Gena Si Transcriptia La Pro Si Eucariote Lp2

Embed Size (px)

Citation preview

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    1/45

    Lecture 3

    Gene Structure, Transcription, &Translation

    Reading: Chapter 4: 108-115; 118-131

    Molecular Biology syllabus web site

    http://a32.lehman.cuny.edu/webwurtzel/course/CURRIC99j.htmhttp://a32.lehman.cuny.edu/webwurtzel/course/CURRIC99j.htmhttp://a32.lehman.cuny.edu/webwurtzel/course/CURRIC99j.htm
  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    2/45

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    3/45

    Typical Gene Structure

    Promoter Coding Region

    transcription

    +1

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    4/45

    Prokaryotes

    COORDINATED GENE

    EXPRESSION: clustered

    genes (operon)controlled by one

    promoter and transcribed

    as polycistronic mRNA

    and encode multiple

    gene products

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    5/45

    Eukaryotes

    Interrupted genes(exons/introns)

    Monocistronic mRNAs

    Post-transcriptional

    modifications (nuclear

    encoded genes):

    5 CAP

    polyA tail

    splicing

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    6/45

    Post-transcription addition of 5 CAP to nuclear encoded

    eukaryotic mRNA

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    7/45

    3

    5

    5 3

    Transcript Structure

    5 untranslated 3 untranslated

    AUGrbs

    DNA

    mRNA

    ORF

    Open Reading Frame

    protein

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    8/45

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    9/45

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    10/45

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    11/45

    Requirements1. Enzyme: RNA Polymerase

    2. DNA Template (3 to 5 strand)3. No primer required

    4. Nucleoside triphosphates: ATP,GTP, CTP, UTP

    5. Synthesis is 5 to 3

    Transcription: RNA Synthesis

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    12/45

    Transcription: RNA Synthesis

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    13/45

    Translation: Protein Synthesis

    Codons specify amino acids; positioning on

    ribosome sets READING FRAME

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    14/45

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    15/45

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    16/45

    Copyright (c) by W. H. Freeman and Company

    The roles of RNA in protein synthesis

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    17/45

    Copyright (c) by W. H. Freeman and Company

    The three roles of RNA in protein synthesis

    Three types of RNA molecules perform different butcomplementary roles in protein synthesis (translation)

    Messenger RNA (mRNA) carries information copied from

    DNA in the form of a series of three base words termedcodons

    Transfer RNA (tRNA) deciphers the code and delivers thespecified amino acid

    Ribosomal RNA (rRNA) associates with a set of proteins toform ribosomes, structures that function as protein-synthesizing machines

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    18/45

    Copyright (c) by W. H. Freeman and Company

    The folded structure of tRNA specifies itsdecoding function

    Figure 4-26

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    19/45

    Aminoacyl-tRNA synthetases activateamino acids by linking them to tRNAs

    Each tRNA molecule is

    recognized by a

    specific aminoacyl-

    tRNA synthetase

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    20/45

    Fidelity of protein synthesis

    determined by:

    Correct aminoacylation of tRNA

    Codon-anticodon pairing

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    21/45

    Aminoacyl tRNA synthetases

    -at least one for every amino acid

    -for different codons have different synthetases-error correction lies in specificity of synthetase and tRNA. No

    mechanism exists for error correction once tRNA is

    mischarged and separated from synthetase

    Double sieve mechanism for error correction

    Synthetases have 2 sites: active site, hydrolytic site.

    Amino acids larger than the correct amino acid are neveractivated because they are too large to fit into the active site.

    Smaller amino acids (than the correct one) fit into the

    hydrolytic site (which excludes the correct amino acid) and

    are hydrolyzed.

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    22/45

    Nonstandard base pairing often occurs between

    codons and anticodons

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    23/45

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    24/45

    Ribosomes: the macromolecular site for protein synthesis

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    25/45

    Translation

    Initiation

    Elongation

    Termination

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    26/45

    Initiation

    mRNA binds to ribosome

    Selection of initiation codonBinding of charged initiator

    tRNA (first amino acid)

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    27/45

    Initiation

    Formation of 30S preinitiation complex30 S subunit (contains 16S rRNA),

    mRNA, charged tRNA f-met, initiation

    factors, GTP

    + 50S subunit (GTP hydrolysis)

    Resulting in formation of the 70S initiation complex

    fmet-tRNA is fixed into the P site

    reading frame is now determined.

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    28/45

    Initiation

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    29/45

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    30/45

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    31/45

    Initiation of eukaryotic protein synthesis generally occurs at the5 end of mRNA but may occasionally occur at internal sites

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    32/45

    Initiation of prokaryotic protein synthesis generally

    occurs at the Shine Delgarno site

    The untranslated leader or 5 end of prokaryotic mRNAs contain

    a ribosome binding site (rbs) orShine Delgarno site located

    upstream of the AUG and complementary to the 3 end of the16S rRNA.

    mRNA: 5 .AGGAGGU..AUG

    3end of 16S rRNA 3 ...UCCUCCA..I I I I I I I

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    33/45

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    34/45

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    35/45

    Elongation

    Peptide bond formation

    Movement of mRNA/ribosome (translocation) so

    each codon may be read

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    36/45

    Elongation

    Occupation of A site by next tRNA

    Peptide bond formed by peptidyl transferase enzyme

    Uncharged tRNA-fmet in P site and dipeptidyl tRNA in A site

    Translocation:

    deacylated tRNA fmet leaves P site

    peptidyl tRNA moves from A to P site

    mRNA moves 3 bases to position next codon at A site

    Requirements: Elongation factors and GTP hydrolysis

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    37/45

    Elongation

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    38/45

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    39/45

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    40/45

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    41/45

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    42/45

    Termination

    Completedprotein is

    dissociatedfrommachinery

    Ribosomereleased

    when termination codons are reached (UGA, UAA, UAG)

    T i ti

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    43/45

    Terminationwhen termination codons are reached (UGA, UAA, UAG)

    Peptidyl tRNA moves from A to P site

    Release factors (RF) recognize specific stop codons

    RF forms activated complex with GTP

    Activated complex binds to termination codon and alters

    specificity of peptidyl transferase

    In presence of RF, peptidyl transferase catalyzes reaction of

    bound peptidyl moiety with water instead of with freeaminoacyl tRNA

    Release of polypeptide

    Dissociation of 70S ribosome into 50S and 30S subunits.

    S f P t i S th i

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    44/45

    Summary of Protein Synthesis1. Binding of mRNA to ribosome

    2. Charged, amino-acylated initiator tRNA binds to P site ofribosome and is based paired through tRNA anticodon to codon

    on mRNA

    3. A second amino-acylated tRNA fillsA site and anticodon H-

    bonds with second codon on mRNA4. Amino acids in P and A site are joined by a peptide bond.

    tRNA in P site is released.

    tRNA (with 2 amino acids joined) in A site moves to P site

    A new amino-acylated tRNA moves intoA site by anticodon-

    codon pairing

    5. Step (4) is repeated until codon inA site is a stop codon;e tide is released.

  • 7/27/2019 Gena Si Transcriptia La Pro Si Eucariote Lp2

    45/45

    Post-translational Modifications

    (Bacteria) removal of formyl groups (fmet)

    removal of first few amino acids(aminopeptidase)

    glycosylation (affects targeting, activity)

    phosphorylation (by kinases)

    S-S bond formation

    Polypeptide cleavage

    -removal of transit peptide upon organelle impor

    -removal of signal sequence (ER secretion)-activation of enzymes