25
Mitglied der Helmholtz-Gemeinschaft Jochen Teichert [email protected] www.hzdr.de HZDR Progress of SRF gun development and and operation at the ELBE accelerator J. Teichert (HZDR) A. Arnold, P. Lu, P. Murcek, H. Vennekate, R. Xiang (HZDR) T. Kamps, J. Rudolph(HZB) P. Kneisel (Jlab) I.Will (MBI) The 53 th ICFA Advanced Beam Dynamics Workshop on Energy Recovery Linacs "ERL-2013" 9 – 13 September , 2013, BINP, Novosibirsk, Russia

J. Teichert (HZDR) - CERNaccelconf.web.cern.ch/AccelConf/ERL2013/talks/wg101_talk.pdfJochen Teichert [email protected] y yHZDR Mitglied der Helmholtz-Gemeinschaft Progress of SRF

  • Upload
    vunhi

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

Progress of SRF gun development andand operation at the ELBE accelerator

J. Teichert (HZDR)A. Arnold, P. Lu, P. Murcek, H. Vennekate, R. Xiang (HZDR)

T. Kamps, J. Rudolph(HZB)P. Kneisel (Jlab)

I.Will (MBI)

The 53th ICFA Advanced Beam Dynamics Workshop onEnergy Recovery Linacs "ERL-2013"9 – 13 September , 2013, BINP, Novosibirsk, Russia

Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

1. INTRODUCTION

2. SC CAVITY

3. PHOTOCATHODES & MULTIPACTING

4. TWO CHANNEL LASER

5. INJECTION FOR ELBE

6. NEW GUN WITH HIGH GRADIENT

7. SUMMARY

OUTLINE

Seite 3 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

3

ELBE User Facility

INTRODUCTION - Radiation Source ELBE & SRF Gun

thermionic injector

New applications require-high bunch charges (1 nC)-ultra short bunches (< 500 fs)-low transverse emittance (1 mm mrad)

Accelerator Research an Development at ELBE:

Superconducting RF Photoelectron Injector

SRF gun

Seite 4 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

4

INTRODUCTION – SRF gun for the ELBE CW Accelerator

Application•high peak current operation for CW-IR-FELs with 13 MHz, 80 pC•high bunch charge (1 nC), low rep-rate (<1 MHz) for pulsed neutron and positron beam production (ToF experiments)•low emittance, medium charge (100 pC) with short pulses for THz-radiation and x-rays by inverse Compton backscattering

Designmedium average current:

1 - 2 mA (< 10 mA)high rep-rate:

500 kHz, 13 MHz and higherlow and high bunch charge:

80 pC - 1 nClow transverse emittance:

1 - 3 mm mradhigh energy:

≤ 9 MeV, 3½ cells (stand alone) highly compatible with ELBE cryomodule (LLRF, high power RF, RF couplers, etc.)LN2-cooled, exchangeable high-QE photo cathode

Seite 5 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

5

5.0M 10.0M 15.0M 20.0M1E8

1E9

1E10

reference curve (Sep.19, 2007) after HPP (Sep. 17, 2008) after 4 years of operation (May 27, 2011) pulsed RF mode (Mar 27, 2011) after several cathode tests (Dez 05, 2011) last measurement (Feb 15, 2013) Q

0 for P

dis s = 30 W

intri

nsic

qua

lity

fact

or, Q

0

peak electric field [V/m]

Eacc Epeak on Axis Ekin

CW 6.5 MV/m 17.5 MV/m 3.3 MeV

Pulsed RF 8 MV/m 22 MV/m 4.0 MeV

Formulas:

Good News

• No Q degradation during the first 4 years of operation! 

• Small improvement after HPP (but canceled by thermal cycle)

Bad News

• measured Q0 is 10 times lower than in vertical test 

• Maximum achievable field 1/3 of the design value 50 MV/m) 

• Cavity performance limited by FE & He consumption (>30 W)

• performance loss 1 ½ years ago, due to cathode exchanges ?

Q vs. E measurement is an important instrument to identify cavity contamination!

1

041 4 2 & i

acc i s L Ld

PE P r Q Q QL P

β≈ =

Summary:

5.0M 10.0M 15.0M 20.0M1E8

1E9

1E10

reference curve (Sep.19, 2007) after HPP (Sep. 17, 2008) after 4 years of operation (May 27, 2011) pulsed RF mode (Mar 27, 2011) after several cathode tests (Dez 05, 2011) last measurement (Feb 15, 2013) Q

0 for P

dis s = 30 W

intri

nsic

qua

lity

fact

or, Q

0

peak electric field [V/m]

Q0 degradation possibly due to cathode exchanges

2.7peak

acc

EE

=

SRF GUN CAVITY

Seite 6 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

6

Inside preparation chamber

• Cathodes mech. polished and cleaned with Ar+

• Heated to 120° C and evaporated with Cs and Te (successive- or simultaneously)

• Online thickness and QE measurement • After prep. also QE distribution scan• Vacuum requirement: ~10-9 mbar

Cs2Te PHOTOCATHODES

Seite 7 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

7

Requirements for Transfer:

• Load lock system with < 10-9

mbar to preserve QE ≥ 1 %

• Exchange w/o warm-up & in short time and low particle generation

Cathode Operation days Extracted charge Q.E. in gun

#090508Mo 30 < 1 C 0.05%

#070708Mo 60 < 1 C 0.1%

#310309Mo 109 < 1 C 1.1%

#040809Mo 182 < 1 C 0.6%

#230709Mo 56 < 1 C 0.03%

#250310Mo 427 35 C 1.0%

#090611Mo 65 < 1 C 1.2%

#300311Mo 76 2 C 1.0 %

#170412Mo From 12.05.2012 265 C ~ 0.6 %

• fresh QE 8.5%, in gun 0.6% • total beam time 600 h • extracted charge 265 C

01.08.2013problems: multipacting, QE drop-down during storage

Excellent lifetime of Cs2Te PC in SRF gun

Cs2Te PHOTOCATHODES

Seite 8 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

• MP was expected since the early days of the cavity design!• And indeed it appeared at low field (<1 MV/m) for every Cs2Te 

cathode• Characterized by high current (>1 mA, rectified) at the cathode and 

electron flash at view screens

• Biasing of the electrically isolated cathode up to ‐7 kV usually works (voltage is different for every cathode and position!)

• Anti multipacting grooves to suppress resonant conditions and coating with TiN to reduce secondary electron yield doesn’t work for Cs2Te coated cathodes → because of too high SEV due to Cs pollution?

Cs2Te PHOTOCATHODE - MULTIPACTING

Seite 9 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

9

UV Laser system developed by MBI:UV Laser system developed by MBI:nn Large flexibility in repetition rate and time structure (burst)Large flexibility in repetition rate and time structure (burst)nn Conversion to the UV (Conversion to the UV (λλ ~ 260 nm) at ~ 1 W power~ 260 nm) at ~ 1 W powernn Synchronisation with RF of the linac + full remote control of thSynchronisation with RF of the linac + full remote control of the lasere lasernn Different repetition rates + different pulse durations:Different repetition rates + different pulse durations:

a) 13 MHz: 3 ps FWHM Gaussiana) 13 MHz: 3 ps FWHM Gaussian b) 100/250/500 kHz: 12 ... 15 ps FWHM Gaussianb) 100/250/500 kHz: 12 ... 15 ps FWHM Gaussian

TWO-CHANNEL UV LASER

Important- 13 MHz allow to demonstrate high-current operation of the gun- Parameters fullfil the requirements for user operation at ELBE

Seite 10 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

10

OscillatorFiber amplifier

Multipass amplifier developed byMax-Born-Institut

TWO-CHANNEL UV LASER

Seite 11 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

ELBE Superconducting RF Photoinjector• New Injector for the ELBE SC Linac• Test Bench for SRF Gun R&D

SRF GUN OPERATION

Dogleg to ELBE

Diagnostic beamline

Seite 12 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

BEAM CHARACTERIZATION

ELBE

• Faraday cup:  current,  bunch charge,  dark current• five screen stations with YAGs  and OTRs • 180° bending magnet: energy and energy spread• transverse emittance: solenoid, quadrupoles, slit mask• Cerenkov radiation station: bunch length• Integrated current transformer (ICT): current,  stability• Beam loss monitors

Designed and built by HZB

SRF Gun Diagnostics Beamline

Seite 13 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

13

(a)

(b)

BEAM CHARACTERIZATION

NEW: Emittance Measurements with Single Slit Scan

Pengnan Lu

Beam

Dark current

Seite 14 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

14

SRF gun

Dogleg to ELBE

BEAM INJECTION IN ELBE

Seite 15 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

15

• Fixed energy imprint for correlation betw. energy spread and long. bunch distribution

• Spectrometer longitudinal distribution transferred to transverse distribution

• Combination with quadrupole scan

• Tool for future emittance compensation

x

y

3 MeV, 10 pC

J. Rudolph, et al., Dipac2011

INJECTION IN ELBE & SLICE EMITTANCE MEASUREMENT

J. Rudolph, T. Kamps, HZB

Seite 16 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

16

INJECTION IN ELBE & LONGITUDINAL PHASE SPACE

• Method of measurement: phase scan technique using the second ELBE cavity C2 phase variation energy spectrum

11 12

12 22

τ ττ

τ τ⎛ ⎞

= ⎜ ⎟⎝ ⎠

11

22

( )

( )

t

E

rms bunch length ps

rms energy spread keV

τ σ

τ σ

=

=

longitudinal beam ellipse

2 2(1) (0) TC CR Rτ τ=

22 2

1 0sin( ) 1C

RF C C

RVω ϕ

⎛ ⎞= ⎜ ⎟−⎝ ⎠

:cos( )2 2

cavity energy boostVC Cϕ

cavity transport matrix

2 222 12 2 2 11 2 2(1) (0) 2 (0) sin( ) (0)( sin( ))E C C C CV Vσ τ τ ϕ τ ϕ= − +

from parabola fit

211 22 12longε τ τ τ= −

Seite 17 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

17

Browne Buechner spectrometer pictures

• Same energy spread measured as in the 180° magnet of the diagnostic beamline

• Bunch compression in SRF-gun as expected from ASTRA simulation

• Successful test of long. phase space measurement for future gun optimization

Ekin = 3 MeV (CW) and 10 pC

@ exit of C1

INJECTION IN ELBE & LONGITUDINAL PHASE SPACE

Seite 18 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

18

x~ δ=ΔE/E

y

I

E

<E><E2>

gun createsbunches with (small) correlated ΔE

C1 correctscorrelated ΔE

chicane shearsthe bunchin l-direction

dipole magnetand screenare thespectrometer

l

δ=ΔE/E

δ=ΔE/E

l

δ=ΔE/E

l

δ=ΔE/E

l

C3 producescorrelated ΔE

INJECTION IN ELBE & LONGITUDINAL BEAM PROFILE

proposed by Ricci, Crosson &Smith (Stanford Univ.)Nucl. Instr. Meth. A445(2000)333 Phys Rev. STAB 3(2000)032801

Seite 19 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

19

time (position in bunch)is uniquely

transformed into energyand later into position in a

spectrometer

dq/dz

t0 2 4 6 8 ps

�t = 1.8 ps

INJECTION IN ELBE & LONGITUDINAL BEAM PROFILE

Seite 20 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

20

First FEL Operation with SRF Photo Gun at ELBE

FEL spectra FEL detuning curve

stabilty

beforefirst lasing optimized

Ekin at gun exit 3.3 MeV

Micro pulse repetition rate 13 MHz

Macro pulse repetition rate / length 1.25 Hz / 2 ms

Beam energy at FEL 27.9 MeV

Bunch charge / beam current 20 pC / 260 µA

Photo cathode Cs2Te

RMS bunch length 1.6 ps

Normal. RMS emittance 1 mm mrad

ELBE infrared FEL (20 – 250 µm)

April 11, 2013

Seite 21 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

21

RRR 300Nb cavity

large grainNb cavityMain aim: approach the design value of Epk=50 MV/m:

• Fabrication of two new cavities in collaboration with JLab (fabrication, treatment, test by P. Kneisel and co‐workers)

• Slightly modification compared to old design to:• Lower Lorentz force detuning, microphonics and 

pressure sensitivity• Improve cleaning and simplify clean room assembly

additional half‐cell stiffening (light green)

larger cathode boring

modified choke‐cell pick‐up flange

NEW SRF GUN WITH HIGH ACCELERATION GRADIENT

Seite 22 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

22

0.0 10.0M 20.0M 30.0M 40.0M 50.0M109

1010

1011

Test#1 (Oct 13, 2010 ) afte r first treatm ent, de fects a ppeared Test#4 (May 3, 2011 ) afte r m ech . grinding an re-tre atment Test#9 (Fe b 13, 201 2) af ter h elium vessel welding Test#12 (May 15, 20 13) a fter h elium vessel leak fixing Test#13 (May 23, 20 13) a fter HPR retreatmen t Q0 limit co rresponding to a refr igera tor p ower of 30 W

Epk [V/m]

qual

ity fa

ctor

, Q0

0.0 10.0M 20.0M 30.0M 40.0M 50.0M109

1010

1011

Test#1 (Oct 13, 2010 ) afte r first treatm ent, de fects a ppeared Test#4 (May 3, 2011 ) afte r m ech . grinding an re-tre atment Test#9 (Fe b 13, 201 2) af ter h elium vessel welding Test#12 (May 15, 20 13) a fter h elium vessel leak fixing Test#13 (May 23, 20 13) a fter HPR retreatmen t Q0 limit co rresponding to a refr igera tor p ower of 30 W

Epk [V/m]

qual

ity fa

ctor

, Q0

0.0 10.0M 20.0M 30.0M 40.0M 50.0M109

1010

1011

Test#1 (Oct 13, 2010 ) afte r first treatm ent, de fects a ppeared Test#4 (May 3, 2011 ) afte r m ech . grinding an re-tre atment Test#9 (Fe b 13, 201 2) af ter h elium vessel welding Test#12 (May 15, 20 13) a fter h elium vessel leak fixing Test#13 (May 23, 20 13) a fter HPR retreatmen t Q0 limit co rresponding to a refr igera tor p ower of 30 W

Epk [V/m]

qual

ity fa

ctor

, Q0

0.0 10.0M 20.0M 30.0M 40.0M 50.0M109

1010

1011

Test#1 (Oct 13, 2010 ) afte r first treatm ent, de fects a ppeared Test#4 (May 3, 2011 ) afte r m ech . grinding an re-tre atment Test#9 (Fe b 13, 201 2) af ter h elium vessel welding Test#12 (May 15, 20 13) a fter h elium vessel leak fixing Test#13 (May 23, 20 13) a fter HPR retreatmen t Q0 limit co rresponding to a refr igera tor p ower of 30 W

Epk [V/m]

qual

ity fa

ctor

, Q0

0.0 10.0M 20.0M 30.0M 40.0M 50.0M109

1010

1011

Test#1 (Oct 13, 2010 ) afte r first treatm ent, de fects a ppeared Test#4 (May 3, 2011 ) afte r m ech . grinding an re-tre atment Test#9 (Fe b 13, 201 2) af ter h elium vessel welding Test#12 (May 15, 20 13) a fter h elium vessel leak fixing Test#13 (May 23, 20 13) a fter HPR retreatmen t Q0 limit co rresponding to a refr igera tor p ower of 30 W

Epk [V/m]

qual

ity fa

ctor

, Q0

corresponding to abeam energy of 8 MeV

0.0 10.0M 20.0M 30.0M 40.0M 50.0M109

1010

1011

Test#1 (Oct 13, 2010 ) afte r first treatm ent, de fects a ppeared Test#4 (May 3, 2011 ) afte r m ech . grinding an re-tre atment Test#9 (Fe b 13, 201 2) af ter h elium vessel welding Test#12 (May 15, 20 13) a fter h elium vessel leak fixing Test#13 (May 23, 20 13) a fter HPR retreatmen t Q0 limit co rresponding to a refr igera tor p ower of 30 W

Epk [V/m]

qual

ity fa

ctor

, Q0

existing SRF gun

NEW SRF GUN WITH HIGH ACCELERATION GRADIENT

Seite 23 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

23

„Old“ cold mass of the operating SRF gun

Design for the new cryomodule with• SC solenoid (2 K)

Niowave Inc. (NPS, HZB)• remote controlled xy-table for

alignment (77 K)Quite recently: Cryomodule cooldown 77 K & 4.5 K, w/o cavitySC solenoid reaches spec: 10 A, 0.4 T

NEW SRF GUN WITH HIGH ACCELERATION GRADIENT

Seite 24 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

24

CAVITY•Low acceleration gradient ( 40 % of design value ) due to field emission since commissioning•No Q degradation of Cavity during first 4 years but then Q‐drop due to cathodes? → NC cathodes and its exchange are a potential risk for SRF gun cavities

PHOTOCATHODES•Long lifetime of NC photo cathodes in SRF gun (>1 yr, total charge 260 C @ QE ≈ 1% )•Multipacting appears for Cs2Te coated cathodes only, suppression with DC Bias•Cs2Te cathodes produces high dark current with similar properties as the photo beam, → for higher surface fields 40 μA are expected, which is a problem for CW accelerators

OPERATION @ ELBE•Despite of low  gradient  successful experiments and measurements:Far‐IR FEL operation,  Compton‐backscattering with TW laser,   Superradiant   THz     radiation, Slice emittance,  Longitudinal phase space measurements

FUTURE•RRR300 upgrade cavity (+vessel) tested up to 43 MV/m, cold mass assembly upcoming, new cryomodule with SC solenoid tested

SUMMARY

Seite 25 Mitglied der Helmholtz-GemeinschaftJochen Teichert [email protected] www.hzdr.de HZDR

25

THANK YOU FOR ATTENTION

AcknowledgementWe acknowledge the support of the European Community under the FP7 programme since 2009 (EuCARD, contract no 227579, LA3NET contract no 289191) as well as the support of the German Federal Ministry of Education and Research grant 05 ES4BR1/8.