tools for subcellular applications in neuroscience[J]

Neuron96(3)572-603

TSENG K YKASANETZ FKARGIEMAN Let al2001 Corti‐

cal slow oscillatory activity is reflected in the membrane potential

and spike trains of striatal neurons in rats with chronic nigrostriatal

lesions[J] J Neurosci21(16)6430-6439

WANG QLI MXIE Zet al2017 Granger causality supports ab‐

normal functional connectivity of beta oscillations in the dorsolateral

striatum and substantia nigra pars reticulata in hemiparkinsonian rats

[J] Exp Brain Res235(11)3357-3365

XU HPEREZ SCORNIL Aet al2018 Dopamine-endocannabi‐

noid interactions mediate spike-timing-dependent potentiation in the

striatum[J] Nat Commun9(1)4118

Optogenetic Activation DA Neurons in SNc Modulates Striatum Low-frequency

Oscillation in Exercise-induced Fatigue Rats

LI Ke1CHEN Mengjiao1ZHAO Xudong1CHEN Fujun23LIU Xiaoli1QIAO Decai1HOU Lijuan1

1 College of P E and Sports Beijing Normal University Beijing 100875 China 2 Bio-X Institutes Shanghai Jiao Tong

81

《体育科学》2019 年(第 39 卷)第 10 期

University Shanghai 200240 China 3 Exercise Health and Technology Center Department of Physical Education Shanghai Jiao

Tong University Shanghai 200240China

AbstractObjectiveTo investigate the effect of optogenetic activation of SNc DA neurons on the low frequency oscillations instriatum of exercise-induced fatigue rats MethodsMale SD rats were randomly divided into 5 groupssaline control group(SCG)optogenetic control group(OCG)exercise-induced fatigue group(FG)saline fatigue group(SFG)and optogeneticfatigue group(OFG) Dual viral solution was injected in unilateral SNc to selectively transfect dopaminergic neurons in OCG andSFG groups The 473nm light stimulation was delivered at a frequency of 3 Hz and 20 Hzwhile LFP signals were recorded fromthe dorsolateral striatum Results1)The elevation of striatal α and β oscillations was detected by comparing with the power spectraldensity(PSD)in the fatigue group The PSD changes were significantly after 7 days exhaustive exercise(1D vs 7DP<005)2)The mCherryChR2 expression was successfully obtained only in the viral injected rats Light stimulation of SNc DA neurons inOCG significantly reduced the striatal PSD in both α and β band(P<005)3)The 20 Hz stimulation was more effective inreduction of striatal α and β oscillation than that of 3 Hz in 7D exhausted rats(P<005) ConclusionThe exercise-induced fatiguecould alter electrophysiological activity in striatumwhich reduced the ratrsquos mobility The abnormal changes of α and β oscillationcould be significantly reduced by optogenetic activation of nigrostriatal DA system The 20 Hz stimulation had more prominenteffect on prolonged fatigueKeywordsexercise-induced fatigue nigra-striatum DA system optogenetic neural coding low-frequency oscillation

(上接第55页)

and explore the optimization of the implementation of sports consumption policy in China It is found that in the process ofimplementing the sports consumption policy in China there are some practical problems such as insufficient cognition of the statusand function of sports unbalanced implementation of the policy imperfect construction of the evaluation index system and notformed long-term incentive mechanism for promoting the development of industry Countermeasures Promoting the nationalstrategy of sports development to improve the awareness level of the whole society on sports function strengthening the top-leveldesign and overall arrangement of sports consumption policy to improve the effectiveness and applicability of policyimplementation refining the implementation plan according to specific objectives to ensure the pertinence and operability of policyimplementation improving the evaluation index system of sports consumption policy implementation to help scientific evaluation ofpolicy implementation establishing a long-term incentive mechanism for sports industry promotion to consolidate the basis andconditions for the implementation of sports consumption policy improving the governance efficiency of sports industry to promotethe level and quality of sports consumptionKeywords Chinasports industrysports consumptionpolicyimplementationproblemscountermeasures

105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882

105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210510101050882105088210508821050882105088210508821050882105088210508821050882105088210508821051010105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210510101050882105088210508821050882

1050882105088210508821050882

1050882105088210508821050882

1051010

本刊声明《体育科学》为国家社会科学基金资助期刊不收取任何费用

特此声明

《体育科学》编辑部

2019年10月10日

82

Page 7: 光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡 ... - sport…images.sport.org.cn/File/2019/12/30/0917294078.pdf · 2019. 12. 30. · china sport science 光遗传激活da系统调节运动疲劳大鼠纹状体低频振荡

李科等光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡的电生理学研究

mechanisms of dopamine-mediated behavioral plasticity in the stria‐

tum[J] Neurobiol Learn Mem10563-80

CORDEIRO L M SRABELO P C RMORAES M Met al2017

Physical exercise-induced fatigueThe role of serotonergic and do‐

paminergic systems[J] Braz J Med Biol Res50(12)e6432

DA SILVA J A TECUAPETLA FPAIXAtildeO Vet al2018 Dopa‐

mine neuron activity before action initiation gates and invigorates fu‐

ture movements[J] Nature554(7691)244-248

FOUNTAS ZSHANAHAN M2017 The role of cortical oscilla‐

tions in a spiking neural network model of the basal ganglia[J]

PLoS One12(12)e0189109

FRY AMULLINGER K JONEILL G Cet al2017 The effect of

physical fatigue on oscillatory dynamics of the sensorimotor cortex

[J] Acta Physiol(Oxf)220(3)370-381

GAETZ WEDGAR J CWANG D Jet al2011 Relating MEG

measured motor cortical oscillations to resting c-aminobutyric acid

(GABA)concentration[J] Neuroimage55(2)616-621

GE SYANG CLI Met al2012 Dopamine depletion increases the

power and coherence of high-voltage spindles in the globus pallidus

and motor cortex of freely moving rats[J] Brain Res146566-79

GRACE A A2016 Dysregulation of the dopamine system in the

pathophysiology of schizophrenia and depression[J] Nat Rev Neu‐

rosci17(8)524-532

HAEGENS SNACHER VLUNA Ret al2011 alpha-Oscilla‐

tions in the monkey sensorimotor network influence discrimination

performance by rhythmical inhibition of neuronal spiking[J] Proc

Natl Acad Sci U S A108(48)19377-19382

HOU LCHEN WLIU Xet al2017 Exercise-induced neuropro‐

tection of the nigrostriatal dopamine system in Parkinsonrsquos disease

[J] Front Aging Neurosci9358

HOWE M WDOMBECK D A2016 Rapid signalling in distinct do‐

paminergic axons during locomotion and reward[J] Nature535

(7613)505-510

HU YLIU XQIAO D2015Increased extracellular dopamine and

5-hydroxytryptamine levels contribute to enhanced subthalamic nu‐

cleus neural activity during exhausting exercise[J] Biol Sport 32

(3)187-192

HUEBL JSPITZER BBRUCKE Cet al2014 Oscillatory sub‐

thalamic nucleus activity is modulated by dopamine during emotion‐

al processing in Parkinsons disease[J] Cortex6069-81

JENKINSON NBROWN P2011 New insights into the relationship

between dopaminebeta oscillations and motor function[J] Trends

Neurosci34(12)611-618

KIM B SLEE JBANG Met al2014 Differential regulation of

observational fear and neural oscillations by serotonin and dopamine

in the mouse anterior cingulate cortex[J] Psychopharmacology

(Berl)231(22)4371-4381

KREITZER A CMALENKA R C2007 Endocannabinoid-mediated

rescue of striatal LTD and motor deficits in Parkinsonrsquos disease

models[J] Nature445(7128)643-647

MA JCHEN HLIU Xet al2018 Exercise-induced fatigue im‐

pairs bidirectional corticostriatal synaptic plasticity[J] Front Cell

Neurosci1214

MARCOTT P FMAMALIGAS A AFORD C P2014 Phasic dopa‐

mine release drives rapid activation of striatal D2-receptors[J] Neu‐

ron84(1)164-176

MCMORRIS TBARWOOD MCORBETT J2018 Central fatigue

theory and endurance exerciseToward an interoceptive model[J]

Neurosci Biobehav Rev9393-107

NIMMRICH VDRAGUHN AAXMACHER N2015 Neuronal

network oscillations in neurodegenerative diseases[J] Neuromolec‐

ular Med17(3)270-284

NISHI AWATANABE YHIGASHI Het al2005 Glutamate reg‐

ulation of DARPP-32 phosphorylation in neostriatal neurons in‐

volves activation of multiple signaling cascades[J] Proc Natl Acad

Sci USA102(4)1199-1204

PETERSON J DGOLDBERG J ASURMEIER D J2012 Adenos‐

ine A2a receptor antagonists attenuate striatal adaptations following

dopamine depletion[J] Neurobiol Dis45(1)409-416

PITTMAN-POLLETTA B RQUACH AMOHAMMED A Iet al

2018 Striatal cholinergic receptor activation causes a rapidselec‐

tive and state-dependent rise in cortico-striatal beta activity[J] Eur

J Neurosci48(8)2857-2868

RICE M ECRAGG S J2008 Dopamine spillover after quantal re‐

leaseRethinking dopamine transmission in the nigrostriatal path‐

way[J] Brain Res Rev58(2)303-313

RICE M EPATEL J CCRAGG S J2011 Dopamine release in the

basal ganglia[J] Neuroscience198112-137

ROST B RSCHNEIDER-WARME FSCHMITZ Det al2017

Optogenetic tools for subcellular applications in neuroscience[J]

Neuron96(3)572-603

TSENG K YKASANETZ FKARGIEMAN Let al2001 Corti‐

cal slow oscillatory activity is reflected in the membrane potential

and spike trains of striatal neurons in rats with chronic nigrostriatal

lesions[J] J Neurosci21(16)6430-6439

WANG QLI MXIE Zet al2017 Granger causality supports ab‐

normal functional connectivity of beta oscillations in the dorsolateral

striatum and substantia nigra pars reticulata in hemiparkinsonian rats

[J] Exp Brain Res235(11)3357-3365

XU HPEREZ SCORNIL Aet al2018 Dopamine-endocannabi‐

noid interactions mediate spike-timing-dependent potentiation in the

striatum[J] Nat Commun9(1)4118

Optogenetic Activation DA Neurons in SNc Modulates Striatum Low-frequency

Oscillation in Exercise-induced Fatigue Rats

LI Ke1CHEN Mengjiao1ZHAO Xudong1CHEN Fujun23LIU Xiaoli1QIAO Decai1HOU Lijuan1

1 College of P E and Sports Beijing Normal University Beijing 100875 China 2 Bio-X Institutes Shanghai Jiao Tong

81

《体育科学》2019 年(第 39 卷)第 10 期

University Shanghai 200240 China 3 Exercise Health and Technology Center Department of Physical Education Shanghai Jiao

Tong University Shanghai 200240China

AbstractObjectiveTo investigate the effect of optogenetic activation of SNc DA neurons on the low frequency oscillations instriatum of exercise-induced fatigue rats MethodsMale SD rats were randomly divided into 5 groupssaline control group(SCG)optogenetic control group(OCG)exercise-induced fatigue group(FG)saline fatigue group(SFG)and optogeneticfatigue group(OFG) Dual viral solution was injected in unilateral SNc to selectively transfect dopaminergic neurons in OCG andSFG groups The 473nm light stimulation was delivered at a frequency of 3 Hz and 20 Hzwhile LFP signals were recorded fromthe dorsolateral striatum Results1)The elevation of striatal α and β oscillations was detected by comparing with the power spectraldensity(PSD)in the fatigue group The PSD changes were significantly after 7 days exhaustive exercise(1D vs 7DP<005)2)The mCherryChR2 expression was successfully obtained only in the viral injected rats Light stimulation of SNc DA neurons inOCG significantly reduced the striatal PSD in both α and β band(P<005)3)The 20 Hz stimulation was more effective inreduction of striatal α and β oscillation than that of 3 Hz in 7D exhausted rats(P<005) ConclusionThe exercise-induced fatiguecould alter electrophysiological activity in striatumwhich reduced the ratrsquos mobility The abnormal changes of α and β oscillationcould be significantly reduced by optogenetic activation of nigrostriatal DA system The 20 Hz stimulation had more prominenteffect on prolonged fatigueKeywordsexercise-induced fatigue nigra-striatum DA system optogenetic neural coding low-frequency oscillation

(上接第55页)

and explore the optimization of the implementation of sports consumption policy in China It is found that in the process ofimplementing the sports consumption policy in China there are some practical problems such as insufficient cognition of the statusand function of sports unbalanced implementation of the policy imperfect construction of the evaluation index system and notformed long-term incentive mechanism for promoting the development of industry Countermeasures Promoting the nationalstrategy of sports development to improve the awareness level of the whole society on sports function strengthening the top-leveldesign and overall arrangement of sports consumption policy to improve the effectiveness and applicability of policyimplementation refining the implementation plan according to specific objectives to ensure the pertinence and operability of policyimplementation improving the evaluation index system of sports consumption policy implementation to help scientific evaluation ofpolicy implementation establishing a long-term incentive mechanism for sports industry promotion to consolidate the basis andconditions for the implementation of sports consumption policy improving the governance efficiency of sports industry to promotethe level and quality of sports consumptionKeywords Chinasports industrysports consumptionpolicyimplementationproblemscountermeasures

105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882

105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210510101050882105088210508821050882105088210508821050882105088210508821050882105088210508821051010105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210510101050882105088210508821050882

1050882105088210508821050882

1050882105088210508821050882

1051010

本刊声明《体育科学》为国家社会科学基金资助期刊不收取任何费用

特此声明

《体育科学》编辑部

2019年10月10日

82

Page 8: 光遗传激活DA系统调节运动疲劳大鼠纹状体低频振荡 ... - sport…images.sport.org.cn/File/2019/12/30/0917294078.pdf · 2019. 12. 30. · china sport science 光遗传激活da系统调节运动疲劳大鼠纹状体低频振荡

《体育科学》2019 年(第 39 卷)第 10 期

University Shanghai 200240 China 3 Exercise Health and Technology Center Department of Physical Education Shanghai Jiao

Tong University Shanghai 200240China

AbstractObjectiveTo investigate the effect of optogenetic activation of SNc DA neurons on the low frequency oscillations instriatum of exercise-induced fatigue rats MethodsMale SD rats were randomly divided into 5 groupssaline control group(SCG)optogenetic control group(OCG)exercise-induced fatigue group(FG)saline fatigue group(SFG)and optogeneticfatigue group(OFG) Dual viral solution was injected in unilateral SNc to selectively transfect dopaminergic neurons in OCG andSFG groups The 473nm light stimulation was delivered at a frequency of 3 Hz and 20 Hzwhile LFP signals were recorded fromthe dorsolateral striatum Results1)The elevation of striatal α and β oscillations was detected by comparing with the power spectraldensity(PSD)in the fatigue group The PSD changes were significantly after 7 days exhaustive exercise(1D vs 7DP<005)2)The mCherryChR2 expression was successfully obtained only in the viral injected rats Light stimulation of SNc DA neurons inOCG significantly reduced the striatal PSD in both α and β band(P<005)3)The 20 Hz stimulation was more effective inreduction of striatal α and β oscillation than that of 3 Hz in 7D exhausted rats(P<005) ConclusionThe exercise-induced fatiguecould alter electrophysiological activity in striatumwhich reduced the ratrsquos mobility The abnormal changes of α and β oscillationcould be significantly reduced by optogenetic activation of nigrostriatal DA system The 20 Hz stimulation had more prominenteffect on prolonged fatigueKeywordsexercise-induced fatigue nigra-striatum DA system optogenetic neural coding low-frequency oscillation

(上接第55页)

and explore the optimization of the implementation of sports consumption policy in China It is found that in the process ofimplementing the sports consumption policy in China there are some practical problems such as insufficient cognition of the statusand function of sports unbalanced implementation of the policy imperfect construction of the evaluation index system and notformed long-term incentive mechanism for promoting the development of industry Countermeasures Promoting the nationalstrategy of sports development to improve the awareness level of the whole society on sports function strengthening the top-leveldesign and overall arrangement of sports consumption policy to improve the effectiveness and applicability of policyimplementation refining the implementation plan according to specific objectives to ensure the pertinence and operability of policyimplementation improving the evaluation index system of sports consumption policy implementation to help scientific evaluation ofpolicy implementation establishing a long-term incentive mechanism for sports industry promotion to consolidate the basis andconditions for the implementation of sports consumption policy improving the governance efficiency of sports industry to promotethe level and quality of sports consumptionKeywords Chinasports industrysports consumptionpolicyimplementationproblemscountermeasures

105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882

105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210510101050882105088210508821050882105088210508821050882105088210508821050882105088210508821051010105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210508821050882105088210510101050882105088210508821050882

1050882105088210508821050882

1050882105088210508821050882

1051010

本刊声明《体育科学》为国家社会科学基金资助期刊不收取任何费用

特此声明

《体育科学》编辑部

2019年10月10日

82