54
Evolution of Computing Evolution of Computing Tools Tools 計計計計計計計 計計計計計計計 Sai-Ping Li 計計計 Institute of Physics, Academi a Sinica December 17, 2005

Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Embed Size (px)

Citation preview

Page 1: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Evolution of Computing ToolsEvolution of Computing Tools計算工具的演化計算工具的演化

Sai-Ping Li 李世炳Institute of Physics, Academia Sinica

December 17, 2005

Page 2: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005
Page 3: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Stonehenge, which lies 13km north of Salisbury, England, is believed to have been an ancient form of calendar designed to capture the light from the summer solstice in a specific fashion.

Page 4: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Pebbles were used by the ancients for a variety of purposes. They are one of the earliest methods of counting using a physical aide.

最早期的計算方法,以數小石頭來幫助計算。

Page 5: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

The abacus is one of the earliest devices to be used in calculation, and still in use, in various forms, around the world today.

算盤 --- 最古老的計算工具之一

Page 6: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Counting Board and Abacus

計數板與算盤The history of the abacus probably traced back to ancient Mesopotamia. The people probably drew lines on the ground and used pebbles to represent numbers and do calculations.

The counting board is a piece of wood, stone or metal with carved grooves or painted lines between which beads, pebbles or metal discs were moved. The abacus is a device, usually of wood (plastic, in recent times), having a frame that holds rods with freely-sliding beads mounted on them.

The person operating the abacus performs calculations in their head and uses the abacus as a physical aid to keep track of the sums, etc.

Page 7: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Evolutionary Time-line:

This time-line shows the evolution from the earliest counting board to the present day abacus. The evolution of the abacus can be divided into three ages: Ancient Times, Middle Ages, and Modern Times.

算盤演化過程可分為三個時期:

遠古年代,中世紀年代,新世代。

Page 8: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Ancient Times 遠古年代

The Salamis Tablet, the Roman Calculi and Hand-abacus are from the period c. 300 B.C to c. 500 A.D.

Page 9: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

The Salamis Tablet

The oldest surviving counting board is the Salamis tablet (originally thought to be a gaming board), used by the Babylonians circa 300 B.C., discovered in 1846 on the island of Salamis.

Page 10: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Counting Board--Pebbles were used for counting

Page 11: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005
Page 12: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Middle Ages 中世紀年代

The Apices, the coin-board and the Line-board are from the period c. 5 A.D. to c. 1400 A.D.

Page 13: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Modern Times 新世代

The Suan-pan, the Soroban and the Schoty are from the period c. 1200 A.D to the present.

Page 14: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

John Napier, (1550-1617), in early 1600s took animal bones and carved the multiples of the Gelosia method of arithmetic on them; by adding on the diagonal, one could "multiply"

Napier’s Bones

http://en.wikipedia.org/wiki/Napier's_bones

Page 15: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Schickard's Calculating clock(1623)--The machine incorporates a set of "Napier's bones" (on the cylinders) and a mechanism to add the partial products (with a carry mechanism).

Page 16: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Four-Figure Tables

對數表

In 1614, John Napier discovered the logarithm which made it possible to perform multiplications and divisions by addition and subtraction.

Page 17: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005
Page 18: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005
Page 19: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Slide Rule 計算尺1. In 1614, John Napier discovered the logarithm which made it p

ossible to perform multiplications and divisions by addition and subtraction.

2. In 1620, Edmund Gunter soon reduced the effort by drawing a number line in which the positions of numbers were proportional to their logs.

3. It was invented in 1625 by William Oughtred.

John Napier

William Oughtred

Page 20: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Circular Slide Rule

Straight Slide Rule

Page 21: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

A slide rule consists of three interlocking calibrated strips. The central strip can be moved lengthways relative to the other two. A sliding cursor with an alignment line can record an intermediate result on any of the scales.

Page 22: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Division—

For example, the division of 22 by 2.75.

Page 23: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

A Slide Rule is –

An ANALOG computer

Page 24: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

“At his zenith, there seemed to be few well-defined conundrums of the cosmos that Bethe couldn't master. He could not program the simplest computer, but had no trouble digesting reams of supercomputer readouts. For help, he reached into his briefcase for a slide rule he had carried around for 70 years.”

Nobel Prize Winning Physicist Hans Bethe DiesGiant of 20th Century Physics Dies Nobel Prize Winner Hans Bethe Helped Design Atomic Bomb, Studied Stars

By Ben DobbinThe Associated PressMonday, March 7, 2005; 12:56 PM

Page 25: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Von Neumann, Fermi and Feynman

It is said that during the Manhattan Project to develop the atomic bomb, whenever an impromptu numerical result was needed, Dick Feynman would pound out the result on mechanical calculator, Fermi (?) would work it out on a slide rule, and von Neumann would work it out in his head... all three usually arriving at about the same result at about the same time

Page 26: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005
Page 27: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

(1791 – 1871)

Page 28: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Pascal's Pascaline (1642)

Page 29: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Stepped Drums (1672 Leibniz)

Page 30: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

(First mechanical calculator, 1822)

Page 31: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

(1886)

Page 32: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Mechanical Calculators

Page 33: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Computer Age

The first computers were people! "Computer" was originally a job title: it was used to describe those human beings (predominantly women) whose job it was to perform the repetitive calculations required to compute such things as navigational tables, tide charts, and planetary positions for astronomical almanacs.

Page 34: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

ENIAC: the "Electronic Numerical Integrator and Calculator"

Completed in 1946, he first vacuum tube-based computer, has 18,000 vacuum tubes and takes up 1,800 square feet of space. Considered to be the first "true computer"

Page 35: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005
Page 36: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Computer Punch Cards

Page 37: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

An IBM Key Punch machine which operates like a typewriter except it produces punched cards rather than a printed sheet of paper

Page 38: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Paper Tape

Page 39: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

A typical paper tape reader

Page 40: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Computer Bug =

Computer + Bug

Page 41: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

In 1945, Grace Hopper found the first computer "bug": a dead moth that had gotten into the Mark I and whose wings were blocking the reading of the holes in the paper tape. The word "bug" had been used to describe a defect since at least 1889 but Hopper is credited with coining the word "debugging" to describe the work to eliminate program faults.

Page 42: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

The IBM 7094, a typical mainframe computer

Page 43: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

The original IBM Personal Computer (PC)

Page 44: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Development of Computers

• 1936--Turing Machine (Alan Turing)• 1943--Atanasoff-Berry Computer (ABC) • 1946--ENIAC• 1947--Transistor (Shockley, Bardeen and Brattain)• 1957--Transistorized Experimental Computer (TX-O) • 1958--Integrated circuit (Jack St. Claire Kilby)• 1971--Intel's first microprocessor, the 4004, was developed • 1971--The first microcomputers (PCs) were developed• 1974--Apple I • 1981--IBM PC• 1988--Laptops• 1994--DNA Computing; Quantum Computing

Page 45: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005
Page 46: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Moore's Law (1965, Gordon Moore)Number of transistors/square inch on integrated circuits doubles every 18 months.

Page 47: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Development of Computer Languages

• 1854--British mathematician George Boole devises binary algebra.• 1936--Turing Machine (Alan Turing)• 1958--Common Business Oriented Language (COBOL) • 1958--List Processor (LISP)• 1958--ALGOL• 1963--Beginners All-Purpose Symbolic Instruction Code (BASIC)• 1967--Formula Translation (FORTRAN) • 1971--PASCAL • 1972--C (ALGOL-60)

• 1979--Ada • 1983—C++

Page 48: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Development of Operating Systems

•1969--UNIX

•1978--APPLE

•1981--MS-DOS

•1985—Microsoft WINDOWS

•1991—LINUX (Linus Torvalds)

Page 49: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

(Tim Berners-Lee,1989)

Page 50: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005
Page 51: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Next Computing Tool---Worldwide Grid

Page 52: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

   LCG Service Hierarchy 服務架構Tier-0 – the accelerator centre• Data acquisition & initial processing• Long-term data curation• Distribution of data Tier-1 centres

Tier-2 – ~100 centres in ~40 countries

• Simulation

• End-user analysis – batch and interactive

Canada – Triumf (Vancouver)France – IN2P3 (Lyon)Germany – Forschunszentrum KarlsruheItaly – CNAF (Bologna)Netherlands – NIKHEF/SARA (Amsterdam)Nordic countries – distributed Tier-1

Spain – PIC (Barcelona)Taiwan – Academia SInica (Taipei)UK – CLRC (Oxford)US – FermiLab (Illinois) – Brookhaven (NY)

Tier-1 – “online” to the data acquisition process high availability

• Major computing centres – high level of service quality

• Managed Mass Storage grid-enabled data service

• Data-heavy analysis• National, regional support• Academia Sinica Grid Centre

Page 53: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

Global Science needs a Global Grid

• LCG depends on two major science grid infrastructures –

EGEE and the US Open Science Grid

全球科學需要一個全球網格

LCG 依賴兩個主要的科學網格基本架構

Page 54: Evolution of Computing Tools 計算工具的演化 Sai-Ping Li 李世炳 Institute of Physics, Academia Sinica December 17, 2005

What Next?