Hfse vs. MoSe

Embed Size (px)

Citation preview

  • 8/17/2019 Hfse vs. MoSe

    1/14

    Epitaxial growth and study of 2DSe-based ultrathin films: Bi2Se3,

    MoSe2, fSe2 , !rSe2

    "retouli E# $leopatra

    2%&2&'( NCSR DEMOKRITOS, Athens, Greece

  • 8/17/2019 Hfse vs. MoSe

    2/14

    Outline

    • )opologi*al insulators: Bi2Se3MBE growth and stru*tural *hara*teri+ation• Semi*ondu*ting )ransition metal di*hal*ogenides

    )MDsMoSe2fSe2

    !rSe2• .on*lusions& /uture wor0  

  • 8/17/2019 Hfse vs. MoSe

    3/14

    3D Topological InsulatorsBi2Se3 , Bi2Te3, Bi1-xSbx 

    Y. Xia et al., Nat. Phys. 5 , 3! "#$$%

     

     Topologically protected

    Spin locked to orbital momentum 

    Backscattering is suppressed o!el s"itc#ing mec#anisms$%unctionalities

    k -k k 

    -k 

    spin

    e-Non-magneticimpurity

    “insulating” bulk

    &apless metallic sur%ace states

    -k 

    relati!istic mo!ement o% e- ' light-like particles

    Spin polari(ed )#elical* Dirac cones

  • 8/17/2019 Hfse vs. MoSe

    4/14

    +ltra #ig# !acuum c#ampers %or gro"t# and structuralc#aracteri(ation

    ST

    ./0S

    B0

    /S.00D

  • 8/17/2019 Hfse vs. MoSe

    5/14

    .T0 and /S

    1 4 5 1 nm

    T#ick 5 26 uintuple 4ayers )4*

    1 QL

     High epitaxial quality and “clean” crystalline interfaces

    711-268

    Bi2Se3$l

    o reaction 9s#arpcrystalline inter%aces

    31 epitaxial Bi2Se3

    * P. Tsi&as et al., ACS Nan', ! "(%, ))*+ "#$*+%

    Substrates ' 266 nm l)6661* $266 mm Si )111*

  • 8/17/2019 Hfse vs. MoSe

    6/14

    k//,y (Å-1) k //,y (Å

    -1) k //,y (Å-1) k //,y (Å

    -1)

    Γ ΜΜ

    0.4 e!

    "n# #eri$ati$e "n# #eri$ati$eΓ ΜΜ

    %&

    !&

    Gaplesssurfacestates

     3 4 Bi2Se3$l)6661* : 4 Bi2Se3$l)6661*

    '(

       E   B

       (  e   V   )

       E   B

       (  e   V   )

    '(

    &apless sur%ace states in ultrat#in Bi2Se3

    3QL: Thinnest Bi  !e3 "ith gapless surface states #$irac c%ne& e'er rep%rted

    experi(entally )

     *educe surface t% '%lu(e rati% - applicati%ns in nan%electr%nics

     Insit- "4ES

    Gaplesssurfacestates

    ltrathin /il0s1 2yri4i5ati'n6a& '&enin6  Thic7 /il0s "8)9: e;&.%1 N'ninteractin6 

  • 8/17/2019 Hfse vs. MoSe

    7/14

  • 8/17/2019 Hfse vs. MoSe

    8/14

    Semiconducting 2D Transition etals Dic#alcogenides )TDs*

    anisotropic mec#anical optical and electrical propertiesSi(able band gap in t#e !isible and I. region o% t#e solar spectrum

    x y

    +).+

    x

    y

    +

    o

    Se

     4ayered TDs crystals o% t#e composition 2 '

    ' transition metal )IB' o, C and IB' r,% *' ;#alcogen species )S, Se, Te*

     +pplicati%ns in ,pt%electr%nic de'ices#energy c%n'ersi%n syste(s&

    and ield .ffect Transist%rs/ l%" p%"er l%gic de'ices

    2 structure 1T structure

    Indirect to direct band gapcrosso!er "#en t#ickness reduces to

    a single layer

    Indirect band gap!ery close to Si

     H%neyc%(0 like structures superi%r pr%perties t% th%se %f graphene 111

     M'Se# 1 E. Xen'6iann'&'-l'- et al. s-0itte4 #$*+  2/Se# 1 K.E. Aret'-li et al. s-0itte4 #$*<

    Se

  • 8/17/2019 Hfse vs. MoSe

    9/14

    #

    b

    MoSe2

     350°C

    MoSe2

     690°C

    AlN

    Bi2Se3

    300°C

    MoSe2

    300°C

    .00D, T0, ST o% 34 oSe2$l)6661*

    ST image' #oneycomb structure

    #

    e

    l

    oSe2

     3:6E;

    oSe2

    F@6E;

    estimated distance o% 3>3 ? bet"een Se-Se atoms 5 aoSe22@@ ?

    !dC gap

    "

    1

    Line 1

    .+

    eeSe

    o"+

    Line "

    e/o

    T"o step gro"t# processl

    oSe2

     3:6E;

    oSe2

    F@6E;

    oSe2

     3:6E;

  • 8/17/2019 Hfse vs. MoSe

    10/14

    e 9

    e 99

    1st Brillouin(one

    oSe2 

    A

    ΓL

    M

    H

    alence Band Imaging

    .T measurements

     S#i%t o% B at G-point

    to #ig#er binding energy

     Indirect to direct bandgap transition in t#e14 limit

    GH oSe2 2= ?-1

    '(

    k  //,y  +-1

     E. Xen'6iann'&'-l'- et al. s-0itte4 #$*+

    -4

    -"

    0

    "

    4

    ΓMKΓ

     

       &   i  n   #   i  n  g   '  n  e  r  g  y   0  e   !   1

    14 oSe2 3 4

    '(

    F4Γ 2 Γ3 235 Γ3 235

    (a) (b) (c)

    6e 7

    00k  //  8y+-1

    6e 77

    (d) (e) (f)

    k  //,y  +-1

  • 8/17/2019 Hfse vs. MoSe

    11/14

    .aman and /4 c#aracteri(ation o% oSe2 %ilms at

    4-limit on l)6661*

    "00 400 )00 900 1000 1"00

    /oe"

    i peak

    i *"1cm-1

    :1g

     "40.9 cm-1  

       7  n   t  e  n  s   i   t  y   0  a .  u .   1

    ;aman  

       A   L   7  n   t  e  n  s   i   t  y

       0  a .  u

       1

     

    'nergy e!

    )he dire*t band gap in single layers results inintense room temperature photolumines*en*e 4 

    pplications %rom optoelectronics to energycon!ersion

    cti!e modes o% oSe2'

    1g at 2=6>J cm-1

    02g at 2JJ>: cm-1

     Bg at 35 c(-2 in fe" layer

    (aterial 

    1"# meV

    Γ $%

     & B

    "00 "0 00 0 400

     

    LoB!2"

    #!2"

       l  o  g   0   7  n   t  e  n  s   i   t  y   1   0  a

     .  u .

       1

    ;aman s

  • 8/17/2019 Hfse vs. MoSe

    12/14

       "   l   5

       '   M         f   S  e   2

       :   M         f   S  e   2

       3   M      M  o   S  e

       2

    6''-2%7 a+imuth

    K G L

    0% 

    2

    -'

    '

    %

    -2

    -3

    -;

    -(

       E  n  e  r  g  y    ,  e

       <   -

    $&=&>&? >M

       B   i  n   d

       i  n  g   E  n  e  r  g  y   E   B   ,  e   

  • 8/17/2019 Hfse vs. MoSe

    13/14

    ;onclusions• )hinnest Bi2Se3  31 with gapless surfa*e states

    Dira* *one e@er reported experimentally• igh stru*tural Auality MoSe2  and fSe2 on "l5&Si

    substrates• MoSe2&Bi2Se3  and MoSe2&fSe2 multilayers *an be

     produ*edMuture "ork • Exploring the semi*ondu*tors fSe2, !rSe2

    • Ele*tri*al *hara*teri+ation of Bi2Se3, MoSe2  fSe2  ,!rSe2 and their heterostru*tures

    • Magnetoresistan*e measurements& all effe*t

    measurements

  • 8/17/2019 Hfse vs. MoSe

    14/14