83
Project WATERMAN Public Lecture Series Fisheries Management and Red Tide Early Warning System for Hong Kong 香港近海水質預報及管理系統 — 公開講座系列 香港漁業管理及紅潮預警系統 Project WATERMAN Public Lecture Series Fisheries Management and Red Tide Early Warning System for Hong Kong 香港近海水質預報及管理系統 — 公開講座系列 香港漁業管理及紅潮預警系統

Fisheries Management and Red Tide Early Warning System for

  • Upload
    phamnhu

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

  • Project WATERMAN Public Lecture Series

    Fisheries Management and Red Tide Early Warning System for Hong Kong

    Project WATERMAN Public Lecture Series

    Fisheries Management and Red Tide Early Warning System for Hong Kong

  • Project WATERMAN Public Lecture SeriesFisheries Management and Red Tide Early Warning System for Hong Kong

    Project WATERMAN Public Lecture SeriesFisheries Management and Red Tide Early Warning System for Hong Kong

    Lecture Title: Fisheries Management and Red Tide Early Warning System for Hong Kong

    :

    Speakers: Professor Joseph Hun-wei Lee

    Principal Investigator of Project WATERMAN

    Project WATERMAN

  • Project WATERMAN Public Lecture SeriesFisheries Management and Red Tide Early Warning System for Hong Kong

    Project WATERMAN Public Lecture SeriesFisheries Management and Red Tide Early Warning System for Hong Kong

    WATERMAN system

    www.waterman.hku.hk

  • Project WATERMAN Public Lecture SeriesFisheries Management and Red Tide Early Warning System for Hong Kong

    Project WATERMAN Public Lecture SeriesFisheries Management and Red Tide Early Warning System for Hong Kong

    A New Environmental Knowledge BaseA New Environmental Knowledge Base

    A New Environmental Knowledge Base

  • Outline

    MarineFishFarminginHongKongandChallenges

    WATERMANFisheriesModule

    HowtoQuantifyCarryingCapacity

    Whatisalgalbloom/redTide?HowcanWATERMANpredictalgalblooms?/

  • Mariculture inHongKong

    Highdemandonlive/freshfish(forhighqualityfood)

    300and100tonnesofmarinefishandfreshfishconsumedeveryday(top5fishconsumptioninAsia;4xworldaverage)4

    Commonculturedspecies(grouper,snapper,seabream):,

    BanningoffishtrawlinginHKby2012

    7m

  • FishCultureZone(FCZ)

    Familyoperated

    Fishraftsarelocatedatshelteredcoastalwaters(weaklyflushed)

    Stockingdensityvariesfromafewfishperm2 tohundredfishperm2~/

    26FCZs

  • IncreaseinTotalInorganicNitrogen(TIN)inPearlRiverflow

    HongKongSAR1,072km2oflandarea

    1,800km2ofcoastalwatersPopulation6.7M

    HongKongSAR1,072km2oflandarea

    1,800km2ofcoastalwatersPopulation6.7M

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    1990 1992 1994 1996 1998 2000 2002 2004

    Population of PRD (ten thousand )

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    1986 1988 1990 1992 1994 1996 1998 2000

    TIN (mg/L) at SM7

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    1992 1994 1996 1998 2000 2002 2004

    waste water discharge(106 t)

    PearlRiverDeltaPearlRiverDelta

    Pearl River - 2200 km; Annual precipitation 1470 mm; wet season flow 20,000 m3/s

  • 2 1 4 1 19

    411

    232928

    3340

    88

    3936

    2519

    10

    202325

    19

    3731

    4540

    2120

    3441

    1413151617

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    75 7677 7879 8081 828384 8586 8788 8990 9192 9394 9596 9798 9900 010203 0405 0607 0809 10

    Year

    No.

    of R

    ed T

    ides

    Eutrophication,algalbloomsandredtides

    Increased frequencies of harmful algal blooms, red tides, and fish kills around

    the world recent decades

  • ChallengestoHKFisheries

    EstimatedmariculturelossoverHK$315Million

    (NewspapercuttingsfromSCMPandMingpaoDaily,1998)

    Pollutionandpoorwaterquality Redtides Oxygendepletion Fishdiseaseandparasites Coldspell

    MassiveRedTidein1998

  • ProjectWATERMANOnlineFisheriesManagementandRedTideEarlyWarningForecasting

    ScienceBasedDecisionSupportPlatform1) Carryingcapacityforfishmanagement

    sustainableandprofitablefishfarming Healthyfishproduct Healthyecosystem

    2)Redtideearlywarningsystem

    Dailyforecastofredtideriskforcurrentweek Predictionofredtidemovementsandmitigations

  • Marine fish farming causes local nutrient enrichment but can also be a victim of existing pollution. A robust quantitative methodology is needed for mariculture management (site selection; impact assessment; determine carrying capacity)

    Organic loading Flushing rate Hydro-meteorological condition

    Environmental Management of Mariculture

  • WaterQualityObjectivesforMarineWater

    DissolvedOxygen 4mg/L

    NH3 Annualmean 0.021mg/L

    Chla

    runningarithmeticmeanof5dailymeasurementsforanylocationanddepth

    20mg/m3

    Totalinorganicnitrogen(TIN)

    Annualmeandepthaveragedtotalinorganicnitrogen

    0.3mg/L

  • Cannot find

    CarryingcapacityofFishFarm

  • CarryingcapacityofFishFarm

    What is the capacity (stocking density) of the farm

    With sustainable fish farming Meet water quality objectives Healthy fish product

    High stocking Density Increase waste excretions, hence pollution Reduces growth rates (for a number of species)

  • Potential/existing fish culture zone(FCZ)

    Carrying capacity of FCZ

    Hydrodynamics model

    Mass transport model

    Water quality model (sediment water exchange)

    Numerical tracer experiments

    Flushing time

    Pollution loading, ambient water quality

    Bathymetry, tidal conditions, salinity

  • TidalFlushing FlushingTime=thetimerequiredtoexchangetheentirevolumeofthegivenwaterbodybynewoceanwateror theaveragelifetimeofaparticleinthatsystem

    Insemienclosedcoastalwaters,theflushingtimecanbequitelong,intheorderof1040days.Anyalgaespeciesintroducedintotheareahasachancetogrowandbloom.

    Pollutantsreleasedintothecoastalenvironmentaremixedandflushedbythehighlyvariablehydrodynamiccirculation.

    pollutants

    clean water

    contaminated water

    mixing

    Semi-enclosed tidal inlet

    Ocean/estuary

    tidal flushing by ocean current

  • openboundary

    Numerical determination of Flushing time: Release tracer in fishfarm and track changes

    Computation via3D hydrodynamic and mass transport (particle tracking)model

    Flushing time =average lifetime of a particle in the given water system

    System = fish farm

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0 0.5 1 1.5 2 2.5 3

    Time (day)

    Elev

    atio

    n ab

    ove

    MSL

    (m)

    0

    1f

    oT tdM

    M

  • 0

    0.2

    0.4

    0.6

    0.8

    1

    Mas

    s re

    mai

    ned

    NESTRandom WalkDouble exponential curve f it

    Tf 10 days

    TracermassintheFishCultureZone

    Numericaltracerexperimentfordeterminingthetidalflushingtimeinasemienclosedbay(YungShuAu)

  • 1 2

    1fT k k

    tktko

    eeMM

    21 1

    3D models and laboratory experiments show that the tracer mass removal process due to tidal flushing can be approximated by a double-exponential decay curve that is described by 3 flushing parameters only, from which the flushing time (or flushing rate) can be uniquely determined.

    Tracer mass

    Flushingtime

    The three flushing parameters , k1 and k2 can be interpreted in terms of the size of the fish farm, the exchange flows between the fish farm and its surrounding and that between the water system and the external clean ocean using a two-segment model

  • dryseasonwetseason

    dryseason

    time(days)

    M/M

    o

    YimTinTsaifishculturezone

    Yim TinTsaiFCZ

    NumericalTracerexperimentfordeterminingtheflushingtime

    ChoiandLee,J.ofMarineSystems,2004;Leeetal,MarinePollutionBulletin,2002

    Tolo Harbour

  • Flushing time of some representative eutrophic water bodies -

    LocationTolo Harbour

    Sok Kwu Wan Ma WanYim Tin Tsai Yung Shu Au Lo Fu Wat

    flushing time (d) 38.0 23.6 15.8 25.8 3.1

    Tolo Harbour

    Dry season (Nov Feb)

    Wet season (May Aug)

    flushing time (d) 14.4 14.2 7.1 3.5 1.5

  • Salinity and Velocity distribution in a partially mixed estuary

    Density-induced circulation due to salinity gradients

  • Numerical simulation of salinity intrusion in a rectangular estuary (with fresh runoff Qf and 2.8Qf)

    S/So

  • Tolo HarbourResidence time = mass weighted average of the time taken by individual particles to leave the system through the open boundary = system-wide flushing time

    Movement track for individual particles

  • Wet season Dry season

    Flushing time (days) 3.5 25.8

    Flushing rate (day-1) 0.2857 0.0388

    Sok Kwu Wan

    the wet season flushing time is about an order of magnitude smaller than that for dry season;

    For other coastal bays in Hong Kong, the wet season flushing rate is only about 2~3 times that for dry season

    Sok Kwu Wan

  • Wet Season

    Dry Season

    Tidal Flushing in Sok Kwu Wan

  • Vertical profiles of tidally averaged longitudinal velocity

    three-layer structure (diffusion-induced circulation)

    two-layer structure (commonly observed in stratified and partially mixed estuaries)

  • Flushing Time (dry / wet season) of FCZs (days)

  • Schematic diagram of the water quality model and sediment-water interactions

  • Dissolved Oxygen

    Biochemical Oxygen Demand

    Phytoplankton

    Inorganic Nutrient

    Organic Nutrient

    Algal Nutrient

    Inorganic Nutrient

    Organic Nutrient

    Sediment Oxygen Demand

    Re-aeration

    deoxygenationphotosynthesis

    respiration

    nitrification

    decay

    uptake

    hydrolysis

    Diffusion & settling

    settlingsettlingsettling uptake

    settling

    Water Column

    Sediment Layer

    Water Quality Model

    decay

    decay mineralization

    /

  • Introduced feed (100%)

    Ingested nutrients

    Nutrients in waste feed

    Non & slow-settleableparticulates

    Soluble nutrients

    (15%-30%)

    Settles out

    Fecal nutrients

    Near-field advection

    (42%-51%)

    Dissolves in water column

    (10%-13%)

    Indigestible nutrients

    Digested nutrients

    Retained(18%-21%)

    FishFarmPollution

    (70%-85%)

  • Main Physical Processes

    Diagenesis (Decay)

    Deposition

    Diffusive fluxes

    Exchange due to tides

    Pollution Load

  • PavaSODh

    CCk

    CCkPTrgNgaNkaLkdtdC

    WVPrafVNhfv

    kkdt

    dNV

    WVNkVNkVPrfNgadtdNV

    VPdkhvTrgNg

    dtdPV

    cpsocffsf

    saopnond

    NnpONpNs

    fn

    NnfONnp

    pfs

    1

    1

    11

    1

    11

    1

    growth respiration settling flushing nonpredatorymortality

    Phytoplankton

    Dissolved Inorganic Nitrogen

    Organic Nitrogen

    Dissolved Oxygen

    uptake regeneration hydrolysis loading

    deoxygenation nitrification re-aeration

    maricultureactivities

    decay ofsettled algae

    algal production

    Algal Growth Modelling

  • g(I) g(N) g(T)

    sI

    hesIoIsIoI

    eeh

    Ig

    ZeoII

    sIIesI

    IIg

    1

    0

    01718.2)(

    1)(

    Saturating intensity

    ISI (ly/day) Nutrient Concentration (ug/l)

    KN

    Temperature (OC)

    NK

    NNK

    NNg )(

    Half-saturation constant

    Limiting nutrient =NITROGEN

    20)( TTg

    0 20 400

    1

    2

    3

    4

    0 100 200 300 400 5000

    0.5

    1

    0 500 1000 1500 2000 25000

    1 Rate of Photosynthesis

    g(N)

    Phytoplankton growthLimiting Factors

    Light Nutrient Temperature

    Or Multiple-nutrient limitation using LiebigsLaw of Minimum

  • Best Fit Curve

    Riley Eq.

    Riley Eq. r(p)=0.24+0.0088*p+0.054*p2/3

    Best Fit Eq. r(p)=0.24-0.0057*p+0.145*p1/2

    EXTINCTION COEFF. AS A FUNCTION OF CHL-A

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0 10 20 30 40 50 60

    CHL-A(UG/L)

    EXTINCTION COEFF.(M-1 )

    Field Data

    Effect of Self-shading by algae

  • Changes in nutrient concentration and cell countsduring the growth of Porocentrum minimum in alaboratory experiment

    1.0E+03

    1.0E+04

    1.0E+05

    0 50 100 150

    Time (HR)

    CellCountsPerml

    0

    100

    200

    300

    0 20 40 60 80 100Time(HR)

    Ammoniaor

    NitrateNitrogen(ug/l)

    NH3

    NO3

    Preference of ammonia nitrogenin nutrient uptake (lab)

    Field observationDec 1987 diatom bloomTIN change = 65 ug/LNH3 change = 60 ug/L

  • 0

    10

    20

    30

    40

    31-Dec-99 20-Jan-00 09-Feb-00 29-Feb-00 20-Mar-00 09-Apr-00 29-Apr-00 19-May-00

    Chl

    orop

    hyll-

    a (

    g/L)

    Surface MountedSurfaceMiddleBottom

    Alarming Level

    0

    2

    4

    6

    8

    10

    12

    14

    31-Dec-99 20-Jan-00 09-Feb-00 29-Feb-00 20-Mar-00 09-Apr-00 29-Apr-00 19-May-00

    Dis

    solv

    ed O

    xyge

    n (m

    g/L)

    SurfaceMiddleBottom

    Chlorophylla

    DissolvedOxygen

    Algal bloom dynamics:

  • fishkill

    Fishkill due to Oxygen Depletion, Three Fathoms Cove, July87

    Dissolved Oxygen

    High water temperature and prolonged sunny clear skies led to high algal production; significant DO consumption during period of overcast skies and neap tide

    Three Fathoms Cove, Tolo Harbour, Hong Kong

  • Comparison of model prediction of Chl-a (solid line) with field data (symbols) for 1987 and 1998

    Less algal blooms after introduction of Tolo Harbour Effluent Export Scheme

    Two-layer Diagenetic Water Quality Model for Tolo Harbour

  • Comparison of model prediction of DO (solid line) with field data (symbols) for 1987 and 1998

    Low DO (below 2 mg/L) even after introduction of the Tolo HarbourEffluent Export Scheme!El Nino Effect? (1998 warmestyear on record)

    Two-layer Diagenetic Water Quality Model for Tolo Harbour

  • Oxygen Consumption at Night

    FISHSODh

    CCkPTrgaNkaLkdtdC

    saopnond 1

    TBOD algal respiration re-aeration sediment oxygen demand + fish consumption

  • PDODCPLDO

    PavaSODh

    CCk

    CCkPTrgaNkaLkPDOD

    cpsocffsf

    saopnond

    1

    )(

    Potential Dissolved Oxygen Drop (PDOP)

    Potential Lowest Dissolved Oxygen (PLDO)

    Carrying Capacity Indicator

  • Organic loads, flushing times and key water quality indicators at six representative fish culture zones

  • Time variation of the water quality parameters in the fish farm in response to a constant loading

    simulated by a box model

  • Predicted potential lowest DO level (PLDO) under different loading conditions

    Potential LowestDissolved oxygenLevel (PLDO) as a measure of carrying capacity Potential DO dropOn a day of

    Negligible Photosynthetic Production

    YTTE - Poor flushingHigh loading

    Sok Kwu Wan- Good flushing

    in wet seasonModerate loading

    Ma Wan- strong flushing

    High loading

  • T = 30 C and kf = 0.1 day-1

    Carrying capacity for: DO > 4 mg/L Chl-a < 20 ug/L

  • Carrying capacity (tonne fish) of the 26 FCZs

  • Recommended stocking density(e.g. Lo Tik Wan)

    0

    1000

    2000

    3000

    4000

    5000

    6000

    0.5 1 1.5 2

    Size of Fish (kg)M

    ax. N

    umbe

    r of F

    ish

    Lo Tik Wan FCZ

    Raft Size

    6mx6m

    3mx3m4mx4m5mx5m

    FCZ Carrying Capacity = 1,900 tonne

    Recommended stocking densityCarrying Capacity

    Licensed Area

    Max Number of fishRecommended density raft area

    fish size

    = = 78kg/m2

    =

  • surface

    bottom

    Why not 3D WQ Model?Uncertainties in the model parameters and the forcing conditions including loadings from other sources, the spatial and temporal variations

  • Computed and observed long-term (1990-2001) water quality for six fish culture zones

  • Observed and computed long term water quality via Box Model and Delft3d-WAQ Model in 4 FCZs of Tolo Harbour: DO, Chlorophyll-a, and organic nitrogen for dry season

  • Red tide - red discoloration of the sea by micro-organisms (mainly micro-algae)

    Algal Bloom - rapid growth/ germination of micro-algae (phytoplankton) to concentration as high as 100,000 cells per ml

    Red Tide and Harmful Algal Bloom (HAB)

    HarmfulAlgalBloom(HAB) Oxygen depletion Cause shellfish to contain toxins Cause mass mortality of fish,

    invertebrates etc. Cause fish to contain toxins Cause skin or respiratory irritations

  • Dynamicsofalgalbloomsandredtidesinsubtropicalcoastalwaters(RGCGroupResearchProject19992004)

    Kat O

    Lo Tik Wan

    Estuarine

    Oceanic

    Objective: To develop real time forecasting model of algal bloom dynamics

    Red Tide Research and Mariculture Management

  • Anemometer Pyranometer

    Field Monitoring

    Alarming Level

    Red Tide Early Detection

    0

    10

    20

    30

    40

    31-Dec-99 30-Jan-00 29-Feb-00 30-Mar-00 29-Apr-00 29-May-00 28-Jun-00 28-Jul-00 27-Aug-00 26-Sep-00 26-Oct-00

    Chl

    orop

    hyll-

    a (

    g/L)

    Surface MountedBottomMiddleSurface

    Alarming Level

    Red Tide Early Detection

    0

    10

    20

    30

    40

    31-Dec-99 30-Jan-00 29-Feb-00 30-Mar-00 29-Apr-00 29-May-00 28-Jun-00 28-Jul-00 27-Aug-00 26-Sep-00 26-Oct-00

    Chl

    orop

    hyll-

    a (

    g/L)

    Surface MountedBottomMiddleSurface

    TelemetrySystem

    M a g n e tic v a lv e s

    R e la y b o x

    P u m p

    P e rso n a lC o m p u te r

    M o d e m

    T e le p h o n e L in e

    M o d e m

    M ic ro lo g g e r

    C o n tro l M e a s u re m e n t

    F L U O R I M E T E R T H E R M IS T O R SD O M E T E R

    P Y R A N O -M E T E R

    A N E M O -M E T E R

    A C O U S T I C D O P P L E R C U R R E N T

    M E T E R

    L A B O R A T O R Y

    F IE L D

    D a ta R e tr ie v a l, A n a ly s is & S to r a g e

    D a ta C o lle c tio n

    D a ta T r a n sm is s io n

    C H L O R O P H Y L L D IS S O L V E D O X Y G E N

    T ID A L L E V E L &

    C U R R E N T

    S O L A R R A D IA T IO N

    W A T E R T E M P E R A T U R E

    W IN D

  • When do algal blooms occur?

    Based on field observations and theoretical modeling, we propose the first quantitative model for forecast algal blooms

  • FactorsAffectingAlgalGrowth

    Irradiance

    Water Temperature

    Nutrient

    Growth Rate = 0G(I)G(T)G(N)

    T

    G(T)summer species

    winter speciesN

    G(N)

    I

    G(I) algae acclimatized to high and low irradiance levels

    photo-inhibition

    0 optimal growth rate at reference temperature

  • Aug2000 - Chlorophyll-a

    0102030405060

    17-Aug 19-Aug 21-Aug 23-Aug 25-Aug

    Read

    ing

    (inst

    rum

    ent v

    alue

    )

    BottomMiddleSurfaceS.Mounted

    Aug2000 - temp

    23

    25

    27

    29

    31

    17-Aug 19-Aug 21-Aug 23-Aug 25-Aug

    Tem

    pera

    ture

    (OC)

    SurfaceMiddleBottomAir

    Aug2000 - Predicted Tidal Level

    0

    1

    2

    3

    17-Aug 19-Aug 21-Aug 23-Aug 25-AugTi

    dal L

    evel

    (m C

    .D.)Aug2000 - Wind speed at 3m height

    0123456

    17-Aug 19-Aug 21-Aug 23-Aug 25-Aug

    Win

    d Sp

    eed

    (m/s

    )

    Field observations show that algal blooms are highly correlated with the stability of the water column (tide, wind, stratification)

    Chla

    Wind

    Temperature

    Tide

    Field observations before and during an Algal Bloom

  • RedTideForecast

    Model-DataIntegration

    Model-DataIntegration

    Red TideForecast and Investigation

    Hydro-meteorologicalData

    -

    Dissolved OxygenLevel

    Water Quality Data

    NO2NO3NH3

    NutrientConcentration

    Predicted Red Tide Risk and

    Impacted Areas

    Biological Knowledge

    Past Experience

    Hydrodynamic Knowledge Tidal Mixing

    Solar Radiation

  • Two-layer model for vertical biomass (Wong et al., 2007)

    Ct = 0 Ct < 0,

    Ct > 0 )

    irradiance

    surface photic zone (thickness = l)

    non-productive lower segment

    simplified growth function

    depth z

    net growth rate =

    lossrate = d

    sinking velocity v

    turbulent diffusivity E

    irradiance

    surface

    (thickness = l)

    non-productive lower segment

    simplified growth function

    depth z

    net growth rate =

    lossrate = d

    sinking velocity v

    turbulent diffusivity E

    Considertheeffectofturbulentdiffusion,sinkingandgrowth/mortalityonthealgalconcentration

    Ct = E

    2Cz2 - v

    Cz + kC

    underwhatconditionscould:

    (andalso

    :

    ()

  • 0.00001

    0.0001

    0.001

    0.01

    0.00001 0.0001 0.001 0.014l2/2

    Diff

    usiv

    ity E

    (m 2 s

    -1)

    Motile species

    Non-motile species

    Dinof lagellate(YSA)Diatom (YSA)

    P. mican (Kat O2004)Dinof lagellate(YTT)Diatom (YTT)

    Blooms unlikely

    Blooms likely

    Critical Turbulence (m2s-1) Critical turbulence

    E < Ec = 4l2

    (1)

    Ec (m2s-1)

    E(m2s-1)

  • start

    Diffusivity < Critical Turbulence?

    blooms likely

    Nutrient > threshold?

    blooms unlikely

    Y

    N

    N

    Y

    Decision model for predicting algal bloom occurrences -

    ?

    ?

    Environmental and hydro-meteorological conditions

  • Bloom Triggering Factor for Lamma Island Period Species10Aug00-11Aug00 Mixed diatoms

    18Aug00-24Aug00 Mixed diatoms16Jun01-20Jun01 Thalassiosira subtilis20Jun02-26Jun02 Thalassiosira subtilis01Jul02-06Jul02 Skeletonema Costatum24Jul02 Chaetoceros spp.12Aug03 Pseudonitszchia pseudodelicatissima

  • 1)StabilityRiskFactor (R)=CriticalTurbulence(EC)/EstimatedDiffusivity(E)

    R 1:stablewatercolumnfavouringalgalblooms

    2)Nutrientthreshold sufficientnutrientconcentration

    100mgm3 forinorganicnitrogen 15mgm3 forphosphate

    In any given coastal water, there is a risk of algal blooms if both criteria are fulfilled.

    Algal Bloom Risk Map

  • Algal bloom risk map (October1995)

    Bloom Risk Observed Chl-a

    Sufficient nutrient

    Mirs Bay

    Tolo Harbour

    Port Shelter

    Victoria Harbour

    Lamma Island

    Mirs Bay

    Tolo Harbour

    Port Shelter

    Victoria Harbour

    Lamma Island

    (mg/m3)

    Bloom : Chl-a > 10 mg/m3

    (mg/m3)

    : > 10 mg/m3

  • Predictability of the Risk Map

    Bloom Not Bloom Total

    Bloom 86 24 110

    Not Bloom 39 321 360

    Total 125 345 470

    VerificationofAlgalBloomRiskForecastPerformanceagainstwaterqualitydatainHongKongforyears88,93,95,9804

    The algal bloom forecast is accurate for (86+321)/470 = 87% of the time: 87%

    Model Predictions

    Field Observations

  • 0%

    20%

    40%

    60%

    80%

    100%

    Per

    cent

    age

    Blo

    omed

    Field ObservationApproximated Sigmoid Function

    0.1 10.05.02.01.00.50.2

    Nutrient Criterion Fulfilled

    Stability Factor R

    0%

    20%

    40%

    60%

    80%

    100%

    Per

    cent

    age

    Blo

    omed

    Field ObservationApproximated Sigmoid Function

    50 30020015010070Nutrient Concentration (mg/L)

    Stability Criterion Fulfilled

    Index Probability Red Tide Risk1 < 30% Low2 30% ~ 70% Medium3 >70% High

    Red Tide Prognostic Forecast/

    P(Bloom) = P(Stability) P(Nutrient)

    P(Nutrient |High Stability) P(Stability |High Nutrient)

    Historical data in past 20 years

  • 2005

    Feb 2009

    Oct 2009

    Sep 2011

    First generation of red tide risk map forecast using historical water quality data in HK

    Daily trial of probabilistic red tide forecast for six water zones

    Field surveys based on predicted red tide risk and red tide reports

    Pilot red tide early warning system with daily red tide risk forecast

    Milestones

    Dynamics of algal blooms and red tides in sub-tropical coastal waters (RGC Group Research Project )

    1999-2004

  • Harmonic Analysis

    HKO Daily Meteorological Data

    AFCD Biweekly Monitoring Data

    MeteorologyDatabase

    Water QualityDatabase

    Email + manual input

    FTP transfer +manual checking

    DailyRedTideForecastSystem/

    Nutrient Data

    Tidal Range

    Temperature

    Salinity

    Wind Speed

    Secchi DepthNutrient vs threshold

    Stability RiskFactor

    /

  • Probability ofred tide occurrencein coming week

    High

    Medium

    Low

    Red Tide Risk Map -

    Red tide occurrencein past week

    EasternWaters

    SoutheasternWaters

    SouthernWaters

    Western Waters

    Tolo Harbour

    NortheasternWaters

    Clear Water Bay Gonyaulax Polygramma2009-03-25 2009-03-26

    Clear Water Bay Gonyaulax Polygramma2009-03-25 2009-03-26

    Silver Mine Bay Beach Karenia Digitata

    2009-03-23 2009-03-28

    Silver Mine Bay Beach Karenia Digitata

    2009-03-23 2009-03-28

    Fish culture zone

    Red tide risk forecast map

  • TrackingfortheAugust2011RedTide

  • PilotTestingSince20092009

    NE E TOL SE S W Total

    2009 0/0 0/1 0/2 5/5 3/4 0/2 8/14

    2010 5/5 0/0 1/2 4/5 0/4 0/1 10/17

    2011 6/8 1/2 4/7 6/6 3/9 0/2 20/34

    Successfully Predicted Red Tides

  • Collaboration withtheAgriculturalFisheriesandConservationDepartment(AFCD) Red tide risk prediction is available in the intranet. Alert (phone call /

    email) is sent to AFCD in case of predicted high red tide risk to increase the vigilance on the field condition.

    When a red tide is spotted, AFCD will send us an alert on the location and the extent of the bloom, and information on the red tide causative species.

    Red tide tracking will then be run to predict the possibly affect area and the information will be send back to AFCD. Announcement on the red tide news will be made on the WATERMAN intranet as well.

    AFCD will keep updates through local network. If necessary, field investigation will be carried out jointly with AFCD.

    Recommendations will be given to fishermen on actions to be taken (pumping DO, pulling fish raft to safer location).

  • Prediction on 2011-8-16

  • TemporaryFishRaftRelocation

    No go zones

    Fish Raft Move Away from Culture Zone

  • EquipmentsuppliedtofishfarmertomonitorDO

    EfficiencyAeration(Airblower+microporetubing)

    DOMonitoringandAerationatFishCultureZone

    Micropore air tubingElectric Air blower

  • Conclusions Redtidesandharmfulalgalbloomsarehighlydynamicandnon

    linearphenomonagovernedbycomplexphysicalbiologicalinteractions

    Redtidesoccurinweaklyflushedandeutrophicwaterbodiesunderfavorabletemperature,sunlightandhydrodynamicconditions

    Itispossibletodevelopshorttermforecastsofredtiderisksbydatamodelintegration

    Redtideandfishkillsdisasterscanbepreventedormitigatedthroughnutrientreduction,flowaugmentation,monitoringandeducation,andsimpleearlywarningsystems

  • Conclusions

  • ThankYou

  • HydrodynamicEffect Inweaklyflushedsemienclosedcoastal

    waters,theoptimalalgalgrowthrate(~1perday)ismuchgreaterthantheloss/flushingrate

    Henceunderfavorablelightandnutrientconditions,analgalbloomwillbeabletotakeoff

    However,thisisnegatedbytheverticalmixingoutoftheeuphoticzone,sinking,andotherlosses(e.g.flushing,respiration)

    Irradiance

    Nutrient

    Turbulence

    Algae

  • Relation between Eutrophication & Red Tides in Tolo Harbour -

    Rising population, increase of nutrient (annual mean inorganic N), and corresponding increase of red tides (1982-87)

    1982 1983 1984 1985 1986 19870.00

    0.03

    0.06

    0.09

    0.12

    0.15

    0.18 Inorganic N

    Ann

    ual M

    ean

    inor

    gani

    c N

    (mg/

    L)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Population

    Pop

    ulat

    ion

    (milli

    on)

    Red tide number

    3 11 15 16 19 19

  • 1998

    Temperature: Effect of Global Warming ()Mean annual air temperature in Hong Kong (1997-2008)

    1998

    Temperature anomalyin April 2008 = 2.3 deg C