31
Bong-Kee Lee School of Mechanical Engineering Chonnam National University Engineering Mathematics II 12. Partial Differential Equations (PDEs) School of Mechanical Engineering Engineering Mathematics II 12.1 Basic Concepts 편미분방정식(partial differential equation, PDE) 두 개 이상의 독립변수들에 종속되는 함수의 한 개 또는 그 이상의 편도함수를 포함하는 방정식 상미분방정식: 단순한 물리시스템의 표현 편미분방정식: 동역학, 탄성학, 열전달, 전자기학, 양자역학 등 다 양한 분야에 적용 계수(order): 가장 높은 도함수의 계수 편미분방정식 선형(linear) : 미지함수와 그 편도함수에 대하여 1차임 비선형(nonlinear) : 선형이 아닌 편미분방정식 제차(homogeneous) : 미지함수와 그것의 편도함수만을 포함 비제차(nonhomogeneous) : 제차가 아닌 선형 편미분방정식

Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

  • Upload
    dokhanh

  • View
    219

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

Bong-Kee Lee School of Mechanical Engineering

Chonnam National University

Engineering Mathematics II

12. Partial Differential Equations (PDEs)

School of Mechanical Engineering Engineering Mathematics II

12.1 Basic Concepts

편미분방정식(partial differential equation, PDE)

– 두 개 이상의 독립변수들에 종속되는 함수의 한 개 또는 그 이상의 편도함수를 포함하는 방정식 • 상미분방정식: 단순한 물리시스템의 표현

• 편미분방정식: 동역학, 탄성학, 열전달, 전자기학, 양자역학 등 다양한 분야에 적용

• 계수(order): 가장 높은 도함수의 계수

편미분방정식 선형(linear) : 미지함수와 그 편도함수에 대하여 1차임

비선형(nonlinear) : 선형이 아닌 편미분방정식

제차(homogeneous) : 미지함수와 그것의 편도함수만을 포함

비제차(nonhomogeneous) : 제차가 아닌 선형 편미분방정식

Page 2: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.1 Basic Concepts

편미분방정식(partial differential equation, PDE)

– Ex. 1 • 주요 2계 선형 편미분방정식

06

5

,4

03

2

1

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

22

2

22

2

2

z

u

y

u

x

ux

uc

t

u

yxfy

u

x

u

y

u

x

ux

uc

t

ux

uc

t

u1차원 파동 방정식

1차원 열전도 방정식

2차원 라플라스 방정식

2차원 푸아송 방정식

2차원 파동 방정식

3차원 라플라스 방정식

School of Mechanical Engineering Engineering Mathematics II

12.1 Basic Concepts

편미분방정식(partial differential equation, PDE) • 해(solution): 편미분방정식에 나타나는 모든 편도함수를 가지고

있는 함수로 모든 점에서 주어진 방정식을 만족하는 함수

– 일반적으로 편미분방정식의 해의 전체 집합은 광범위함

– 편미분방정식에 물리적인 조건을 나타내는 추가적인 정보를 사용함으로써 유일한 해를 구함

→ 추가적인 조건: 경계조건(boundary conditions), 초기조건(initial conditions)

• 중첩에 관한 기본정리

– u1, u2가 어떤 영역 R에서 제차 선형 편미분방정식의 해일 경우,

u = c1u1 + c2u2 도 역시 같은 영역 R에서 그 편미분방정식의 해가 됨

(c1, c2: 임의의 상수)

,ln,coshsin,cos,0 2222solutions

2

2

2

2

yxuyxuyeuyxuy

u

x

u x

Page 3: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.1 Basic Concepts

편미분방정식(partial differential equation, PDE)

– Ex. 2

– Ex. 3

xx

xx

xx

eyBeyAyxuu

BeAeuuuxuyxuu

ux

uuu

,

0'',

0 02

2

dxxcxfygexfyxuu

excpxcypp

pppuupu

x

u

yx

uuu

y

yy

yxxyx

xxy

with ,

~ln1

2

School of Mechanical Engineering Engineering Mathematics II

12.2 Modeling: Vibrating String, Wave Equation

진동하는 현의 파동방정식(wave equation) 유도

– 탄성현(elastic string)에서 현의 미소 횡진동(transverse vibration)을 모델화 • 가정

– 현을 x축 상에 놓고, 길이 L 만큼 늘이고 양끝을 x=0와 x=L로 고정

– t=0 에서 현을 잡아 당긴 후 놓음으로써 진동 시작

• 이와 같은 경우에 현의 진동 모델

– 임의의 시점 t>0, 임의의 점 x에서 현의 변위를 결정

• 주요 물리적 가정 도입

Page 4: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.2 Modeling: Vibrating String, Wave Equation

진동하는 현의 파동방정식(wave equation) 유도 (현의 미소 부분에 작용하는 힘(장력)을 고려)

Tc

x

uc

t

u

uTx

uu

Tx

u

x

u

x

uTx

u

x

u

xxu

Tx

u

x

u

x

u

x

u

xuT

xuTT

T

T

T

uxTT

TTTTT

tttt

xxxx

tt

xxx

tt

xxxxxx

tttt

tt

2

2

22

2

2

2

2

0

1

1

2

2

21

2121

1lim

1tan&tan

tantancos

sin

cos

sin

sinsin

constantcoscos0coscos

School of Mechanical Engineering Engineering Mathematics II

12.3 Solution by Separating Variables. Use of Fourier Series

변수분리법과 푸리에 급수

– 문제 해결 방법 • 변수분리법(method of separating variables) 또는 곱의 방법

(product method)

– u(x, t) = F(x) G(t) 로 가정하여 두 개의 상미분방정식을 구함

• 경계조건을 만족하는 상미분방정식의 해를 구함

• 푸리에 급수를 이용하여 해를 구함

2

22

2

2

x

uc

t

u

Lxxgxuxfxu

ttLutu

t

0for 0, & 0,

allfor 0,,0

(편미분방정식)

(경계 조건)

(초기 조건)

Page 5: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.3 Solution by Separating Variables. Use of Fourier Series

변수분리법과 푸리에 급수

– 1. 변수분리법

– 2. 상미분방정식: 경계조건 도입

0

0''

constant''1

''

,

2

2

2

2

22

2

2

tkGctG

xkFxF

kxF

xF

tG

tG

ctGxFctGxF

tGxFtxux

uc

t

u

00 with 0''

00

0,&00,0

0,,0

LFFxkFxF

LFF

tGLFtLutGFtu

tLutu

School of Mechanical Engineering Engineering Mathematics II

12.3 Solution by Separating Variables. Use of Fourier Series

변수분리법과 푸리에 급수

,3,2,1 sin

integer: 0sin0sin&00

sincos0''0:3

0,&0

00&00

0''0:2

0,&0

0&0010

00

0''0:1

00 with 0''

22

2

22

nxL

nxFxF

nL

nppLpLBLFAF

pxBpxAxFxFpxFpk

txuxF

BAALLFBF

BAxxFxFk

txuxF

BAeAeeABeAeLF

ABBAF

BeAexFxFpxFpk

LFFxkFxF

n

pLpLpLpLpL

pxpx

(trivial solution)

(trivial solution)

Page 6: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.3 Solution by Separating Variables. Use of Fourier Series

변수분리법과 푸리에 급수

L

cnnx

L

ntBtBtGxFtxu

tBtBtGtG

tGtG

L

cncpcpkc

L

npktkGctG

nnnnnnnn

nnnnn

n

nn

&,3,2,1 sinsincos,

sincos

0

0

*

*

2

222

2

22

Lxxgxuxfxu

ttLutu

x

uc

t

u

t

0for 0, & 0,

allfor 0,,0

2

22

2

2

L

cnn

xL

ntBtBtxu

n

nnnnn

&,3,2,1

sinsincos, *

School of Mechanical Engineering Engineering Mathematics II

12.3 Solution by Separating Variables. Use of Fourier Series

변수분리법과 푸리에 급수 • 고유함수(eigenfunction) 또는 특성함수(characteristic function)

• 고유값(eigenvalue) 또는 특성값(characteristic value)

• 스펙트럼(spectrum)

• n차 정규진동(n-th normal mode): un 으로 표현

– 단위 시간 당 진동수 를 가지는 조화운동(harmonic motion)

• 마디점(node): 현에서 움직이지 않는 점

txun ,

Lcnn /

,,, 321 n

L

cnn

2

n

Ln

n

L

n

Lxx

L

n 1,,

2,0sin

Page 7: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.3 Solution by Separating Variables. Use of Fourier Series

변수분리법과 푸리에 급수

– 3. 푸리에 급수

LL

n

n

L

nn

n

nnt

n

nnnnnnt

L

n

n

n

n

nnnn

n

n

nnnnnn

xdxL

nxg

cnxdx

L

nxg

LB

xdxL

nxg

LBxgx

L

nBxu

xL

ntBtBtxu

xdxL

nxf

LBxfx

L

nBxu

xL

ntBtBtxutxu

L

cnnx

L

ntBtBtxu

00

*

0

*

1

*

1

*

01

1

*

1

*

sin2

sin2

sin2

sin0,

sincossin,

sin2

sin0,

sinsincos,,

&,3,2,1 sinsincos,

School of Mechanical Engineering Engineering Mathematics II

12.3 Solution by Separating Variables. Use of Fourier Series

변수분리법과 푸리에 급수

– 1차원 파동방정식의 해 • 초기속도 g(x)=0 인 경우,

ctxfctxfctxL

nctx

L

nB

xL

nt

L

cnBx

L

ntBtxu

xdxL

nxg

LBxdx

L

nxf

LB

L

cnnx

L

ntBtBtxutxu

n

n

n

n

n

nn

L

n

n

L

n

n

n

nnnn

n

n

**2

1sinsin

2

1

sincossincos,

0sin2

&sin2

&,3,2,1 sinsincos,,

1

11

0

*

0

1

*

1

f*(x): 0~L 사이의 함수 f(x)를 전주기로 기함수 확장 f(x-ct): f(x)를 x축 방향으로 ct 평행이동

Page 8: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.3 Solution by Separating Variables. Use of Fourier Series

변수분리법과 푸리에 급수

– Ex. 1 초기변위가 삼각형인 경우

tL

cx

Lt

L

cx

L

k

txu

LxL

xLL

k

Lxx

L

k

xf

3cos

3sin

3

1cossin

1

18

,

2

2

20

2

222

School of Mechanical Engineering Engineering Mathematics II

12.4 D’Alembert Solution of the Wave Equation. Characteristics

파동방정식의 d’Alembert 해

2

22

2

2

x

uc

t

u

(파동방정식)

ctxctxtxu

uvuudvvhuvhv

u

v

u

wwv

u

wv

uuuuucucucucucu

ucucucwcuvcuwcuvcucucuu

cucuwuvuu

uuuwuvuwuvuuuu

uuwuvuu

wvutxuctxwctxv

vwwwvwvvwwvwvvxxtt

wwvwvvtwwtwvtvwtvvtwvtt

wvtwtvt

wwvwvvxwwxwvxvwxvvxwvxx

wvxwxvx

,

0

022

2

2

,,&

2

222222

222

d‘Alembert 해

Page 9: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.4 D’Alembert Solution of the Wave Equation. Characteristics

파동방정식의 d’Alembert 해: 초기조건

ctxfctxftxuxg

dssgc

ctxfctxftxu

dssgc

ctxfdssgc

ctxfctxctxtxu

xkdssgc

xfxxkdssgc

xfx

xxxkdssgc

xkxx

dssgc

dxxxxgxcxcxu

xfxxxu

ctxcctxctxuctxctxtxu

ctx

ctx

ctx

x

ctx

x

x

x

x

x

x

x

x

x

x

xt

t

2

1

2

1,,0with

2

1

2

1

2

1,

2

1

2

1

2

1

2

1,

2

1

2

1

2

1&

2

1

2

1

2

1

1

1''''0,

0,

'',&,

00

00

0

00

00

0000

Lxxgxuxfxu t 0for 0, & 0, (초기 조건)

School of Mechanical Engineering Engineering Mathematics II

12.4 D’Alembert Solution of the Wave Equation. Characteristics

특성의 방법(method of characteristics) (D’Alembert 해의 개념은 특성의 방법의 특별한 예)

– 준선형(quasilinear)

• 정규형으로 변환

yxyyxyxx uuuyxFCuBuAu ,,,,2

형태 정의 조건 12.1 절의 예제

쌍곡선 AC - B2 < 0 파동방정식

포물선 AC - B2 = 0 열전도방정식

타원 AC - B2 > 0 라플라스방정식

형태 새로운 변수 정규형

쌍곡선 v = Φ, w = Ψ uvw = F1

포물선 v = x, w = Φ = Ψ uww = F2

타원 v = (Φ + Ψ ) / 2 w = (Φ - Ψ ) / 2i

uvv = uww = F3

dxdyyCByAy /' 0'2'2 특성 방정식 : 해(Φ(x, y)=상수, Ψ (x, y)=상수) → 특성

Page 10: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.4 D’Alembert Solution of the Wave Equation. Characteristics

특성의 방법(method of characteristics)

– Ex. 1

ctxfctxfuFu

xctxyyxwxctxyyxv

xyyxxyyx

yyyyCByAy

uuucucuyuucty

ucu

vw

yyxxyyttytyt

xxtt

211

22

2

2

0

,&,

constant,&constant,

1'01'1'01'0'2'

0&

0

School of Mechanical Engineering Engineering Mathematics II

12.5 Heat Equation: Solution by Fourier Series

열전도방정식: 확산방정식

• 1차원 열전도방정식

• 열전도방정식에서 두 개의 상미분방정식 유도: 변수분리법

pCkKTu

Kcuc

t

u

,, 222

온도

열 전도도(thermal conductivity)

비열(heat capacity) 열확산 계수

Lxxfxu

ttLutu

x

uc

t

u

0 0,

allfor 0,,0

2

22

(경계조건)

(초기조건)

0

0''

'''',

22

2

2

2

2

2

22

tGpctG

xFpxF

pxF

xF

tGc

tGtGxFctGxF

x

uc

t

utGxFtxu

Page 11: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.5 Heat Equation: Solution by Fourier Series

열전도방정식: 확산방정식 • 경계조건 도입

,3,2,1 sin,

with 00

,3,2,1 sin

integer: 0sin0

00000

sincos

0&00 with 0''

0&000&000,,0

2

2

222

2

neL

xnBtxu

eBtGtG

L

cncptGtGtGpctG

nxL

nxFxF

nL

npnpLpLBLFLF

AAFF

pxBpxAxF

LFFxFpxF

LFFtGLFtGFtLutu

t

nn

t

nn

nn

n

n

n

School of Mechanical Engineering Engineering Mathematics II

12.5 Heat Equation: Solution by Fourier Series

열전도방정식: 확산방정식 • 푸리에 급수 적용

L

n

n

n

n

n

t

n

n

n

dxL

xnxf

LB

xfL

xnBxuxfxu

L

cne

L

xnBtxutxu n

0

1

11

sin2

sin0,0,

sin,,2

Page 12: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.5 Heat Equation: Solution by Fourier Series

열전도방정식: 확산방정식

– Ex. 1 (사인함수 형태의 초기 온도) • 측면이 절연된 구리막대: 길이 80cm, 초기온도 100sin(πx/80)C,

양끝온도 0C

• 구리: 밀도 8.92g/cm3, 비열 0.092cal/(g C), 열전도도 0.95cal/(cm sec C)

• 최고 온도가 50C로 떨어지는데 걸리는 시간?

min5.6sec38850100

80sin100sin,,

sec001785.080

158.1sec/cm158.192.8092.0

95.0

0,10080

sin10080

sinsin0,

001785.0

001785.0

11

1

2

22

2

1

22

321

11

21

te

ex

eL

xBtxutxu

L

cKc

BBBx

xfxn

BL

xnBxu

t

tt

n

n

n

n

School of Mechanical Engineering Engineering Mathematics II

12.5 Heat Equation: Solution by Fourier Series

열전도방정식: 확산방정식

– Ex. 4 (양끝이 단열된 막대)

Lxxfxu

ttLutu

x

uc

t

u

xx

0 0,

allfor 0,,0

2

22

(경계조건)

(초기조건)

L

n

L

n

n

n

t

n

n

nn

t

nnnn

nn

xxx

dxL

xnxf

LAdxxf

LAxf

L

xnAxu

eL

xnAtxutxu

L

cne

L

xnAtGxFtxu

xL

nxFxF

L

npppLApLFBBpF

pxBppxApxFpxBpxAxF

LFFtGLFtLutGFtutGxFtxu

tGpctGxFpxFtGxFtxu

nn

000

0

00

222

cos2

,1

cos0,:

cos,, cos,

cos0sin',000'

cossin'sincos:

0'0'0',&00',0',

0 & 0'',

22

Page 13: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.5 Heat Equation: Solution by Fourier Series

정상상태 2차원 열전도: 라플라스 방정식

– 경계값 문제(boundary value problem, BVP) • Dirichlet 문제: 경계, C 위에서 u의 값이 주어지는 경우

• Neumann 문제: C 위에서 법선 도함수(un)의 값이 주어지는 경우

• Robin 문제(혼합 경계값 문제): C의 한 부분에서는 u의 값이 주어지고, C의 나머지 부분에서는 un의 값이 주어지는 경우

0

0

2

2

2

2

2

2

2

2

22

uy

u

x

ut

u

y

u

x

uc

t

u(2차원 열전도방정식)

(라플라스 방정식)

정상상태(steady state) : 시간에 무관

n

uun

(법선 도함수)

School of Mechanical Engineering Engineering Mathematics II

12.5 Heat Equation: Solution by Fourier Series

정상상태 2차원 열전도: 라플라스 방정식

– 직사각형 영역에서의 Dirichlet 문제

ya

nAeeAyGABBAG

eBeAyGBeAeyGkGdy

GdG

xa

nxF

a

nk

a

nkakBaFAF

xkBxkAxFkFdx

FdF

kkdy

Gd

Gdx

Fd

Fdy

GdFG

dx

Fd

yGxFyxuy

u

x

uu

n

ya

ny

a

n

nnnnnnn

ya

n

n

ya

n

nn

ykyk

n

sinh200

0problem

sin0sin&00

sincos0problem

0 11

,0

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

Page 14: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.5 Heat Equation: Solution by Fourier Series

정상상태 2차원 열전도: 라플라스 방정식

– 직사각형 영역에서의 Dirichlet 문제

a

n

a

nn

n

n

n

n

n

n

nnnn

dxa

xnxf

a

bna

Adxa

xnxf

aa

bnAb

xfa

bn

a

xnAbxuby

a

yn

a

xnAyxuyxu

a

yn

a

xnAyGxFyxu

0

*

0

*

1

*

1

*

1

*

sin

sinh

2sin

2sinh

sinhsin,at

sinhsin,,

sinhsin,

School of Mechanical Engineering Engineering Mathematics II

12.6 Heat Equation: Solution by Fourier Integrals and Transforms

비정상 열전도방정식

– 무한히 뻗어 나가는 막대에서의 열전도방정식

xxfxu

x

uc

t

u

0,

2

22

(초기조건)

00

222

22

22

22

sincos;,,

, that assume;function periodic

sincos;,

&sincos:

0 & 0'',

dpepxBpxAdpptxutxu

pBBpAAxf

epxBpxAtGxFptxu

etGpxBpxAxF

tGpctGxFpxFtGxFtxu

tpc

tpc

tpc

wvdvvfwBwvdvvfwA

dwwxwBwxwAxf

sin1

&cos1

sincos0

: 해 u를 푸리에 적분 형태로 표현

Page 15: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.6 Heat Equation: Solution by Fourier Integrals and Transforms

비정상 열전도방정식

– 무한히 뻗어 나가는 막대에서의 열전도방정식

dvdppvpxevfdpedvpvpxvftxu

dpdvpvpxvfdpdvpxpvpxpvvf

dppxpvdvvfpxpvdvvfxu

pvdvvfpBpvdvvfpA

xfdppxBpxAxu

dpepxBpxAdpptxutxu

tpctpc

tpc

00

00

0

0

00

cos1

cos1

,

cos1

sinsincoscos1

sinsin1

coscos1

0,

sin1

&cos1

sincos0,:

sincos;,,

2222

22

School of Mechanical Engineering Engineering Mathematics II

12.6 Heat Equation: Solution by Fourier Integrals and Transforms

비정상 열전도방정식

– 무한히 뻗어 나가는 막대에서의 열전도방정식

dzetczxftxu

tc

xvzdv

tc

vxvf

tctxu

tc

vx

tce

tcbsdse

tcdppvpxe

tc

vx

s

vxpbvxpbstcdsdptcspstpc

ebsdsedvdppvpxevftxu

z

bstpc

bstpc

2

2222

2222

21

,or

2

4exp

2

1,

4exp

22

12cos

1cos

222&//

22cos cos

1,

2

2

2

2

00

222

00

Page 16: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.6 Heat Equation: Solution by Fourier Integrals and Transforms

비정상 열전도방정식

– Ex. 1 무한히 긴 막대의 온도

tcx

tcx

z dzeU

txu

dvtc

vx

tc

Utxu

dvtc

vxvf

tctxu

2/1

2/1

0

1

1 2

2

0

2

2

2

,or

4exp

2,

4exp

2

1,

10

1constant0

x

xUxf

(U0=100C; c2=1cm2/sec)

School of Mechanical Engineering Engineering Mathematics II

12.6 Heat Equation: Solution by Fourier Integrals and Transforms

비정상 열전도방정식: 푸리에 변환의 이용

– Ex. 2 무한히 긴 막대의 온도: 푸리에 변환 • 편미분방정식 → (푸리에 변환) → 상미분방정식

ffdwewfxf

ffdxexfwf

-iwx

iwx

ˆˆ

2

1

ˆ

2

1F

F

dvdweevfdweedvevftxu

dvevfwfdweewftxu

ewftwuwfxfwCwuewCtwuuwct

u

t

udxue

tdxeuu

uwcuwcucu

uuucux

uc

t

u

wvwxitwciwxtwcivw

ivwiwxtwc

twctwc

iwxiwx

tt

xxxxt

xxt

2222

22

2222

2

1

2

1

2

1,

2

1ˆ & ˆ

2

1,

ˆ,ˆˆ0,ˆ:,ˆˆˆ

ˆ

2

1

2

1

ˆ

ˆ

22

22222

2

2

22

F

F

FFF

F

Page 17: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.6 Heat Equation: Solution by Fourier Integrals and Transforms

비정상 열전도방정식: 푸리에 변환의 이용

– Ex. 3 무한히 긴 막대의 온도: 합성곱

dvdwwvwxevftxu

dwwvwxedwwvwxiwvwxedwee

twc

twctwcwvwxitwc

0cos

1,

cossincos

22

222222

dwewgwfxgf

dppgpxfdppxgpfxgf

iwxˆˆ*

*

wgtcetcetc

aa

tcea

e

dppxgpfxgf

ewgdwewgwfdweewf

dweewftxu

twctcxawax

twciwxiwxtwc

iwxtwc

ˆ2224

1

4

1:

2

1

*

2

1ˆ with ˆˆ

2

ˆ

2

1,

224/

2

24/ 222222

2222

22

FF

School of Mechanical Engineering Engineering Mathematics II

12.6 Heat Equation: Solution by Fourier Integrals and Transforms

비정상 열전도방정식: 푸리에 변환의 이용

dptc

pxpf

tc

dpetc

pfdppxgpftxu

xgetc

etc

wg

wgtce

tcpx

tcxtcx

tcx

2

2

4/

2

4/

2

4/

2

24/

4exp

2

1

22

1,

22

1

22

ˆ22

22

2222

22

FFF

F

Page 18: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.7 Modeling: Membrane, Two-Dimensional Wave Equation

탄성 박막

– 2차원 파동방정식 • 적절한 물리적 가정 도입을 통한 힘의 평형 방정식

yxuyyxuxT

yxuyxxuyTyT

yTyTyT

yTyTyTyT

xTxTxTxT

yy

xx

,,&

,,tantan

sinsinsinsin

0coscos

0coscos][

1cos&1cos0&0

21

21

School of Mechanical Engineering Engineering Mathematics II

12.7 Modeling: Membrane, Two-Dimensional Wave Equation

탄성 박막

– 2차원 파동방정식

uct

u

Tc

y

u

x

uc

t

u

yx

y

yxuyyxu

x

yxuyxxuT

t

u

yxuyyxuA

xTyxuyxxu

A

yT

t

u

yxuyyxuxTyxuyxxuyTt

uA

yyxx

yyxx

yyxx

22

2

2

2

2

2

2

22

2

2

2121

2

2

21212

2

21212

2

with

0&0 as

,,,,

,,,,

,,,,

]law second sNewton'[

Page 19: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.8 Rectangular Membrane. Double Fourier Series

직사각형 박막: 2차원 파동방정식

– 문제 해결 방법 • 변수분리법(method of separating variables)

– u(x, y, t) = F(x, y) G(t) 로 가정한 뒤, F(x, y) = H(x) Q(y) 로 하여 세 개의 상미분방정식을 구함

• 경계조건을 만족하는 상미분방정식의 해를 구함

• 이중 푸리에 급수 형태로 해를 구함

2

2

2

22

2

2

y

u

x

uc

t

u

yxgyxuyxfyxu

u

t ,0,, & ,0,,

boundary on the 0

(편미분방정식)

(경계 조건)

(초기 조건)

School of Mechanical Engineering Engineering Mathematics II

12.8 Rectangular Membrane. Double Fourier Series

직사각형 박막: 2차원 파동방정식

– 1. 변수분리법

2222

2

2

2

2

2

22

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

22

2

2

with 0

0

const11

0:,

0

0const

,,,

kpQpdy

Qd

Hkdx

Hd

kQdy

Qd

Qdx

Hd

H

HQdy

QdHQ

dx

HdHQ

dy

QdHQ

dx

HdyQxHyxF

cGG

FFF

F

FF

Gc

GGFGFcGF

tGyxFtyxuy

u

x

uc

t

u

yyxxyyxx

yyxx

: 2차원 Helmholtz 방정식

0

0

0

2

2

2

2

2

2

2

2

2

Gdt

Gd

Qpdy

Qd

Hkdx

Hd

Page 20: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.8 Rectangular Membrane. Double Fourier Series

직사각형 박막: 2차원 파동방정식

– 2. 경계조건

b

yn

a

xmtBtBtyxu

tBtBtG

b

n

a

mc

b

n

a

mcpkccG

dt

Gd

b

yn

a

xmyQxHyxF

yb

nyQ

b

npbQQ

xa

mxH

a

mkaHH

pyDpyCxQ

kxBkxAxH

Qpdy

Qd

Hkdx

Hd

mnmnmnmnmn

mnmnmnmnmn

mn

nmmn

n

m

sinsinsincos,,

sincos

0

sinsin,

sin,00

sin,00

sincos

sincos

0

0

*

*

2222

222

2

2

2

2

2

2

2

2

(boundary conditions)

School of Mechanical Engineering Engineering Mathematics II

12.8 Rectangular Membrane. Double Fourier Series

직사각형 박막: 2차원 파동방정식

– 3. 이중 푸리에 급수

b ab

mmn

a

m

m

m

b

mmn

n

mnm

m

m

n

mnm

m n

mn

m n

mnmnmnmn

m n

mn

dxdyb

yn

a

xnyxf

abdy

b

ynyK

aB

dxa

xnyxf

byKyxf

a

xmyK

dyb

ynyK

aB

b

ynByK

yxfa

xmyK

b

ynByK

yxfb

yn

a

xmByxu

b

yn

a

xmtBtBtyxutyxu

0 00

01

01

11

1 1

1 1

*

1 1

sinsin,4

sin2

sin,2

,sin

sin2

sin

,sinsin

,sinsin0,,sIC'

sinsinsincos,,,,

: 이중 푸리에 급수

Page 21: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.8 Rectangular Membrane. Double Fourier Series

직사각형 박막: 2차원 파동방정식

– 3. 이중 푸리에 급수

b a

mn

mn

m n

mnmn

t

m n

mnmnmnmnmnmn

m n

mnmnmnmn

dxdyb

yn

a

xnyxg

abB

yxgb

yn

a

xmB

t

u

b

yn

a

xmtBtB

t

u

b

yn

a

xmtBtBtyxu

0 0

*

1 1

*

0

1 1

*

1 1

*

sinsin,4

,sinsin

sinsincossin

sinsinsincos,,

School of Mechanical Engineering Engineering Mathematics II

12.8 Rectangular Membrane. Double Fourier Series

직사각형 박막: 2차원 파동방정식

– Ex. 2 • 장력 12.5lb/ft, 밀도 2.5slugs/ft2

• 변의 길이: a=4ft, b=2ft

• 초기변위 f(x, y)=0.1(4x-x2)(2y-y2) ft

33633

33

2

0

24

0

2

2

0

4

0

22

0 0

*222

426050.0

20

32256

odd :& 32256

20

1

2sin2

4sin4

20

1

2sin

4sin241.0

24

4sinsin,

4

00,&/secft5

nmnmB

nmnm

dyyn

yydxxm

xx

dydxynxm

yyxxdydxb

yn

a

xmyxf

abB

ByxgT

c

mn

b a

mn

mn

Page 22: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.8 Rectangular Membrane. Double Fourier Series

직사각형 박막: 2차원 파동방정식

1,

22

33

1,

33633

22

2222

1,1 1

*

2sin

4sin4

4

5cos

1426050.0

sinsincos,,

426050.0

20

32256

44

5

245

sinsincossinsinsincos,,

nm odd

nm odd

mnmn

mn

mn

nm odd

mnmn

m n

mnmnmnmn

ynxmtnm

nm

b

yn

a

xmtBtyxu

nmnmB

nmnm

b

n

a

mc

b

yn

a

xmtB

b

yn

a

xmtBtBtyxu

School of Mechanical Engineering Engineering Mathematics II

12.9 Laplacian in Polar Coordinates. Circular Membrane. Fourier-Bessel Series

극좌표(polar coordinate)에서의 라플라스 연산자

3

2

3

22

2

211

22

22

3

2

3

22

2

211

22

22

22

22

122

11

2

2

11

2

2

2

2

tan,sin,cos

r

x

r

yr

r

y

r

y

rrryryr

yr

r

y

yx

yyx

yr

r

y

r

xr

r

x

r

x

rrrxrxr

xr

r

x

yx

xyx

xr

uurururu

uururururuuururuu

uruu

uurururu

uururururuuururuu

uruu

x

yyxrryrx

yyyy

xxxx

yyyyyryyryrr

yyyyyryyryyryrryyyyyyryyryy

yyry

xxxxxrxxrxrr

xxxxxrxxrxxrxrrxxxxxxrxxrxx

xxrx

Page 23: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.9 Laplacian in Polar Coordinates. Circular Membrane. Fourier-Bessel Series

극좌표(polar coordinate)에서의 라플라스 연산자

2

2

22

2

2

2

2

22

2

22222

43

32

43

32

2

21

2

1

22

22

2

11

3

2

3

2

2222

11

11

2

222&

222

cos

cos

1tan

cos

cos

1tantantan

,,,

2&2

u

rr

u

rr

u

y

u

x

uu

ur

ur

u

uurrurrurruuuu

r

xy

r

y

r

xrrxxr

yr

xy

r

x

r

yrryyr

x

r

x

xx

yyx

yy

r

y

x

yyx

xyx

xxx

y

x

y

r

xr

r

yr

r

yr

r

xr

uurururuuuurururuu

rrr

yyxxyxyyxxryyxxryxrryyxx

yyyxxx

y

x

yyyxxx

yyyyyryyryrryyxxxxxrxxrxrrxx

School of Mechanical Engineering Engineering Mathematics II

12.9 Laplacian in Polar Coordinates. Circular Membrane. Fourier-Bessel Series

원형 박막(circular membrane)

– 1. 변수분리법: Bessel 방정식

Tc

u

rr

u

rr

ucuc

t

u 2

2

2

22

2222

2

2

11

rgru

rfru

ttRu

r

u

rr

uc

t

u

t

0,

0,

0 allfor 0,

12

22

2

2(극좌표에서의 2차원 파동방정식)

truu ,

ckGG

WkWr

W

kWr

WWGc

GGW

rGWcGWtGrWtru

0

0'1

''

'1

''1

'1

'',

2

2

2

2

2

Page 24: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.9 Laplacian in Polar Coordinates. Circular Membrane. Fourier-Bessel Series

원형 박막(circular membrane)

01

01

01

'','

0'1

''

2

2

2

22

2

22

2

22

2

Wds

dW

sds

WdW

ds

dW

krds

WdWk

ds

dWk

rds

Wdk

ds

Wdk

dr

ds

ds

dWk

ds

d

ds

dWk

dr

dW

ds

dWk

dr

ds

ds

dW

dr

dWW

krsWkWr

W

(Bessel 방정식: ν=0)

012

12

1

022

2

0

02

2

222

!1!2

1

!2

1

!!2

1

0'''

mm

mm

mm

mm

mnm

mm

n

n

mm

xxJ

m

xxJ

mnm

xxxJ

yxxyyx xJ0

xJ1

n차 제1종 Bessel 함수 (Bessel function of the first kind of order n)

School of Mechanical Engineering Engineering Mathematics II

12.9 Laplacian in Polar Coordinates. Circular Membrane. Fourier-Bessel Series

원형 박막(circular membrane)

– 2. 경계조건

R

cr

RJtBtAtGrWtru

tBtAtG

R

cckckGG

rR

JrkJrW

RkRkkRJRWkrJrW

rYkrJkrYkrJrWsYsJsWWds

dW

sds

Wd

mm

mmmmmmmm

mmmmm

mmm

mmm

mmmm

sincos,

sincos

with 0

0

0at 01

0

2

00

00

0000002

2

Page 25: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.9 Laplacian in Polar Coordinates. Circular Membrane. Fourier-Bessel Series

원형 박막(circular membrane)

School of Mechanical Engineering Engineering Mathematics II

12.9 Laplacian in Polar Coordinates. Circular Membrane. Fourier-Bessel Series

원형 박막(circular membrane)

– 3. Fourier-Bessel 급수

Rm

m

m

m

mm

m

mmmmm

m

m

mm

mmmmmmmm

drrR

JrrfJR

A

rfrR

JAru

rR

JtBtAtrutru

R

cr

RJtBtAtGrWtru

002

1

2

1

0

1

0

1

0

2

0,

sincos,,

sincos,

(Fourier-Bessel 급수)

Page 26: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.10 Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential

라플라스 방정식

• 퍼텐셜 이론(potential theory): 라플라스 방정식의 해에 관한 이론

• 조화함수(harmonic function): 연속인 2계 편도함수를 가지는 라플라스 방정식의 해

– 중력, 전자기학, 정상상태의 열 및 유체 흐름 등의 표현

– 원통좌표(cylindrical coordinate)

02 zzyyxx uuuu

라플라스 연산자(Laplacian)

zzryrx

z

uu

rr

u

rr

uuuuuu zr

zzyyxx

,sin,cos

112

2

2

2

22

22,,2

School of Mechanical Engineering Engineering Mathematics II

12.10 Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential

라플라스 방정식

– 구좌표(spherical coordinate)

2

2

2

2

2

2

2

2

2222

2

22

22,,

2

sin

1sin

sin

11or

sin

1cot12

cos,sinsin,sincos

uu

r

ur

rru

u

r

u

r

u

rr

u

rr

uu

rzryrx

uuuu

r

zzyyxx

Page 27: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.10 Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential

라플라스 방정식

– 구좌표에서의 경계값 문제(θ와 무관)

0,lim

,

0sinsin

11 2

2

2

Ru

fRu

u

r

ur

rru

r

0sinsin

1

02

sinsin

11

0sinsin

1,

2

22

2

2

kHd

dH

d

d

kGdr

dGr

dr

Gdr

kd

dH

d

d

Hdr

dGr

dr

d

G

HGH

r

Gr

rHrGru

School of Mechanical Engineering Engineering Mathematics II

12.10 Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential

라플라스 방정식

– 구좌표에서의 경계값 문제(θ와 무관)

011sinsin

1sin,cos0sinsin

12

1&1,

0110121

0121121

012

1021

2

22

1

*

2

122

2

22

2

22

Hnndw

dHw

dw

d

dw

dH

d

dH

dw

d

d

dw

dw

d

d

d

wwkHd

dH

d

d

rrGrrGnna

nanannaannaaa

rnnarraarnnrarraarrG

Gnndr

dGr

dr

Gdr

nnkkGdr

dGr

dr

Gdr

nn

n

n

aaaaaaa

: 오일러-코시 방정식

Page 28: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.10 Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential

라플라스 방정식

– 구좌표에서의 경계값 문제(θ와 무관)

cos1

,

cos,,

cos

0121011

1

*

2

222

nnnn

n

n

nn

nn

Pr

Bru

PrAruwHrGru

PwPH

Hnndw

dHw

dw

HdwHnn

dw

dHw

dw

d

: Legendre 방정식 : Legendre 다항식

integer:

2

1or

2

!2!!2

!221

011

0

2

2

nnM

xmnmnm

mnxP

ynnydx

dx

dx

d

M

m

mn

n

m

n

330358

1

352

1

132

1

1

24

4

3

3

2

2

1

0

xxxP

xxxP

xxP

xxP

xP

School of Mechanical Engineering Engineering Mathematics II

12.10 Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential

라플라스 방정식

– 구좌표에서의 경계값 문제(θ와 무관)

0

1

01

0

*

0

1

10

00

*

1

*

sincos2

12

cos,,2

sincos2

12

~

2

12cos,

cos,,1

exterior0 as :cos1

,

interior as :cos,

dPfRn

B

RrPr

Bruru

dPfR

nA

dwwPwfn

RAfPRARu

RrPrAruru

ruPr

Bru

ruPrAru

n

n

n

n

nn

n

n

n

nnn

n

n

n

n

n

n

n

n

n

n

n

n

n

nnnnn

nn

n

nn

: Fourier-Legendre 급수

Page 29: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.10 Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential

라플라스 방정식

– Ex. 1 구형 축전기 • 반지름 1ft, 윗쪽 반구 110V, 아래쪽 반구 접지

M

mn

m

M

mn

m

M

m

mn

n

m

M

m

mn

n

m

nn

nnnn

mnmnm

mnn

mnmnmnm

mnn

dwwmnmnm

mnn

xmnmnm

mnxPdwwP

n

wdPn

dPfR

nA

xf

0

0

0

1

0

2

0

21

0

2/

00

!12!!2

!2211255

12

1

!2!!2

!2211255

!2!!2

!2211255

!2!!2

!221110

2

12

cossincos1102

12sincos

2

12

2/0

2/0110conditionsboundary

School of Mechanical Engineering Engineering Mathematics II

12.10 Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential

라플라스 방정식

– Ex. 1 구형 축전기

cos8

385cos

2

16555cos,

1

cos8

385cos

2

16555cos,

,8

385,0,

2

165,55

!12!!2

!2211255

34120

1

3

3

1

0

3210

0

Pr

Prr

Pr

Bru

BAR

PrrPPrAru

AAAA

mnmnm

mnnA

n

nn

n

nn

n

n

n

n

M

mn

m

n

Page 30: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.11 Solution of PDEs by Laplace Transforms

라플라스 변환에 의한 편미분방정식의 해

– 두 변수 중 하나에 관하여 라플라스 변환을 함 → 변환식에 대한 상미분방정식을 얻음(경계조건 및 초기조건은 변환된 방정식에 통합)

– 상미분방정식을 풀어 미지함수의 변환식을 구함

– 구한 변환식에 라플라스 역변환을 적용하여 주어진 문제의 해를 얻음

0

dttfefsF stL

iT

iT

st

TdssFe

iFtf

lim

2

11L

School of Mechanical Engineering Engineering Mathematics II

12.11 Solution of PDEs by Laplace Transforms

라플라스 변환에 의한 편미분방정식의 해

– Ex. 1 반무한 현 □ 초기에 현은 x=0에서 ∞까지 x축 상에 정지해 있다. (반무한 현) □ 시간 t>0에서 현의 왼쪽 끝은 다음과 같은 방식으로 운동한다. □ 또한 t≥0에 대하여,

otherwise0

20sin,0

tttftw

0,lim

txwx

00,&00,

0 0,lim&,0

2

2

22

2

2

xwxw

ttxwtftw

Tc

x

wc

t

w

t

x

(편미분방정식)

(경계 조건)

(초기 조건)

Page 31: Engineering Mathematics IIelearning.kocw.net/contents4/document/lec/2013/ChonN… ·  · 2013-07-19편미분방정식(partial differential equation, PDE) –Ex. 1 •주요 2계

School of Mechanical Engineering Engineering Mathematics II

12.11 Solution of PDEs by Laplace Transforms

라플라스 변환에 의한 편미분방정식의 해

otherwise0

2sin,,

,,0

00,00limlim,lim

,0,0

,0,,

0,0,

1

/

00

//

2

2

2

2

2

222

2

2

02

2

0 2

2

2

2

2

222

2

2

c

xt

c

x

c

xt

c

xtu

c

xtfsxWtxw

esFsxWsFsBsW

sAscdtwewdtesxW

sFtftwsW

esBesAsxWWc

s

x

W

x

WcWstxwsxW

wx

wdtex

dtx

we

x

w

x

wcxwxswws

t

w

csx

x

stst

xx

csxcsx

stst

t

L

LL

L

LL

LLL