29
1/29               Beam propagation method for waveguide device simulation Chrisada Sookdhis Photonics Research Centre, Nanyang Technological University This is for III-V Group Internal Tutorial

FD-BpM

Embed Size (px)

Citation preview

Page 1: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 1/29

1/29

  

  

  

  

  

  

  

Beam propagation method

for waveguide device simulation

Chrisada Sookdhis

Photonics Research Centre, Nanyang Technological University 

This is for III-V Group Internal Tutorial

Page 2: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 2/29

Page 3: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 3/29

3/29

  

  

  

  

  

  

  

Beam propagation method (BPM)Beam propagation method is a mathematical procedure used to

study the evolution of electromagnetic fields in arbitrary inhomoge-nious medium. BPM yields the response of a given device to an exter-nal optical sigal, similar to in an experiment.

Applications

• Devices that defy eigenmode study, e.g. tapers

• Avoids difficult approximations

• Cases where radiation is important.• Behaviours of special devices.

Page 4: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 4/29

4/29

  

  

  

  

  

  

  

Starting from Maxwell’s Equations (CGS units)

∇× E = −1

∂ H

∂ t −

∂ M

∂ t 

∇× H =   1c ∂ E∂ t 

+  4πc ∂ P∂ t 

+  4πc 

J

∇· E = −4π∇·P + 4πρ

∇·H = −4π∇·M

(1)

Assumptions: Non-magnetic materials M

= 0, no charge ρ = 0, zerocurrent  J = 0, linear isotropic media  P = χeE, eiωt  time dependence.

∇× E = −ik0H

∇× H = ik0E

∇· E = 0

∇·H = 0,

(2)

where  = 1 + 4πχe = n2

Page 5: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 5/29

Page 6: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 6/29

6/29

  

  

  

  

  

  

  

E  formulationEquation (3) can be written as

∇2E + k2

0E = ∇(∇· E)

z -invariant media

∂ z E z  ≈ 0

∇2Et + k2

0Et  = −∇t (∇t  ln · Et )   (5)

or in terms of  x  and y  components:

∇2E  x + k20E  x  = −∂ 

∂  x ∂  ln

∂  x  E  x −

  ∂ 

∂  x ∂  ln

∂  y  E  y 

∇2E  y + k20E  y  = −

∂ 

∂  y 

∂  ln

∂  x E  x 

  ∂ 

∂  y 

∂  ln

∂  y E  y 

Page 7: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 7/29

7/29

  

  

  

  

  

  

  

Slowly varying envelope approximation

Et  =  Et e−in0k0z ,

∂ 2Et 

∂ z 2

2n0k0

∂ Et 

∂ z 

With above approximations, the electric field’s evolution is given by

Vectorial BPM

i

∂ 

∂ z E  x E  y = A xx    A xy  A yx    A yy 

E  x E  y 

  (6)

where (for illustration)

 A xy E  y  =

  1

2n0k0 ∂ 

∂  x 1

∂ (E  y )

∂  y −   ∂ 2E  y 

∂  x ∂  y 

 A xx  = · · ·   ,   A yy  = · · ·   ,   A yx  = · · ·

Page 8: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 8/29

8/29

  

  

  

  

  

  

  

Semi-vector BPM

i∂ E  x 

∂ z =  A xx E  x 

i∂ E  y 

∂ z =  A yy E  y 

(7)

This taks into account the polarization ( A xx  =  A yy ), but neglects the

coupling between E  x  and E  y  ( A xy  =  A yx  = 0).When variation of refractive index is small in transverse dimen-sion, polarization dependency and coupling are weak and may beneglected.

It is safe to treat the two polarizations as decoupled, as long as theyare not synchronized with some mechanism within the device.

Page 9: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 9/29

9/29

  

  

  

  

  

  

  

Scalar BPM

i∂ E 

∂ z 

=  Ascalar E    (8)

where

 Ascalar  =  1

2n0k0

 ∂ 2

∂  x 2 +

  ∂ 2

∂  y 2 + (− n2

0)k20

(8) governs the conventional scalar beam propagation method. This isuseful where device is weakly-guiding and/or polarization dependencecan be neglected.

Page 10: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 10/29

10/29

  

  

  

  

  

  

  

Finite-difference scheme

In beam propagation

z

z+∆z

we apply the propagator  U  to calculate

Et (z +∆z ) =  U (∆z )Et 

Propagator  U  can take many forms, depending on the chosen BPMtechnique, e.g.

Page 11: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 11/29

11/29

  

  

  

  

  

  

  

• Paraxial/Wide angle

• Vectorial/Scalar BPM

• Boundary conditions

Discretization

n n+1n-1

n n+1n-1

m+1

m

m-1

 x 

 y 

2D FD-BPM

3D FD-BPM

Page 12: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 12/29

12/29

  

  

  

  

  

  

  

Finite-difference BPM

nn+1

n-1

m+1

mm-1

 x 

 y 

n n+1

n-1

m+1

m

m-1

 x 

 y 

z+∆z 

Discretize the device volume and re-place differentiations in BPM propagator with difference operator.

∆ x  =  x m+1 − x m ∂  f m∂  x 

=   f m+1 − f m−1

2∆ x 

 f m( x ) =  f ( x m)  ∂ 2 f m

∂  x 2  =

  f m+1 − 2 f m + f m−1

∆ x 2

Page 13: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 13/29

Page 14: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 14/29

14/29

  

  

  

  

  

  

  

So we replace

i∂ 

∂ z 

E  x E  y 

=

 A xx    A xy  A yx    A yy 

E  x E  y 

with

Et (z +∆z ) =  U FD-BPM(∆z )Et    (9)

This has been a simplest discussion, the method entails much morefiner points and best left to experts—or commercial software develop-ers.

Things we have not consider:

• Iterative algorithms for solving the coupled equations

• Speed

• Boundary conditions

• Stability

Page 15: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 15/29

15/29

  

  

  

  

  

  

  

Optiwave OptiBPM

Device definition

Page 16: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 16/29

16/29

  

  

  

  

  

  

  

Profile definition

This is a new implementation from version 5 of OptiBPM. The ma-terial and profile library can be called from many layout files.

Page 17: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 17/29

17/29

  

  

  

  

  

  

  

Page 18: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 18/29

18/29

  

  

  

  

  

  

  

2D vs. 3D FD-BPM

Comparing the time complexity O of 2D- and 3D-BPM,

O3D

O2D

≥ n x 

  (10)

It is recommended to use 2D algorithm  whenever possible.

So when is it possible?

• Device is actually 2D. (slab waveguides)

• Using Effective index method (EIM) for – Weakly guiding structures with low level of radiation

– Full-vectorial BPM is not required

ε(x,y)

ε(y)

Page 19: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 19/29

19/29

  

  

  

  

  

  

  

After calculation, the electric field distribuion within the device is dis-played. We can choose to open the Analyzer module for data analysis.

Page 20: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 20/29

20/29

  

  

  

  

  

  

  

Examples of data presentation

Page 21: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 21/29

21/29

  

  

  

  

  

  

  

W id d l l ti

Page 22: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 22/29

22/29

  

  

  

  

  

  

  

Waveguide mode calculation

3 micron

3 micron

Waveguide modes are solved using Alternate Direct Implicit (ADI)method. Users can specify

• The solver engine (Vectorial, scalar)• Boundary conditions (Transparent, Neumann)

• Accuracy of the resultant mode field (e.g. to 1E-007)

• whether to start with the fundamental mode or any other mode.

Page 23: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 23/29

23/29

  

  

  

  

  

  

Waveguide modesummary table

St l

Page 24: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 24/29

24/29

  

  

  

  

  

  

Star couplers

Page 25: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 25/29

25/29

  

  

  

  

  

  

3dB couplers

Page 26: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 26/29

26/29

  

  

  

  

  

  

3dB couplers

Scanning script

Page 27: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 27/29

27/29

  

  

  

  

  

  

Scanning script 

Const NumIterations = 7d = 0For x = 1 to NumIterations

ParamMGR.SetParam "offset", CStr(d)ParamMgr.SimulateWGMgr.Sleep(5)d = d - 0 . 2

NextParamMGR.SetParam "offset", 0

Page 28: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 28/29

28/29

  

  

  

  

  

  

Scanning script results. Best performance is between iteration 3 and4. So we know the separation should be ≈ 2.5  µ m.

Page 29: FD-BpM

8/12/2019 FD-BpM

http://slidepdf.com/reader/full/fd-bpm 29/29

29/29

  

  

  

  

  

  

The End

We have discussed

• What is BPM

• The technical backgrounds behind BPM

• Optiwave BPM and its features

– Device definition

– Path monitor and output extractions

– Waveguide Mode solver 

– Parameterization and scripting for optimization of device

Q & A