169
ji. W >fta ±G#%4vi/=f-%# C ffi 5 ###$ ¥^6^3H 010007262-8

ji. —W >fta

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ji. —W >fta

— ji. —W >fta

±G#%4vi/=f-%# C ffi 5 ###$

¥^6^3H

010007262-8

Page 2: ji. —W >fta
Page 3: ji. —W >fta

B *

T afrfv,•

i. —h

1. ................................................................................... 1

2. B ................................................................................... 21

n. &tim$

1. I S E S Solar World Congress tC *517 3 42

2. 311507*^7 T *¥W<*BE£»C:131t3fi?*lB4g • 52

3. a .fctftttlMKKI-f i)SS ....................... 77

4. m

s. 5

Bm*##ross$ ...................................................................................................... 135

6. *Ht43(t5*»*46Sv^.r5

BEt8*SSroSti ................................................................................................... 143

7. - 162

8. *BKfcl7 5*E*%«(7)eF%B%i:SXlFKro9l$ ....................................... 169

9. = ....................... 179

Page 4: ji. —W >fta

1. MX m

2.

fT/w zsif-yu xmmn

3. SfJPfl ¥fiE6¥3fl9E~3fl 1 8H (BtittSUilftl SiE)

5.T-UnAit (Telcom) COaTOSSf^lS^bDiSS^I^L.^,

mm i&®##@#S3c#E (BB-y-'f h) 7UXX7°V >?X Ron Saintv-f ^ n ^x-7"cpMffr

muffiRz/mm-t-i h 7I// h>Douglas KuhnIan MuirheadBarry Hawkins

6. igSAS (i)f-ua&mt, Rm&nWrnnbtX’B*EC0*H€?6®SSS;@S£ 58i6 U T n ■£>,

T^E;I/7t7.->U ny^Htr-^v^rttS^J-^coSBmy-'-^^'SESnT*1), C Of-^i‘f)l 0#m±OgM@a@ (S8S5W<D«6<t:) ^^i!l1-5^E^E%UTv^

c-e#scom%gm^4-m(D#%omA^(:ov^-c#mu^. 4-m. E^itessriiss %u, mz.vwmz^mz.Wim-tzxttLtZ',

tI/hattt-ti4tjal^coSb^^•>'a-;■/%mk^mmx&mu-cwa. cne>

cO&IWtKSl^ 7HiTSl$l/fco

TUXXT'U >7"-tM hi:? W h>-*H Hcfcv^t, *Rliti,6c7)BBS(@S<7)tRffi£

H$Lz^„ BWOfflESBCiEKTtocDW^Si: 7^4/7 7 X v V nwmumz-o^'xm&i'tzo cotmitzm-ox^x, m&m&ommzmmtf&s.v{tit

c©aMSSII^ffltel/:t©:i;T'fc-pfc„ 4-m. neP=9?)sE® i:i:trOTJ^jS Zt¥ffi-t6ZLttfX£&o

LXhlUSgto^SEU ^-7, Mffl»^:;totM>iIIS!?;ff*^ C f;»

i

Page 5: ji. —W >fta

BESS (PVSEC-7,Nagoya, 1993.10) X'MJitf§£%LtztmlCRZfW%;^<DMS$:$:fflfrL,z.tit>i,z£-3\l>xgmmffl£<o:?mjimz'o^xtttiiLtzo s«2t;n?.0i xzmti-zo is. *-XAl:^fb^%<, irSfcnr v > a <i: v > y .ST-$> a „ MUcomMS£@5tt: S-oV T. c©,S$ISlfc0

##K#^5mi:^{bf ac 10¥SJg-C'*ntf±iHcD{g^gi<:3J:-r-5%-9-r. J:c<b^®Esn^, /i/z'L,-cv>a„-#, ^>7-'A^E->'a.-;l/(0^, WBSr^^-SiSlrm^iiffUT*1),

y *-XA^rt ir^a r ir^'Ebnzco c0Aks-am tzxtxm*fXZZo Z<DF3mit^%BgglsJ8fft<D’PX¥fftLX<,>< rirl:&-oT

sat:, 4-#,£<b, ttz, *##coM% ;i/(:^-x h y V 7(OM&^#Sr$iJmLTf a

mmzntiLxomzmibzzttLtz0

(3) £{1111419$Ti/nAa-eti. 1 982^bmAo^mmiz±mmmimALxii<o. ES4 7?

m±O^E->'a.-;i/^6fflL/Twa. *naite©«)i(i'> V 3 Vfeli: ■> V 3 >S-Sbbb -esa, f-'i—tz'^a®/*^, ##&3#L/, 2, sz^r^KsmtuiiEu^ttntf *4*9^ g(DA#-e-#-tfOT3% hcoArWfijr-$>a„

9E&4 T'<D*nai,60S5cH 14, &coj: y&icOT\ 3§%fai:%£ U tD"V$> a =• El: J: a :/7 x-f y ? coWi• tt/VZcE9r(7)tiA>n

• iRmuTg-^e^zam#

• me «ca@j#• WJilcDWJIMF-Xy y XmacDS!t»tiSX9ti^(7)El:%*.L-, £<co-tr>X-75>e>ltk9<0^:-y^-;i/6if-o

X'nZSmLtZoKiel 0%-&±[email protected]±mnmtffrzox\ fiff^T'iicroi^iUrtc^S^^

^■rai:(DCi:T'S>a„ 5$(7)B$li2 0%ti.±^bUfefc(Dj:^ATua^.Ot3/a.-;kT, Ufttot !:.££ U T v > a ^ v a -;l/coM: £: £'<D «fc y i:3X -f a A^^f4^0E%E@T'$> a c

(4) #@K#co%%m$TVXXT’V yX'X-9-4 hi:XU"l' h>-*M HSrESLfco B*Kty/3.-;l/(0#B

t^aii. gtt:2mcob#st-e$hit: j: •? tes $ ft r & 9, ###(:## uoeG^aft-c v^a(0T#mi±$< A:, -ErcomcOglb^McO-ow^A^Mt^a.

Page 6: ji. —W >fta

(a) TUT.XT’U hmmzXLiog-otz-it't KDiiilgSti, -fy^'y^moiD -? - 7 OXzV i.

-iv^TOttfitz (3B1 IB) o mzmi-mom-y-'rhmrtbftX\<'tzi>K 40<D b(oiti:<D±mizmihtitzo cogfttt. ctx$>-5c e-;i/BT-0DSS$)t:7)z. #*Sltom»sT=gE):^5, ID EHgWA-h*y y-fxmmi-z h uw. ^s^sijesci^* 1

7-7 5' (TSISiffl®. B$Kl4 Ocm) <D®H£, # ifiT'ttBy h \'7'OWmt%X\'Z,bK WL'O^U^jlEtDEtcVf**^ 9. ZtitfM mLxi,>zctb&]o}iZo 4-m. )i«©E-ya-;i/T'r©ct-9*yy vz

^yjL-;L/C>gB*'7X±(rttSdS^§r@Eirff*UTv^Zc fl-8E£5yiffi3<D2FS

^'•)ajA*?(STL.^v^\ mxm>mztizb<Dfrts:t‘mU'&'mx'$>ayo y uxxyu y^x-tM hfrhifib 0kmMtitz^M<D^<DMAco-7 y y nyx—y'41

S0f§ri@$Lfz„ crtiiv-7-v7yya^BPy-9%(D@^&^$-0^tyji*na?608AttiAt±3.56Kw T-zfe5o AHfl)6C>S@tcSv^$

c*)tfg.hntztfwmztiMteg.mtzbtufrytzo mmmmx&zAK

AseiteosttiittBAiSAy^^o xtit>it%.$i&nzmfii>LXk>zt(DztX&Zo

(b) y i"i h y^f'i hrxjuyrxy') x

(DZbMZMJ: ? ttzmmi$%;MT%£>ftXk>tzo r©ii©iitt, tWcosiESSi (PVSEC-7,£*I!) X<D^%%f<D7'jl'—yrt<OMmltZg-oX>X'<>2> toz tX^-otZo

xtitxmm$,[email protected] Lx^tzx-y*.-;uxm^u r v > 5 co-e, m&jizm-^zzittfX'gte^fr'. zti£x<D£ik{mt0mk>ft'xzfrrf£g£tu>o Zomm«4¥<D 1 M fr h X 7 - h L,tz b COT'S)-5 ^ P>, 5 *T'Kti8SrSflti.±£OS$W£-ET-feE>-7o EBfi-£3E-?fct)<Di:E^^v^cDi:£ itfiH"5 £ <hiS0

7 .ts-fZf

Sr^mcf *-Zhy')7Xtebskio¥&±cD&Rmmrf&'9. m&ziib<z>mm*ffln'c¥xt>-?tza $ sir4-00 m&gftt-m.bxa*), -k^ambmMoB^mi$.i-?>zt^x^tz0 ttz, 4-m orcD5)-S(7DE5?lc-3^TI®AH®^)BE1"'5 ZtrfXZtZo

tiLto

- 3 -

Page 7: ji. —W >fta

b g m

n b ft m $

3E 9B(zk) fiKBS

10B (*) -y% yx*■yr— 7V227*')»"S

r u xxxv yy-y-f hss$tt« 83$11 B (A) 7>>nr w

— is K — — Sf

12B(±) v K — — 55

138(B)

14B(fl) ■N

► TRLtClS* • SH.S&

J

15 B(*)

16 B ( tK )

17B (*) .* .)!/*• JU>£K--S

18B(&) y K —- %-ffifflS

- 4 -

Page 8: ji. —W >fta

rethnical Digest of the International PVSEC-7, Nagoya, Japan, 1993

Wi: -/

p-n-B-9

Long Term Performance Modelling Of Amorphous Silicon Photovoltaic Modules

IanMuirhead

Telstra Research Laboratories,Telstra Corporation

ABSTRACT

A number of amorphous silicon modules have been exposed in different Australian climates for up to five years. Changes in maximum power output are modelled using two different mathematical models. Comparisons arc made of extrapolated lifetimes using the two models. The effects on long-term changes in power from both climate and the time of year when modules ip tailed are examined. Differences in stability betweecn two different module tcchologics are also examined.

1. IntroductionThe New Energy and Industrial Technology Develop­

ment Organization (NEDO) of Japan, together with Telstra Corp­oration (formerly Telecom Australia) have been conducting a joint

I research program on new photovoltaic technologies since 1980. In | recent years the project has focussed on thin film technologies, .including single and multi-junction a-Si, and CdTc modules.

A number of a-Si modules have been exposed in outdoor field trials at several Australian sites since 1987, examining the stability of different types of a-Si modules under different climatic conditions. The change in performance of these modules has been closely monitored over that time. Both annual cycles and long term trends in the behaviour of the module parameters are clearly visible, with changes in Pmax of up to 35% being observed.

It is. necessary to estimate the performance of an a-Si module over the design life of a photovoltaic project. Using the df btained from the joint NEDO - Telstra project the suitability ot aunple mathematical models to achieve this was assessed.

2. Measurement of a-Si module performanceData for two different module technologies were used in

this paper. Module type A was a multi-junction cell module optimized for efficiency rather than stability. Module B was a single-junction cell module. Both module types were obtained in 1987 as a part of an evaluation of commercial and pre-production samples. Four modules of type A and one of type B are examined in this paper. Module >4/ was installed early winter at ML Bullcr in south-eastern Australia; a mountainous region generally covered with snow for around three to four months of the year, but with mild summer days. Modules A2, A4 and B1 were installed at Clayton in southern Australia which has a temperate climate. Modules A2 and A4 were installed in the field 18 months apart, in early winter and early summer respectively. Module A3 was installed in early summer at Cloncurry, a town situated inland, north-eastern Australia where the climate is hot and dry.

Modules AJ, A2, A4, and B1 were regularly removed from the field and measured in a large area pulsed solar simulator.

using matching reference cells. IV parameters for module A3 were obtained from an outdoor field test site using a remote data logging system. There will be slight differences between indoor and outdoor measurements because of the different light spectra and measurement techniques IV.

3. Modelling module performanceAll modules showed an initial, rapid reduction in

normalized maximum power output (P^^), attributed to the well- discussed Staebler-Wronski effect. Imposed on this is a seasonal variation in efficiency, with a maximum occurring during late summer, and a minimum during late winter fU. From the point of view of a remote area power supply (RAPS) engineer, it is the lowest module efficiency which will determine the RAPS design, particularly as this often occurs in winter around the time of lowest average insolation. Therefore, this analysis ignores seasonal variations rn'rmax. It only considers the initial rapid degradation once the modules were exposed outdoors, and the lowest value of P^,y for each subsequent year of exposure.

Initial tya simple exponential model was used. By con­sidering the abscissa in terms of Loge(t), where t is the cumulative exposure time in days, a linear least-squares fit to the equation:

Pm« = C0 + Ci.LOGe(t) (1)

could be used. Changes in P^^ for modules AJ, A2, and A3 were modelled using equation (1), representing exposures in cold, temperate, and hot climates. Results from the regression are presented in Table 1 and graphed in Figure 1 below.

Cn c, R-squaredModule A1 100.0 -2.62 0.999 *Module A2 102.1 -3.16 0.980Module A3 100.4 -2.87 0.986

4atXX

Table 1. Least squares regression parameters using equation (1).

The fit of data is close for all three modules, with curves for Al and A3 passing through the initial normalized Pmax value of 100%. It was expected that the rate of degradation for a module in a cold climate (module Al) would be greater than that of a similar module in a hot climate (module A3). Temperatures would be lower, so annealing of the modules would be less. The data presented in Fig. 1 and Table 1 do not support this hypothesis. Module degradation rates are similar. This suggests that the module temperatures reached at each site in the hotter months are sufficiently alike to produce a similar degree of annealing.

- 5 -Int’l PVSEC-7 • 461

Page 9: ji. —W >fta

KEY: a Ml BuBer ♦ Clayton o Qoncuny

. 105

: flo -

o 75 n

Exposure time - LOG(days)

Fig. 1. Least-squares fit of the decrease in P_.„ for modules exposed in a cool (module AJ), temperate (A2) and hot (A3) climate.

Guidelines for Telstra engineers quote an cnd-of-life condition for crystalline silicon PV modules of Pfn>x = 80% of rated Pmix. The power output from all three a-Si modules had fallen below than criterion within 6 years. Assuming that a lifetime of 15 years would be required, the end-of-life P^^ for modules Al, A2, and A3 are predicted to be;-77%, 75%, and 76% of rated P^^ respectively. Not significantly different considering the limited data for analysis.

A comparison was made between the decrease in Pmay for modules A2 and Bl, both installed at the same location at the same time. Further, modules A2 and A4 were modelled to examine how differences in the initial degradation in P^.y would affect modelling of long-term behaviour. As discussed, outdoor exposure began for module A2 at the beginning of winter. Module A4 was installed at the beginning of summer, part way through the period of the year during which a restoration of Pnux- from module annealing is observed.

Data indicate that a model improved on (1) would be needed to properly describe the behaviour of module Bl. Two models were tried /3/:

P-u, - Co - C,(l - e-lfr,) - C,(l -e-t*,) (2)

P»«-Co-C1.LOQ(t).C1.t (3)

Model (3) used two less parameters but provided the better fit to these data..The exponential term represents the initial rate of degradation which proceeds towards saturation, while the small linear term represents a slow, continuous degradation of the module. A correction tom for long-term behaviour such as is used in (3) is sensitive to errors introduced from relatively few data. Results using (3) are presented in Fig. 2 and Table 2. /

Both Fig. 2 and Table 2 indicate the mqltijunction Bl module was initially the most stable, but started to degrade more rapidly than A2 and A4 towards the end of the analysis. This is possibly due to different rates of degradation in the separate a-Si layers within each cell. It was anticipated that module A4 would

initially degrade slower than A2 because of early summer ** annealing. This was not observed. Predictions for P_.„ afteTiv years of exposure using (3) are.66%. 70%, and 65%j>f originA

Pro** f°r modules A2, A4, and Bl respectively. Extrapolating^] 15 years of exposure for module A2 using (3) provides-^] estimate ofP^^ approximately 9% lower than (1). J

KEY: ♦ Module A2 ® Mockile A4 * Module Bl

Exposure time - LOG(days)

Fig. 2 Degradation of modules A2, A4, and Bl modelled using (3)

Cn Ci c, R-squaredModule A2 100.9 2.75 0.0021 0.991Module A4 99.7 3.26 0.00038 0.992Module Bl 100.7 1.82 0.0036 0.988Table 2. Model (3) parameters for modules A2. A4, and Bl.

4. ConclusionBecause of a limited sample size it is not possible to

generalize results from this analysis. However, a simple model can be used to describe the observed behaviour of the single­junction a-Si module. Moderate changes in climate do not appear to have a significant effect on degradation rates. The time of year when a module is totalled will affect the initial changes in Pm>y but not the long-term rate of degradation. Further data arc required to determine the best model for predicting the long-term behaviour of the multi-junction module

5. AcknowledgementThe permission of the Director of Research, Telstra

Research Laboratories, to publish this paper is. acknowledged. Also the assistance ofNEDO in this project, and their approval to publish results, is acknowledged.

6. References

[1] L Zanesco & A. Krenzinger, "The effects of atmospheric parameters on the global solar inadiance and on the current of & silicon solar ceU"frogress in Photovoltaics.Vl n3 (1993) 169-180[2] RE. Gibbs & D.J. Kuhn,: "Evaluation of power amorphous modules", PVSEC-5 (1990) 897-900[3] L. Mrig and W.B. Berry, "Stability, performance, and trend modeling of amorphous silicon photovoltaic modules”, Mat Res. Soc. Symp. Proc., 149, (1989), 453-458

Int’l PVSEC-7 • 462- 6 -

Page 10: ji. —W >fta

Technical Digest of the International PVSEC-7, Nagoya, Japan, 1993 p-n-B-6

Controlled Temperature Annealing of Amorphous Silicon Photovoltaic Modules

Ian Muirhead

Telstra Research Laboratories,Telstra Corporation

ABSTRACT

lata collected from over five years of field exposure of morphous silicon modules indicate the power output is subject to long-term degradation rate upon which there is superimposed an anual cycle caused by thermal annealing. Experiments have been irried out to determine whether controlled thermal annealing can e used as a practical method to restore lost performance of egrarW modules. Module type, temperature and duration of nnei v, and post-annealing stability are some of the factors ivestigated. Results indicate that 100 hours of annealing at 00°C is sufficient to regain much of the lost power. Further nnealing can start to decrease power output

. IntroductionThe New Energy and Industrial Technology Develop-

lent Organization (NEDO) of Japan, together with Telstra Corporation (formerly Telecom Australia) have been conducting a >opcrative research program studying new photovoltaic xhnologies since 1980. The first thin film modules, single- motion and multi-junction cell amorphous silicon (a-Si), were istalled at Australian field sites in 1987. Recently the project has een expanded to include cadmium telluride modules.

The exposure trials aim to examine the stability and liability of a-Si modules under different climatic conditions. The lange in performance has been closely monitored, with both anual cycles and long term trends in the behaviour of the module aranWers clearly visible /!/. One of the field sites chosen for this isct was Telstra Research Laboratories in Melbourne, south- astera Australia. The a-Si modules are regularly measured in a lrgc area pulsed solar simulator (LAPSS). In this way the IV ammeters of the modules are measured under standard onditions. Variables which affect measurement of modules under atural sunlight, such as changes in the the atmosphere/2/, are voided.

Changes in Pmax from two modules exposed outdoors at Melbourne arc presented in Fig. 1. The initial reduction in lodule efficiency, indicated by the decrease in can bettributed to the well documented Staebler-Wronski effect The nnual partial improvement in efficiency which starts after winter nd continues until after summer is due to a thermal annealing irocess which restructures the a-Si cells at the molecular level /3/. This paper describes some of the results obtained from a scries of xperiments designed to investigate which factors have most fleet on the annealing process.

Structure of the temperature annealing experimentModules from four different manufacturers were chosen

for annealing. These modules had been exposed outdoors for between four years and five and one half years. Module type A was constructed from multi-junction cells, while modules B, C, and D contained single-junction cells. Module types A, B, and C were being studied as a part of the NEDO - Telstra research program, while module D was purchased from an American manufacturer.

KEY: ■ Module type A o Module type C

• 100

Exposure tIme

Figure 1. Maximum power output measured for two modules exposed to the Melbourne climate for over five years.

The effects of both temperature and duration of annealing were examined. Separate groups of modules were annealed in a dry air environmental chamber for increasing lengths of time at 70°C, 85°C, and 100°C. After each period in the chamber the modules were withdrawn and measured in the LAPSS. Temperatures up to 74°C have been recorded on the rear surface of type A modules at Cloncurry, a hot, dry location in central north-eastern Australia. Such conditions are represented by annealing at 70°C. The upper limit of 100*0 is the highest temperature recommended for dry heat testing of PV modules /4A

3. Results from the thermal annealing experimentsInitially one module of each type was annealed for up to

200h at 70°C. The average improvement in power (relative to when the module was new) was approximately 4.5%, with the greatest gain of 7% occurring for module type D, which had degraded the most from outdoor exposure. From these data there appears to be little benefit in extending the annealing time past lOOh, as the rate of improvement in either slows orreverses. From Fig. 1, the average increase in t*irouSh summer annealing for module type C over the last three summer periods was 4.2%. The same module type in the annealing

- 7 -Int’l PVSEC-7'455

Page 11: ji. —W >fta

experiment improved 2.5% after 200h, although there was an unexplained reduction of 2.5% in after the initial 5h of annealing (sec Fig. 3). A slight reduction in Pfnax was also observed after 5h for module type A.

Changes in module after annealing at 100°C are shown in Fig. 2. For all modules the increase in Pnux was greater than for annealing at 70"C. This was the expected result as the majority of physical processes occur more rapidly at higher temperatures. The biggest improvement was observed in module Al, where the measured value of P^^ increased 20%. Interestingly, even before annealing of this module, P^.„ = 102% of it's initial measured maximum power. One possible explanation is that the module improved in output power for a short period after manufacture, which would affect the normalization value.

The increase in Pm^y for all modules either slows, or reverses after lOOh at 100°C. This is similar to the response of the majority of modules annealed at 70°C and 85°C, measured on different days. While there is obviously a limit to the increase possible in P^^ through annealing, the decrease after 200h was not expected. To examine this effect further, the modules umealed at 100°C for 200h were then annealed at 70°C for a further 1168h. The changes in Pmix (relative to new) from the values at 200h are presented in Table 1. There is no obvious pattern in the change in P^^, fill factor, or open-circuit voltage, however short-circuit current increased for all modules.

2 MU

e ioo

z 50

Anneal ing t lire hours

The stability of P^^ after annealing was also briefA r

investigated. Modules which were annealed at 85"C for 200h wty^ j then exposed at the Melbourne field site for 91 days over wint^T The mulit-junction module A changed little in P^^ but the othert modules degraded to around the pre-annealed levels (Table 2.)/\

Figure 3 The influence of annealing temperature on the change in Pma%. (lines) and Fill factor (points). Data for modules of type C are presented here.

Normalized power - •/• f A B C DBefore annealing 78 78 84 62 ,•After annealing 89 86 93 71After 91 days of outdoor exposure 87 78 84 60 'Table 2. Stability of Pp,,y for modules annealed at 85°C after 91 days of outdoor winter exposure at the Melbourne field site.

4. ConclusionsBecause of the limited number of samples only broad

observations can be made. The degradation of a-Si modules can be partially reversed by thermal annealing. The rate of improvement is greatest between lOh and lOOh of annealing,, with ^max sometimes starting to decrease after 200h. Annealing occurs faster at higher temperatures, the exact response depending on the module being annealed.

vigure 2 The change in module P^^ after annealing at 100°C for up to 200 hours.

Module type A/1 An B C/1 02 D% change in P^^ after extended annealing

-2.8 1.8 2.7 1.6 -2.9 7.5

Table 1. The change in P|nlx after extending the annealing process at 70°C for 1168h beyond the initial 200h at 100°C.

The effect of annealing temperature on both changes in P^,y and fill factor for a module of type C can be seen in Fig. 3. From the data it appears that the number of defects in the a-Si material which lead to a reduction in P^^ actually increase as a result of short annealing at the lower temperatures. This was observed in more than one module. The rate of improvement in both Pmix and fill factor increases with temperature, and tapers off as the time of annealing increases because of the reduced number of cell defects capable of being removed by annealing.

5. AcknowledgementThe permission of the Director of Research, Telstra

Research Laboratories, to publish this paper is acknowledged. The help of Mr. B. Edwards and also the assistance of NEDO in this project, and their approval to publish results, is acknowledged.

6. References[1 ] L Muirhead, "Long term performance modelling of amorphous silicon photovoltaic modules", PVSEC-7 (1993)[2] I. Zancsco A A. Krenzinger, "The effects of atmospheric parameters on the global solar inadiance and on the current of a silicon solar cell"Progress in PhotovoItaics.Vl n3 (1993) 169-180[3] H. Yamagishi, K. Asaoka, W.A. Nevin, M. Yamaguchi, and Y. Tawada, "Light-induced changes of amorphous silicon solar cells by long-term light exposure", 22nd IEEE Photovoltaics Specialists Conference (1991) 1342-1346[4] Standards Association of Australia, "AS2915-I987. Solar photovoltaic modules - Performance requirements", (1987), pi8

- 8 -InVl PVSEC-7 • 456

Page 12: ji. —W >fta

WK2-J

Technical Digest of the International PVSEC-7, Nagoya, Japan, 1993 P-II-B-10

Long-Term Reliability on Amorphous Silicon Solar Cells

Kiyoshi Takahisa, Kuniomi Nakamura, Sigcji Nakazawa, Yoshinobu SugiyamaElectrotechnical Laboratory

Junta Nose, Sanekazu Igari, Tunekichi Hiruma JMI Institute

Device Functions Section, Electrotecnical Laboratry 1-1-4 Umezono Tsukuba Ibaraki, JAPAN 305

AbstractThe long-term reliability on amorphous silicon solar cells for more than ten years is estimated by the simulation model using the Weibull function and experimental data of '88 products exposed outdoors for five years. The decrease of the conversion efficiency after the exposure for 10 years is estimated to be 25% and 35%, respectively at the best and the worst The latest products of initial conversion efficiency

:r 13% in cell-phase would be expected to have efficiency of 10 % over a decade.

1 IntroductionAmorphous silicon solar cells arc world-widely expected as a clean energy source on a large scale while they have critical aging effects on photovoltaic conversion efficiency due to light irradiation.Quantitative estimation of the lifespan and how the conversion efficiency decreases is going to contribute to practical use of the solar cells. Therefore, long-term exposure test on practical condition has being carried out. Since solar cells are under development, lifetimes of newer products can not be estimated based on the experiment with old ones. By considering the performance of old products, improved features of new ones and deterioration mechanisms, the lifespan of new products is believed longer than that of old ones. Since the deterioration depends highly on the weather conditions, results of exposure test can not he applied in areas on different conditions. For the

mplement to exposure test, we have proposed simulating now solar cells deteriorate on arbitrary weather condition with a mathematical model which is based on the composite experiment with light and temperature at laboratory in short period."""Reported in this paper is the estimation of deterioration for twenty years by ten-year and five-year exposure tests and our model.

2 Exposure TestExposure tests are conducted in Setagaya, Tokyo for five years with products made in 1988 and for ten years with ones made in 1983. All test samples are single-module and specifications are as follows:

'88 products : 24 modules, 146cm2 : 5 modules, 312cm1

'83 products : 3 modules, 1920cm1 Every photovoltaic conversion efficiency is measured under 25*C, 1 SUN. Fig: 1 shows deterioration of photovoltaic conversion efficiency. '88 products are undoubtedly improved in comparison with '83 ones ; initial conversion efficiency of '88 products are 5.3% in average better than average value 3.4% of *83 products. The deterioration of *88 products is more gradual than that of '83 products. The deterioration of '88 products plunges in the first several months while it is gradual from then.

3 Mathematical Model of Deterioration 3.1 Constant-stress experiment & model of deterioration

Deterioration of photovoltaic conversion efficiency depends chiefly on light intensity and temperature of cells. We have conducted constant-stress experiments with some pairs of light intensity and temperature and then have developed a mathematical model which expresses the deterioration characteristics with these factors. Three light intensities or more and also three temperatures or more should be combined in order to make an accurate model. Mathematical model obtained by the experiment is

-(if= ........... (1)

where t]N is conversion efficiency normalized by initial value, t is irradiation time, a and t are constants which depend on a quality of sample, and obtained by experiment, or and t above are easily calculated through this model since deterioration of conversion efficiency is expressed as a straight line on Weibull probability chart. So absolute value of the straight line gradient indicates or. and the time when t\n reaches 63% indicates r . a has been found to have temperature dependence and r

has also temperature and light intensity dependence, then or and r are expressed as

La = \ekT............................ (2)

, at = \rfe kT............................... (3)

where T is temperature of the cell. I is relative light intensity [SUN], A,, B,, A2,.B2 and p arc constants obtained by experiments while they depend on device structure, material and production process, k is Boltzmann constant.

Fig. 2 -shows experiment with a sample similar to *88 products. This result gives each constant values in the mathematical model. (Table 1)

Table 1 Constants of Deterioration Model

Bx (eV) A, (hr.) Bi (eV) P

1.22xRP 0.132 1.4x10" 0.76 1.1

3.2 Recovery Experiment & Mathematical Model of Recovery

Solar cells recover their conversion efficiencies during night, when they are not under light irradiation. Temperature and deterioration state settle the recovery characteristics that is given

=A (4)

where 77, is recovery amount, A is deterioration until the recovery phase, T0 and y are obtained by experiment. r„ is dependent on temperature and expressed as

.irn = A,e tr (5)

- 9 - Int'l PVSEC-7 - 463

Page 13: ji. —W >fta

ru

a3

1988/8/1 (start day)

- 1988/10/29 ------- 1989/6/1

*88 products

2 4 6

Fig.l Result of Exposure Test

1.25 SUN0.8 SUN

0.8 SUN.y 0.95

1.0 cr1.25 SUh

0.5 -° 0.80

0.70 -

Fig. 2 Result of Constant-Stress Test on Weibull Probability Chart

1989/6/1 (start day)

!i"8

5

worstsimulation

model 2

0.5 -

0.4

i \ fcV- -1.00.5 Year

10 20

where T is temperature of the cell.X^and^ are obtained by experiment. This mathematical model has the same form as the model of deterioration and thus y, as an absolute value of gradient on Weibull probability chart, and r0, as a time for 7), to reach 63% of A, are easily calculated. Constants obtained by experiment vary to a large extent according to a sample and amount of deterioration (further study is needed to compensate this problem). For the simulation, constant values shown in Table 2 were picked up out of some sets obtained by recovery experiments.

Table 2 Constants of Recovery Model

^3 (hr.) 4, (eV) r

0.5+ 0.1 x year 2.00.43 (model 1)0.50(model 2)

4 Estimation of Long-term Deterioration With mathematical model of deterioration and recovery, and weather records of the area where solar cells are set] deterioration can be simulated. The exposure test results of '88 products and simulation result on Weibull probability chart are shown in Fig. 3. The tendency of simulation is not in accordance with the test, however is useful enough to tell the future tendency. The reasons of disagreement are difference of specification of samples, variation of samples and errors of mathematical model.The linear regression curves of the worst result and the best result of exposure test are shown in Fig. 3. Based on these curves, deterioration estimated for ten years and twenty years are shown in Table 3.

Table 3 Estimated Percentage of Deterioration

the best the worst10 years 25 -r 32

20 years 35 * 38

5 ConclusionEstimation above-mentioned is made on outdated products, not on the latest products. The fact initial conversion efficiency value and manufacturing process are improved assures that the latest products work at higher efficiency. The latest products of initial conversion efficiency over 13%w in cell-phase would be expected to have efficiency of 10 % over a decade.Estimating deterioration over a decade by experiment takes too much time and consequently both accelerated experiment and simulation combined with weather conditions are needed for the sake of long-term estimation in short time. Detailed model for deterioration and recovery, and precise estimation are for future study.

Reference[1] Nakamura, et al.:“A Prediction Method of Degradation

of a-Si:H Solar Cells” Technical Digest of the Int'I PVSEC-5, pp359/362,1990

[2] Nakazawa, et al.:“A Prediction Method of Degradation of a-Si:H Solar Cells (No.l)" IEICE Technical Report R89-60, 1990 (In Japanese)

[3] Nakazawa, et aI.:“A Prediction Method of Degradation of a-Si:H Solar Cells (No.2)" IEICE Technical Report R90-50,1991 (In Japanese)

[4] Mistui Touatsu Co..'“High Quality Process Technology” 30th Commitee of Solar Energy, pp6/10, 1993 (In Japanese)

Fig. 3 Estimation oh Weibull Probability Chart for *88 products

Int’I PVSEC-7 • 464 10 -

Page 14: ji. —W >fta

To be published onProceedings of PVSEC-7, "Special Issue of Solar Energy Materials & Solar Cells (SEM & SQ.

Long -Term Reliability of Amorphous Silicon Solar Cells

Kiyoshi Takahisa, Kuniomi Nakamura, Sigeji Nakazawa, Yoshinobu Sugiyama

Electrotechnical Laboratory

Junta Nose, Sanekazu Igari, Tunekichi Hiruma

Japan Quality Assurance Organization

Device Functions Section, Electrotechnical Laboratory

1-1-4 Umezono, Tsukuba, Ibaraki, JAPAN 305

Fax 0298 58 5476, ( Word pro.,'Macintosh)Abstract

The long-term reliability of amorphous silicon solar cells of 1988 products over more than ten years is

estimated by a simulation method using the Weibull function with the experimental data of 1988 products

exposed outdoors for five years and those of 1983 products exposed outdoors for ten years. The mathematical

model is developed based on the accelerated tests and recovery tests in a laboratory for a short period of time.

The simulation method is discussed. The decrease of the conversion efficiency of 1988 products after ten years

of exposure is estimated to be 25% and 35% at best and worst, respectively. The newest products having initial

conversion efficiency of over 13% in a small cell are expected to maintain an efficiency of about 10 % at best

over a decade.

1. Introduction

Amorphous silicon solar cells are expected as a clean energy source worldwide. However, they suffer

critical aging effects on photovoltaic conversion efficiency due to light irradiation.

Quantitative estimation of the decrease in the conversion efficiency is important to the widespread use of

solar cells. Therefore, long-term exposure tests under practical conditions are being carried out.

Since solar cell fabrication technology is being steadily improved, lifetimes of newer products cannot

simply be estimated based on the experiments with old ones. By considering the performance of old products,

improved features of new ones and deterioration mechanisms, the life span of new products is believed to be

longer than that of old ones. Results of exposure tests cannot be applied under different weather conditions,

since the deterioration depends highly on the weather conditions. As a complement to exposure tests, we

proposed a simulation method of the deterioration of solar cells under arbitrary weather conditions with a

mathematical model which is based on the accelerated tests and recovery tests in a laboratory for a short period

of time^^l

This paper reports the estimation of deterioration over twenty years based on results of ten-year and

five-year exposure tests using with our model.

- y

11

Page 15: ji. —W >fta

2. Exposure Test

Exposure tests were conducted in Setagaya, Tokyo for five years with products made in 1988 and for ten

years with products made in 1983. All test samples are single-module types and specifications are as follows

1988 products: 24 modules, 146cm2

: 5 modules, 312cm2

1983 products: 3 modules, 1920cm2

All photovoltaic conversion efficiencies were measured under the conditions of 25*C, 1 SUN.

Figure 1 shows deterioration of photovoltaic conversion efficiency. The deterioration of 1988 products is

plotted as maximum, minimum and average of 29 modules. The 1988 products show marked improvement in

comparison with 1983 ones; the average initial conversion efficiency of 1988 products is 5.3% better than that

of 3.4% for 1983 products. The deterioration of 1988 products is more gradual than that of 1983 products. The

deterioration of 1988 products proceeds rapidly in the first several months, and becomes gradual from then on.

3. Empirical Model of Deterioration

3.1. Constant-stress experiment & model of deterioration

Deterioration of photovoltaic conversion efficiency depends mainly on light intensity and cell temperature.

Light-induced degradation has been described as a saturation effect. On the basis of this description, Ullal et

al.w and Tsuda et al.151 approximated the degradation of cell efficiency by the double exponential equation.

However, long-term degradation of cell efficiency does not show perfect saturation in our experiments. The

slight decrease in the saturation slope affects the prediction of lifetime.

We have conducted constant-stress experiments with certain values of light intensity and cell temperature

and then developed a mathematical model which expresses the deterioration characteristics with respect to these

factors. The mathematical model obtained by the experiment is

r]K=l-e (1)

where rjN is conversion efficiency normalized by the initial value, t is irradiation time, and CL and T are

constants which depend on the quality of the sample and are obtained experimentally. The expression is similar

to the time dependence of the defect density expressed by the stretched exponential equation161, a and T above

are easily calculated through this model since deterioration of conversion efficiency is expressed as a straight

line on a Weibull probability chart. The absolute value of the straight line gradient indicates CL, and the time

when rjN reaches 63% indicates T. (X has been found to be temperature-dependent and T to be temperature-

and light-intensity-dependent. Since a is less than 0.3, the model expresses an initial rapid deterioration and a

slow one afterward, a has characteristics similar to deterioration velocity, therefore, its dependence on temperature

is expressed by Arrhenius' reaction rate model. T corresponds to reaction time, therefore, its dependency on

temperature is also expressed by Arrhenius' reaction rate model. In addition, T is inversely proportional to light

12 -

Page 16: ji. —W >fta

intensity to the /3-th power171. Therefore, a and T are expressed as£l

a = ^ e tr................................................................................................... (2)

*r = V'^ *T.................................................................................................... (3)

where T is the cell temperature, I is relative light intensity [SUN], and A,, B,, A2, B2 and fS are constants

obtained experimentally and depend on device structure, material and production process. In particular, A2 and

B2 are determined by their dependence on temperature under 1[SUN]. k is Boltzmann’s constant. Figure 2 shows

experimental results of samples similar to 1988 products. The sample area is 600cm2. These results give the

constants in the mathematical model (Table 1).

3.2. Recovery experiment & mathematical model of recovery

Amorphous silicon solar cells recover their conversion efficiencies at night, when they are not under light

irradiation. Temperature and the deterioration state determine the recovery characteristic that is given as

*7 r ~ A3 l-e (4)

where rjR is extent of recovery, A is the deterioration just before the recovery phase, t' is time at night, and XD

and y are obtained experimentally. XD is also expressed using Arrhenius’ reaction rate model in the same way

as T. Therefore XD is expressed as

£ixD =A2e kT........................................................................................................(5)

where T is the cell temperature, and A3 and B3 are obtained experimentally. This mathematical model is of

similar form as the model for deterioration and thus y, the value of the gradient on the Weibull probability

chart, and XD, the time for TjR to reach 63% of A, are easily calculated.

Constants obtained experimentally vary to a large extent according to the sample and degree of deterioration

(further study is needed to rectify this problem). For the simulation, the constants shown in Table 2 were taken

from some sets of data obtained from recovery experiments. In the table, the deterioration effect is incorporated

into A3 in term of the number of years for convenience.

4. Simulation Method

4.1. Modeling of the environment

Solar irradiance and cell temperature, which are the causes of degradation and recovery, are derived from

modeling the weather data. Figure 3 shows the modeling method of solar irradiance. Daily sunshine duration ts

is divided into morning, midday, and evening. Irradiance is then approximated as

morning and evening: I^=0.6

midday: L=1-8 Lean • .........................................................

Here, Imean = (global solar irradiation / ts) X(conversion coefficient181 for direct solar irradiation)

13 -

Page 17: ji. —W >fta

Cell temperature is influenced by both air temperature and irradiance. Here, morning air temperature and

evening air temperature are assumed to be the daily mean air temperature of the meteorological data, and the

midday temperature is assumed to be the daily maximum air temperature of the meteorological data. The night

temperature is calculated so as to make the average temperature of the day become equal to that of the

meteorological data. Then, adding the influence of irradiance, the cell temperatures are estimated by the following

equations. The value of 0.35 in the equations below is the temperature conversion coefficient derived experimentally,

morning and evening: Tcein = Tmean + 0.35/%

Kell2

(24-2/3-l/3t. x7L(7)

midday: Tcell2 = + 0.35 /2

night: Tcem - 24-f

4.2. Simulation of the degradation process

During outdoor exposure, the environmental parameters (cell temperature, irradiance and sunshine duration)

change from hour to hour and day to day. Therefore, the cell temperature and light intensity are calculated from

meteorological data using equations (6) and (7) at each quarter of one day. Then TJ N for each quarter can be

obtained using equations (1) to (5). Since equation (1) is derived under constant stress, T]u at every quarter can

be calculated, as shown in Figure 4(a), and then the tendency of deterioration is obtained from the complete

joined chart of T]N, as shown in Figure 4(b). Here the effect of stress changes in the environment, such as

temperature change and on-off irradiance, is assumed to be negligible.

5. Estimation of Long-Term DeteriorationUsing the mathematical model of deterioration and recovery, and weather records191 of the area where solar

cells are installed, deterioration was simulated. The exposure test results of 1988 products and the simulation

results on the Weibull probability chart are shown in Figure 5. The simulation results are shown by broken

lines. Although the tendency of simulated efficiency is not in complete agreement with that of the exposure test,

it is good enough to reveal a general tendency for long-term estimation of degradation. One of the reasons for

disagreement may be differences in specifications among samples. Therefore we can extrapolate the exposure

test curves from the straight line on this chart.

The linear regression lines of the worst result and the best result of the exposure tests are shown by the

straight lines in Figure 5. Based on these lines, the estimated deterioration for ten years and that for twenty years

are shown in Table 3.

6. Conclusions

The above-mentioned estimation is carried out for outdated products, not for the newest products. The fact

that the initial conversion efficiency value and manufacturing process have been improved assures that the

14

Page 18: ji. —W >fta

newest products operate at higher efficiency. The newest products having initial conversion efficiency of over

13%t101 in the cell phase are expected to maintain an efficiency of 10 % over a decade.

Estimating deterioration over a decade experimentally is too time-consuming; consequently both accelerated

testing and simulation combined with weather conditions are required for long-term estimation in a short time.

Reference

[1] K.Nakamura, S.Nakazawa, K.Takahisa and K.Nakahara,Technical Digest of the Int'l PVSEC-5, (1990)359

[2] S.Nakazawa, K.Takahisa, K.Nakahara and K.Nakamura, IEICE Technical Report R89-60, 1990 (In Japanese)

[3] S.Nakazawa, K.Takahisa, K.Nakahara and K.Nakamura, IEICE Technical Report R90-50, 1991 (In Japanese)

[4] H.S.Ullal, D.L.Morel, D.R.Willett and D.Kanami, Proc.l7th IEEE Photovoltaic Specialists Conf.,Orlando,FL.,

(1984)359

[5] S.Tsuda.N.Nakamura, k.Watanabe.M.Nisikuni.M.Ohnishi, S.Nakano, H.Shibuya and Y.Kuwano.Tech. Digest

of 1st Int. Photovoltaic Science & Engineering Conf., Kobe, (1984)213

[6] D.Redfield and R.H.Bube, J. of Non-Crystalline Solids 114, (1989)621

[7] T.Kobe.Y.Nakata, T.Machida, Y.Yamamoto and T.Tsuji, Proc. 18th IEEE Potovol. Spec. Conf., Las Vegas,

(1985)1594

[8] Japan Solar Evergy Society; Handbook of solar energy utilization (1985) (In Japanese)

[9] “Kosokisho jihou (Reports of Aerological Observatory JMA)", (1989.2-1989.12) (In Japanese)

[10] K.Miyachi.N.Ishiguro, T.Miyashita, N.Yanagawa, H.Tanaka, M.Koyama, Y.Ashida and NJFukuda, 11th

E.C. Photovoltaic solar energy conference, October (1992)88

15 -

Page 19: ji. —W >fta

Table 1. Test result and constants of deterioration model

(a) Test result (b) Constants of deterioration model

Test conditiona X

(hour)SUN Cell temperature CC)

0.8 45 0.16 16,8001.25 45 0.16 10,2000.8 25 0.22 2,600

1.25 25 0.22 1,600

-4, 1.4 x 10'3

5, 0.13 (eV)

P 1.1

1.4 x 1016 (hr)

b2 0.76 (eV)

Table 2. The constants of recovey model

^3 (hr.) s3 (eV) Y

0.5+0.1 x year 2.0 0.50

Table 3 Estimated Percentage of Deterioration

the best the worst10 years 25 35

20 years 32 38

16 -

Page 20: ji. —W >fta

88 products

83 products

Years

Fig.l Result of Exposure Test

zR'

I

Fig.2 Result of constant-stress test on LUelbull probability chart

17 -

Page 21: ji. —W >fta

Nor

mal

ized

Eff

icie

ncy

Global solar irradiance pattern (June, MATUMOTO japan )

----Simulated pattern

Daily sunshine

duration (t$)

Fig.3. Simulating method of daily irradiance.

middday

morning—

TesIZ a Izevening

(a) Sequence of simulation.(b) Synthesis of simulated patterns.

Fig.4. Simulating method over one day.

18 -

Page 22: ji. —W >fta

Nor

mal

ized

Effi

cien

cy

Fig.5 Estimation on Weibull probability chart for '88 product.

Inin

(1/(1

— 7]

n ))

Page 23: ji. —W >fta

crU

1. as

2. mm

3. ttiSiXm ¥J$54F5/39B~5£23B

4. ttiEBKj (1) |f&£&

(2) 23th IEEE PV SHENSIttiS

(3) B*4fc^1S£-&l°J£8lfcM

5. tBE^fc,

fcBSSft isng^ ±4'®##

AMERICALOUISVILLE 23th IEEE PV Dr^e— h > B 7° U >X

AMERICALINCOLN

Dr John A Woollam

Dr Huade Walter Yao

AMERICAHONOLULU

- 21

Page 24: ji. —W >fta

6 .PjtFW

®PSB6<J

23th IEEE PV SH^=SI<Ot§£:fi 9 .

Mf,

(DPSSF5

1 9 9 3.5.1 1

i )E$##

*S@I) • PHOTO VOLT AICS; PROGRAM OVERVIEW 1992 BY NREL

(B«!l) • Outline of the Interim Report on the Methods of Future.

• The New Sunshine Program January 1993.

• PVTEC :%%##

ii)B

SI£<75ttcia^gi?gL*„

a) S%'1CD5S-K

b) -5.—y-'v-y-V-f

c) ef%gg%oES

a) 9 S^JtropvMa^-gtfNRELfc-y-'y-r'f 7<7)-g-St "C$ 6 4M. 9 4

4F$li$ 7 8Mfij£k*£o

b) 9 4#&?#<Om$ 6 MU. NRELT’IFflfi£ jiiS L T V >£ Kazmerski fi;(7) EliK

##. NRELU#LT*; 1. fiW;V-7‘li-kGi:S

SGkk ITV'J, G<7)1# 1:E#t &o i£. S 6MI±PVMATfflU

clPVUSA l±£i±4 0 0kW?$)3^. *K%i:U4 8 OkWOVy^

GfLii. 8 OkW i&MLtztzibX'&Z„

d) Dr ^ — h 'y B 7*'l 77.RU. 7 "G'jH^'4" & G k k & & » f|tf£U. Roy

HaywigRtC^^, kS.fcil* k <DG k <, 6±#^#<7)1:0

- 22 -

Page 25: ji. —W >fta

(2) 23th IEEE PV

®P3£i69

23th ieee pvu

©msm

1 9 9 3.5.1 0 - 1 3

©AS

4" B3 CD ii 86 I*. 1993^5fll 0 B »' *> 1 4 B * T-. H A--Y hY 71/ ( Lou isville) CO Galt House Hotel V fM AS $ ft £. » S$ 0) ini B Rff A' ft £.M&gi M£T\ 7 n ? z? 2*m &&(D P. Basore ft?±A^r»S6X^S^^Z?UCov> X ft&Ltz. 1 IC^t.

& 1 2 3rd IEEE PVSC 'x tf> & $ £ 81 #U£ &

Regular Submissions La te-News Submissions Total

• Received: 440 • Received: 24 464• Not reviewed (too late): 18• Reviewed by Program Committee:• Accepted by Program Committee:

422268 : 2 2 290

Plenary: 24, Oral: 90, Poster: 154• Withdrawn prior to preliminary program: 3• Additional withdrawn prior to final program: 1• Presented at conference: 264 ? : 22 ? 286

U - hCd-%&aa&±f&3H4:%U±4 6 4 ft T' * <0 * A' S 81 jR 2 ft A: # $ li2 8 6 ft x$nnm e 2 % t ^ ^ m x & z> tz. * <d&& a<. eAn#$*5 e 0 0 & ttij HI 1C Jrb ^ L fc I 0 A' =L ^0 n ^ V'.

£ SF »»J 0 « I* S ft fc » X tt, 8Sttf*Ki3J:tfl/-h-a-*8SttftKlC-3V* t 0 1 i:5tt.

1 0 i{t, ^ o rx i* *& a s i, y ^;i/ y 7 x s i, HUK. m - v, o t 5. 81 #* ft Be 80 t tt , t£ H S i5 5 ft £ fi S ^ <. 7k V' T ^ X y A 5 4 ft, 7* A/77X5148 ft. » K, m-V, ^WCDMMlC^oTV'6. 81 ^ ^ td: 7 ^ ;i/ 7 7 X ^ 7 3 % ^ iE < . L/ X -r A li 5 3 % t (6 A> o fc.

HI J5'J tf> 81 #* & X ft T li, & 2 1C ^ * «k e> 1C 1 8 >r 0 £ & & < $ U vn 81 ft m A< RBfc U A; £ ® ft ft £. xmtfi 16 9ft£Sfc^<, O V't* F 'f 7 3 3 ft, B * 2 0

*S hB0 S i A< 6 6 ft, is X 7 A A< 5 6 ft, 7 *6 ^ 7 7 ^ S i # 5 0 ft,^ 5 0 ft, ffl - V A' 3 7 ft. ?t^3 OfrOJ0i:feoTVN5.

# & 85 <D # &0 # #. fiU B <D 9 B ( ^ ) T 4 3 1 &. 1 IB ( * ) CD & Jj X 4 9

2 &, Sft§cfi»^9 2i&l:0¥Tf, M ¥ ic irb £ U to 2 0 % 0 ft '> T & o tz.5 2 7J&TfeSifc3D'f), ^ B ge $: 1 0 0 A JX± M & A/ T, 6

5 0AW±«:*J*Lfcv'i:oii:T*ofc. # Ad # Be A< M '> l A: -- o <D zi ffi £ uT, First Circular COmtf *£&')#} 1*8 M<&mmx&SIZ % tz Is tz tz tb £ titm 2 ft Z>. B * A' «b CO ft £ ft Be \t 2 0 ft £ K -Y 7 1: & A' ft £ A<,

- 23 -

Page 26: ji. —W >fta

120

100

80

60

40

20

0Silicon Thin-Film IIIATs a-Silicon Terrestrial Space0 1- 2 3rd IEEE PVSC

OK y is a y <D J&• & m V It, gASi^&K C I S fc E <D & SI & m m fc 2 , m - V * «: 3 ,

7 ^ ;v 7 7 * S i M £ 4 , '>^7A$r5jg<kt>' - K T & S ti £- 1 -b y y 3 >

V fit $ $ tl tz.M bbe S iMlC7tyj/s>0#iattTIB©#tiofe.

• Si cells and Materials : 3 #• Crystalline Si Materials : 5

Multicrystal line Silicon: 15• Multicrystal 1 ine Si Solar Cel Is : 5 #

Crystalline Si Cells and Mode 1 i ng : 1 7 Si Device Modeling: 5 {£Crystalline Si Cell Technology: 6

ft t <d h b* v v * li r ib <d m V $> o tz t J& t> ft Z>.• UN S W (D * V a. - Jl m tf 2 0 % 1:1 l tz.• 3-D7ACCI S -fe ;u 00 #J ^ ft 1 7 % ( M o . 4 cm2).• ifyf'<7IWi/-7;i/-t;i/ro?li^^2 o %.• cuj§i0LPET't;bK{na$i 5% ( x tr m m 5 ^ m > .

fcm<D£m\i. b x%n\s\(Din<Dmv&&tikt. u r rh m s ft * f.« ISS 4a : The 1st International Conference on Photovoltaic

Energy Conversion (IC-PEC)• B is : 1994^12^50 *'e>9B• nfr : yx D T > Hyatt Waikoloa Hotel

- 24 -

Page 27: ji. —W >fta

|.2?23@IEEEPVSC

dk % 3- □ y /< 7i?7 -eofG

%

5?

i&JS 7yVy?

y4ryn

y?y-

K-fy

77yX

'f?V7

-f4-'VX

t7y**

X<

y

yv

1

X

X

74

y7yK

B$ 1

£m y

K

i1Xlj

V7

m

7

4X7JLyv

n*

n

#$7%1-&n

Si 3 l 1 2 7

S 9 4 1 1465

-feyV

T’o-bX&ftj 6 2 l l 1 1 12•fe yv • ^ *y .a — y v 13 7 2 1 1 3 2 3 32

T 7 1 1 9V •y y ^'yv-fe yv 8 2 l 1 12 34*byv 9 y-fA-byV 9 1 1 1 1 13

ai -tr yv • t y jL — yl/ 4 4 8

Si #m • x 11 4 1 2 4 22 50TZyv • ffffli 11 5 2 1 1 20

s D - Yij*-byV 10 1 i 1 13C I S-fcyv 21 l 4 1 2 1 30 51

I to# 4 2 1 1 8

-ftfa*y xf-a 5 1 3 1 1 11

1 S¥ffi, MS 21 2 1 1 2555f

6 6tcoto (BOS, 3X K S3 it) 10 1 1 1 13

$S i % 2 1 1 4

14 1 3 18 Oi

y yxf A 3 1 1 1 1 7o4

tolte 2 i 1 l 5

£ ft 179 1 2 37 5 7 5 4 3 4 3 1 20 1 i 3 11 1 1 289 289

* Late Ne»s£'i’o'

Page 28: ji. —W >fta

1) noL—%^L^S,'>!; =jyfS^<D5§^T—r$rTm^-r

#Progrcss in High Efficiency Silicon Solar Cell and Module Research #A New Method for Accurate Measurements of the Lumped Series Resistance of Solar Cells # Efficiency Improvements of Silicon Solar Cells by the Impurity Photovoltaic Effect #High Efficiency n-Silicon Solar Cells Using Rear Junction Structures #High Efficiency Photovoltaic Roof Tile with Static Concentrator

ir 2 0%^-^L tctDSHWWfc:, zl-/k U&T-frFt::J:a

1 . "Progress in High Efficiency Silicon Cell and Module Research"UNSW(M.A. Green, et al.)

: %$2 0%(D*'sx.-)l'<D{'Em ; 1 9-2 7M:;i/%^2 1-2 2%a$PERL-bit/ ; -rX h-rv<^ xr-co Voc 7 1 7m

V (7 2 0 m v) ; 1.9% ; CcV'TfitS£LTV'&0 4 cm2-fcIVr- 2 3% (Voc-700mV, Jsc- 41mA/cm2 FF-0.81) 0 C<0$@r-<7)S^-S-aSco/''^ Txefft$$r99lb^tcr^-£-5l7ltW-Ss ifc, HzjKlS^^TtrAtcii, $

<01&] ± ^TilcrV < ^ > I: Z 6 ± h 7 y 7"$<D T * 3 .£fr;U£2 5 %aS:T- i 3 1:&hi\2>„

n*7i^-t-OP E R r 7i'* t>{g;V'£ t tfft-h'-o tic

?»^2 0 %:evj.-;v<7){^[zi±> /'■i'7lJvK3>^7H:;i'^W:0 ;c73-fc;K75 l$^Ul±#$6;ci^'f K£^:fo-£T—Et'^&^iSS-lFML/.:, -tx^sFii 20.0-2 1.0 %T*o&.

Figure 2: "Tiler’s pattern" to improve light trappingability of inverted pyramids.

Figure 7: Hybrid buried eontact/FERL eelL

Figure 6: Ganged dicing blades.

- 26 -

Page 29: ji. —W >fta

2 . "20% Efficient Silicon Solar Cell Modules" UNSW(J. Zhao, et at.)

5.7cm2, 2 1.3%OPERL-b;U£fflviT, 2 0.5 %(SandiaT'il^)CiUi. 2 0 v'cl-jI/T*4„ itz.

2 1.6%WPER L-tli't i»W£ L T fc •? , 2 1/W 7'M y ri-tivifflt'ttvi-KIll 9.8-2 0

’inverted* pyramids

p-silicon

rear contact

3: PERL (passivated emitter rear locally diffused) cell

oxido

p-typeplated metal pj(. j

rear contactFigure 2: Jluried contactlPERL hybrid celL

Table 4: Pre-encapsulation values of celt parameters for the PERL cell module. Values shown are the average for the 16 cells incorporated with the standard deviation (in the same units) shown in brackets. Average cell area is 45.7 cm2.

Voc I,c Fill Factor Efficiency(mV) (A) (%) (%)691.4 1.80 78.2 21.3

(0.7) (o.oi) _ (0.4) (0.1)

SanJia Motional Laboratories (Global AM1 _> spectrum^ 1000 W/m^t cell temperature 25’C). Efjiciency is based on the measured module aperture area of 743.1 cm^.

Date Voc ‘ I.=. (A)

Fill Factor(%)

Efficiency(%)

8 April. 1993 11.07 1.767 78.1 20.5

Voc V Fill Factor Efficiency* (mV) (A) (%) (%)

680.6 1.73 78.3 20.2(3.9) (o.o i) (0.5) (0.2)

Table 2: Sandia measurements of module performance. The measured module aperture area was 751.6 cm2.

Date Voc(V)

I,c(A)

FF(%)

(*mp(W)

Erne.

(%)Average 10.89 1.736 78.6 14.9 19.8

3 . "High Efficiency n-Silicon Solar Cells Using Rear Junction Structures" UNSW( X.M. Dai, et al.)

fllillllpsissfinger "inverted" pyramids

xizt contact oxide

Figure 1: Rear junction PERT cell. Figure 2: Rear junction PERL cell.

- 27 -

Page 30: ji. —W >fta

Table 1: A summary of results for n type substrates for a variety of inverted pyramid front and rear junction PERL and PERT cells with different thickness. The results were measured at 0.1 W/cm2, AM1.5G, 25X by Sandia National Laboratories. The cell area is 4 cm2.

Cell Junction Cell StructureThickness

(pm)V.c

(mV)J,c ,

(inA/ctn2)FF(’/.)

Efficiency(•/.)

X-1-305 Rear PERT 150 694 39.3 80.3 21.9

X-l-310 Rear PERT 280 692 39.2 80.4 21.8

X-1-280R Rear PERL 160 696 37.8 80.5 21.2

X-1-274R • Rear PERL 275 693 37.2 79.0 20.3

X-1-158R FrontPERL

(planar top surface) 280 671 34.0 81.3 18.6

X-1-201R Front PERL 280 658 39.8 81.621.3 |

4 . "A New Method for Accurate Measurements of The Lumped Series Resistance of Solar Cells" UNSW( A. Aberle, et al.)

-j'vSal'-vaXlJ; -> 5 U--V3 > 7*0 7*7 A l± UN SWfflllO7-□ 7’7 a x'Simuitmift-x& *), 2 s= c com&& <t mnt&ikfr 6,7'- 7x-uw.vimi$r<Dmimz t i, i/tmmitit&ig.w&i-1

f), Voc«®x-|±t6f/L7)VJx5v-t)\ Jsc, VopttST-(±ffi};tA;t«*Dl-i C

Fig. I Schematic representation of the 2-dimensional electron flow pattern in a n*p Si solar cell in dark l-V measurements (lop) and under unifonn illumination (below}. i

— 0.6

BC cell

PERL cell

« 0.4

PESC cell

Current Oemltjr |mA/Cm*J

rii f , V “'•ncnoc,,ce 01 “t.hght (open symbols) and R j„,k (closed symbols) on current density for ) difTcrcnl UNSW one-sun Si solar cells. For each cell is shown for AM 1.3 illuminaiion. Tl.eIJC cell was additionally measured at 0.5 and 1.3 suns.

5 . "Efficiency Improvements of Silicon Solar Cells by The Impurity Photovoltaic Effect" UNSW (M. Keevers, M. Green)

"Recombination of Carriers in Quantum Well Solar Cells"UNSW (R. Corkish, M.A. Green)

- 28 -

Page 31: ji. —W >fta

s i fiiiofst it, l/c 2 * h ±6c^:o TrfflLtyib LT(ix Sf5:t!p/<U y t,/o K^'Jb 1 5 7mcV±^"l:^)6 's'J^ A ^'MA,ti0 1 0 ,7/cm2o K— t: > **-r- 5

*M>fToTV'*0

z/‘V' / conduction

x/VWxZ\Z\

Subgap0 photon,

vZXZXZ^s-

A band

^ (D— — * — impurity level

0^ / band

Fig. I. The IPV effect: subgap photons create e-h pairs via impurity levels (I and 2). Compare to intrinsic band-to-band absorption (3).

Fig. I, Schematic band diagram indicating the fundamental processes of absorption, recombination, escape and capture in ap-/(MQW)-zr solar cell.

6 . "High Efficiency Photovoltaic Roof Tile With Static Concentrator" UNSW (S. Bowden, et al. )

/'• -i 7 X. -i v -r A' jr JU t KMMUk-ftis £ffl W.:I&fgi - ;i/ £L£ $g

^^rfflV’TrX h LTV>*C jct. h <7) *£:$:, U-f h U--> > fT-tm L lii < —*fcUTV'^0

total internal reflection Glass lop surface

solar cell

acrylic with refractive of 1.5tilled grooves on rear surface

Fig. I. Cross section of module with one light ray traced until it strikes the cell.

120 180 240Azimuth angle (degrees)

Fig. 9. Comparison of computer prediction (thick line) and experimental results (thin line) for 15° elevation.

- 29 -

Page 32: ji. —W >fta

(a) ^a*&«=» : 2 # investigation of Aluminum Gettering in Silicon Solar Cells#The Effect of Aluminum Treatment and Forming Gas Anneal on EFG Silicon Solar Cells

h : Alfyf V y

(b) ’fryf^fTBFSfflr 4fr#MulticrystalIine Silicon Solar Cells : Gettering Optimization and Characterization #Emitter Wrap-Through Solar Cell#Extended Spectral Analysis of Internal Quantum Efficiency #Simplified Processing for 23%-Efficienct Silicon Concentrator Solar Cells

b 0 <k 5 foteotco

(c) (NEEL) 7fr#Si Thin Layer Growth from Metal Solution on Single Crystal and Cast Metallurgical-Grade

Multicrystalline Si Substrates#A Scanning Defect-Mapping System for Large-Area Silicon Substrates #Optical Processing: A Novel Technology for Fabricating Solar Cell Contacts #Grain Boundary and Crystallographic Defect Effects on the PV Performance og High-Purity

Silicon#Solar Cell Structures Combinig Amorphous, Microcrystalline and Single-Crystalline Silicon ^Photovoltaic Device Applications of Porous Silicon#Optical Confinement in Thin Silicon Films: A Comprehensive Ray Optical Theorynyyh:v

(d) IMEC : 5 W#15.7% Efficiency Solar Cells on Electromagnetic Cold Crucible Cast Multicrystalline Silicon #633 mV Open Circuit Voltage Multicrystalline Silicon Solar Cells on Polix Material:

Trade-Off between Short Circuit Current and open Circuit Voltage #Monitoring of the High-Efficiency Silicon Solar Cell Process by Lifetime Measurements #Spectral Response and Dark I-V Modelling of Polycrystalline Silicon Solar Cells with

Conventional and Selective Emitters#Tailoring the Degradation of the Quantum Efficiency of Multicrystalline Silicon Solar Cells

Caused by Non-Optimized Heavy Phosphorus Diffusion

(e) 75»mm#: 6#

#Homogeneity Analysis of Multicrystalline Silicon Ingots with Columnar Structures #Current Loss in Edge-Defined Film-Fed Growth Silicon #Multicrystalline Silicon Solar Cells Processed by Rapid Thermal Processing #High-Efficiency Silicon Solar Cells from FZ and Cz Materials #Preclsion Spectral Response and I-V Characterization of Concentrator Cells #Humps in Dark I-V Curves - Analysis and Explanation

(f) 3##High-Efficiency, Point-Contact Silicon Solar Cells for Fresnel Lens Concentrator Modules #Large-Area 21% One-Sun Silicon Solar Cells #Development of a lOkW Reflective Dish PV Systemnyy h :

(g) Siemens Solar##The Economics of Using Slip Dislocated Silicon for the Manufacturing of Solar Cells

- 30 -

Page 33: ji. —W >fta

#Silicon Concentrator Solar Cells Using Mass-Produced, Flat-Plate Cell Fabrication Technology

zx / y b : C. Gay#*)!® Ltc*

"Emitter Wrap-Through Solar Cell"Sandia (J. Gee, ct al.)

n/gT-EV', n® t&WifO n/g £ U-+K-K V A'-C&m U£it £ j§ L T * 15& £ # ;t T v' * 0 h-b

b , tJ£fc&(D&\''&fcT'(D-&W)mih:z: lii'? tc i> <DX-& Z, 0 ^)\—f 3 >- f ? h TcfilPSO^tZHaliyr'^S L/c-b

1-TIC, ^ 1993^mt:(±5t#T

1 8%, S^tH 2 1 %<D y$al/-vs £ JggliJi* £ 0

T«Wt 1. KcnJti ef BWT t*ll liznulitioiu eiin| ■ win fuii(<M< #f 0.73 (ha tni MtnfiJ pvwt,toi ipjwopUic fc* iolu-1/ede mono- end mullltryiUlli/v uliren. W« uxd 1

tlktwod Nrfw wiv> 1 rfiied (AkIuk of JV, fa limulilieni •r U< Cl Mil and • pUiw/ lurfw mU> Ike meJeW i</lnUnr« •( • iln|!c4i)tr MliMtUtUan cm<I/>| fa liniuUiwni »f Ox mel:l«r)iUlllz>t ulL

Timed tr SoUr-Omk Ct MvltknnullingFreni Dovblt fM Doiblt

f,(n\A/ere<) 33.13 41.10 34.74 34.13Vw(mV) 636.0 0)1.6 406.3 607.3

FT 0 117 Oil) 0.117 0.137

nO*) 10.S 11.4 17.3 11.0

%<M*> 70 13

f\("*") 0.1 1.3WidtX(mm) 300 330

Top Surficc Holes

Bottom Suffice ( — GroovesFifwi t. Wimwik *tEmilia Wr»p-T>r*t|K C«ll.

Front Surface

Front Emitter, n +

Bulk, p-lypaEmitter Contact Oil fusion, n ■*■ +

Bulk Contact Diffusion, p + 4Back Emitter, n +

Bulk Contactflfwe 3. }<Kmutlc(tUt «ti«) af CmUc

ViaHole

Emino Wro^TVr^i^ Call

High-Efficiency Solar Cells from FZ, CZ and MC Silicon MaterialJ. Knobloch et al., Fraunhofer Institute^7^ 1 0 0- 1 0 0 0 <D$ V — >;U— ASrftztf 1 9 9 Wc.

FZ (0.5 ohmcm)Tr 2 1%. CZ(0.8ohmcm)T' 1 9%, 1 6 %„3u$4cm2. £7n*?,H3 SX&frbl&Z.

• "b yL-ftoiStiLBSF (local back surface field, UNSWcOPERLj; Pd b)■TCA-i'V— =-'s{f \ 1 150C lh. 02+2%TCA• n + + : POC13, 870C, 25 ohm/O. n+: 810C, 350ohm/D

• p+: BBr3,1075C, 2-4 hrs

- 31

Page 34: ji. —W >fta

Standard-Technoloor

IBSf (Loeol 8ecV Surfoce TiVd)

Fig. 1 Maximum efficiency of ISE solar cells. Fig. 2 Cross section of a LBSF solar cell

E3 AI-LBSP B2 B-LBSF

Number ol ceils l%l

El/iciency [%J

Fig. 4 Efficiencies of FZ-Si solar cells with boron or aluminum LBSF

BEZ3 ai-lbs* Bax e-ias*

^ Nurr-bar ol cells |%J

eo

so

40

30

20

10

0

Fig. 5 Efficiencies of CZ-Si solar cells with boron or aluminum LBSF

if 16 10Elliciency (S»J

Investigation of the Effects of Aluminum Treatment on Silicon Solar CellsRohatgi et at.. GA TechFZ"t?liBSF®)j£tr J: I) l %faJb. 4-+% F l tV v •? V 1 EFGtiifflT'tt.sf y f V 1.7%. yK^/< y a VT2.6%TrS-ff|-5.2%|6]± L7t.

- 1.6

= «-2

STRESS (MPa)

Figure 2. Effect of stress and AJ diffusion on carrier lifetime in the sequentially processed FZ silicon samples

1. AJ-dittused Ceil

Z A)-sintered Cefl

> 0 0 WAVELENGTH (um)

Figure 3. A comparison of the measured 1QE and cell data for AJ-diffused and Al-sinlcrcd FZ silicon cells

- 32 "

Page 35: ji. —W >fta

Aluminum BSF Doping Profiles with Surface Recombination Velocities below 200 cm/sP. Lolgcn ct al., ECN

Al mm 8 5 0 CT? 3 0 LT D ^SfiEST-p + SIMS, CVteZX'7u y r 4yi'SrzMS L/c.

Depth (/zm)

Fig. 1. AJ-BSF p‘-p doping profile of wafer 300D measured by CV, compared with a orofile calculated accord-

Weight Percent Silicon11.96 91.17 99 99 99.99

MOO

1000

L - (Si)

(Al) + (Si)

99.96 99.97 99.96 99.99

Atomic Percent Silicon

Fig. 5. Solid solubility of AJ in Si (9).

Wafer BSF thickness decay time t, 5_ 5WU S.u[pm] W (cm/s) (cm/s) (cm/s)

100D 12 21 130 170 155

200D 13 25 130 330 130

100B 11J 39 - 230 160

Si Thin layer Growth from Metal Solution on Single Crystal and CastHeta 11urgica 1-Crade Hu1 t i crysta 11ine Si SubstratesT. Ciszek, N R EL

N R E L (D Ciszek R 1*. WL M til £ T' S i <D & & ?,* fig £ & £ L ± KB fQ ^ £ & fts l,fc*S*£*S*Ufc. WU8 ft tt<D mik £ U T C u £ m .£ // n z. - ? T', * (D&L&m{2 £ T EMC its t. rail * 9 6 0 C T li 2 2 % <7) S i it C u 1C If X fc ‘J, & /£ ^ 52 li £ic m $ n T VN i>. ? M c AUS % b ± l: 91 # ± if S i M o ^ ^ £ . C Z lit fc;nBD & 4£ 1C 5 a m <7) S i 0 £ /& # b T Wi IK & T P n & £ £ o T * KB T! rlH £ M <1= b % #i 5 % £ ^ /r. c (D m it ijt *g d7i iMs ic & *& & & £ ^ b r % kb m n o 9b & t fsi s m x

& O £. * fc, i 8 # & 6 =F T a *5 & &%£#%!b -£ <Z> ± IC E JS /& £ £ It o £. 2* b £ -fe IL tf) $h & l± 4 % £ (6 *' o £ C u 5y £^JI^IC^ L t i i: t.

(in)p-lype CaCl2

(MP 782*C)

22% Si 78% Cu (MP 960*C)

V

IE

V)c07

TO

c07

Du

35

30

25

20

15

10

5

0

•5

- <r;>M?EL\\

Control \i SI-M2-1 V

Cu-LPEW920701 -1

Area (cm2) 0.972 0.994 V- Jsc (mAZcm2) 32.63 32.85 V

Voc (V) 0.5731 0.5874FF (%) 81.59 81.27

— Eff (%) 15.3 ,5.7

Global 1 kW/m2 II

i iT - 25*C __ 1___ 1 l 1 1 1 1 1

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6TCC) Voltage (V)

- 33 -

Page 36: ji. —W >fta

JgTi^OtiiSZ

CD teu

No jfcSB=S/ES$g m ^ m %

1 APS 5x2. 57-f-hO^cEfSa-S 1 /<*yU82at 7' - X 12 S o >(><® U

2 7 X b o/< 9 - Sti =BB S i * yu • e 7 a,. - ;K &&&S i t ytz - t 7 Ji - ;l/ S i BM/SjtSitt-t: 5 i -/ ?SS'fe;n:2J7i/'f (IX)

3 HELIODINAMICA ( 7* "7 'X yl/)

7 V o 7 3515 SEaB=SCF^En"u 7 V n 7 -b yV

4 y- y y x fiESKSiNUENI, 7 'J 3 7 * 7 » -yK SrSW JS7 7- ASEKEffl 4 5 ft XUS ii 7 V 3 7 t7 a — yV X C I S t ^ a — yUs 2f — 7^ 7 "7 'f h

5 V — 7 1/ y f X 2 o ^ «ti ^ It u n y ^ *y a - ;i/. n.4X 15. 2cm-tryl/ 1C «fc 5 #r S! ^ It nBQ -> y 3 > * *7ZL - ;i/. t ^ yu 7 7 x y y 3 > y a - yu sy — x yv — y a. — yv

6 V y -y ^ Mi It oB y y 3 y -=6 y j. — yux m ^ e y a - yi/

7 u s s c 7 i/ 4=- y 7 yi/ a — s i ^6 y zl — yvx — A /<7 — y X7 A /< v ir V — 7 -V" — y t —

8 Utility Power Group 30cmA a — S i ^y a-yk y X -7- A

© — yb —

No E 7F &

1 7 V X ^ yv 7 X T- A X HEMip, nnm’Zln'ZZ'OttK J: 3 y y 3 > 03'-; F 80KgGO44cm£j y > =j K FAS Ty'otxm-ryl/fv^f-Xx^xlGuS:

2 9 ') X? 0 y ? X (^IJX)

120Kg<O 55cm& -Y > 3* y K 270Kg<O 80cm@y 3' y b 81 -y- ^ x* co ^ it dbh y v 3 > & ;&

3 HTC Shaping Systems (x y X )

i?t) S3? '7 yl/ 7 9 -Y "t7 — V —

- 34 -

Page 37: ji. —W >fta

<S> y X -r A B8 &

No &35S5/ifl$$S m # m 3

1 E P V a - S i ^ ;y ^-/U£<£-3 /cfi>/a£2aaa ( **- T y 7 ^ h. /<?f l»ilf7 y 7\ y xx A)

2 4 'S7- ? \s-r x K/<7 -

p v ->x-r a£-}* (f % a-x- y s y> ttf&Snbx /W7,5'f y> mm

3 y - if y /< 7 — y X t*A X

pvyx^A^-m (iii/j\mm> x P V/-r y --tfyU/W 7* V y Kffix m#7'7 ? h *-am, -?4 muz)

4 E N T E C H STfe^Sx h7 «;^y^S

® -fsMii

No m m 3

1 Aerospatiale y vn> t u y

2 A S E C ^ffiJEGaAs-te/K SSifa -> V => >-fe ;K i|!i_h •> V 3 >-feyV

3 D A S A ( K ^ 7 )

P v y X7 A, ^ to ^ S ^ DraD y V 3 y iz yU& Cf GaAs-tz Vl/ GaAs/Ge -t? ;U

4 F o k k e r ?llfiPVy7TA

5 Spectrolab ^S^GaAs/Ge -tzvK $. & u% > V 3 y ir yU

6 TRW p v 7 uy

(D gh&'&wiwm

No US TJX f*3 s

1 AET Thermal R T P ^ E x LPCVD&E

2 A i x t r o n &m*. y ? hojL^xm##^m^Ex MOCVD^St'C'

3 B T U A P C V D

4 Leybold Technology ( K -f 7 )

P VH]I2^S

5 yf A — 7*- y -f y/<- ^ TE^jjtrj^yxT-a

6 7s'<4 t — PVS5U-^-< e y zu - yuaiSSSIS,P VSiStfcffi

- 35 -

Page 38: ji. —W >fta

No ffi S R S-

1 t' «; + — Gel®

2 3 M

3 0 C L I * /<-#5 z -r- *< y ?

4 f Jl * > h V ( -f f V X )

x. */<-»■ 5 x

© WI£0t • a H

No fil 7F F*9

1 Ascens i on P V i/ x ^ A © $6 St • & ffi ?S 33U P V izxf- a e— ^ v y/t- t'x

2 N R E L NREL©E%mis^..s-aaitote

3 S N L s n l ©W5E0t?s^. s-aaj®®

® tti fiS • tB 6 B9 «

No m ^ m ^

1 Independent Energy X. * ;p 4^ - mi * © M K

2 Interagency APY E»KHS©«-?E3grtS

3 P ViP ^ — h

4 PAX

P V N E W S SS. PVKJiaiX^-fK^

5 W I LEY&SONS Photovol t a i c It

- 36 -

Page 39: ji. —W >fta

(3)

®P3E§69Bi:#ttay>#y9At:#anL,

iSSSMBtilR^iRS^fT^ o

1 9 9 3.5.1 7-2 1

®0#

$52. 2 0 Off=Ogfcib)!4 9©->y^ya-Atr35*5tLfc. yy4t^a-AO^#&- #lJDLESffi5BE^fTo7t'>y^V3.-Att,

ELECTRONICS/DIELECTRIC SCIENCE AND TECHNOLOGY

2nd International Symposium on Semiconductor Wafer Bonding:

Science, Technology and Applications

-Cfe-ofc. 40©->Vtfy=.-A141. 5^fltfO*lEI»!:*S#S5 21nItD-CBafl8^*vfc. iO-WJliya-Acig'tt. ftltt^OLSIffl^cc/N (8®) t LT&BStvr/t-i'XiKl'P

-oTV'SSgA-frSOI (Silicon-on-insulator) ICOV'T, -ero<S-®©$li$. n"H,sf-ffi.

14, Characterization of Directly-bonded SOI Structures using Spectroscopic Ellipsometrytiu yyy h y -icJ:5titilPFMfcoV'r%SLrc.

(6) yy^^a.-AO%g(%W#E)

Afmi4, 4 6#-c. 6#.Iffei^ttWlaSISilE^l O^tf&ofc. 4-014, -try-yay^ibS

##tm@lcMLX*56«:r—'7l4S'J3glc^1-„

*SfcB*-ei4, 5B$0S;6W«£oTV>3. *BT-t4. X&tyfoOtmmfticMi-Zm «&3556S)i5#v^, B*^6<05ESl4jfeSrfi'iL'<D7r/<-i,7-El$05B3t^#v\ CO®014 4-0oyy^ya.-A|c#t»6-f#o#A^lfC—iRicm(,tt5®0-C63. 4-0oyy ^^a-A-?i4, Bu®Kj±y;e£3h'y-7r-(’ y^Amo^y-f-f yy'^^#?LV'®0^m Sivfc. CW4, $£ASOI^x/Nft#;»;$$jlU LffitB£B£ LtcTc&T'hZbmMZiiZ, Lfc^oT. A#I4K#|)5RI$4 D t#m05W*lC^eL#rA:

% 5 ir-T'UStiS.

- 37 -

Page 40: ji. —W >fta

— JU

Technical SymposiaWyn Tue Wed Thur friami on ami nn amlnn amlnnl ami Dm

Batterv/Enerov TechnoloovBatteries and Furl fir. 11s For Stationary and Electric Vehicle ApplicationNew Sealed Rechargeable Batteries and Supercapacifnrs

CorrosionChemistry, Structure and Stochastic Processes in the Breakdown of PassivitvCorrosion, Electrochemistry and Catalysis of Metastahle Metals and TntermetallicsCorrosion Protection hy Coatings and Surface ModificationGeneral Session

Dielectric Science and Technoloav/ElectronicsHighly Selective Dry Etching anr Damage ControlInterconnects Contact Metallization anr 'Multilevel MetallizationMetallized Plastics Fundamental and Applied Aspects IVPolymers for the 21st CenturyReliability of Semiconductor Devices Interconnects and Thin Insulator Materials

Dielectric Science and Technology/High Temperature Materials/ElectronicsThird International Symposium on Diamond Materials III 1 111 I I 1

ElectrodenositionElectrochemicallv Deposited Thin Films2nd International Symposium on F.lectrochem Technol Annl. in Electronics

ElectronicsElectronic Materials Technologies for the 21st Cenfurv4th Inti. Svmn. on Ultra Laree Scale Integration Science and TechnologyState-of-the-Art Program on Compound Semiconductors XVTTT fSDTAPOCS XVTTD3rd Inti Svmn. on Process Phvsicsand Modelling in Semiconductor Technoloov

Electronics/Dielectric Science and TechnologyConduction Processes in Disordered Materials 'Contamination Control and Defect Reduction in Semiconductor Manufacturing TT2nd International Symposium on Semiconductor Wafer BondingJoint General SessionJoint Recent News Papers Session

Enerov TechnoloovSolar Energy Conversion Using Solid/Solid and Solid/I Jonid Interfaces

Enerov Technoloav/Electronics/Dielectric Science and TechnologyEnvironmental Aspects of Electrochemistry and PhotoelectrochemistryI-ow Temperature Electronics and High Temperature Superconductivity

High Temperature Materials/Batterv "*'Third International Symposium on Carbonate Fuel Cell TechnologyThird International Symposium on Solid Oxide Fuel Cells

Hiqh Temperature Materfals/CorrosionHigh Temperature Materials Chemistry VT 1 1 III 1 1 1 1 1

Hioh temperature Materials/Dielectric Science and Technoloov/Electronics"Twelfth International Conference on Chemical Vapor DepnsitionfCVD XTH 1 - 1 1 1 1 1 1 1 1

Industrial Electrolysis and Electrochemical Engineering:Chlor-Alkali and Chlorate Production 1 |

New Mathematical and Computational Methods in Electrochemical Engineering 1 |

Gualitv Management in Industrial Electrochemistry ~ ~ 1 |

Second International Svmnosium on Electrochemical Processing of Tailored Materials! |

Industrial Electrolysis and Electrochemical Engineering/Physical Electrochem./Hioh Temp. Matt‘rialsInternational Svmnosium on Molten Salt Chemistry and Technoloov - 1903 I I 1 1 1: 1 I I I

Luminescence a'ncf Display Materials'~Advanced Engineering nf Luminescent Materials and Its Impact on Future DevicesGeneral Session I*

Organic and Biological ElectrochemistryElectrochemistry nf Cells and OrganellasElectron Transfer in Organic. S vs terns II5th Inti. Symp. on Redox Mechanisms and Interfacial Properties of Molecules nf Biological ImportanceThe Role of Electrochemistry in Organic Synthesis and Ornannmetallic Chemistry I III

Organic and Biological Electrochemistiy/Physical ElectrochemistryConductive Polymers and Surface Modified Electrodes ' 1 1 1 1 I I I 1 I I

Physical ElectrochemistryElectrncatalvsisFundamentals nf Solid Polymer Electrodes and Electrolytesfiftneral Session"*.

Physical Electrochemistry/BatteryIntercalation Chemistry and Intercalation Electrodes 1 I I 11 1 1 1 1 1

Physical Electrochemistrv/Batterv/Enerav Technology.......................................................................... ...................... ................Surface Analytical Methods and New Techniques for in situ Measurements 1 1 1 1 I I 1 1 1

Physical Electrochemistry/Electronics/New Technology SubcommitteeFullerenes; Chemistry . Physics and New Directions IV I I 1...T I I I I I

Spn^nr

Chemical Sensors____________________________________________________________________11 1____1____1____ 1____ 1____ 1____1____1—

- 38 -

Page 41: ji. —W >fta

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

2ND INTERNATIONAL SYMPOSIUM ON SEMICONDUCTOR WAFER BONDING: SCIENCE, TECHNOLOGY, AND APPLICATIONS

PageNumber

Ultrathin Bond and Etch-Back Silicon on Insulator with Sub 10 nm TotalThickness Variation

S. S. Iyer, P. M. Pitner, M. J. Tejwani, and T. O. Sedgwick....................... 1176

Silicon-Silicon Direct Wafer BondingD. L Hughes ........................................................................................................ 1177

Bonded SOI Wafers with Various Substrates for ULSI UseT. Abe, K. Ohki, K. Mitani, K. Yoshizawa, and Y. Nakazato....................... 1179

A Bonded Wafer Bipolar Process in ManufacturingC. J. McLachlan. G. V. Rouse, and A. L Rivoli............................................. 1180

Atomistic Structure and Dynamic Behavior of Silica SurfacesS. H. Garofalini...................................................................................................... 1182

Room-Temperature Bonding on Metals and CeramicsT. Suga .................................................................................................................. 1183

Analysis of Bond Characteristics in Si Direct-Bonded MaterialsS. N. Farrens, B. E. Roberds, J. K. Smith, and C. E. Hunt ...................... 1185

Low Temperature Wafer Direct BondingQ.-Y. Tong, G. Cha, R. Gafiteanu, and U. Gosele ..................................... 1187

Low-Temperature Bonding of Surfaces Using a Reactive Sputtered InterlayerC. E. Hunt. J. A. Folia, and S. N. Farrens .................................................... 1189

Analog CMOS and BiCMOS Circuits on Thick Film SOIK. Yallup ................................................................................................................ 1191

Bonded-Wafer SOI Smart Power Circuits in Automotive ApplicationsC. Harendt, U. Apel, T. Ifstrom, H.-G. Graf, and B. Hofflinger.................. 1192

Bonded SOI in a Bipolar IC Without Trench IsolationB. A. Beitman, W. G. Easter, C. A. Goodwin, and R. H. Shanaman .... 1194

A Wafer-Bonded SOI Bipolar TransistorT. Sakakibara, S. Miura, M. lida, and O. Ishihara........................................ 1195

Silicon-on-lnsulator Devices for High Voltage and Power IC ApplicationsE. Arnold ............................................................................................................... 1197

Bonded Etchback Silicon on Sapphire Bipolar Junction TransistorsE. N. Cartagena, G. P. Imthurn, G. A. Garcia, E. Kelley, H. W. Walker, andL. Forbes............................................................................................................... 1199

An Advanced Dielectric Isolation Structure for SOI-CMOS\BiCMOS VLSIs H. Nishizawa, S. Azuma, T. Yoshitake, H. Masuda, M. Kawaji, and A.Anzai....................................................................................................................... 1201

- 39 -

Page 42: ji. —W >fta

823 XFCB: A High Speed Complementary Bipolar Process on Bonded SOI Wafers

S. Feindt, J. Lapham, J. J. Hajjar, and M. Smrtic........................................ 1203

824 Wafer-to-Wafer Bond Characterization by Defect Decoration EtchingR. D. Horning and R. A. Martin........................................................................ 1205

825 Characterization of Directly Bonded Silicon-on-lnsulator Structures Using Spectroscopic Ellipsometry

T. Saitoh, M. E. El-Ghazzawi, N. Hori, A. Sakai, T. Suzuki, and N.Natsuaki................................................................................................................... 1207

826 Structure of the Interface of a Bonded WaferY. Kawai, S. Ishigami, H. Furuya, T. Shingyouji, and Y. Saitoh............... 1208

627 Thermal Mismatch Strain in Anodically Bonded Silicon and GlassK Sooriakumar, A. H. Meitzler, R. J. Haeberle, B. E. Artz, L W. Cathey,and I. I. Taher ...................................................................................................... 1210

828 High Temperature Lateral Dopant Diffusion in WSi2, TiSi2, and TiN FilmsF. Robb, E. Thompson, and L Terry............................................................... 1212

829 Low Temperature Silicon Direct BondingB. E. Roberds, and S. N. Farrens .................................................................... 1214

830 Buried Silicide Layers in Silicon, Using Wafer Bonding with Cobalt as Interfacial Layer

K. Ljungberg. A. Soderbarg, G. Thungstrom, and S. Pettersson............ 1216

831 Design Considerations for Wafer Bonding of Dissimilar MaterialsG. Cha, R. Gafiteanu, Q.-Y. Tong, and U. Goesele..................................... 1217

832 BE-SOI with Etch Stop Layers Grown by RTCVDD. Feijoo, M. L Green, D. Brasen, H. S. Luftman, B. E. Weir, J. Blanco, T.Boone, L C. Feldman, W. G. Easter, R. H. Shanaman, S. W. Wallace, C.A. Goodwin, M. T. Umlor, and K. G. Lynn ..................................................... 1219

833 Silicon Direct Bonding at Low Temperatures above the Boiling Point of Water

J. Jiao, D. Lu, T. Sun, H. Wu, and W. Wang ................................................ 1220

834 Application of 150 mm Bonded Wafer Technology to a Power ASIC ProcessG. V. Rouse, D. F. Hemmenway, J. J. Hackenberg, P. A. Begley, and L.G. Pearce........................................................................................................................ 1221

835 Full Three-Dimensional Microcircuit Integration Techniques Using Wafer Bonding

D. E. Booth, C. E. Hunt, and S. Mani............................................................... 1223

636 Revenue Sensitivity to Yield and Starting Wafer Cost in SOI SRAM Production

T. D. Stanley ............................... 1225

837 High and Low Temperature Bonding Techniques for MicrostructuresD. R. Ciarlo ........................................................................................................... 1227

838 Silicon Fusion Bonding: An Important Tool for Design of Micromachined Silicon Devices

L A. Christel and K. Petersen........................................................................... 1229

639 A Back-Side Contact Technology for a Wafer-Bonded Liquid Shear-Stress Sensor

J. Shajii and M. A. Schmidt................................................................................ 1231

- 40 -

Page 43: ji. —W >fta

840

841

842

843

844

645

846

847

848

849

850

Complex Micromechanical Structures by Low Temperature BondingM. Esashi..................................................................... ......................................... 123;

High-Precision Aligned Silicon Wafer Bonding for a Micromachined AFM Sensor

J. Brugger, R. A. Buser, and N. F. de Rooij.................................................. 12%

Quartz Crystal on Silicon Technique Using Direct BondingK. Ecte, A. Kanaboshi, T. Ogura, and Y. Taguchi ........................................ 123?

Formation of Heat Sinks Using Bonding and Etchback Technique in Combination with Diamond Deposition

A. Soderbarg. B. Edholm. J. Olsson, and L Bardos ................................. 1239

Silicon Layer Transfer by Wafer BondingU. Gosele and Q.-Y. Tong .................................................................................. 1240

Plasma-Thinned Silicon-on-lnsulator Bonded WafersP. B. Mumola, G. J. Gardopee, T. Feng, A. M. Ledger, P. J. Clapis, and P.E. Miller.................................................................................................................. 1242

The Effects of Process-Induced Defects on the Chemical Selectivity of Highly Doped Boron Etchstops

C. A. Desmond, C. E. Hunt, and S. N. Farrens ...................... ................... 1244

SIMOXand Wafer Bonding: Combination of Competitors Complements One Another

H. Gassel and H. Vogt...................................................................................... 1246

Nondestructive Film Thickness Measurement Techniques for SOI StructuresT. J. Letavic........................................................................................................... 1248

Investigation of the N-Type Inversion Layer Induced at the P-Type Active Silicon Layers in Bonded SOI Wafers

K. Mitani, A. Kanai, K. Ohki, M. Katayama, and T. Abe.............................. 1250

Characterization of Minority Carrier Recombination Lifetime for Bonded SOI Wafers

L Ling, L Zhong, A. Buczkowski, Z. J. Radzimski, T. Abe. and F. 1252 Shimura..................................................................................................................

Influence of the Wafer Cleaning on the Electrical Properties of Si-Si Bonded Wafers

V. Macary, G. Sarrabayrouse, M. Bafleur, and J. M. Reynes.................... 1254

Spontaneity of Hydrophobic Si-Si Bonding, and Properties of the Bonded Interfaces

K. Ljungberg, A. Soderbarg, S. Bengtsson, and A. Jauhiainen

- 41

Page 44: ji. —W >fta

* * a a e s

1. ftfiEfisassss ■. ±mmm

2. : 'J'£@i 3$. St

3. mm*ft * • ZJX 5£ HF 3iia« : *MS«M#S,

4. tti 58 ® T=1 : 199348fl21B~199349fl4B

5. ajgft&CfBM# :

5. 1. ISES SOLAR WORLD CONGRESSa. m 4B« : HUNGARYb. : I SES (i NTERNATIONAL SOLAR ENERGY SOCIETY)

c. 618*

d. 6^

e. TEL. NO.

f. FAX. NO.

g. B 6Dh.i. 9116151*7*j. @s»Ji

(BBAI#x A;i/f-#6)H- I SES (HUNGARIAN SECTION)

(I SESai > ** U - £ SB )

HSES(HUNGARIAN SOLAR ENERGY SOCIETY)

: I SES SOLAR WORLD CONGRESS (IBtHxj)K-#*)

: TECHNICAL UNVERSITY BUDAPEST

: +361-266-7836(MALEV AIR TOURS CONGRESS DEPT.)(vUT/ttS 7 7-618*8®)

: +361-266-7359 (MALEV AIR TOURS CONGRESS DEPT.) (VlT-ftiS-;/7-618*8®)

: 1 . * 1 . #«.: #: #

6. $8S*i*

6. 1. ISES SOLAR WORLD CONGRESS ( ai yii ') -. 7" A F )*^6t±*Hx*;vjiF-lc#h56rro^et-6iSLr^l)> 4 01 a x *

— % It — T — 7" t ^ ^ A PR % *6. A PS J5, A. 2 8-t -y s/ a >x-®i£ $ hri'

(l) #1)0*. SinB (%# l. $ 1. )Rffl. *HU B * * @ ± $ 56II B fc' It T- ft < , B

gij # Jo * ti K t 7 z)! 1 7 1 A i: * *• < . o VT- B * ( 7 3 A) . *B ( 4 9 A) >$B ( 4 8 A) . ^ 7 A V - ( 4 8 A) <71« T" & 9 . tt 8 3 6 A t ##C#< 1. 0 0 0 ACiSf < AfSTCS) o fc. i fc, #DdBSS[ t 6 4 * B (C fc ©If 0 *#6C**-t-&HIRWW«C.><7>*£*jSLfc.

Klti. *B, B & < #JDBT- i ti-omt f A 7 xil/. Y > K, > 7-;L (* 4 1 7 A) T* 6. 4«<7)AB|x*;L4f-?!lffl<7>jiJgl;:#l,->. Sf*S«W

- 42 -

Page 45: ji. —W >fta

HEz)!A@"t-55j*gt$eSlS-t-5ibroi: fCttg I: m 7 S.£fc, ± $ ft S H T-14 P -f 7 z5; 1 7 1 A i: 6 It T jb- I), 0: M 1C £ It S ± PI

•So B*mJ±er-ttB*«(7)Sia#»>'±@iTj3,)> # B ro ± I® x t. ;v * - ic »'ttS$ft$-H®aSlCS< x5.

(2) -b -y y e > (E# 2 . SS 2 (1) & (2))Solar Thermal(*fflSi)7); l l l # (1 4 % ) b % r, T & 0 .

•eitftsj: Lr±$r-absrb$-SLrs. ljJ'L,4 o c^il # lit!' i i t i> &, B (' 6i E o' tt ic $> S :: j: 7)i do S „

(3) (8*4 3. #3. & 8 4. )1) (S3. )MiS&ii^gero l 3 % i: £ < . iSL

ti'5.-? T V S» ZtU4*l®%%l:N7S9f9E^#0#:M#A(:y7 h L oo& S ^ b fcft r ti't-? So S-ItJdStLt, t)l'*‘l)T, f )b Ky(#A«±l®tlCSl'Hi'JSL'Cl'SC tfii ( K $4 2 . S2(1)#S). S © ; t It(1) X-IE* L ftff»JS«B©#ffi©^J*gtt$-»o'ltS b ©I4t5' <5 t?* < . f?&.

*Hft%m^$*VIC%JS-tSCi:$-Si$LTVSo 2 ) #44 k (S3. )ttX&li 2 9 7^4/7 r^y'J ay^d!#sa< Jfifctii'),

7t)l/7 r7->'J 3y*4!«c«»i: LtSfiJSLtiii), 4- -ti- S £• E z)! S r i: z)5 h »> So £fi y 'i 3 y * 14 2 ft t 7 & (,'/)>'. & S igffX5 #E 11 A, "C 43 9 , £ S ft S E » E 4t $■ § Jt 7 ft ft 1C 14 E K O ft * G8 ?g ft jS‘ £• M fc$ft5fcftif is; ti'-CSS. CIS. CdTeSttmElii>6CdTeJfi ■Cl 8%, C I S %T-16. 9%OB®$i$J$;S!S8£ £ tlfc. Srtt*4 b L TCu2SnS3. PbSnS3(7 t y * V TObafeni Awolowo*^) »SB ft £ tl ft, E-V^bLTIt GaAs-tr IVOEftTT-to^ttffFtt ( 7 B ) . GaAs/A IGaAs'N r n £ jg -t )K7> ft S(e ;i/ K y() . #mt;b (*) SdiS.3) IS4 a

3 — D v y< ;6! 7 41' "C $> t ft o b)tl«$CNi

y - y y 7. (to) . P -f v * mx 7 ;t/f ^ A. v-7-id)^-rf — 2 (ft). NUKEM (ft). -fy#’--r»yn-y- ( n y 7 ) . V — 7 --b;u (*) . V - 7 - V -y £ 7 (*) . 77W 7 - (*) . APS (*) #T*) ofc. y-7 y7roJg)S»$i5il>3E9iLTI,'fc. 7 yW 7 - 14 N E D 0 W re»» $*f®E«U l:#fG7S#m^ y V 3 y. m - V#4kft%7##GaAs. InP^IC ts* AttTV>ft. $ ft. n y 7 CM1 y * - 7 £ V n y - 14 »*S H K. > <8 & y V 3 y LT da o. (3) i) -e5U.fc±Hft%ero#EJBtt-f?3fett£*7'ltS4>roi:S;tS.

- 43 -

Page 46: ji. —W >fta

5. B :5. 2. STUTTGART UNIVERSITY!* P -y P *'71/ P ±¥)

a. BU {El^b. «M€c. 9r®d.e. TEL.NO.f. FAX. NO.g. i fth. A#

ft £

j • §/ %

GERMANYSTUTTGART UNIVERSITY!* P v P A' IV P * ^ )4. PHYSIKAL I NSTI TUT ( 4 tlSW?E0f ) PFAFFENWALDRING 57, D-70550, STUTTGART +711/685-5105 +711/685-5097

SCHOLZ FERDINAND DR HEAD OF EPITAXY GROUP

6.6 . 2. * P -y P *' JU P ± & ( K -Y "J, * F y P A" IP P )

DR. SCHOLZ ® 913£ S £ to M L. +M L T

( 1 ) 915E & » (Sf *4 4 . *5#®.)STUTTGART * ¥ 1C £ tt -5 913E # S!l 12 SE 5 1C IS =k A 1C, 4 ^ 11/ - ~f t' b * -> T

V & 1, DR. SCHOLZ ttxtf5'*v-:y;F-7‘ro9F3E*ES"C$)5.(2) xkf*fty-:7ll/-:/®915t (X#4. « 6 # ®,)#iRiira-v%-ffc-frtei¥Sftr-<fe'o> res

l:$S Ai-a. -fe JHtig N E D O ® GaAs*. AlGaAs*. GaInP*Ci5V'. J$®758I2VPE (StfflXEf^Ary-) RtifeD, v\Tnxbf5'*-yi-7VfiE60^6IEi@^i6#$-9fFELT^.5,(3) GaAs^ftDXtf **y +• 1H£ ft O £ R1 <S « (##4. *7#)®.)Si$6±GaAs*® eitkroaSli^S IC *ffcCM$8Lfc*'5igLl*

5ft>8l,7®LTx-;v6>i@t6Ei6>2ai!gi6iZ)l«i:<c5„ S*9iiL«fti£l2 SartT--B.^rnxe^Aryi-;F«*?-ih*, StFfilE«^SDiSltiS4l$ f 6 o, i i %S0»$^i®Lti'5. #omL7x-;F@i2#em

5. fcti SB ft Zt B fit) 5 5. 3.

a. Bf lEi«b. t£W£c. ttSrd. TEL. NO.e. FAX. NO.f. B 6tig. A#

ft«

ft«&W

h.i. @$*x*

: DEU:FRAUNH0FER INSTITUTE FOR SOLAR ENERGY SYSTEMS

: OLTNCUSSSTRASSE 22 D-7800 FREIBURG GERMANY : +49-761/4014-131 : +49-761/4014-200

: A.RAUBER DR : DERUTY DIRECTOR : WETTLING DR : PROF.: #: #

- 44 -

Page 47: ji. —W >fta

6.6. 3. 7 7'5>*7r-I3E*r ( K -f '7, 75^)1/?)

n ■{ /T-giJflfSCBA LW£Br®«££IJtllr'fc.(i) m ?e » u : si ft y - -y ^ >i if - m &

1 SYSTEM TECHNOLOGY (77fiSi)2 COLLECTOR DEVELOPMENT)!* * SB IS )3 SOLAR CELL TECHNOLOGY)* BS S *6 8 « )4 MATERIAL RESEARCH (MW935)5 ENERGY STROGE (X * )U* - «f S.)

( 2) ME:19 9F 5E Sr I i. b'J viz * H1 (6 ?1> e> v

X*AI?ffiir*jEeHI7W95Lri'-5, 19 9F % Sr 12, 4# 14 ffi £ • ff ffl 17 li S ff 7)5 $> <0 , 1# 1C 1 0 c m n -tr JU £ V ffl % V # 4 A 3fc 8 is $> o fc. cmfti'-ftfit, 5 c m£U_t(2£ ti SFZ5.LT V' fc lr' „ GaAs-fe 7H3 <k C/S i -fe 71/ 7? 12 ■? * fii23%, 2 1 % £Sfi£ L T l.' -5.

5. ttiSilt&C/Btoe

5. 4

a. Sr£H*b. tUB*

c. ttSrd. TEL. NO.e. FAX.NO.f. Itig. mim ##

ft*

h.i. ffl**ns

NDLEINDHOVEN UNIVERSITY OF TECHNOLOGY DEPT. OF PHYSICSPO BOX 513, 5600 MB EINDHVOVEN, THE NETHERLANDS

+31-40-453587t&m&fcvmm. *H3tf£tg&«l3fi £#8356

F. W. RAGAY DR PROF.

6. «e*r®6. 3. 7 -f 7 F*-7x7I#*# (t7>* 7-l'7h*-7x>)

9 y / eism?, §r s -tr ;v ® wss c -2 ir -c m $ $• $ it lx->$. u-a > ic J; 7 , S»^-ft«®W5ES-4f-p-Ci,'i30. 3 5~4 0 % <D %bm li Xf£^ *g i: ffl fe * t>M# C.ntl'5. AlCaAs/GaAst 2 0%£Sfi£ LTt'•S.

- 45 -

Page 48: ji. —W >fta

S? *4 1 . S io S V 7 h :# in # 8 3 7 A. ^JPi6 4Si#ti:^l'fcft*i:Lfc.

% # in A St 6 ae ^ tz B i'\ # in m

A» S£ A#

K 4 V 1 7 1 7/7 1 9

B * 7 3 * - 7 t 7 V 7 1 9

7 > V * 4 9 7 ^ X - 7 > 1 8

4 8 A ^ ^ > 1 7

^ > a •; - 3 4 / 7 7 X ;v 1 7

T > V - ^ 2 9 OF 1 7

* - 7 t V 7 2 7 v > # # - ;i% 1 7

O'JT 2 6 77>7 1 4

f 7 > f 2 2 ^ ;l/^r ~ 1 3

^ V v i- 2 2 foi 1 6 6

*-7 > K 1 9 *8It ( 6 4 H) 8 3 7

- 46 -

Page 49: ji. —W >fta

1 .1. # in A & ri' £ 3£ ^ fc @ gij # in S

A» A#

K Y V 1 7 1 70 1 9

B * 7 3 7 - 7 h 7 U 7 1 9

7 ^ V * 4 9 7 7 i-7 > 1 8

5EIS 4 8 7 < -C > 1 7

y i,7 v — 3 4 ■i 7 7 X ^ 1 7

7 > 7 - f 2 9 ^ > K 1 7

* - 7 h V 7 2 7 v > if - ;i/ 1 7

0')7 2 6 7 7 > A 1 4

^ 7 ^ y 2 2 ;i/^ - 1 3

* U -> ■<• 2 2 1 6 5

— 7 > K 1 9 «it (6 4 a) 8 3 6

- 47 -

Page 50: ji. —W >fta

«« 2.$ 2 (1). ISES SOLAR WORLD CONGRESS -b y •> a > £ S. V H £ $t

-fcr -y i/ 3 > * #jQHfS[ (£HH)

1. Energy Po lycy (x ^ ;i/^r — ® 5S ), Market i ng (*? — 7 -r * y&),

Environment(##)

7 7 3 1 (36, EP, %)

2. Education(ifcW) 1 8 1 2 *-■?>)

3. Rad i at i on (SI St),Meteorogy (M # # )

5 6 2 6OA'Wl/.df'JS' + .IS)

4. Selective Coatings

Opt i cs {% # )

3 2 1 3 (36. B *, 4=H )

5. FundamentalsCS^),Hydrogen (tK S )

2 4

6. Solar Therma 1 (± (# ^ ) 1 1 1 3 6 (36, EP, n )

7. Photovoltaics(±l#^c^%) : Progress Report Oils18 cr)

1 4 9 (*, 36, B *)

8. Photovo 1 tai cs (X fii ^ ^ ) : Materials & Cells(ttw

2 9 1 8(TOV# U 7,

B *)

9. Photovoltaics(±l#^:^%): Modules & Components

y a — )\/ b. ^3 y — %y K)

1 9 i i(36.x->*7 Y.^yii') -)

lO.PhotovoltaicsC^cd^^^l): Systems (v 7 t A )

4 5 2 1(36, x v?1 h , @)

ll.lind(a*) 3 8 2 0 01/ — v x 7, B * )

12.Biomass (vt 4 V 7 ):Agricul ture(##)

3 7 2 2 (EP, 4= H. B *)

13. Drying (% t§k) 2 8 1 8 (&, EP)

14.Solar Architecture(V - y - m * )

5 0 2 9 (^nrf-7,36)

- 48 -

Page 51: ji. —W >fta

2(2). ISES SOLAR WORLD CONGRESS -tr v -> a > « R O'In £ &

■*c. v i/ 3 y & #in@33t (±3?B)

15.Design Tools and Simulation (#% st V — ;!/ (h v < 3. ly — v a >)

3 0 2 3(h;i/3,7-1,7)

16. Monitoring(l-f-M) 1 7 i o(a,n)

17.Passive Cooling (X v -s-f fitP)

1 8 9(B*. L)

18. Day light! El 3tSS $ ) 1 3 1 1 (* -f * )

19.Transparent Insulation 1 7 9 (a. 3i)

20.Innovative Building Components 2 3 1 3 (a, + @, A f> ') 7)

21. Urban Des i gn (fft rfc f£ II) 8 5(»y#'J7)

22. B1 ind A1 leys(ffiBtE) 7 5 (31)

23.Active Systems (7>f

1 2 1 1 (&)

24.Active Systems:(7 Y y A)Moni toning (#+#), Test )

1 5 7 (.t1 > t- ?, t ^ > y)

25.Active Systems:(7 f 7 Y 7v%7A)Co 11 ectorsCS JttS )

2 8 2 i (*h,a.*)

26.Active Systems:(7)f <7'/XfA)Strage($»)

9 7 (X i/ 7 b , # — y's K )

27.Active:(7^7^)Water and Space Heating

t mm)

1 7 i 3(*.n.a)

28.Medica1 App1icat ion and Cooking

tmm)

1 1 s (ep, a, ti.)

8 0 3 641

- 49 -

Page 52: ji. —W >fta

* *4 3.3. v is 3 y m~$C.

*tr 'y :> s >

7. Photovoltaics(±|#^[:#E%) : Progress Report (ai SIB )

1 4

8. Photovoltaics(±l#jt^%): Materials & Cells (tt® t

2 9

9. Photovo 1 tai cs (± H % IS H ) : Modules & Components (-^ V zl — 71/ 2: 3 %/ — % y h )

1 9

10. Photovoltaics(*H7l6^^): Systems (y^f A)

4 5

1+ 1 0 7

48«(8 0 3fr)IC£»5tt$[%] ft 1 3

4. # 14 <k

1 2

m a -> u 3 > % 2

m - v -A- % ^ 5

CIS. C d T e % 2

-5-WffiCu2SnS3, PbSnS3frtttt« 7

1+ 2 9

- 50 -

Page 53: ji. —W >fta

R# 4.m 5 . STUTTGART UNIVERSITY

9F%*E£

DR.SCHOLZ

DR. SCHVERGER

DR.MANGLE ITER

DR.DORNEN

eF3Ey;v-^#BKAS : I'fnti4~5«

6. Xtf5'Ar->-y;U-7°09FSL

## (m - v) A1, Ga, In, As, P

t ;i/#a GalnAs/InP, GaAs/A 1 GaAs, GaInP/A 1 GaAs#

MOVPE(*(*£« Affix \s $ * i/-) 4 is

W3S '\TUJL)S$%-is Y

7. GaAs'N-r n x fcf * * -> + 11/fig ft® XfiS<6«

No J s cmA/cm2

VocmV

FF%

#9:

1 GaAs 30. 85 1034 83. 8 19. 8

2 Si 16. 66 748 63. 0 5. 8 2 mpg#

3 Si 19. 89 688 71.7 7. 2

4 Si 23. 65 724 71. 9 9. 1 *§9iIL7r:-;v&

5 Si 26. 76 786 73. 7 11.5 i« *3 il L fig ft S

- 51

Page 54: ji. —W >fta

mi 5®7*;i'-77x

7-tvi/X 7X4^##B###li7t;i/7 7 x -/ V 3 y 1"* 77 x-¥-aiLT, 2f 4-HI

l±, il4@BW5'r/i^Vr>Jf)l'A> ( M 7) T*<7)glSlc-D CS 1 5 @£18 b L7\ -f xo7 XT’1; 7v>^±#mre*3) ti 9 9 3^9/! 5 e-t 9 9^ 1 0 biritis<izc= a-ny/u-©MiV'^tUoT, hV5'fr(>9 4«1Ii*'t6 9iS, B2M't>5 9£, * S^t, 4 9>g, 79>X^t>3 2 £k -1’#' V 7^6 2 1£, #3 7 5 3£<7>#iDX>*> t^KffibfL/co 6 0 3 0 3 /<7WHrr/3> (A, B, C) <0@f#5S?S£-gtr PSS5&* t *’X 7 - -t 7 v a >Tf6E**

frtotlfco

B3k

* £18 7 n x* 7 A

* {tto

- 52 -

Page 55: ji. —W >fta

Monday, September 6th 9.00 am Plenary Session

Room A

1.00 Welcome remarks

Mo-At/1 The Mol Lecture

PaulHarvard University Cambridge, USA

0.20 Structural and Electronic Properties el Amorphous SL Go and Sl-Ge Aloys

Monday, September 6th Gap States

Room A

10.50 amTransport 1

Room B

pc SI

Room C

Mo-A2/1 a Schumm (Pete Ale, USA)10.50 The delect pool model and charged

delects In amorphous sllcon (burned)

Mo-B2/1 R. Schwsnr. F, Wang, S. Grebtw. T. Fischer, S. Koynev and V. Chu" (Gerchlng, FRO: 'Lisbon, Portugal)

10.50 Response time measurements In mlcrecrysiallne sBcon

Mo-C2/1 G. Lucovsky and H. Oveihor(Raleigh, USA: •Paderbom. FRG)

10.50 An appticatlon ol lie sUfstieal shlfl model to lie Inverted Meyer Neldel teWtonshlp In heavily doped pc SI

cnGO

I

Mo-82/2 C. Mato, R. Bttiggomann, O P. Webb and S. Reynolds(Dundee Scotland; *SlM1gart. FRG)

11.10 Time and frequency domain eludtoe •I photoconductivity In amerphoua semiconductors

Mo-C2/2 K.J. Chen. X.F. Huang. J Xu. S. YsmosaM’ and K. Tanaka*(Nanjing. China; ‘RwraM. Japan)

11.10 A denied photolumtoeecence study ol ctyslaSeed m-SIH muWquintum- wel structures

Me-A2Z2 S C. Deane and MJ. Parrel (RedhR.UK)

11.30 Deled pool model parameters lor a SI derived bom Held altod

. measurements

Mo-BZ/3 A. Shah, J. Hubto. E. Sauvaln. P.PIpoz, N. Back and M Wyrsch (NeuchlML Switzerland)

11.30 Role ol dangtng bond charge to determining pt- products lor a-Si:H

M0-C2/3 M. Otobe and S. Ode (Tokyo. Japan)11.30 The role ol hydrogen radicals lor

nuctoabon and growth ol nano- crystoKne sHoon

M0-A2/3 J O. Conan, T.M. loan and F. Zheng (Eugene. USA)

11.50 Relaxation ol fie D eenbw In a-StH and how ewe accounts tor too Observed energy distribution ol deep detects et me moblhy gap

Mo-A2m H.M. Bran*. D. Hon*. D C. Matcher**. E X SchW* and M. Slver*(Golden, USA; "Chapel HR. USA: “Syracuse. USA)

13.10 Phetocorrler drill and recombine lion to a-SI:H • tie vital Importance el delect relaxation

Mo-AZ/S M. Vanecsk. A.K Mahan* and R.S. Crondair (Praha. Czech Re pubic: •Golden. USA)

13.30 toOuancs ol tie hydrogen eonc- entradon on equHbration tomperatoro to a-StH

Mo-BZ/4 J. Kocke, a Jueka*. O.KUma. E. Slpek. G Noble". E. Terztol** and G. Conte"(Praha. Czech RopuMc; "Vlnkra. Lithuania; **Portlct Holy)

11.50 DemonabiOon ol apace charge(mitod-iinie el HgM aa a new tool tor characterization el real a-StH solar calm

Mo-B2/S M. Haridbn. K. Weber and M.ZoKkaon (Technkxi. Israel)

13.10 Trapping electa In a-StHInvestige led by high Said SSPG measuremema

Me BW U. Haken, M. Hundhauaen and L Ley (Erlangen, FRG)

13.30 Cantor mebWy end He Sms to a-StH determined by Ota moving grating technique

Mo-C2/4 P. Hapke, F. Finger, R. Carlua, K Wagner. K. Prasad* and R. Ftocklgar* (JOIcKFRQ; ’NeuchlML Switzerland)

11.50 Annas log studies on too micro-crysubne sllcon tyatom

Me-C2/S M. Hekitze. W. Weshake and P.V.Samoa (Stungart. FRG)

12.10 Surtaoa convoOed plasma deposition end etching ol sBcon near toe chemical equRbrtwm

Mo-CZ/0 l Solomon, B. DrevHon and K Shbal (Palaiseau. France)

12.30 Plasma deposition ol micro-cryitabneallcon: toe selective elchtog model

Room AMo-AV1 W.B. Jackson (Palo Abo. USA)2.30 Hydrogen dHluston and malaatobRIy

to hydrogenated amerphoua sHoon (Invited)

Monday, September 6th 2.30Hydrogen 1

Mo-A3/2 KM. Bran*. S. Asher, B.P. Nelson and M. Kemp*(Golden. USA; "Chapel MIL USA)

3.10 Hydrogen diffusion mechanism to a-SI horn 0 tracer studies

Me-AOT P.V. Samoa. M. Brandt', HA Street* and M. Slutzmann (Sluflgatt FRG; ‘Palo Alto, USA)

3.30 Accelerated hydrogen migration and delect formation under steady-stale and pulsed Rumination to a-Si:H

Mo-A3/4 P.V. Santos. N.M. Johnson* and RA. Street'(Stungart FRG; 'Pals Alto. USA)

3.50 Hydrogen migration to a pulsed elecbtc field to a-StH

Chilcogenldes 1

Room BMo-B3M K. Tanaka (Sapporo. Japan)3.30 ton-conducting amorphous seml-

eonductor Ag-As-S

Mo-B3/2 R. Koi. G. Kasper and S.Hunkflnger (Heidelberg. FRG)

2.50 Distribution of barrier heights to chalooganida glasses

Mo 83/3 P. Nagels. LTIchy* and KTkha* (Antwerp. Belgium; ‘Pardubice. Czech Republic)

3.10 Observation of variable range hopping conduction to a Ge-Sb-S glass etoyed with CoS

Mo 83/4 P.C. Taybr. R E. Shiroy. S. Girtanl and J. Hautala (Sal lake City. USA)

3.30 Defects and doping' to metal chalcogenide glasses

Mo-B3/5 E. Sleeckx. P. Nageb. R. Calberta and M. van Roy (Antwerp. Belgium)

3.50 Ptasme-enhanced chemical vapourdeposition and optical properties ol amorphous Ge.Se,., Urns

Structure

RoomCM»-C3/1 S.J. Jones, Y. Chen. D.L WHbmson,

U. Krol* and P. Roca I Cabarrocaa" (Golden USA; 'NeuchlieL Switz­erland; "Palaiseau, Fiance)

2.30 The elects ol Ai and He dfiution ol RF ptoamas on toe micro structure ol a-StH detected by amal-angle X-ray scattering

Me-COfl S.R. Elton and A Uhtoerr (Cambridge. UK)

2.50 The source ol toe extended-range order to amorphous slicon

Mo-CS/3 M.K. Ella and R.T. PhHipe'(Exeter. UK. *Cambrldge. UK)

3.10 Mkro structure ol P-Se glasses andlow frequency Raman scattering

MO-C3/4 J.K Lee. AP. Owens and S R. Eltiott (Cambridge. UK)

3.30 Slmctura ol Ag-Ge-S glaaaaa determined by bo topic substitution neutron scattering end reverse Moms Carlo simulations

Mo-C3/5 S.C. Bayfbs. S.K Baker*. J.S. Bales, S.J. Gorman' and E.A. Davie' (Loughborough, UK; 'Leicester, UK)

3.50 Elect ol deposition temperature on disorder In InP

Page 56: ji. —W >fta

Metis, Density d Slues

Me# VI 3.N. T ir is tin and ML longer(Moscow. Russia: *St Petersburg. Russia)A model el dangSng bonds and el a weak bendtiangdng bend conversion In a StH

Me# VI OA. GoBova. M.M. Katanln and R.G leamov (St Petersburg. Russia)UgN Induced dangbng bends In undoped a-SI:H

Me# VI Y. lifbtonfcer. L Bafearg, S. Wetiz* and M. Gome**| Jerusalem, Israel: mo Ptedrma, Puerto Rico)The dependence old* Sue carters ps products on tie position el tie Farm! level In e-StH

Me# VI J P Klelder. C. Longeaud and P.Roca I Cabarrocaa"(Gltsur-Yvette. France; 'Palaiseau. France)btduence on transport properties ol tie deposition temperature ol a-Sl.H Wms deposited bom mixtures el Siam In Heal high depositionrales

Me# VS J. Veres and C. Juhasz (London. UK)Cycled seragraphie and time-ol-Eght metsuremenls - dtaoty and experiment

Me# id A Many. Y. Golds lain. S% Wetsz", J. Panalbert*. VV, Munoz* and M Gomez* (Jerusalem, Israel; Rio Pledras, Puerto Rbe)Study ol tie density el stales In e-St:H using tie sofid/ebctrolyM system

MePV7 VX Terekhov. VX Timoshenko. V.N. Sslozmv* end E Oomoshovskaya (VarorazA Russia; 'Moscow. Russia)The election beam ktHuence on tie slectiottic stiuchxe ol amorphous sEeon nitride

Ms# VS J. SchmaL R Klrsch. M. Albert and R. Ondematsi (Dresden. FRG) Delect density and pholoslsclrical properties el alternative doped amorphous sllcon

Me# VI G Nobte. F. VMarti. G Corns, 0. Capulo* and F. Psfena*(Napot. Italy: "Rome, Italy)

■ CPM and spectral photoconductivity techniques: a critical analysis dtie experimental resutis

S Me#vit A Amaral G longeaud*. J.P. Welder*. D. Mencarsgla* and C.K

Carve#* (Lisboa. Portugal; "GMaur Yvette. France)I Determination ol densky ol stales tit p doped a-SI by means ol ti*

modutiled phetocunsm eipertmem

Me# VII A Mentor. N. Wyrsch and A Shah (NeudtMel Switzerland)Unfits el *e constant photocurronl rnetiwd tor ti* determination of tie deep detect density ti a-StH

Monday, Sept 6th Posters 4.30 pm

Me#VII 2. Saleh.H. Taral & Tsuda. S. Nakanoand Y.Ktmam (Osaka. Japan)Comtant photocurrort matood and tight Induced ESR hvestigatierw el delects kt tight-seeled and Ngh-lemperature anmsled a-StH

Me# VII A Seholtz. 8. MOfier, H FraUstodt*. B. Schrdder and H. Oechsner (Katierslatrtem, FRG; ‘Magdeburg. FRG)Photoconductivtiy spectroscopy (CP 14 on s-GeH at tow temperatures

Ms# 1/14 A Mttigs. #. Ftorfcti*. L Fomsttiti". G GrBe, M. Pstiacca* and S. Korepanov (Monlerotondti. Italy; "Rome. Italy, "Frascati. Italy) Thickness and Intensity dependence el spectral photoconductivity kt a-SI:H

MePVtt AD. Zdetsls and GE Froudakls (Pstra. Greece)A real space study el ti* electronic structure ol a-SI delects

Me# VII A Kosarev. NX Sobolev. AX Shtit and AG. Kevrov (SI Petersburg. Russia)The etiect el neutron tiradtotion an ti* electronic properties el a-SI tiltime

MsfVty J.Z. Uu. a Lewen. J.P. Cento and #. floca I Cabarrocaa*(Princeton. USA; Patatiaau. Fiance)Mechanism tor anomatous photocurronl spectrum under tight bias kt a-SLH

Me#VII K. ShknekawA A Kendo, K. HayasM S. Afcaherf, T. Kato end S.A Etiol* (GMi. Japan; ‘Cambridge, UK)Pholobiduced metasteMe detects kt amorphous semiconductors: communally between s-StH and chatoogsrtidaa

StaMMy, EquMbrattee

Kinetics and steady slatoa el creation and annexing at tight Induced delects In 23 a-SLH samples prepared by time dirt*rent techniques

Me#2* J. Kocka, O. Stika. Ho-The-Ha and J. SlucNIk (Praha. Czech flepubtic)Putoad ruby hear aeceleratod degradation el e-SLH

M»#lft A Kitagawa. S- Kanal and M. SuzuM (Kanazawa. Japan)Dynamic phase tfiagram tor a-SI til rapid tiieimal processes

Me#»l P. AgarwsL SX Tripatitl & Kumar and S.C. Agarwal (Kanpur. India) Meta subtilise kt tititium doped a-StH

Mo #2/1 C. Swiatkowski end M. Kunst (Bertin. FRG)bt-stiu measuroment during ti* growth ol a-StH on c-SI substrates

Me#»W Z. OJebbour, J. Sto and D. Mencaragla (GN-sur-Yvone. Francs)Aging efleets an a-StH pkt solar cals Investigated by below gap modulated photocurronl spectroscopy

Uo#ant S.L. Wang. J.M. Vlnsr. M Anani and P C. Taylor (Salt Lake City. USA) Persistent photoconductivity In s SI, ,5, til si low sulfur concentration

Mo#2/12 S.M. Plelruszko (Warsaw. PoUnd)Thermal quenching In doped LPCVD amorphous sRcon hydrogenated by Ion Implantation

Mo#Y13 R.H. Bukrago. R.D. Arcs end R.R. Koropedd (Sanu Fe. Argentina) Ellact ol ti* deposition variables on amorphous sllcon stabWy

Hydrogen In Silicon, Germanium

Mo#3/l F. Ibrahim. J.I.B. Wlson and P. John (Edinburgh. UK) Photo-oxidation ol a-SI:C:H tikns

Mo#3/2 Z. Song. F. Zhang, a Yu and G. Chen (Lanzhou. China)Hydrogen dUtusion kt a-StH / a-SI structure under «Metrical bias

Mo#3/3 Y.L Khah. R. Wei and W. Beyer* (Malta. Uriel; *JMch, FRG)A new kinetic electron rotated model ol hydrogen dtiluston kt a-StH

Ms#3/4 N. Bek*. J. Sib*. L Chahed**, T. Sms*. T. Mohammed-Brahkn. Z. Djebbour, J.P. Klelder*. C. Longeaud* and 0. Mencaragla (Alger, Algeria; *G*-aur-Yvette. France; “Parte, France)Optimisation el ti* hydrogen content kt a-StH deposited at high rote by dc magnetron sputtering

Ms-P18 P. Harl P C. Taytor and RX StiaaF (Salt Uke City. USA; *Pak) Alto. USA)Mfcroscopic motion ol hydrogen kt tw dtirta and ckMsrod phases ol a-StH

Structure and Electronic Structure

Mo#«l R. Cole and K-Slavrov (Pisa. Maly)kiMrstitUI hydrogen kt sMcon: A (worotical study

Ms#«2 J.P. XanthakU (London. UK)Electronic strocture end bond gap study ol SI,,C,

Mo#«3 G Wloch, R longer. U. lops and A Sknunsk*(MOnchen, FRG; "Praha. Czech Repubtie)SI K*. SI L- and C K amUaton bands and electronic structure ol amorphous SI,.,Ct;H atioya

Mo-Plrt F. FlnoccN and G GaE* (Orsay, France; "Lausanne, Switzerland) Atomic and alec sonic skucluro el a SIGH Irom a b-Initio molecular dynamics

Mo#«fl S. Hosokawl. Y.Hart. K. Mshihars and ML Tanlguchl (Hiroshima. Japan)Photoemhslon and Inverse photoamisslon spectra ol amorphous chafcogenldes and a-Gs

Mo#4il L.F. Gladden and S.R EBoll (Cambridge. UK)Construction ol ukra Jorge structural models el AXj lypa gtosaos

Mo#V7 L Pusual and S. Kugtor (Budapest Hungary)Reverse Monto-Cario simulation: The atiuckiro ol amorphous stikom

Me#VI A Burton. P. Leeanto*. A Mossel*. J. Gaty". J.M. Tenr*rro“ and 0. Raoux*“ (Zabrza, PoUnd; "Toulouse, France; “Orsay. Franco; “GronobU. Franco)

Scattering sludUs ol amorphous Cd„As„ and Cd^Aa,, tikns by anomalous X-ray sea tiering

Mo#Vl T.M. Burke, O.W. Husky. RN. Newport and G BushnsB-Wys* (CanWrbury. UK; "Warrington, UK)The structure el a-C:H using he Warron-Mavwl method within X-ray dWtaction

Hs-Plft K Nalto and M. Ohuda (Osaka. Japan)

a SiC H Irom VHF deposition

Me #V3 V. Vaerasamy. GA Amaralungs. C A DavU. W.L MU*. P. FatioA and J. Robertson* (Cambridge. UK: "Leatiwrhead, UK)Properties el highly lelrahedral carbon as a function ol ton energy

Me#« S. Sc hot*. W. Fuhs. H. Mel and S. WE (Marburg. FRG)Electrical and optical propertUi el a-C:H Eme

Me#S5 M. Kods, L Pdcsik and L Tdlh (Budapesl Hungary)Polarisation memory ol pholo luminesce nee In a-C:H films

SI Go Based Alloys

M»#*ri J.T. Yount and P.M. Unahan (PannsyfvanU. USA)Bridging nitrogen da tecta fit ahcon oxynitride films

Me#l/2 R Watanabe. K. Hags* and T. Lohner**(Sendai Japan; "Natori. Japan; "Budapest Hungary)Structure ol high photosensitive sllcon-oxygen alloy films

Mo-Pi/3 0. OktO and GJ. Adriaonssona* (Ankara. Turttsy;‘Haveriaa, Belgium) Or* mobility meosuremonla In a-Sll.,C,:H

Ue-PC/4 A EIUL J. Jansen. S. Usato and GJ. Adriaanssenl (Haveriaa, Belgium)Tana ol Kght and constant - photocurronl measurements In a-StS:Hatioya

Mo#W S. Ray. S. Hair a. AR Mddya and AX Ban* (CakulU, India) Grow* ol device quality 1-SiGsH atioy fikn under hetium dlution

Mo-PM F. Edelmann. C. Cytermann. R Brener. M. Eizenberg. R Wei and W. Beyer* (Haiti. Israel; Mulch, FRG)InMrtactol reactions kt ti* i-SI,Ge,y.H / Cr I glass system

Ue-PVT G Leo. G. Gatiuzzl, G Gualtari, R Vlncenzonl F. Oemkhotis". G Crovinl*. C.F. Pirri* and E Trosao* (Rome. Italy; Torino. Italy) Relations among structural and optoelectronic properties In a-Si,C,..:H fikns with high C contort and high photoconductivity

Uo#M F. Wang and R Schwarz (GarcMng. FRG)Characterlsaton oI optoelectronic properties el » Sms

Me#W J. VDcarromero and F. Marques (Campinas. Brail)Structural properties el dautaratod germanium nitrogen aloys

Meffi/lfi A Tabata. Y. Kura. Y. SuzuoW and A Mzutani (Nagoya. Japan) Perparaton ol a-S^C,.,:H films by separately excited ptimma CVD method

Devices and Device Modeling

Mo#7/1 A Wahl and R Kdrankamp (Bertin, FRG)Amorphous silicon on cotioidal TO^ Charge transtir and Interlace

Me#7/2 W. Kuslan and K Pflektirer (MDnchen. FRG)Uniterm-fie Id model ol a-SI pin solar cels

Me#7/3 S.P. Lau. J.M. Marshal AR. Hepburn and J.F. Oavtis (Swansea, UK)Amorphous SIC thin fikn vtstoti fight emitting diode with highly conductive wide band gap a-SIC as the carter Injection Myers

Me#7/l C. Longeaud. J.P. Kleldef, 0. Mencaragfia. A Roland*, P. Vttrou* and J. Richard* (Gl-sur-Yvette. France: lannlon, France)Density ol states In TFT* horn modutiled photocurronl experiment ; application to the study el metaslabilities

Me#7fl B.S. Baa. S R Jung, H M. Kang and J H. Son (Suwon. Korea) a-SI:H TFT labricaled by n* anodization

M*#7E JX Yoon. H.S. Choi Y.R Bang. S.C. Park and C. La*(Kyongkl-Oo. Korea)Vohago dependence ol e* current In a-SI.H TFT under bacVfight Rumination

Me#7/7 R. Cariucclo. G Fortunate and W.L Milne*(Rome. Italy;"Cambridge. UK)Activated hydrogen efleets on ti* electrics! stabitty ol s-SI:H tiiln-flm

Me#7« S. Ntihkto. K. Takechl R Hrara and K Uchlda (KawasaM. Japan) Simulations an back gale efleets el a-SI TFT o* current under humiliation

Me#7/1 B.C. Ahn. J.K Kkn. O.G Kkn. S.S. Yee*. EY. Moon*. K.R Kkn*. GW. lee*, J. Jang* and MX Han* (KyungM-do, Korea; * Seoul Korea) Fabrication ol high performance APCVO a-SI TFT using ton doping

Mo# 1/13 YX Bhainagar end A Neman |Wai#noo, uviwu,A thermal sensor based on ti* Seebeck eltect in a-SI:H

Me #7/14 L Sc hirer*. R. Sate*. 8. La Monica. P. « Rosa. G 0* Cesar*. E. Verona and G. Sagglo (Rome, Italy)Two-dimensional Image sensors based on amorphous siticoe atioy pin diodea

Me#7/li A Ptcora and G Fortunate (Rome, Maly)a SI:H based fight addrasaabti potontiomskto sensors (LAPS) tor hydrogen detection

Mo#7/ll E Fortuato. M Vieira. GN. Carvati*. G Lavereda. R Martins and L Ferreira (Monte da Capa rice. Portugal)Material properties, project design rules and performances ol single and dual-axis a-StH Urge area position sensitive detectors

Me#7/I7 RA van Sweat S.J. Elmer*. W.P. Witiams**. J. Be lamer, J.M. Maishar and AR. Hepburn*(UtiechL The Netherlands; ‘Swansea. UK; "Boxmear. The Nathartinda)Compel ision ol Monte Carte Simula So ns ol electrophotographic dark discharge to experimental dark discharge ol a SI,*C,:H fikns

Me#7/ll C. Morasanu. C. Cesle. S. Korepanov, P. Florirti, G BaccL F. MeddlF. Evangelists and A MMtiga (Rome. Italy) l-SI:H based particle detectors wMh low daptition vohago

Me#7/ll J. Haiti. M.J. Ross’. AE Owen. AJ. Sntl and RA Gibson* (Ettinburgh. UK; "Dundee. UK)AC knpedanca measurements on metal / a-SI;H / metal thin 8m devices

Mo#7/20 G Masisrt. D. Capulo. G De Cesare and A Dabosz (Rome, Italy)Design realisation and characterisation ol mesa ktsiiatod a-SI bufit barrier photo transistor

Mo#7/21 M. Tr§ssenaarm M. Ztman and J.W. Matsalaar (Datil The Netherlands)Investigation ol ti* Interface properties el amorphous sllcon p-l junctions

Mo#7/22 R Martins. M. Vieira. E Fortunate. G lavsroda. L Ferreira. F. Soares and A Fantonl (Monte da Capa rice, Portugal)Taloring me testable detects an a-SI pin devices

Mo#7/23 F. Schauar and O, Zmeskal (Brno. Czech RepubficJ Temperature dependent SCLC In amorphous sheen

Page 57: ji. —W >fta

10.50 amTuesday, September 7th Stability 1

Room ATu-ASI T. Shimizu (Kanazawa. Japan)>0.50 Ughi-Wk**d elleeta and atabflty In

• StH and rototod aloya (InvHad)

Transport 2

Room BTv-BS/l P. Thomas and S.D. Baranevakl

(Marburg. FRG)tOSO EquRbrium and norhoquIMum

transport to band tola (kwtiod)

Tu-AS/2 M. Nakata. S. Wagner and T.M. Paterson’(Princeton. USA; *Pa» Alto. USA)

11.30 Do Impurities sited tie op*o- a lector* propeiHea el a-StHT

TtfAS/3 P. Seeds* and KFrtttache (Chicago. USA)

11.50 Temperate* dependence el creation and eimeatng el IghHnduced mata- atabtedetedatoa-StH

To-AS/4 S. Yamasaki and J. laoya (tbaratd, Japan)

1110 Ughl-hduesd deled sbudure In • StH eluded by a putaed ESR (Invited)

Tuesday, September 7th Porous SI

Room ATu-A7/1 M-Slutzmann (Stuttgart FRG)4.40 Electronic and structural properties el

porous Uticon (Invited)

Tu-AZ/2 M. Kendo (Tetye. Japan)SJO New btttrprelallon tor via Me photo-

haninescence In porous sBcen

Tu-BS/2 S O. Baranevakl, B. Clave. R. Hess. R. Schumacher* and P. Thomas (Maitmrg. FRG; "Mannheim. FRG)

11.30 EMectka temperature tor elector* In band els

Tu-BS/3 S. Gomt $. FuJNrara and F.Yenezawa (Yokohama. Japan)

11.50 Stochastic tana port model tor dHtoahre properttoa In amorphous aystema

Tu-BS/4 J. Fan. GL Khera. L Lust and J.Kakales (MktneapeSa. USA)

12.10 1/1 nob* to doped a SI:H

Tu-BS/S N. Bernhardt B. Frank and O.H.Bauer (Stuttgart. FRG)

12.30 Random telegraphic noise In a-SI:HMC,.-H SchoWty barrier*

Room BTu-67/1 0. Weak*. 0. Hobbs. Q.J. Morgan.

J.M Hot*nder* and F. Woolen" (Dubtin. Ireland: "Leads. UK; "Uvemtor*. USA)

4.40 New applicationa el tie equation-el- motion matted: Optical properttoa

TU-B7Z2 A. Georghhr, G Stintimaud. R. AiaT andEAOavto*(Peris. France: 'Leicester. UK)

5 00 Density el stales el a-S^Nt, stioys determined by X-ray and appeal spectoscoptoa

Tv-67/3 J. Sotiropoutoa, W. Fuha* and N. Nickel"(Pates, Greece: 'Marburg. FRG)

S.20 Structure and optical properties el aSI,_N.:Hatioys

In-SItu Characterisation

RoomCTu-CS/1 Y. Toyoshkna. A. Matsuda and K.

Aral (Tsukuba. Japan)10.50 In-titu Investigation ol the growing

a-SLO aurtace by ktkared reflection absorption spectroscopy

Tu-CS/2 R. OsskovaW and B. Orevtiton (Pablseau, France)

11.10 In situ study el P-doped/tnsinsle amorphous slicen Interlace by IR eKpaometry

Tu-CS/3 M. Katiyar. G.F. Feng. Y.R Yang. K Malay and JR. Abe bon (Urbina. USA)

11.30 Real time IR spectroscopy : quant- •cation el near-aurtace hydrogen knpbntation and release during a-Si:H magnetron sputter-deposition

Tu-CS/4 A. Taka no. M. Kawasaki and R Koinuma (Yokohama. Japan)

11.50 Optical detection and dynamics ol aurtace transient process In plasma CVO ol a-Si:H

Tu-CS/5 K ShlraL & Orevtiton and P. Roca I Caberrocai (Paliliaau, France)

12.10 ki-atiu krirarad eltipeomeey study ol d* Mktonoo ol alano dilution on t* growto mschanlsma ol a-SI

TihCS/e J. Horton. K. SzoV, S. Barton. F. Siobko and R Wagner (JOtich. FRG: Katowice. Poland)

12.30 Scanning lunnelng microscopy ol a-Sl:H sudacos - comparison wtih hydrogenated crystalline slticon

Phonons

Room CTU-C7Z1 E. Bus tar ret C. Thomsen. M.

Slutzmann, A. Asano, M Brunei" and C. Summonte"(Stuttgart. FRG: 'Grenoble. France; “Bologna. Italy)

4.40 Light scattering by acoustic phonons In a Si and a StH

Tu-C7/2 A.J. Schollen. PA Vertog. A.V. Akimov and J.L Oqtdwto (UlrechL The Netherlands)

5.00 Nonaqulibrlum phonon dynamics In amorphous slticon

TU-C7Z3 R. Orbach (Rlverald*. USA)5.20 Phonon tocalsilbn and sans port h

disordered systems (Invited)

4.40 pmI Optical Properties

Tuesday, September 7th 2.30 pmStability 2

Room ATu-AO/1 K Gtoskova, J.M. Buttock and S.

Wagner (New Jersey. USA)2.30 Isolating hr rate el tight-induced

enneiting el the dangling bond defects In o-SLH

Tu-Afi/2 R Hala and A Matsuda (tbaratd, Japan)

2.50 Dilterence between deposition - and tight - Induced defects to a-StH studied by tight-induced annealing experiments

Tu-At/3 S. Vignoti. R. Meaudre. M. Mtaudro, L Chanel and P. Roca I Cabanocas* (Vtitourbanne, Fiance; 'Pablseau. Fiance)

3.10 Kinetics el delect creation by tight pubes to a-StH Hms deposited kern pure silane and from stiane-hetium mixtures

Transport 3

RoomBTu-BO/l K. Gaughon. Z. Un. J.M. Vtoer. P C.

Taylor and P C. Mathur (Sad Lake City. USA)

2.30 Electronic and optical properties ol n type i-SI:H

Tu-BS/2 R Herremarts, J. Jansen and W.Grevendonk (Hevertee, Belgium)

2.50 Steady stole optical modubtlon specsoscopy ol B,H, doped a-SI:H

Tu-B6/3 M. Nesbdek. F. Schauer'. P. Breda' and G J. Adrtoenssens" (Diepenbeek. Belgium: ‘Brno, Czech Republic: “Leuven. Belgium)

3.10 Electric field relaxation In tie prolonged-time transient photo- current experiments

TFTs

RoomCTu-CO/1 T. Tsukuda (Tokyo. Japan) 2.30 Amorphous atikort TFT*

(Invited)

Tu-C6/2 M. Hack. P. M*L R. Lu|an and AG.Lewis (Palo Alto. USA)

110 Integrated conventional and bear re crystoltised a-SI TFTa lor brge area Imaging and display appficationa

Tu-Afi/4 W. Oral, K. Letokamm. M. Wolt J.Rlsteln and L lay (Erlangen. FRG)

3.30 Light-Induced transient changes el the occupied density ol delect stoles ol a-SfcH upon Rumination at room temp and 120K

Tu-Afi/S P.N. Morgan. W.L Mine. S.C. Deane" and MJ. Power (Cambridge. UK: 'RedhR UK)

3.50 Thermatiy atimutatod detect removal In a-SfcH TFTs

Tu-A7/3 E. Bustarrel M. Brunei and tiA Ugeon (Grenoble, Franco)

5.40 Proparatton and properties ol ■nodlzed amorphous silicon

Tu-80/4 D. Han. K. Wang smd M. Stiver (Chapel Mil. USA)

3.30 Transient toiward bbs currents to s-Si:H p-l-n devices

TuMS U. Dammar. CJ. Adtdns. R. AsaL E.A Davis and T. Wright (Cambridge, UK)

3.50 The effect ol hydrogenation on tie electronic properties ol amorphous •illcon-nickel aloya near the metal- Insubtor tansition

Tu-67/4 A Slmunak and G. Wtoch"(Praha. Czech repubtic: "Munchon. FRG)

5.40 Analysis ol local structure to amorphous SiN,:H atioy Hms to torn* ol X-ray omission spectroscopy

Tu-CB/3 S.S. He. MJ. Wltiama. OJ. Stephens and a Lucovsky (Chapel HR USA)

3.30 Fabrication and performance el TFT* Incorporating pc-S source and drain contacts and boron compensated pc-SI channels

Tu-CB/4 G. Fonunato. R. Cariuedo and L Marlucd" (Rom*. Italy:'PortlcL Maty)

150 Application ol tie photo Induced discharge technique tor the tovostigation ol a-Si:H TFT Inetobitoy

Page 58: ji. —W >fta

Wednesday, September 8th 9.00 Deposition 1

Room AWe-A8/1 G. Ganguly (IbaraM, Japan)>.00 Importance ol aurtace processea In

defect to mutton In a-SI:H (Invited)

Carbon 1

Room BWe-BS/1 T.M Burke. RJ. Newport W.S.

Howell-. K. Gflkes-* and P. Garter* (Canterbury. UK; "Dticot UK; “Cambridge. UK))

9.00 The structure of a-C:H(D) by neutron dlltr acton and bo topic enrichment

We-B8/2 C. J4ger, JJ. TMman. J. Goflwald, R.J. Newport* and T.M. Burke*(Mainz. FRG: ‘Canterbury. UK)

9.20 Characterisation of a-C:H by ID and 2D NMR techniques

Recombination 1

RoomCWe-C8/1 MS. Brandt and M Shitzmann*

(Palo Alto. USA; ‘Stuttgart FRG) 9.00 Spin-dependent photoconductivity

a kmctton ol wavelength; a test the constant photocurrenl method a-SI:H

We-CB/2 R. Carius. F. Becker. F. Finger. R. BrOggemann, C. Ben#king and K Wagner(JOtich. FRG: ‘Stuttgart. FRG)

9 JO Transport and recombination Ina-SI:H p+n diodes under forward bias conditions

We-Aa/2 M Arums. T. Yokel. I. Shllya and I.Shimizu (Yokohama. Japan)

9.40 Stable a-SI:H fabricated from halogenoua stone by ECR hydrogen plasma

IUiCTl We-AM A. Suzuki and A. Matsuda

(IbaraM. Japan)• 10.00 Threshold Intensity tor dinging bond

termination reaction by UV laser irradiation during plasma deposition tor a SI:H films

We-68/3 P. Btaudeck. T. Frauenhelm. T. Koehler, M Sternberg and J. Jungnlckel (Chemnitz. FRG)

9.40 Ouanium-MO Investigations ol tits structure and electronic properties In amorphous hydrogenated carbons

We-BS/4 J. Schller, J. Rlsteki and L Ley (Erlangen. FRG)

10.00 Electronic structure and defect density of states of hydrogenated a-C:H as determined by photo- electron and pho toe lection yield spectroscopy

We-Ca/3 W. Fuha and K. Upe (Marburg. FRG)

9.40 Recombination In a-SI:H films and pin skucturos studied by electrically detected magnetic resonance (EDMR)(Invited)

S' ?

8

Wednesday, September 8th 10.50 am

Deposition 2 Electronic Structure

Room AWe-A9/1 M Heintzesnd R.Zedfitz

(Stuttgart. FRG)10.50 Control of a-Si:H deposition by the

Ion flux In a VHP plasma

We-A9/2 U. Kroti. J. Meier. M Goetz. A. Shah, A. Howling*. J.-L Dorter*. J. Dutta* and C. Hollenstein*(Neuchatel. Switzerland: ‘Lausanne, Switzerland)

11.10 Influence ol higher deposition temp on a-Si:H material properties, powder formation and light Induced degradation using the VHP (70MHz) glow discharge technique

WO-A9/3 M. Zhang, Y. Nakayama. S. Nonoyama and K. Wakita (Osaka. Japan)

11.30 Relationship between film quality and deposition rate lor a-Si:H by ECR plasma CVD

We-A9/4 MJ. Williams. S.M Cho, S.S. He and G. Lucovsky (Raleigh, USA)

11.50 Wide bandgap a-Si.N:H alloys deposited by remote PECVD lor use in tandem photovoltaic devices

We-A9/5 U.l. Schmidt B. Schrader and H.Oechsner (Kaiserslautern. FRG)

12.10 Influence of powder formation in a silane discharge on a-Si:H film growth monitored by in situ ellipsomelry

We-A9/8 V.L Dalai, K. Han. R. Knox and N. Kandalalt (Iowa. USA)

12.30 Properties of a-Si:H films prepared at high temperatures using reactive plasma beam techniques

Room BWe-B9/1 GGalll (Lausanne. Switzertand) 10.50 First principle molecular dynamics

simulation of amorphous semi­conductors (Invited)

We 89/2 C.Z. Wang, K.M. Ho and C.T. Chan (Ames. USA)

11.30 Structure and dynamics ol amorphous carbon

We-B9/3 P C. Kelires. C.R Lee* and W.R. Lambrecht"(Crete. Greece: ‘Cleveland. USA)

11.50 Structural studies and electronic properties of diamond-like amorphous carbon

We-89/4 A. Gibson and R. Haydock (Eugene. USA)

12.10 Calculation ol the density of states and spectral momentum density lor electrons in a topologically disordered model of amorphous graphite

We-B9/5 J.X. Zhong and R. Mosseri (Meudon. France)

12.30 Electronic structure ol a fractal model ol hydrogenated silicon

Diodes

RoomCWe-C9/1 C. van Betkel, MJ. Poweti and S.C.

Deane (Redhitt. UK)10.50 Physics ol a SI:H switching diodes

(Invited)

We-C9/2 M. Block and F. Zetzsche (Frankfurt am Main, FRG)

11.30 Delect distribution In a-Si:H-pkt solar celts before and alter degradation

We-C9/3 H.-C. Ostendorf. W. Kuslan. W. KrOhler and R. Schwarz (Garchlng. FRG)

11.50 Light and current degradation of a-Si:H nin and pip diodes detected with CPM

We-C9/4 R. BrOggemann, C. Main* and G.H. Bauer(Stuttgart. FRG: ‘Dundee. UK)

12.10 Some aspects of the role ol holes In the transient response ol a-SI:H pin diodes

We C9/5 C. Utrichs. T. Eickholf and H. Wagner (JOBch. FRG)

12.30 Transient photocurrenl spectroscopy on amorphous silicon solar cels

Page 59: ji. —W >fta

Thursday, September 9th 9.00 amHan Effect

Room ATh-AIO/1 a. Pashmakov, B. Chfln and K

Fritted* (Chicago. USA)1.00 Tramped near toe mobary edge. N

ilgn ol tw Hal enact phoweducdon and o nidation ei amorphous inO,

SIC

RoomBTh-BIOft F.EvangeM (Feme. Italy)# 00 Etocwnto and atomic ilructure ol a-

SCaloya (Invited)

Th-AlO/2 C.E. Mabel and RA Snar(Stuttgart. FRG: "Pab Alb. USA)

I JO Hal experiments and Interpretationon a-SfcH and a-SlCX

Th-AlOO B Y. Ton# and J. Du (Ontario. Canada)

(.40 In search el normal Hal elect h amorphous eKconttinfikna

Th-BIM C.S. Magalhaes. G BMenoourt and F. AKrarei (Campinas. Brail)

(.40 Phob-bmbeteenee sludbs on alieon carbon aloys

Defect Absorption

RoomCTh-CtOfl K. Ha nod. S. Fufcuda, K. Ntshlmura.

K Okamota and Y. Hamakawa (Osaka. Japan)

(.00 Imerprebtbn ol CPM measurements haSfcH

Th-CKW R Ptatx. R BrOggemann and G.K Bauer (Stuttgart. FRG)

(.20 More Insights tom simulation tar the Interpretation el ths constant photo­currant method

TH-C1CV3 S. Nonomura. T. NbhbraW, S. Kuaakabe. E. Nbhtmura. T. Iloh and S Mbs (Gtu. Japan)

(.40 Optical absorption el high qualty ■ SfcH end e a,NM:H In the tow energy region 0.43eV • 1.SeV by PCS

Th-A10/4GJ. Morgan. J.M. mender. D. Weslre" end 0. Hobbs*(Leeds. UK "Dubfin. Ireland)

10.00 Electrons, heba and d* Hal elect h amorphous sDcon

Thursday, September 9th 10.50 Hydrogen 2

Room ATh-AI I/I N.R Nickel and W.B. Jackson

(Pab Alb. USA)10.S0 The elect el post-da uteri Son on (te

equKbrtum and metastabta properties el a-SfcH

Th*A11/2 fc Zeitama. J.K von Bardetaben, V. <**•1 Y. Boubam. P. Sbdek. UL Thdya and P. Roca I Cabarrocas* (Perb. France: "Patataeau, France)

11.10 Expertmental study el dborder and detects h undoped a-StH at a tanction el artneUng and H evolution

Tit-At 1/3 W. Beyer end U. Zastrow (JOtch. FRG)

1,30 UsndHdWusbnhe-SfcH

Th-BKVS F. Oambhala. G. Crovtri. F. Gbrgb. C.F. Pint E. Trees*. G Amato. K Horramana* and W. Grave ndonk" (Torino. Italy; "Leuven. Belgium)

10.00 Ebctrenb density el stabs h e-St.C,^H Urns

Carbon 2

Room BTlt-BI I/I OR. McKern Is. CA Davie. Y.Ytn. E.

Kravichinekab. M. Gelzan, P.8. Lukins. GA Amaratungs" and V.S. Veerasamy(Sydney. Austral# "Cambridge. UK)

10.50 Formation, properties and app­lications ol tetrahedral i-cartxm (Invited)

Tit-811/2 K.W. Glket and P.K Casks! (Cambridge. UK)

11.30 Atomic structure ol letihedrai amorphous carbon

Th-CtO/4 P. Sbdsk. M.L Thtye and L Chatted (Paris. France)

10.00 Analysis ol he temperature dependence el he CPMderived optical absorption spectra ol i-SLH flms

Solar Cells

RoomCTh-Ct 1/1 S. Tsuda and S Nakano

(Osaka. Japan)10.50 A SI technologies tar high efficiency

solar cels(Invited)

Th-C11/2 J. Bauer, KCakwer. P. Maridsbrter, F.W. Schulze and K-O. Ulan (MOnchen, FRG)

11.30 Menu!actors ol large area singlefunction e-SI:H solar modubs with 10.7% efficiency

Th-A11/4 A Singh. EA Devb and S.FJ. Foe" (Leicester, UK; "Dldcot UK)

11.50 Modeling ol hydrogen centres In siioon and Re oxides by muon Implantation

Th-AI 1/S F. Yonexawa. S. Fufwara. S. Conti and K. Morigab"(Yokohama. Japan: "Ube. Japan)

12.10 Mont# Carta titmutatbne ol anomabuti te taxation tit a-SI end a-SkH - random wade h spaces ol (racial dlmensbns

Th-AI 1/BC.E. NebsI. FA Street". W.B. Jackson* and N.M. Johnson" (Stuttgart FRG: ‘Pab Aho. USA)

12.30 Thermodynamic equilibration kinetics ol phosphorus and boron doped a-SfcH

Th-B11/3 S. Xu. M. Hundheusen. J. Rbleln. B.Yen and L lay (Erlangen. FRG)

11.50 Influence ol eubetrafe Mas on he propanbt ol i-C:H Mma prepared by plasma CVO

Th-Bt 1/4 GA Amaratunga. V.S. Veerasamy, W.L Mine. A. Payne. CA Davta". D.R McKanzb" and M. Weler" (Cambridge. UK; "Sydney, A us Salta; ""Kaiserslautern. FRG)

12.10 Doping ol highly tetrahedral diamond- tike amorphous carbon

Th-Bt 1/5 J. Robertson (Leaherbsed. UK)12.30 Deposition mechanisms h a-C and

a-C:H

TH-C11/3 K Salto. M. Sane. K. Ogawa and L Ka|Ra (Kyoto. Japan)

11 -SO Ugh efficiency a-SfcH alloy celdeposited at high deposition rate

Th-Ct 1/4 M.S. Brandi and M. SMzmenn"(Pab Alto. USA; "Stuttgart FRG)

12.10 Spin - dependant transport to amorphous aificon solar cab

Th-CIVSK.UpaandW.Fuhs (Marburg. FRG)

12.30 Degradation ol a-SfcH pin solar cels studied by electrics ly detected magnetic resonance (EDMR)

Thursday, September 9th 2.30 pm Deposition 3

Room ATh-A12/1 P. Roca 1 Cabarrocas

(Pabiaeau. France)2.30 Towards high deposition rales ol

a-SfcH: the Imping parameters (Invited)

Th-A12/2 T. Kamel and A. Matsuda (Taukuba. Japan)

3.10 Detect determinalon kinetics during he growth ol a-SfcH

SIN

Room BTh-B12/t J. Kanickl and W.L Warren"

(Yorktown Haights. USA; •Albuquerque. USA)

2.30 Defects in a-sifioon nitride (Invited)

Th-BIZ/2 M. Kumeda. A. Sugknob. J. Zhang, Y. Ozawa and T. Shimizu (Kanazawa. Japan)

3.10 Photo Induced ESR to amorphous••icon afloyed wlh various amounts ol nitrogen

Other Devices

Room CTh-Ct2/1 RE. Schropp, MB. vender Unden. J.

Oaay Ouwens and W.F. van der Wag (Utrecht The Netherlands)

2.30 Enhanced stabllly el amorphous tofieon solar cab by Intiinslc layer profifing

Th-Ct2/2P. Stchanugrisl T. Yoihlda. V. kltikawa and H. Sakai (Kanagawa. Japan)

2.50 Amorphous alieon oxide wlh nticra- crystalfine SI phase

Th-Cl2/3 0. Kruongam. W. Boonkolum and S.Panyakeow (Bangkok. Thaland)

3.10 Vlsbta thin film fight emitting dtode using s-SIN;H / a-SiC:H hewro- (unctions

Th AI2/3 K. Nakamura. T. Akasaka, K. Arab. K lahba and l Shimizu (Yokohama. Japan)

3.30 Structural relaxation In SI network Induced by atomic hydrogen under observation with to situ eWpeometry

Th-A12/4 T. Gerikemper, J. Histeki and L Ley (Erlangen. FRG)

3.50 In situ characterisation ol chemical annealng el e-SfcH by phobebetron spectroscopy

Th-Bt2/3 Y. Nakayama. P. Slradtina" and K Fritzsche"(Osaka. Japan; "Chicago, USA)

3.30 Me testable centres end photo- conduction In si icon rich a-SIN/H

Th-B12/4 C. Sene maud, A. Ghaoighiu. L Amours. K Shiral". R Etemadl". C. Godat" and S. Gu|ra W (Paris. France: ‘Palaisaau. France; ""Quebec. Canada)

3.50 Local order and H bonding In N-rich amorphous si icon nitride

Th-C12/4 H. StoMg and M. BOhm (Slegen. FRG)

3.30 Optimisation criteria br a-SfcH nlph colour sensors

Th-Ct2rt J. Ha|to. M.J. Rose". RJ. Snefi. A.F. Malay. AJ. Holmes. A.E. Owen and RA.Gbso<i*(Edinburgh. UK; "Dundee. UK)

3.50 Use ol a-SI memory devices tor non- volalla weight storage In artificial neural networks

Page 60: ji. —W >fta

Trim port. Localisation

ThPt/l A. Hunl (Riverside. USA)AppAcaWone el titermodynamlcs to tow frequency hopping transport properties In amorphous semiconductors

lh-Fta K. Artauskas. G Juska and R. Schwarz*(Virtue. Utouarta: 'MSnchen. FRG)Charge transport along and across a-SfcH / a-SIC:H multilayers

ThPI/3 B. von Roedem (Golden, USA)The concept ol the mo baity edge - a defrtowm toward toe understandmg ol disordered semiconductor devices

Th-FtM R.M Mehta. Gurinder. Indertir. Jasmina. A Pun* and P C. Mathur (New Del* frxSa)Dark and photoconductivity ol TBP doped n-type s-StH

Th-Pt/J PX Baytey. AK. Browne, J.M Marshal, RX van Swaaf and Aft Hepburn (Swansea. UK; •Utrecht, The Netherlands)Study ol toe temperature and Held dependence el electron drill mobMty to a-SI,.,C,:H using toe hne ol lSght technique

ThPl/ti P. Plpor. N. Witchk. H. Beck and A Shah (Neuchltel, Switzerland) Transient photoconductivity response with optical bias to a-SI:H

lh-Pl/7 A Nagy, M. Hundhausen, Lley. G Brunet* and £ Holzenklmplez* (Erlangen. FRG; ’Wiesbaden, FRG)Field enhanced conductivity to a SI:H TFTs

Ih Piil B. Huckeslein and L Schweitzer*(Princeton. USA; * Braunschweig. FRG)KAriHlractalty and anomalous diffusion at toe mobtitiy edge to disordered systems

Th Plil S.V. Demishev, T V. Ischenko and F.V. Pirogov (Moscow. Russia) The role ol the localised vibrational stales In non equWbrium phase transitions

Th-Pt/10 M Takeda, K. Kimura and K. Murayama (Tokyo. Japan)Time ol Sght superimenl In amorphous boron

ThPl/ll H. Okamoto, K. Hattori and Y. Hamakawa (Osaka. Japan)Hal effects near the mobilty edge

ThPl/ll aUandP.PhMps (Cambridge. USA)Uneapected activated temperature dependence bl toe conductance to toe presence ola soil Coulomb gap In d-3

Ih-PVIl A Heinrich. K Vhzelberg. 0. Elelart and C. Gladun (Dresden, FRG) Conductivity and magneloconductMty to amorphous Cr,Gev, near the metal insulator transition

Thursday, Sept 9th Posters 4.30 pm Thf2/I0 T.M. Searto (Sheffield. UK)A NAN-lke model tor the growth, decay and steady stale magnitude ol photo luminescence and carrier population to amorphous semiconductors at low temperature

ThPWt A Oknba. T.-H. Wang. M. Sendova Vasstieva and T.M. Searie

TfttTshape'oJtoe PL band to aSI:H and to alloys ol carbon and

Th-PZMZ T.Muschtic and R. Schwarz (Garehtog. FRG)Temperature dependence el radiative and norwatflative lie limes to a-SI:H

Th-PSll P. Kounavis and E. Myttitoeou (Pairs. Greece)Trapping and recombination processes to amorphous semiconductors studied by toe dependence ol toe modrtatod photoconductivity on toe optical bias

Ih-PJMI £ Morgado (Lisbon. Portugal)Electron and hole pi products to a-SfcH and toe standard danglng bond model

ThP»l$ LP. Zvyagin. IX Kurova and N.N. Ormort (Moscow. Russia) On toe nature ol photo-induced delects and recombination mechanisms In tight soaked a-SfcH titors

Th-pj/is ft Galtonl. ft Rlzzoti. C. Summonte. F. Zlgnart. Y. Xiao* and J.L Pankova* (Bologna. Italy. "Bortder. USA)Pholokimlne sconce and photothermal deflection spectroscopy to potassium doped a-Si:H

Optical Properties

ThP3/t fl. Murri and N. Pinto (Camerino. Italy)Optical properties ol amorphous galtium arsenide Urns

ThPM Y. Tsutsuml*. H. Yamamoto. K. Hattori. K Okamoto amd Y. Hamakawa (Osaka. Japan; "Hyogo. Japan)Study ol band-edge parameters to a SfcH atioys by polarised electroabsorption ollecls

ThPM T. Tsevetkova, N. Tzenov, M. Tzolov. D. Dimova-Mafinovska.G.J. Adriaenssons*. K Pattyn*. and G Lauwerens*(Sofia. Bulgaria; * Hover lee. Belgium)Optical contrast tormation to a-SiCiH titors by ton implantation

Th-PJfl £ Hajto. PJ. Ewen and A£ Owen (Edinburgh. UK)Linear and non-ltoear optical properties ol amorphous chatoogenide ffrln titois

Th-PM A Asa no. Y. fchfltawa and K Sakai (Yokosuka. Japan)Influence ol surface delects on CPM spectra

lh-Pl/14 C M. Fortmenn, R.M Dawson, M. Gunee and C.R. WronsM (Pennsylvania. USA)a-SI dspershre transport considerations lor analysis ol torn measurements and solar cells

ThPVtJ 0. Scansen and S O. Kasap (Saskatoon. Canada)Current noise In hydrogenated amorphous stikon

Recombination

Th PZrf & Juska. J. Kocka*. M Vitiunas and K. Ariauskas (Virtue. Uthuarta; Praha, Czech Repubtic)Subnanosecond bk molecular non-radiative recombtoalkm to aSIH

Th-PM ft Slachowitz and W. Fobs (Marburg. FRG)Frequency resolved spectroscopy end Its appflcation to He time studies to a-SfcH

Th-PM AM. Dartshevskl. V. La Unis. MM. Mezdrogina and £1. Terukov (Si Petersburg. Russia) laser action to a-SfcH

Ih-PM V I. Arkhipov and V.R. MMenko* (Marburg. FRG; ’Moscow, Russia) Ouartum efficiency ol geminate recombination under toe dispersive transport conditions

Th PM S. Yl G Palsule. S. Gangopectoyay. U. Schmidt* and B. Schrdder* (Lubbock. USA; "Kaiserslautern. FRG)Electric tield quenching ol continuous wave photolumhescence to a- Si:H

Th PM K. Wang. 0. Han and M Stiver (Chapel HtiL USA) Electrokartnescence studies to a-SfcH pin devices

Th-POT R. Vanderhagen. R. Amokrane. D. Han* and M Stiver*(Palatseau. France: ’Chapel HtiL USA)Recnmhlnalinn sort n--1-----i— ------ — t— n. ,,

Th-PM F. Becker, ft Carius. T. EkkhoN. J.-T. Zeltier* and K Wagner (JOIIch. FRG; ’Berito. FRG)Spec Ira ty resolved eleclrolumtoescence and photokimtoescence In a-SfcH pfn dtodas compared with optical mulllayer calculations

ThPOT M Fathalah (Tunis, Tunisia)Gap state delects to hydrogenated amorphous sllcon-carbon atioys studied by photothermal deflection spectroscopy

Th-PM M. Cunlol J. Obrirter, P. Etiralm. L Lussoo and D. BaArtaud (Meudon, France)Unusual magnetron sputtered aSIH materials obtained at high deposition rales as favourable precursors tor toe preparation ol large grain shed crysla Bzed titin stitoon titois

Porous SI, Mlcrocrysl alltoe SI

Th-PHI WX Tumor and G Lucovsky (Raleigh. USA)Electrical properties ol mkrocrystaltoe stitoon prepared by reactive magnetron sputtering bom crystalline stitoon targets

Th-P«/2 T.E. Dyer. J.M Marshal. W. Plckln. Aft Hepburn and J.F. Davies (Swansea. UK)A comparison ol toe optoelectronic properties ol polysfltoon produced by bw-lemperature (<800*0 krmsce crysla lisa lion and esckner (ArF) laser crystaflisation ol a-SfcH

ThP4/l H.N. Uu. Y.L He, F. Wang*, S. Grebner* and ft Schwarz" (Nanjing. China: "Garehtog. FRG)Effect ol grain boundary stales on CPM spectra ol hydrogenated nanocrystaline stitoon

Th-PIM M. Zacharies. H. Frebtedl F. Stoke. B Garke. T. OrOsedau. M. Rosenbauer* and M. Slutzmann"(Magdeburg. FRG: 'Stuttgart. FRG)Properties ol sputtered a StO,:H, alloy films with a luminescence

ThPt/ti

ThPM

Th-PI/IO

Th-PVII

Th-PS/l

ThPS/2

ThPS/l

ThPM

ThPM

ThPM

ThPM

Th-PM

ThPM

ThPT/l

ThP71Z

Th-P7/3

ThPM

ThP7«

ThPTiti

ThP7/7

T. Matsumoto, O.B. Wright T. FutagL ft Mbnura and Y. Kanemltsu* (Kanegawa. Japan; "IbaraM. Japan)Ultralast electronic relaxation processes In porous stitoon

H. YokomkN. ft Takakura, M Kendo* and K. MorigakT*(Toyama, Japan; Tokyo. Japan; “Ube. Japan)Nature ol ESR centres In porous stitoon

0. Kllma. P. Hlinomaz. A Hospodkovt, J. Oswald and J. Kocka (Praha. Czech Repubtic)Transport properties ol sell supporting porous stitoon

W.ft Lee. ft Lee and C. Lee (Taejon. Korea)Light Induced me las table effects on too electrical conductance to porous stitoon

Y. Kanemltsu. ft Ulo and Y. Masumoto (IbaraM. Japan)Visible photo luminescence ol nanometer she Ge crystal! las to SIO, glassy matrices

Organics

Y. KanemNsu (Tsukuba. Japan)Mtoroscopie nature ol hopping charge transport to disordered molecular solids

ft. Hattori, Y. Aokl and J. Shirahrji (Osaka. Japan)Pholocarrier generation to o bonded organic polyslanes

Deposition Processes

R.O. Dusane, D M. Bhusari* and S.T. Kshirsagar*(Bombay, India; "Pune. India)Structural order in a-SfcH titois deposited by tie hot wire method

T. Drusedau and B. Schrdder’(Cambridge. USA "Kaiserslautem, FRG)Optimisation ol the DC magnetron sputtering process tor the deposition ol a Ge:H ol improved electronic quality

A Weber. P. Sutler and H. von Kflnel (Hdnggetberg. Switzerland) Growth ol amorphous zinc phosphide films by reactive ladto bequency sputtering

R. Zedltz, F. Kessler and M Helntte (Stuttgart. FRG)Deposition ol a-SI:H with hot wbe technique

P. Papadopoulos. B. Schrdder and ft Oechsner (Kaiserslautern, FRG)Deposition ol high quality a-SfcH titois with too hoi wbe technique

T. Aokl. Y. Nlshkawa. F. Fukasawa. W.O. Shong and M. ftkose*(AtsugL Japan; "Hiroshima. Japan)Electron-flux Induced growto ol mtorocrystafltoe germanium by ECR plasma

A Yoshida, S. Ikeda and ft Tsuchknoto (Toyohashfc Japan) a-Si:H films prepared bom tristiane by window less hydrogen discharge lamp

Interlaces, Multilayers

B. Yan and W. Xu (Tianjin. China)Observation ol btstabtiity to a-Si:H / a-SiN:H and a-SI:H/a-SC:H double barrier sbuclure

K. Maeda. T. Jtnnal and I. Umezu (Chiba. Japan) toteriace stale density ol a-SIN,:ft Zc-SI MIS sbuclure

K. Chen. J.G. Jiang, X.F. Huang, Z.F. U. J.F. Du and 0. Feng (Nanjing. China)RadUitive bans il km with visible tight to crysla Used a-Ge:H / a-SiN,:H multiquantum weti structures

K. Boedecker and Ktinenkamp (Berth. FRG)Amorphous on crystalline stitoon: study ol Interlace properties

Y. Masakfc S. Nonomura*. T. Saklmoto* and RX Gibson (Dundee. UK; *Gtiu. Japan)Amorphous stitoide tormation to Cr / a-SI(:H) system

X. Zou, Z. Xu, S. Zhang. M Okuyama* and Y. Hamakawa (Wuhan, China; "Osaka. Japan)Phonon localisation to a-SI based alloys and muffle ye rs

J. Bertomeu. J. Purgdoffers. J.M Asensl and J. Andreu (Barcelona. Spain)On the determination ol toe Interface density ol states to a-SfcH / a SI,..C,:H multilayers

Th-PM VX Danko. 12. Indutny, V.L MtoTto, £V. Mikhailovskaya and AA Kudryavtsev (Kiev. Ukraine)Photodoping to the As2S, Ag structure

Th-PM VX Tikhomirov (Si Petersburg, Russia)Optical bistability and critical stowing down In the amorphous semiconductor GeS,

Th-PM V.K. Tikhomirov, N.N. Faleev. T.F. Mazets and EX Smorgonskaya (SL Petersburg. Russia)Anisobopic glassy semiconductor As^S^os' * n*w mesophase

Th-PM T. Kosa. ft Rangel-Rojo. £ Hajto. PJ. Ewen and A£ Owen (Ecfinburgh. UK)Nonlinear optical properties ol stiver-doped As*S,

Th-Pb7 £ Marquez. J.B. Ramboz-Mato. J. Fernandez Pella. P. VHares, ft Jimenez Garay. P.J. Ewen* and A£ Owen*(Cadiz. Spain; "Edinburgh. UK)The influence ol Ag photodoping on the optical properties ol As S glass films

Th-PM L Mkhiels, N. Bold. AV. Kolobov and GJ. Adriaenssons (Heverlee. Belgium)Backward wave phonon echoes from tunnelng systems In chatoogenide glasses

Th PM T. Kawaguchi, S. Murano and K. Tanaka*(Nagoya. Japan: 'Sapporo. Japan)Mechanism el photosurtace deposition

Th-PMO M Itoh and K. Tanaka (Sapporo. Japan)Time ol light photocurrenis In AszSe, and Se under bias tiktmination

Th-Plltl ft Naito, ft. Amii. M Okuda and T. Matsushita (Osaka. Japan)Structural changes in amorphous arsenic trisalenide below the glass- transition temperature

Th PI/12 M Frumar. Vlcek and T. Wagner (Pardubice, Czech Repubtic)The pholoslruclural changes and reactivity ol chatoogenide layers

ThPI/13 M Bertobfti. F. Fazio. F. Michelolti. A Andrlesh*. C. Chumash" and M Popescu" (Rome, Italy; "Chisinau, Moldova; "BucharesL Romania) Kinetics ol laser Induced photodarkertng to As%S, amorphous films

Th PI/14 P.J. Ewen. A Zekak. C. Stinger*. G Dale. 0. Pain* and A£ Owen (Edinburgh. UK; "Goal Malvern. UK)Diffractive infrared optical elements In chatoogenide glasses

Th-Pl/H L Abdulhalim. ft. S. Deol, C. ft Panned. G Wylangoskl and D.ft Payne (Southampton, UK)High performance acousto-optic chatoogenide glass based Ga2S,- La,S, systems

Th-PS/l I T. Wagner. M Vlcek. V. Smrcka. PJ. Ewen* and AE. Owen"(Pardubice. Czech Republic; "Edinburgh, UK)Kinetics and reactions product ol toe photo Induced solid slate chemical reaction between stiver and amorphous As„S„ layers

Th-PS/17 S. Bflnazeth, O. Ma. J.M Sailer". B. Bouchel Fabre and B. Legendre *(Orsay. France: "Mont Saint Algnon. France:"Chatenay Malabry. France)EXAFS and differential X-ray anomalous scattering studies ol binary Ge Te glasses

ThPl/ll MF. Kolkata. K.M Kandti and M.L Thflye (Cairo. Egypt: "Paris. France)Optical studies ol disorder and delects In s-Ge.Sa,., films as a function ol composition

Page 61: ji. —W >fta

Friday, September 10th 9.00 am Ge and Alloys

Room AFr-AIVI T. DrOsodau. 0. Fang. F. Wkkbok*

and W. Paul (Cambridge, USA)*.00 AcSveted transport to Improved

a-Ca:H - *w Influence el cooing isle,■ contact*, electric (eld and a-SfcH

banter*

Fr-AIVI C.F. Oner. MS. Brandi K. Ebeihaidt. L Chambouleyron* and M SMznwrm(StoOgart. FRO: "Campinas. Brail)

tJO Spin dependent photoconductivity In hydrogen* led amerpheua moon geimankim aHoyi

Fi-AISO K. Ebartiaidl and Q.H. Bauer (Stuttgart. FRO)

1.40 E fleet el H-content and H-bondingconflgurabon on tight and tiiernial batocad natastabMy In i-Oe:H

Interlace*

Room BFr-BIVt R. OaatitovaM, H Shbal and B.

OravOon (Pataleeiu. Franca)1.00 In still bwaatigatien ol e SI/SIO,

Intertaco* by Inhered oOpoamcay

Fr-BIOT MF. Ftoaa. J. Rldato and Llay (Erlangen. FRG)

SJO Electronic and structural pnpartiaa el tie a-SfcH / a-SIN.iH Interlace

Fr-613/3 1 NUto. E. NtoNmura. T. Mnamid* and S. Nonomura (Gifu. Japan)

*40 Studtoa on optical absorption coefficients ol a-SfcH by photo-

ap*e-

Detector*

RoomCFr-ClVI R. Welallald (Pab Alto. USA)* 00 a-SI Inoar and 2 0 Image sonsots

(Invited)

Ff-ClV2 V. Alyah. S O. Kasap. A. Ball* and B. Pofachuk (Sasletoon, Canada)

*40 Doped amorphous So based photoreceptors lor ebdroradio- graphy. de lamination el X-ray sansMvky

Fr-At V4 T. Unold wd J O. Cohen (Eugene. USA) ■

10.00 Electronic mebWy gap studuro and *te nature el deep dalocta kt amorphous SFCe atioys grown by photo-CVD

Fr-B1V4 F. Patriate*. M Sobattianfc S.L Wang. I Chamboutoyron and F. Evsngetieti (Rom*. Italy)

10.00 Electronic stales el a-SfcH upon C* adsorption and deep delect creation

Friday, September 10th Chalcogenlde* 2

Room AFr-A14/1 A.V. Kolobov (Si Petersburg. Russia) 10.50 Photo-induced atomic processes In

chatoogenldes .(tovflad)

10.50 amFast Processes, Recombination

Fr-CIM K Wleczersk (Aachen. FRG)10.00 Measure me nl and simulation el tit*

dynamic performance ol a-SfcH Image sensors

Fr-A14£ V.L lyubto. M Klebanov. S. Roeenweks and V. Vetiena (Beer-Shove, terser)

11.30 Anlaoirepy ol photolnducod tight- sectoring to chatoogenide glass**

Room BFI-B14/1 JA Moon and J. Taue

(Rhode Island. USA)10.50 Femtosecond photomodulation

spscbccopy ola SfcH using an optical parametric esdtiaier

FrB14/2 H Kura. A Esssr. K Heesel G. Lueovaky". C. Wang* and G Parsons*(Aachen. FRG; "Raleigh. USA)

11.10 Osteal detection el photoconductivity to a-SfcH to Ih* tub-pIcosecond time domain

Fr-BI4/3 M Schubert. W. Fuhs and SO.BaranovsM (Marburg. FRG)

11.30 Influence el delects on he he time dtetributlon ol cantors to a SfcH

Spin Resonance

RoomCFr-Cl4/1 K Htidta. K. Tokodo*. V. Kknwro". K

YokonticM*** and K. MorigaM"" (CNba. Japan; Tokyo. Japan; "Ksnagawa, Japan; "Toyama. Japan; ""Ube. Japan)

10.50 The presence ol diflerent Mods ol dengflng bonds and tit** tight- induced deled creation to s-SI:H

Fr-CI4/2 R. Dumy. S. Yamasaki A Ms tsuda. K. Tanaka and J. Isays (IbaraM. Japan)

11.10 New results ol spin-Is flics relaxation study to o SfcH by pulsed ESR

Fr-Cl4Z3 M. Kendo and K. MorigoM (Tokyo. Japan)

11.30 PoaaibMry ol hydrogen migration to phoetoduesd deled creation process da SfcH

Fr-A14Z3 K Friereche (Chicago. USA)11.50 Photo-toducsd eptied snisoropies to

chslcogsnidsglsssss

t'-Yiyc; v vi

Fr-A14/4 S.D. Savransky (Novgorod. Russia) 12.10 Mechanism ol to* semicondtetor-

superconductor tiansWon to amorphous chatoogenldes

Ff-A14/S N.F. Moll (Cambridge. UK)12.30 Valence alternation pairs and

superconductivity

Fr 814/4 KOhada (IbaraM, Japan)11.50 Disoorittoouc change ot photo-

kjminesceoce holme wHh temperature In a SfcH

Fr-B14/5 R. Saleh. I Ubor and W. Fuhs (Marburg, FRG)

12.10 Occupation el tti* gap Halts studied by phetokamineseenoe and tight- Induced electron spin resonance (LESfl)

Fr-B14/8 Y. Shinezuka (Ube, Japan)12.30 Reconsideration el electron-link*

Interaction to amorphous semi­conductors

Fr-C14/4 D. Mao and P C. Taylor (Salt lake CHy. USA)

11.50 Opticaly detected ESR studies da-SfcH

Fr-C14/S J. Hattida and J O. Cohen (Oregon. USA)

12.10 Photo-modulated ESR ttudiei an a-SfcH and Sl-G* atioys; Evidence tor charged detects and sale hole baps

Fr-C14/0 K. MorigaH. M YamagucN* and L Hkabayashl"(Ube. Japan; Tokyo. Japan; "Nagoya. Japan)

12.30 Temperature dependence ol photo- luminescence spectra and model d aeti trapping ol hole* to a-SfcH

Friday, September 10th 2.30 pm Carbon 3

Room AFr-AIS/1 J. Mori and MX Machonkto

(Webster. USA)2.30 Photodectrenk properties ol

buckmhalorlutioron* lima

Fr-AIS/2 S. Kugtor. K. Shknakawa*. K. Watanabe*. K. HayashT, L Rose and R. Beliuent"(Budapest Hungary; *G*u. Japan; "GW sur-Yvefle. France)

2.50 The temperature dependence ol . . amorphous carbon structure

Fr-AtS/3 F. Demkhetis. A TegUleno. C. de Martino end 0. DasgupU*(Torino, flay. *Oar)s*ltog. India)

3.10 The role ot * end r- gautaton-ik* deneky ol stales bands to tie toterproution d lie physical properties el a-C and a-CJt tiki*

Multilayer*

Room BFr-BIS/1 J.-B. Chevrier. R. Vanderhagon, C.

SwlHkowsW*. H.-C. Nelttsrt and M Kunst*(Palalseau. Francs; ‘Berth, FRG)

2.30 Cantor transport to a-SfcH / a SIN and a-SfcH / a-SiC mulltiayara

Fr-BISfil S. MiyazaM. H Dskfc M Ohmura and M Hkose (Hiroshima. Japan)

2.50 Structural and optical properties ol a-SfcH / a-G*:H multilayers

Fr-BIS/3 A Panckow, J. Biasing and T.DrOsadau (Magdeburg. FRG)

3.10 A position detector based on t* lateral photos (feel h a-SfcH/Metal (TV, Mo) mufltiayeta

Organic*

Room CFr-CIS/1 AR. Hepburn. DM. Goldie. J.M

Marshal and J.M Maud (Swansea, UK)

2.30 The role ol toler-otigomer separation on charge transport to moleculatty doped systems

Fr-CIK M Hondo. K. MorigaM. K. Takada, K. Shkalshl and M Fujtid (Tokyo, Japan)

2.50 Photocrealed ms last* ble stole to organopolysianas

Fr-ClSO D M Haynes. AR. He,uurn. J.M Marshal and A Paflar (Swansea. UK)

3.10 Charade rise lion and application elPoly(l.4 dkhtonytosnzsns) and Pdy(1.3 dllhtonylbsnzans to electro- chromic displays

Plenary Session3.30 Closing remarks

Y. Hamakawa (Osaka. Japan)

Page 62: ji. —W >fta

mo-ai

A. Davis OllflN. F. Mott <7)S®5r tztzk Xftt> il

& h Mott Lecture t Lt> Harvard Univ. (O W. Paul A5 Structural and Electronic Properties of Amorphous Si, Ge and Si-Ge Alloys it jffi L T5$"S$ ir •fT o Z: 0 a-Si:H ta-Ge:H & 4 ff a-SiGex:H 1^141: tilt i> tiv'£g$gg6;$,m±£#SLTKSU L Z:0

Mo-A2 Gap State 1Vanecekt>l±, * y h itZ:*##(7)0.29%^ ^,12.6% Z:

a-Si:Htcg§Lr, itVSMtr&SX (±-££<b^v><,tor-*5C fc 4-SLZzo

Shumml4> IE <Z> M x * P*?-&-I5S L *X xlHCjS V' T fc, ')'■/■?#'/ KXPfiO^SoS- 7e<D#%X>XV y^'dfy 3C E £tfLZ:0

Cohen^ 14^ pf f y X^(Z)^Rg$fii&g}4, :K.RB<Oit®tiUEO®Etz4 I)mibf 3 c E SttfL^o

Mo-A3 Hydrogen 1Jackson U, a-Si:HjESrl*S7,7 X v 5 L> StK^Oit^X n 7 7 •* Ik £f»K^

H-D^c#(D##i:cvt L 4:. DX5 Xvtc 4 •fcTk^tetfccDrSitt'ffcx* ;i/ojf

^'(1-5 eV -> 0.7 eV)£ j|v' tti LCii f > v-v A'OS'ft'Clftlig U Zi0 $ Z:563:LZc*S<,)g-tt-fk^4-7V4f-li2.5eVT-*^^ E ^iaS5h-4:=

Branzibli, Si:H/Si:D/Si:Hf*@ESrffl vVcBT - - 7k<0^®|$r)6E5t'fbrlTV\ 16 ^^^#■655 A »^SS±#43 4 4 oTE^1"^) EfRSU Ctt4 0

V 71: 4 3 L Z:.Santosli, ^StK 4 £*S&!ft<Z>±l*£®iE:7fcj3 4 WE^TT'S^ZCo L^L

v> $ Zf^zfe StLTV'&V1,,

- 60 -

Page 63: ji. —W >fta

Mo-B2 Transport 1Schwarz b 14 , lpsfa'f£$7)Jl-Zt 6—(7)pc-Si:H (0 12 O "C, multiple-trapping

ti 4 potential fluctuation <0 2 H "C*3|SF LZdo

Maint>i±, 7

Shahfel4, ptl2 0VtT<Z>#SSrlT-=> Z20 pt(4 7 x )U 5 WicofiSi; 54 < L, ttn

*>*>, X7XV yX=Fy )16{£S¥ ki£ESt: 4 9 JE L v^TS: 5fcid •& Z: 1214M1E ZF:& H T*db & 2. t S:/TtL/;o

Haridim5> 14, SSPG12K-VT, &MW (t£tfe) , Sll# ( F V 7 h) <Z)®J£ SrSB*-g-

rb-ti:, S^-co F V 7 h SSJ$£ FH® L Z:„Hakenibli, SSPGT*0Z1^0jS)S.ir||S-^'ft$-dr^ t> 12#^:$ZL3f ##

£ #861" 4 = 2zu:#?Zhb FV 7 h#ma£MT# 32 2 £#LZ:.

Mo-C2 pc-SiLucovsky b 14 , ') zixointt 2 Wfi-^dStt £ * 7 V 7 <Z>$|£6@IS= £#x.

3 14, @HT** 7 'J 7*!©JPfi5ti, -E-tL-etuoffico/Vy FSicoo&ZFi) I2*it St-fJWMtirot < 3 2 k iT^LtZc

Otobet 14, town<7>®%!kk#SBBB6£R»?giJoii®T*s£,rv>j; l:i *)mfrtbtZo

Hapkebt4, a#gnjWk*W<’!mtZ>t. <5S$*$-B.jSTLTSl/±#1- gLZto 2*u4,

Heintzet>l4, a-Si:H, mc-Si:HSr$Sk LTfflV', 7*7 Xv^-ff £gSi

t ? 7 y xmm £ mm# t: mk<, *$#«£;§»-& 2^7 7 y

XZ,^232 2£3S#%l2#LZ:.Solomon 6 I4, EfiKrE, *S7'7 X vjSSSr E D il Lx V 7"7 7 h V -T'EHSr^-

9-t*>^ tizx i)*#X7X-7rM: ii%. 7f-yX*#%l2^2cXv^3 2 2 SrfiN>K>

tZo

Mo-C3 StructureJones t>!4, EfEE^ffb LTAr<7*;Fv££±lf < 2, SAXS<Z>Signal3iS(4il*U

E* <0void»$4|;kt -Z- 2 2 £ /^ L Z: „ -*,SAXS<7)Signal3SSl4fi*-t 3 ZF, Etp7)voidl4##Z\ random 12 @£[6] Ltt't, Aifkffl. Ot§-£-2 22&-oTV'322 £¥R= LZio

Elliott ^ 14, 104site<7)a-SiC0MOlfS(0#a^:, 10-60A<Z)$EB|(Z)^M%i2^|%9M^#^ g

£Ii®J LZ:0

- 61

Page 64: ji. —W >fta

Mo-P1 Defects, Density of StatesKleiderWi, PDS, MPC, TOF£fflv< ^ V 9 A ill:

t £ .Ev'tiJ Ltz0Veres 6 li, -t* n ^5 7 4 7 ffiSIE, MfeSiSt

%&mtltsjs?--£>*?££ 1a-skH*<r>m l ^ & its l tz „

Mo-P2 Stability, EquilibriumKockaWi, )V \£ - U--f-£ffl , '£\U&X>fK$h<F>W&\%.

tft£Ml,z£ i)#£ i), S’OiSOSBW-oi: LX^Wi±ifXv>*0

Swiatkowski€> i±, a-SiiHjSft^C, S&KfflV' -y >) 3 t'J 7SS«-'0PX V—y-'-BSIj-^coef ^ nSKStiST-gto U 5KS43 Oa-Si:HE® t: J: •)

a-Si:Hfl:#±L/:4"f V 7W4A»8E«fe4; k £j!,v>iti l£=Kanemitsu^il. #5L3?'> V =r y co^bV » - X A tzo 7: to,

•y V nySr-g-j&U -E-coSb^ov'TpK/.:,, flSM»?iix. 4 i:ojxTf§5fco.%/<? 5 ^ tcS 1 -AiMUcg-f WcItS i: roitlESrff&v\ *'V ->7 yT-i±flE<otiSiJti./6?fix. 6tc$6v'/<y KttiSDiAII&Etinix. sc: t

£S LfcoKong6 l±. a-Si:HCO)fcBSgf TT*(7)516$B14<9 f^E £ H8 L T, a-Si:H#(D^BB#i: Z 3

JESrSO^'ffcSrpKfco a-Si:HlI43COSi-H|S'g-S:#^(-MviT*fFfi L/cISS, 5fcfl?,McOjfcBSSttc <t o T1950cm"1 #S<9 k? - ?tfffi'PtZ X t £*Ltz0

C^ET UZOOOcm"' CSi-H^I: Z 6 C: i: >G>, ifclEWgl^Si-Hig'g-

*$^B8iftC J: -d T^RgT-ab-BSiO ^ > iT V y^**yBuitragot>(±, j£E<0/<7 > - * - V' a-Si:H#(0&

^n-temiio7-y*iStOjEi£$5(i^tlxJ$ELtztXh, Bit>E!E»5

Morigaki £> ti, our, f*i'£p**^LTV'4; it: i-5

T#< ^o/zSi-SiM-a t-lE1) i2;$tL^Z?LSr^'LTzKS*$S$l)1"-B#a^:s ?>7') > V *'y P^&gEf 3 £ t f-Vk £*# L T . 4-|iI£<7)*r;V£fflv>-t)!e;s§jBXRB<7> B#mgi=ov'T##Lto 2o«/>^n7*VKSrlH%g-t±6C h, $7-jfcEB^PSro&fiERSO'6K^ii,> L•CV'^, i t £^ LTic

- 62 -

Page 65: ji. —W >fta

Mo-P3 Hydrogen in Silicon, GermaniumSongtl4, 'U 7XEE®JD12 4 (5.8xl0'15cm2/s ->7.25), &

<fc tmttfbi ;v f-VWP *®&Ltza Khaittl4, fHarittt, TkX® 12 43 It B ZSE X fcf >Bf B t *S

<oBgj$^tcov>T|66-L/-o

Mo-P4 Structure & Electronic StructureCollet Id, ^"Pl®tO®Bi-y V 3 XX 7X X 12ttL, H SrA^f-S-D ? 7

Pusztaittt, V 3 UHI^Slii-fcSnA&^tx ^JET-DtfcgLHEX X hM27 4 7 h $-ti:B i 112 4 9, 7f ;i/7

M0-P6 Si, Ge Based AlloysWatanabe 114, a-SiO:H & S1H4+CG2+H2 OX?X7^t##L, Si-rich ») $E H T* 14

Si-Si4#S-B-7i$, O-nch<7)E0r'(4Si-SiO3S-6-^#6tB i t £XPS<7?deconvolution 1:4 0

Oktu 114, a-SiC:H<7) K V 7 h #mg(O ag##%^$J£ L, SfifflJ$T*C-richJB<7>S Sb$»?i6 < * B £ t t *0

Eliattl4, a-SiS:H<7)CPM, TOFiMS SrfiV, K ') 7 h#Sl$t LTa-Si:H12fiv'<(><9tf? #t4vB:»>-, #fbd#LV'i t

Edelmann 114, a-SiGe:H t CrCOgJiS i:oi> Tf^If L, 400C-500CT'Ge-richS‘7) 14 7 »?K

< , Cr-germanideffPtiZ'f Bit S’IS'a L-/;0

Leot 14 , C-rich a-SiC:H» ff Si i ft v> , C-55%0 # T 12 4 *) ,photosensitivity "Clxl05<0 i> <7) A*# t tit: i t SrfftcrLfco

Wang 114, S n° g-fb $ tL /- a-SiC:HT*, CCDiitJDt tilt E0l450-70meVt±iJPtB 12 pv4io-,-c^(b-£t\ pT^no'-io"t-m'tBit

- 63 -

Page 66: ji. —W >fta

Mo-P7 Devices and Device ModelingLongeaudW4, TFTdt X- hSES-'gx.

XftvtZoCarlucciobt4, *' h A-y- hTFTl: tivT, a-Si:Hi6f$Om t-*S7'5 X v $:3lT ^

t •C#tt8cS*?IHtL/c 4 L *oBhatnagar5>(4, a-Si:H/Al#^-(73m^gE7] & , il EJlDf! L tzp-Si<D t - 9 - Sr® o Xiffll

£Lfc„ ®KHre<Dia£l4, doped p-Sitojglit (7)7as#tttc 4 0 Eli <0 , Ali:*l"f £a-Si:H

<73 Seebeck# 3&2mV/K Sr TE L tz oSchironettt, ^47;t;l'7 7Xy|j3>fl^jC'f>-yt>'t-{:ffliLto T

aMXH 9x9cm2, pixel pitch I450nm, SiSl±TCO-P*(SiC)-i(Si)-n*(Si)-i(SiC)-P*(SiC)-Metal=

lOOlux<73greenjtSsMTT*, foeward bias t reverse bias^Sr'&Jiti 104"C$>^> tz0Pecora 6 14 , a-Si:H Sr '(:£ -o 4: light-addresssable potentiometric sensors (LAPS) t% <7)

sensingtCfiK@L^0 LAPS<73l/fEE$Il4, ##(MlS)#i@<73space chargeLT Signal 4 o r <73 t'A d X <73S:SS 14 Corning glass

7059/Cr 100nm/n’ a-Si:H/a-Si:H 300nm/a-SiN16:H 250nm/PdT** 6 „ iCt, Pdt±¥S99S erab-Bo T Ad X <73$jfF&$»*100‘C<73Bt, H2t4Pd<73MSfEffl"CiMII 5 ft, Htiio L cOBKEyXkS7);$@ti(S.I S'SEX, -f<73|£:£, MIS Capacitor<7)flat-band voltage 7)r5$; ;b -5 „ ^d)^ib&LAPS<7) Signal t 6. Cl jX^*LAPSt:*H2*^ai ti * UST * -6 4

LT^^oFortunatob) (4 , ifcffl(80mmx80mm)<73a-Si:H thin film position sensitive detectors(TFPSD)

Swaaij <-> (4 , Electrophotographic experiment!- 4 0, a-Si^C^Hd) dark discharge curve Sr SJ $L4:o 200nm^ b 1 ^ m<OJE cOdark decaytitiHl4 Ev' l: L, < &-$> t$ 4'$Si4j$^oZ:o :«:!:!!>(), -> a h y * -E<73l£fll: 4 I) ^EOyiA^ili: 4 •) IS iSSiXi C<73 4 7 -&72»3l:t yf*3Pod% < L-v 3

ySrifc/:4C:5, #lgd)#^3#d)darkdecaym*&d)^#l4##?#< & &14 itthZb d3|ft^(4T- tzo

Moresanu 6 (4, a-Si:HS' iSx.^. iPd1*-#iTF<73t£tfjt? t L "V-fiEd 4: i<3<73^'f4:Sr7j\ LtZo d- IP f - <T#E Sr#mf 6 <731: m#j$<73 $ ft

ho f <7)/:%l:l4, defect density Sr T if & *4 4U4' tt S> &v >**, t <73-ft <b 9 lc*>"f^tc=K □ > Sr K-XLT7 jc f y X^X^lcTlf, D'Sr®t,-f - b<73iffiJS.$-1#/-0

Trijssenaarm€> 14, p-layer<73@5 Sr x. T, a-Si:H<73p-i$l'a'<73'l4§Sr, @43 4H& ftdS-fepfe.BMT-Cp-<4:= |S*l4^.r band-offset, SffilJt, #t«JSKC4 o

Martins 14, pinE r* A d X <73t$l£^ ABSr$IJ®t-BS-^L^ = rf'Ad X<73fS1±^

mi:, ” gettering” tpd.'fcff* :hl:4o X asm t L,7* Ad X<7>££14l4” gettering" if-L'l:4 1 40%ll 2f|6]± L/Co

- 64

Page 67: ji. —W >fta

Tu-A5 Stability 1Shimizul±, 0,

L, - <t£JI$L£o £*> a-SiN:HT-tt2g:Pf<7)^-fb^*3 C & $r^L/:0

Nakatat (i, <0$0® $ it * !*«• £ ffl v \ jfc£lb#tt£fff® UMil t iiB5#;4*& ^ i t £m L tZo

Fritzschetii, %%\t <0&$ to¥14 £ $IJ£ L, ESRcO^fiS^'JgWiiiDtjtfeji^^'fb i:l± 1M1 COMSAT t 56 BiEMH 5c * t * S M3,!: li II & -£ f±

*> <or-^& c t ZUfemE.L tzvYamasaki tli. /<;i/XESRftSrSg@ L, 56#42^R3 t «^R82G8IL Mal^O

m%'kWr%L*rii'mm*7f;Ltzo

Tu-A6 Stability 2Gleskovat it, %W,&7 - - V > 7<0flSfi| (C® L T 0 t £$6S U 56SiE7

x-V 'vycoilEtT)** V 7^®il$E^14ii5fcSE^ro*-v V 7&SilS-K^14a: - ifcU 56BB7--V V 7imgi:it#L-C^C3C t gr^L/:.

Hatatit^ 5fS&7--’; >7" ^7--V > :/<7)£F.giMIR1±<i>:@v>£flJffl LicflS

JBfFEBftCigA SiL-BMi i:5!£;Bi@Ml<7)a-Si:H* 7 h 7 - X * tc <0iiv>$r^L52c

Vignoli t li, AijiJA S^T*^E g ItZra-SkHtC j5 tt £56HEM3±fiS<; (7#f frlES

L*,,Graft 14, 56$Ztofc0-56ti:£fflvt /-5fcE@S'fb<OSJS £ las- L *.Morgantii, a-Si:H$E b y>VZ ? IZ&tfZ,BPSXPSE*£ $£ L *<,

Tu-A7 Porous S iStutzmanntt, *"- ny'jaxoi't'i- h# b ‘D&DgtZ v n *-tr x^-f'MCov'

■CiSLfc. L^L, m^git*%#*§mi:l4bb#*)^Mtit, &IStcM4-£@»%otza

Kondot 14, ESR<0#S^kB#F^fll5S5fci7)#S%SrE—65KfllK1"-S;E7,;C$r^L^=Bustamt (4, a-Si:H £ II &ib)& L T I«4 £ ^ E l IS bhb <bfEES it* <b <0 t eOEtott

£iF L*o

- 65 -

Page 68: ji. —W >fta

Tu-B5 Transport 2Thomas 14 x & tcov't co £&!& Sr It -o 0

;tu:j:4t, 4t(Da^6sis-g-ji

rn I4|£0,9 r- s

Yonezawa S> 14., ttticlllWiixItBsB <0 -t ^rJ)l'Dy<il/- v a y <7>f.n7ftSrfRcr ^ #M7> -?454CfX h U7^/-?7>-^SrSthU*o

Sty #m##l:45it3//f XciMf & I), 7K$<7>iiS-6-cix^ vT-yxtzm

# L J 4 X, 7-t 7 n -v y t- ;wo b y t- V y XK Hfl-5- LtzJ 4 X $ ti

Tu-B6 Transport 3Gaughant (4, TBP:C4HllPSr K - k: y X/F44 4 L/:n-typeSi:H(DK-

kf >xi"<*M L, TBP/SiH4=0.5%^L T#14'$'ftSriiE L /zc Herremans 6(4> p-typeSi:H"C<7) jfc^PIX -7 7 b )V<7) K — k? y X'ffitf-'tt Srt&Bt Ln '/5 j

y-y a ylts t cOittSt: 4 0, X y XV y X#'✓ b*434 U%-, B4OOxt-A'4f-zgti: SrfH®L*o ; E(DB)=1.2eV, E(B4-)=0.25eV, E(B„0)=0.45eV ttc^tz0

Nesladek b (4 > pinKft l'45 V'TjlI^fr'*4/X®±£gMDl-£*§-S\ E VWfW $1:4

cat:4 0, mv>mi£. coms-i #s l *

5fcfl?it5 h-Zzmroij^ISS:^ Jtl^t 3

Tu-B7 Optical PropertiesWeaire<bl4, iSHj^-gSUcSXw/iiffil&b: 4 IK 1043 coM^Sr-^tra-SiiHfe 4 !/c-Si

<7)Cj(w) 45 4 t/cjCw) Sr ItS L tz „Georghiuttt, # XE^t^i: 4 c Xa-Si,./4i, <D Sr NiWfiXni x. £ 1C

otLT, S±g;%!4Si 3p& t,Ni 3di:gEibL, 7 ill/5 x*;b#'-t:fit'< = h l4a-Si,.yNi,-S-^<7)¥Sff-^$=S^giBygT*B 6 LTV'J0

Sotiropoulos t. (4„ a-Si, „N,:H<010eV $ T* CDRIt^ Sr tig U PDSt iSil^ i:4 V# ESs^SrtotZo itlt «KKi&£4 lKramers-Kronig(7)^:^t>e2Sr^tot:o 6,(7), N<7)E

Wtf 7 &C x »$0.35$ -C14 Si-Si bondK6$t* k?-7 fztfX-b 1, x (Olijrafc tttCb'-7 c05SSt4Mr^'1"-Bo x >6*0.4Sr®x. S t Si-Si bondtC8*1"4 i7-6liSi, Si-Nt:65R1"-5>Sr Lv> H-7 4*$gt)tl^. =

Simunek b I4, a-SiN^HA" A X) Ml Pfi $i xk X) ^ 7~‘ X~ ^ random-bonding model (RBM) j: Random-mixture model (RMM)W 2 o cDi§-£-Sr it®? L Xo REMISS¥4514Si-CSi^NJX’h 0 . RMMtOSrESiS (4Si-Si47)'Si-N4T-* -Bo Lt6>U XEfibfcX ^ 7 h 7 A(7)#S$4 V RBMOPWtELV'C t S-^I^Ltio

- 66 -

Page 69: ji. —W >fta

Tu-C5 In-situ CharacterisationToyoshima6>(i. PM-IR-RAS£fflk' T.

3500tl:±lf3 WA-of- KiiSiD3,SiD2,SiDfc%zit lx*p <. o itz, &m&mAMoor t^mt: it -maa setLi: < k'L b &7jiLt:<,

Ossikovski 6> II. Infrared ellipsometry i: 1 0 . a-Si:HC0p-i^-B5 i "E" L-tza<0B^6<0^»V a-Si:H<7)SiH2|§'S-£ig;k 5 -tir> |e]St:p*/ifFB iCjoV'T t, SiH^-S^l! lTV'3 b. L Sry L/: = Xtl i:# L X, doping gas b L TBfCH^Sr {$. l b SiH^^-yii

X. 5 t V' o 1 •) tt m il 6. f, itz, doping gas 6: >1 X tt < . deposition sequence t p-it ZTFltZo

Katiyar 6. ii. jxtc- 'H; "7 X" ^ i n ^ x /< 7 ? 'j X X T* Lf $4 £■ fl 3 a-Si:H Sr , infrared reflectance spectroscopy"C $ H# Fal -E" O tiHIl M L. TKSrolR I) jX*. Sttb 5[IdS' EE] Tt: „ xK

StitiRSil. 40A^1Stysub-surface-HliST'®LoTV^LLTv-^,, Takano6.ll. a-SirHdfiKfiilEB$r p-(Bln] LfcHe-NelaserjtfcSr'filE-o T<t)WiWlM LtLo 7"

5XVZW^Tj&Jlfc Wrf6 k 6.titz„3E$ b 7 d)a-Si:H 1 •) /h 5 v^0.5nm<7))5 § (7)growth zone<t)$f%t&ilx.7E.'i' 3Li699T-S6 L LTv>30 itz, EfaB#F5i±SfSza$*x±»t6ie-DfiT*§ <

Shirai6.ll. bfv X~?Z V D "Ca-Si:HSr 3 A SrUV-visible^6 L Srf-af;x'jyyx t- i; -T’P^lCo a-Si:H<9 l:^f 3) STOcAll.StSZftl’C'^: < . Mffl X)(o J *9, pure silane, He, or H2) i: t> •Ki¥"7 3 C bifitoip-z

tzo $6.1:. iSilfiKELil, t&iSlSELtzm'tb^teii 7 zzbtffrfrvtzo bCDZ bli, fi£Ei$S<0±i*te#v\ film precursory^ ii#LTv>^„

TU-C6TFTSTsukadafi. TFWM&ZStt - Srff v>. I-Vi|#tt i: i> ij-3 7* - H!E<0 L S v.

lit^y- l-SEi: JtoT->7 h L. vXgfrZZ b, ACRES'

ZXb* b'i&Ltzo i tzWmitAltfX^rftf h Ay- b Olr£\ HiS'fbfiET ;k< 7SrAlt7)±i:fE-o Ty3SiN##@^##f3 t 1 V'i 7p2titz0

Fortunato6.il. fr Lv'WiMi: L Txfc^®c®5af:Sr|S^ L/:0 X Wfifelz J; >) 7 - h'*4 7XX h L7#A^^Defect-Pool-LrlVi:£-;b&v.L

Hack6.il. |B]—St£± iCT-e Ik 773^1 "7 V a 7TFT&##f 3:W&L Ltl/-f- 1:13 TFT{$# Sr M* LtZo

- 67 -

Page 70: ji. —W >fta

Tu-C7 PhononsBustarret1? li> Raman jrBrillouinlfcSLcOffllJ^S-c-Si, a-Si, a-Si:H"CfrV\ BtfcSL"Cti> c-Si

X'LAffjz § < SIJJe SfiZX) CM L X, a-SiT* $ < t£ %, „ RffcgLT* (i„30cm-lti-T<O/N''7 f X? C > KftoLX'a-SkH-eM^ CMU a-SiT*ii&V'£ t

LZi„Scholten^(±> a-Si:H<0Raman<0#§<7)Xh A'ZiltZ tX§LBM*IMX$> *) ,

2 /1 > X )£ £• -fgV'Raman(0 k? - ? (0 £ 9JJ£ L Z: #S SIn a-SiCJt^ a-Si:HT*ttTOe-K C?> it4 phonon iOJiSlbC <t i)lft99”TET-*-BC i: £/TLZ:„Orbachii, 7 X JU 7 r X tRSlT' liphonond^^b C X *) fStffeiM: £ WP g-tbTV'&C t

SrTF L tz0

We-A8 Deposition 1Ganguly(±n JlJ$T ORB S: SHU t S :il:i O&JfcCJt^Pil&'ffi*- 1 tffti.

6 c t KfctyLtzo c@f3C tez i)> B¥@rS tv S -18 £ iffi xTIBET-S 5 oT6g1£ t' t S L T w

V oAzuma&li. fr L t L T, ffl& **X t It T J v 9 > *) C '' ° X >it

# (SiHjQj) «rfflV>ECR7'7X'vC -?-(7)#g$$£*(0ECJt^-g-

STKSt^’S: < , ^PIMiTMLT^T&SJl^f'bi'iZ-o 166.®DSr5liH&< ZttzXZtifeWsL

tv>5„

Suzuki Ml. S^imP^XxXvC VD?£T*#(bii*ET>E$^%*1-:)fc5Smrff

14Srp^<> &fo&m&&X‘M. b ft* -t •? Tl&pg-e § £ c tIr^LZwo

- 68 -

Page 71: ji. —W >fta

We-A9 Deposition 2Heintze lix VHFX9XV T' cO <D iiin (± 9 7 * ;V <73 £ $ jSS coif JjPT' l±

ti < , SECT) 9-7* <7)iIiDT$)Z> nrtgttS-JIMLfcoKroll t i±, 1TVH F79Xv T## L t:a-Si:H<7)}te£-ft;!|$14 S: P"</c

gfcSttE tiSo /z g-tOfeSZLtzoNakayamab (4> ECRX9 X? T"f^ia L *M<D#ttiCo v^TffFfi U SiH39 v * )l/JiW

coEfiKtoli: JHcDgpaS'ftcD/cfeicfi^ t 2* o

Williams 6 (i, a-SiN:H&-NH3, N2S#^^ f tbf L, t o * i; C. b.

NH3^' ^-f^ 5 intz!&tt.%'ittfVk L v> C t Ltz0Schmidt6 It, x >j 7"7 7 h M - K <fc D E<79 Xvt^-CeoUfl

4.1C J; $ tx EcoSSli-E-fDStc-^v^T WcEcoti®l: & A# iii. £ t SrS,v^titi L/io

Dalai 14„ ECRfi T*B <0 41 KlESiFF <0 $IJ ffll to nj fgtt £ 77 L /z c — A\ iW?mT-cO*lil; #<$##(OB(OK#^l%<"tz Al:/< y 7 7@<Oa-SiC:HtOCm&i#f f £ £7% SEft-ti: f l:8%cO#$*r#t:£ £&$&SL/z.

We-C8 Recombination 1Brandt(±, Spin-dependent Photocon. (SDPC) l:Z3CPM(OSS'S COiff® £rfro/z = Carius I4, pinX'f * - K£fflvVzxl/9 l- n )V S t- -y -t 7 X Kov^TBiSSrlfvx

pinX'f *-

i&&X'UPL<D\L*>±.tft) SrSr-ii3:*,T»?i9

»$t> 6 £ £

Fuhs t li, EDMRfc x o SDPC CO—S t^k.Z> SffiT*a-SI:H(7) SM-n ii® Sr IM L 4z<, <t ViSTcOX-c V 7 7 -y k? 7 o /z^STT-Eil Stl, £ fz

y-9--fe;PffFffico^fi j: LTcoSfflfMiiE^/Zo

We-C9 DiodesBerkel <b li > APS X- A- * T)V £ i> t IZ * 7 ') 7 k <0|&¥®rT*$: £ Z> AR£&-$fl-

sHTV^MS, ®E$EcT)S5rii2:$-ti"TS§> a-Si:HX7 y T-'/XX-t *- FT)#%%, ItttSrBai/to

Block tli, *'7 7 >SES;> iSEc7)S5rfflV\

Kusian^ti, CPM fc SCLC<0%@tA 6 , £ 0f5iiK&A£'ft;li± £ LTffiTslEJLMS^SS6#-&!:&§£ 6-X, IE?LXf itOft&TX t$ tLS £ £ 677 liz=

- 69 -

Page 72: ji. —W >fta

Th-A10 Hall EffectFritzsche&li, InOxT-x & 2 Z> Z. t IZ t *) ?. •$> *f, ^7)#

•6\ *--MM/5:ti7 - £ t

Nebel&li, a-Si:H, a-SiC:H£ ffl v\ * - ;l/S®lJ$<0 T / v V - SrffilE. LtZo $)®(i F-k?y7\ ^tt, *-v U 7 7>EST-®'ftt-E><r k ^SL/z=

Tongtli, n-typeMfl-T*7--') > -££!&-§•, & £ vfltit-CIi 7 * IV 7 7*-;v7V v v c t L/co

Morgan ?> li, Si-1545, H-450%#-o iffl V' * - A'SEl® £ It#T*^ L *0

Th-A11 Hydrogen 2Yonezawa?)li, 75 7 7 ^tcSPbWT) 5 >7'A 7 4-7 '/fAll'Dy 5 a

i/--yg yrsvvz#s$^SL/z= ctu:zbuy? '15 7-7 lii£t!cSE@t tc li II-Sc 16 o

Singh?) li, S'i&"C&Si-Si7»*g^-4:'L,4:#:^f 3*#S ii.it £ t SrfRS L tZo

Beyers li, ') ? 7 A fc7X*«a-Si:H^i7)i£ti[iiSSrpffl ICpK, ') ? 7 A <75l£ffe-Cli Al:#%Lt 7'77 V >7**-> Fi3it/77-t77-®;f*J7-n>7)lci4 F 5 7 T-

Lti< 7) left L, *X7>i£tfcT'li -/ V a >kF 5 7 T'^-i'

t tt & £ t if^LtzoZellamab li, ^ V 7 A#RTt$#gfl%a-Si:Hf iSS<7

a-Si:HI:tt^<, ^ t *ESL/-o

Th-A12 Deposition 3RocaiCabarrocasti, fcttfS® i: 7)SSfa-^V)Sr g& C, S®?aS7'220C 7 ?,

270 c rmcefmmqi ?x.t.fuss^»§L.fcoKamei?> li, {£©&&!: tS It £E4’XPS&-®<7J&ft&®E#'tt,

l, l

Shimizu ?> li, ESASBRE'^-t-^SEE^ixi: LTCueV 7v> F V toSHEEft l: & It £E<o®eEtt£tf!l l:^Ltza

- 70 -

Page 73: ji. —W >fta

Th-B10 SiCEvangelist! li, XUBSLft, XEMUSWleMSiSti& b'OH&ZmWza-Si,.xCx(0<X<

l)tOSj£l-^V^T Si-Si, C-C, Si-CC> 2 SE® OK^-UdBEStliEfiE<7)^-fti:*f LTIi fc A, t'gHfc-tir-f, #0-0 %tiWib <!: <0 IN#W't,, SiRU-'Cli? >?& tcgeaLTv^coT-(±^<, i- s-s^lt

Alverezb It, iSj£Jt Srg£A £a-SiC:Hffil:o V'TE^cOkRg^S^*Sr-^SEf£,

tMtfeS-ftri, EEx k? y^n|fl-)6f£, 7t^p^7tf£S-fflv>TML*0 ctT-e,o^i£ ^trfcPSOirf ;kE--fiiiIS-;Kfc, a-SiC:HE‘t3W4J14XRBl±ffij£JfcK. i b T Si<7) ?y 7 V V V Vtf±X-&Z> Z. b Sr^L/Zo

Th-B12 SiNKanickibli, a-SiN:HB<9t;|Sjt§SiME-ftlC-3VPTEEX ki X)fc^U7

-tryxi££fflv->T|l»K, y- b fc LTfflv^n^> SS<7)#VHN-rich^)ET*l±XRB^E lit "CKBE L T v^6#EXRg^7cl: £ c T4.S Lfv'4 £ MS® L *„

Kumeda^ti, N-richT* & V'a-SiN:Hll i: o V' T rfcE&EE X k" X £?nl jtyfcft Sr fr v\ 2 ®*B05 jfcilJ2&Pi§ OfcP.p.Sf t'£t L j$. V EIcEfiKE •?>rfcRS(rapid-growth)i; $> £ *?ipIC4.fi£ "t" ■$>XRS(slow-growth)<0 2 o) {r #tH L /:o Him h 7 7 K T*<7)zPJJSrS'> <h, rapid-growth^. figliSiW# ErXJiS^ f>, $ /cslow-growthy.Hl±Si-Si#6-S-*sti)Fr £ Hi, Z t hZ X *) £.$, 5

iv5 fclftljij LtzoNakayamat; li, v V 3 >d# V'(Si-rich&)a-SiN:HBl:"3 V>TfiS.l: i3 V> T t jfc.EStfl#

l: it *is r t & S>, Si-rich4 Bins v't fcftSljeliWEkRItp ± C 4 i; U *„

Senemaudb li, N-rich^a-SiNrH#^ <D*#I:'&B L, ■f<Dffi£-As±tZ(H)-SiN,<D&Tte&ix^zz b&mitz<, t^e,, %E$aM'§4.ERE»iN,Si-SiN3->-SiN,+H-SiN3<os:Slc i o T£j£ L T £ i: L fc„

Th-C10 Defect AbsorptionHattori6 li, jfcEStT<D7X:)Vy t x^##l:tiit-B;##/<7 >x<7)j£,

#, E#E14?)S£fl£§, CPMMx^^ h )ViclFEt *ytiira^ilSSrfF99 L/Co CiL Kitilf, «E<^5h-Tvp/-, ^4£##^<7)EEm#<7)#l:, #

*^rEm<i*pt,fflE:F-;E^oEE®Sy|elflE(oa*r®ax^x MHilF-Et* <:b IC ^ o

Platz<b <>, CPM lc ti It 4 -g-BISlfc-S 0)4556 li$S K li IL <^ < , yfcEiilK^t £ EE1JEJ& Z b Sr 77Ltz<,

Nonomurafeli, Xi£SSS<7)^VP jfcB4E|S]S-)fci£lC i 9 , Si-HiHfrcD*-^- h - X *- K^SE*Sfl-EE®i<oiliR£^tti Ltio

- 71

Page 74: ji. —W >fta

Th-C11 Solar CellsTsudali, XRgtO$IJ@$r#v\ 100cm2i7)-tr )VX~%

# 1 2 % e 3 J§ 9 yf’A-t;l/T*l±lcm2T- 1 2 . 1 %, HIT-tr )V~C 18.7%tW&Ltz o

Bauer6 li, TCO/P#ffi*C027'9 X7#L11£ft 9 i i: |C i 0 952cm2tO-feT* 1 0.7

Saito<bli, v^ n12 i -Bi6iSEfi£fii£S: ffl we, v > ^;Mr;Hcm2T” 1 1. 6%, 3®? >r*A-te;Hcm2T* 1 2.3 %<0?clj$£fR^ L

Th-C12 Other DevicesSakai fell, a-SiO:HSrfi«£ifli'(t S-Or, ±l#E%p@## (H — -v 7 7‘Wa-SiO:H

Steibigt> li, n-i-p-i-nSiSi: i 6 #&l: <t B;7fc<9SS:EtOS£flJffl L£lW&a-Si:H;fc -t >-if-CO$&■£■£ L*o

Th-P1 Transport, LocalizationRoedern li, 0 %*tO#mjg@tO#Ai 0#%%^

M&i'^ALtzmmWrf^t-hZZ t ZKLtze Bayleyfeli, a-SiC:H-e(OTOF<OS#r7»> b , /Vy FIBtRUli, f T 7 7% < itML

tSrfi^LiCo

Th-P2 RecombinationStachowitz b li, 5S3fc^tro W a? St ^ B> t t <> I2, CO Streets t’I^'C

li#^$tO#miz v> T ST-S **£ 13 -B £ i: £ m L /.:=Danishevskii F> li, kf n|j-v\‘;U X L — "*i- — 5i£Bli2~F "Ca-Si:Hjii F*l T 1/ - "9"*—% jS ^?il£ S

tV'B2 a $r#^L/2oWangt li, i® JS* CO B>pin-t:iUT*tOjte^-fhmtf&tOELtOW'fb SrE^ L, i®l#*l:

^TK-yit to#ffi, igvs-rttOpfe^-fttof^^aiKSOztimL?Zo

Vollmarh li, IRjWiSl: i 4PL, PCtO@###tO t, #4^#* +U7 tOlg^ls

Muschikt>li, FfliL, tcS-B j-iS&Efl-coi&EE

<3 f (O^gB L 7:.

- 72 -

Page 75: ji. —W >fta

Th-P4 Porous Si, gc-SiKanemitsut>(i, SiCSrffl vV-PN$-g-;<Mb DEL, jSigilP# Si02v h ') v ?

3 jLtSL £ftS L fzoYokomichit (i, C Df-ffi-DESRDlSIlSrffcg- L tza Klimaib l±, C D##Dyl6f5###^TOFD*S*Sr^ L to

Th-P7 Interfaces MultilayerMaedafe li , a-SiN„:H/c-SiD fjt B Sr PH , Flat-band voltage D IM ifc % |g it fr t> ,

a-SiN„:H/c-Si|FBD:REEli2il02(cm2eV)''V&ZZ t StIRS l to

ChenS) l±, /<V 7@DiS 5 A$18nm, #pl§ <F>W S rts4nmDB3\ jBHi'fta-GerH/a-SiN.rH

Masaki 6 It, Cri: a-Si:HD#E l±7--'J> ^SlM(T,) &±.lf2>t intermixing Sr jg £ L, T.ri$450’CSr8x.-£ tfaikltZ t SrjlA'iU Lto

Bertomeu 6 (i , a-Si:H/a-Si,.„C,:H multilayer^ PDSD iPJj te t b H b ft t Density of state (DOS)(7)/I5'E^t4tO|S$^, /ftl/? D#EDDOSi:$EDDOSC> 2oSH7> - 9- t IT, fittingLto ■?:coffin /'?;Vr>t7)#B<DDOSI±10,0cm"2T-*i.^ t &$R£Lto

- 73 -

Page 76: ji. —W >fta

Fr-A13 Ge alloysDrusedau li n Cr/a-Ge:H/CrC9* y K* ~j f&f4T*ti, 1/TI:

Lt yn 7 h L/cBt, »>'170K#ST*Eib> f170Kjy.TT*li, VI(3 jr'/Jx? ***- &7S1% £ W i 7 &§ii>li,©ar-w* + v 7-ffiA<7)fj|uci oxmwxzz £ t j,TLf;0

Graeff t li > Spin dependent photoconductivity (SDPC) i ffl v>t, a-Si,Ge,.,:H-S"^ CO76E!) is* -V V TtOSIS-e-iifSSrp^^c -t« #S;£Ge»s10%i5® <7)jSzt gT*, f TICGetO

dangling bond*?excesscarrierOH|§'ncl:l-L'tS ts. ■? X^Z k. k o $ iy a-Si:H<ha-Ge:H<7)±*jliv\ $|x.li\ Ds/s^i6##*ESRt0-7-l' r> o#l:#f 3Powert&#%, li

a-Ge:HtOspin-latticcd$ifDD#ffl (T,)»5a-Si:H<7) -? tl i D <b 2 It tzA' £ v> k V' 9 i k K 4 U ,6 & L/io

Eberhardtb li. a-Ge:HOs^(±AMlflSS^TTliE-fl: gAA* ^/s n y y 7 y 7"(800W)!WT-e li lO^oSS^bt S c: i: £!, V'tB L i:,, —iWS> G<9Sili££picttLTIi. 2 7)'6 BBSM^E4nBt PS tomtit J- *;P*'-l4l.5eVT\ C Jx(47t'C*W3t£tSci* ;1/*’- k titJlBj ZX&Z„ k <r> k i: lia-Ge:H dzBSS'ftARg CtKX/»*B8 5-LX^Z k ki^LX^ Z„ $ &!:. ***»?4%* ^ 1% I: # & t *" 7 x $c# iSg li 170t & t, 19511: ± . m#l:E#n#^t A# < t if^Ltzc

UnoldGti. #'a"##(0Ai!Sl5#-^ 6 valence band tailQslopeli. a-SiGex:HT x A10 i>' b KO£ffii$.t,Zid^X—feX52m&vm&X$>Z,Zk£U6LtZo . 0, A.RBSSli

a-Si:H»'^a-Ge:HIC^6 <!: 3lt tiA § < % Z K i> frfr t> bt\ <®jsft&Sl4t-lig*5 b & v> u. fc Sr Tjxl® L i: o AKiSr g <7) X 'f&'PFIlli, i < £n <0 itX v>.J> weak bond-danglingbond conversion modelXHi0)3Z k k A*T* §, a-Ge:HTO Afia^sA 5 v » (0 li, il-fk $ ilT & v> to T* li & < . a-Ge:H(0$%%tt#!Kl:i 3 C t £75!® L/io

Fr-613 InterfacesOssikovskilbli. SrW-J- V 7* V > b 0 - Srfflv5a-Si:H/Si02#ffi«-?-<73®jlgSr^f o tzlfe

^ICOV'TWlB-g-S- L/;„

Plasstli. 0a-SiN:H/a-Si:HE@#El:^ 5 AtOyS-S-H^SfiE5 tL4 HtSrfSEU/do

74

Page 77: ji. —W >fta

Fr-B14 Fast Processes, RecombinationSchuberth (±> iKj&<0^iahZH l X i> lms

Ikibtzc Z<D^i±, Street(7)E$jy.^l-<7)

Ohedali, f&ytM&frft&mfci&M t t fc t:7F®E69

Saleh & 1.16-1.96eV <D ig. -fejlfcEMS iZftfZ LESR tPhi iSJje L ^ @1* f V 7(03-X< — 3ilH35M|J Srtftft L to

Shinozukaii, SEt&Effl EfM <0 Sim M-fM £ It V \ 4- -V V T (0 ! £, h 9 7 fcf > ^ t XRSi<D|HI#£iRz>*o

Fr-C13 DetectorsWeisfield 6 a-Si pin $i ^ V1 [i y 3 y b 4- — £ 4 & — K £ v-1 Tz 4* X — v -b X "7 —

'6lgl±IB6lfl-r=9lC400spi«5J-@fBeT-40^-ViE&$Ul

&jlSSrSLTv^0 i/dlSfflX^-try-y--j: LT^fB#

Fr-C14 Spin ResonanceHikitab li.. DB<0ESR$Ug£:8-jfi L TNormal-DB.kH-related-DBK^tt,

SW^S-t^ifiJIit * tSSLit:. Lrt'U iTH (0 <0% 314 £ EF=mt £»?

ttiSti/ZoYamasaki E> (4, /ObXESRCZ -oXf&J --;H3 Se'ftSrl,

v^titiL/Zo £/zX tzKondoibli. )!6^ttC# 0 (O^tcOTtfEtt £^tfctfiENDORC0*£:$:;<)'<btl% L

to |B]S<T)|£S:»?Et)E|lj)[HC i: t^StiZzoHautalaii, 3fcg£jSHESR& K £ o TtSfl^RBiS J: U-'t e^#fjE?L<D^S:^ L /z„

Taylor E> i±„ ODMR (C 051 £ RiTskL tzaMorigaki bit, & E,%#E?L K 05t * #§£ & fi1 o * „

- 75 -

Page 78: ji. —W >fta

it >6

-t y v a '/A*<!: /VCV'-B k C 6 ii, M Wbfo®rf'bfr-o?zW!'£-t)\ SjSfllifi^V'J^-S-T-* *),Rt^-t7y3>i:oviT,TLTiJ. citli, ET-JMfft--&W?u0r^t#J)DL*M ^:###, lij«, ##&, KSiMi, S6£fi;, Hi? hits?')-,$£**, m#WS) (oWj^kotc, -ttL-enn^Mtti^m^m^Lxtt^LX’b t,v> £ i: ft **£31:-?'*&<, i*, -E-ft-FfiOf&mcMf &Eim, /-:»IBj$^Sx./c=

ifemto&EP^Sr^K $ t)&2> i (:&-£<, tttfo-%, 4"la]ft&#t:*3V^T(i,mm*, 'K.mmizKzs*, %<^\m.mz^^xttztinmmin

X'liZK, L T >i J J: 9 «: (>« t /f? tift=

#V^C kli#9 9 XhhvcitflipX'fflmztizz ttfr 1-1 sz 2n, iz t a

i-eyom, /it¥<7)M'£&z<vfrWxM,tDtiZ>frjz$i$il%.tt t z.%xhh0 i>x,?>A,z

±mm'<m<xiizmftwx~<n±z-brnmi>mnsm t

ChX'&ho

- 76 -

Page 79: ji. —W >fta

VNIIOFI 94/2/23-26

n '> 7 m It=r

1 .

M R IS SHS ass* ft *i x hs

2. m i@6^2^230 (*) ~¥fJ6$2^26B (±) [Bg : S'JE 1 ]

3. g 63

gg$;t, nE63cs^ft©$5i?«ssS3£-r-5^ie).

©•5„ ?-*£>•£, 5feiiRSt©ft^Sgtt-iL—9->->7-f >FH©fetTfTfc> nrvi5j3<a©ft^SE7-^ f>3 VVa;1zT'©HESMI^;<ET\

Vi-5.

—::©=): 5 te^REto^T, J6g63tc:bit^63i6<

vz>xmnm(Dfflm$bt£K)xmw.Mmm-%mz&%mffimmz. #a:©#mItCS. Si;A£ffiffi$nT^^^©T”.

Lri'U mtE, itff»©S3 0-9-5-7 H#Hl;:«fc5 r*6§S?fi©#SF«SC-S-5fflEtfc$eJ \z\Z*miktf-< > F t tbizmiia-ZnT^Z.

L-fcA^T. oS/7mtca^5AI#mm©Fmft%©M%##&e#T&B63 Tii^w^Sr^b, Mm#^©m^&fToyct)©-c&s.

4. 65 £ SK/V / t O F I (ALL-UNION RESEARCH INSTITUTE for OPTICAL and

PHYSICAL MEASUREMENTS;mnyt • Chief of Laboratory Section

Dr. Sergey t.ANEVSKY Senior Reseacher

Ph.D. Vladimi I B. KHROMCHENKO Technician : 2 persons

[¥*#fll]

- 77

Page 80: ji. —W >fta

VNIIOFI 94/2/23-26

vNiioFmytitmmzzmtsm z (precision measurements) k $> -s «t a

©Sias^ffijao^7vWf4tr#tJ <

(3)l6*f iScMtHcS-d < jfcMtf-SJ,@Deep-Coo 1 edmtttk.ftftRWT/'ttfl tc S"3- < )j<tv±-vmm,

©£r U0CCD7i6#m§§&A6A:7K#mg#@W^.

®-*'/ymowizmmmvfflm* #m.

c: <o j; -5 1 zwmBS^RzmtSBSfroTkS. Lfc^oT. smum©.!,^, ->>£□ hn> glfflUMC^^Stl, M&ODR. S. I. ANEVSKmi/>{7ubo>mmzmt>2>m9c%T’3sztztb. c©gsi:j;s&@e%M-@m*©m99tcti#tc, B^AoTkfc^-StcSDBttfc.

$.Tz, A^mrfeOttSESISH^OSlSyX^AtCOkTti. Ph.D. V. B.KHROMCHENKO comfiTM^irz, $e>os^ieffltiv-7-->5 3.i/-3'tcffln6n5>)tS5>A’ VJMfPfi'BV — z> — ySa. 1/—^OffifFfcfrT)TV)5«k'5"C$"r)fc. V — 5 — yJa L/-:?<7D@m$#7fcEti:&£<£9/x;VX)EE:fcSE{kUTfiJfflLTk;fc. L^l,

±R§Srt!s®$!l5£tt, 91 L^L. iiSicSUSdft/t^—3 >b?n.

-^©fy x:/ u-r ±TESf^ c

- 78 -

Page 81: ji. —W >fta

VNIIOFI 94/2/23-26

%'m 1

□ 7 tu a a i

fl B(HB) a# m

2 fl 2 3 B (*)MOSCOIf

10:55—15:20 Effl— MOSCOW/SHEREMETYE

2 2 4 B (*)MOSCOW

9:30-16:00

VNIIOFI

■ ymsmwziffizmmL. *i®

2^ 2 5 0 (A)AfOSOT

9:30—12:00

VNIIOFI

14:00-16:30

SHEREMETYE

17:25-

• »Slt$iJEFE0fiCTSZptt^S ®5SiS=h B

©5S64MS$50rTS»tt^iS®c? o

© SHEREMETYE^.

2 fl 2 6 B (±) ~9,"30 J$ BB *

mm 2

- 79 -

Page 82: ji. —W >fta

ALL RUSSIAN INSTITUTEOPTICAL AND PHYSICAL MEASUREMENTS

Dr. Sergey I. ANEVSKYChief of Laboratory Section

46. Ozemaya St, N - U 'Z 0\ LfMoscow 119361 1 V J i

Tel.: (095) 437-5522 Fax: (095) 963-5989

Vladimir B. KHROMCHENKO, Ph. D.

Senior Researcher, All-Russian Research Institute

of Optical and Phisical Measurement VNIIOFI

Ozernaya. 46119361 Moscow, Russia

Tel: 437-55-22 Telex: 911597 OFI SU

Fax: 7.095.437 29 01

- 80 -

Page 83: ji. —W >fta

m

m

m

% --

■h .--

&STI- <-Xl

mmmmmsSSSts^ <iS?

* -.- . y

r,V^:,-

\mmm

ssr%r^;ZW

..-^i*••?;'-

-."■- V '-.-* -5VW-:

Et - -;y~ -“Sr-r*1'

eSPECTRORADIOMETRY 1RADIOMETRY

v^i.©SPECTROPHOfOMETHY

©COLORIMETRY

-vsx

#

■ „ V -»

Page 84: ji. —W >fta

HilO BHMMOCSM

1

1

1

]1

]J

1

1

1

1

]

Scientific and Production Association “All-Union Research Institute for Optical and Physical Measurements” — NPO “VNIIOFI” — is f/ze leading organization, under the auspices of the USSR State Committee for Quality Control and Standards, develop­ing the primary standards and high-precision measuring instruments for the coherent and non-coherent radiation optical measurements, as well as the secondary standards and reference measuring instruments designed to equip the regional metrological centres and other organizations of the USSR.

NPO “VNIIOFI” is also the leading organization in creating the high-precision measuring instruments for registering the high-speed processes and in developing the whole range of optical instruments and accessories including the radiation sources for example, the lamps,as well as the radiation detectors, optical parts, etc.

NPO “VNIIOFI” maintains foreign relations with the International Bureau of Weights and Measures as well as with the major metrological centres of the world in the field of optical measurements and takes active part in the international comparison measurements.

Photometric laboratory of NPO “VNIIOFI” — is the leading laboratory in the USSR in developing methods and measuring instruments of the spectroradiometric, radiometric, photometric, spectrophotometric and colorimetric quantities with the guaranteed accuracy.

STRUCTURE OF THE PHOTOMETRIC LABORATORY OF NPO “ VNIIOFI ”

Photometric laboratory of NPO “VNIIOFI” includes the following sections dealing with:

— spectroradiometry in the fields of the vacuum and near UV on the basis of the synchrotron radiation;

— spectroradiometry in the UV—VIS—NIR spectrum range on the basis of the high-temperature black body models (BBM);

— spectroradiometry in the IR spectrum range on the basis of the low-tempera­ture BBM;

— spectroradiometry of low levels (photons counting);— radiometry on the basis of the absolute radiometer;— cryogenic radiometry on the basis of the deep-cooled absolute radiometer

and BBM;— photometry;— spectrophotometry of materials and surfaces;— colorimetry;— development of new radiation sources and photometric equipment;— researches of photo-detectors including CCD photodetectors;— application of quantum phenomena in radiometry.

i

i

i

i

CONTENTSA. Spectroradiometric, radiometric and photometric measurements .......................... 2Al. Spectroradiometric measurements .................................................................................. 3A2. Radiometric measurements.................................................................................................. 4A3. Photometric measurements.................................................................................................. 5B. Ultraviolet radiation spectroradiometric measurements ............................................ 7C. Spectrophotometric measurements ...............................................'.................................... 9D. Measurements of photoreceiver spectral sensitivity...................................................... 13E. Color measurements ................................................................................................................. 13

- 85

Page 85: ji. —W >fta

9I

1

aaa

aaaaaa

SCIENTIFIC AND PRODUCTION ASSOCIATION

ALL-UNION RESEARCH INSTITUTE FOR

OPTICAL AND PHYSICAL MEASUREMENTS

NPO „ VNIIOFI"

100 -

Page 86: ji. —W >fta

XXTXERlUVXXOXUtX* LTD .

Catalog January 1994

new UV-A-Radiometers new UV-B-Radiometers new UV-C-Radiometers new UV-Dangermeters

new Ermeters new Bactmeters

new Fitophotometers ordinary Radiometers

Laboratory standard synchrotron radiation sources installation for light sources and detectors calibration

Solar simulatorsDelivering of optical devices, materials, and accessories with

special prices

Your local distributors (see below) will be glad to provide you with technical advice, prices and further information concerning the availability of particular Praxis products. Central contact point for national and International sales is JSC "I.V.K.". in Moscow.

Germany RussiaKirsten Schnabel JSC "I.V.K."Wendenmaschstr.2 MoscowD-38114 Braunschweig ul. Shepkina 22tel. 049-0531-346650 tel. 07-095-2840168fax 049-0531-338673 fax. 07-095-9635989

101

Page 87: ji. —W >fta

1.THE FIELD OF ACTIVITY

1. Production and supply of the new integral and ordinary radiometers.2. Research works and service in the field of spectroradiometry and

spectrophotometry in the air ultraviolet (UV), vacuum ultraviolet (VUV), visible, and infrared (IR) spectral range (measuring of the energy spectral characteristics of the radiation sources, spectral and integral sensitivity of the radiation detectors, optical characteristics of the devices and materials, light measuring, calibration of the radiation sources and detectors, etc.).

3. Development and supply of the specialised radiation sources and detectors for scientific and technological applications that can be used as primary and secondary standards of the spectral radiance, flux, radiant power, irradiance, etc. units (discharge gas filled lamps, table-top laboratory synchrotron radiation sources, wideband and narrowband detectors based on germanium, silicon, gallium arsenic, gallium phosphid receivers, etc.).

4. Testing and measuring of the characteristics of solar cells and batteries. Development and supply of the suntest installations. Supplying of solar cells, solar batteries, and accessories.

5. Testing of the materials and devices on the exposure to solar radiation, UV radiation. Development and supply of the solar and UV simulators and test installations.

6. Supplying of the accessories for specialised radiation sources and detectors (power supplies, housings, etc.).

7. Development and supply of the devices and accessories for Earth ozone layer measurements.

8. Delivering of the optical devices, accessories, and materials (including optical sources, detectors, filters, light guides, etc.) with special prices.

102 -

Page 88: ji. —W >fta

2. NEW INTEGRAL RADIOMETERS

The set of new Photodetectors with the special type of spectral sensitivityMedicine, microelectronics engineering, ecology, photobiology, trade safety, etc. all

need the portable photoregistrators (radiometers and dosimeters) that have special types of spectral sensitivity: uniform in the ultraviolet (UV) spectral subrange (UV-A ,UV- B, UV-C), fitosintetive sensitivity, erytheme sensitivity, UV radiation threshold limit values (TLV), and biological exposure indices, bacteriocide efficiency, etc. Such devices allow us to solve the problem of similar integral measurements easily and exactly. We have developed a set of those devices based on the 3 types of electron modules: such devices allow us to approach the required ideal shape of (standard) spectral sensitivity. We can achieve any extend of approximation but there is the optimum extend for the practice that can be determined by the required measurement accuracy of tolerances of the standard characteristic.

The differences to ordinary radiometers

The ordinary radiometers developed for UV spectral range by analogy with luxmeters are widely used. They contain an UV photodiode, an interference filter, and an analog digital convertor with digital display. The cheaper version includes a luminophor, a glass filter, and a visible range photodiode. These ordinary radiometers are extremely imperfect metrological devices. We permanently experience their wrong use for the integral UV measurements: UV-A,B,C irradiance, erytheme intensity, bacteriocide intensity, etc.

The heart of the matter is: the characteristics (sensitivity) of those devices are determined by the spectral sensitivity of the photoreceiver and by the spectral transmission of the filter. Inasmuch as there are no filters having strictly the necessary kind of spectral transmission (for example the uniform transmission in wide working spectral range and no transmission outside it) and spectral sensitivity of photoreceivers in wide spectral range is nonuniform, those devices can only be used for the limited sphere of the measuring problems. They can only measure monochromatic radiation (for example from a laser) with a certain wavelength or compare optical radiation sources of the same type. The ordinary radiometers are calibrated in the unit of irradiance. The origin of typical mistakes lies in the wide spectral range of the radiation sources which have to be measured. A comparison of sources with equal weighted irradiance but different spectral composition of the radiation would obtain different reactions of the radiometer. To measure the irradiance of a source with unknown spectrum by the ordinary radiometer is impossible.

These requirements induced us to develop a number of new integral radiometers having predetermined spectral sensitivity that allows us to measure integral irradiance in UV-A, UV-B, UV-C spectrum subranges, erytheme irradiance, bactericide irradiance, etc.

103 -

Page 89: ji. —W >fta

UV Radiometer (A, B, C)

This device has a uniform spectral sensitivity in the spectral range of 320- 400 nm (UV-A), 280-320 nm (UV-B), 200-280 nm (UV-C) respectively. The sensitivity of the radiometer is extremely suppressed outside the working spectral range. The device can be most useful for hygienists, in industrial safety applications, and agriculture trade control

S, 1

0

fel.wn&# U' me er

% 1rat. M 1units sli u\ metier

0(H T

units1u\ -U- mel er

200 250 300 350 400 450 500 550► l/tm

Ermeter

It is very important when using the solarium or sunbathing to determine the tan formation efficiency, because the lamps in solarium deteriorate with the time and sun UV spectrum sharply depends on the place latitude and sun altitude (season). Besides this, some artificial radiation sources may be ineffective for tan formation or even dangerous. The device has a spectral sensitivity that is similar to erytheme sensitivity of human skin. Therefore it can be useful at each solarium and for physiotherapeutists and hygienists. The simplified version of the device is suitable for any tanned individual at the beach or at high mountains, etc.

UV Dangermeter

The excessive UV exposition from the sun or from artificial illuminators is very dangerous and can result in photokeratit or even in skin cancer - malignant melanoma or in some other illnesses (photoconjunctivite , etc.). The threshold limit values and biological exposure indices are established by the American Conference of Governmental Industrial Hygienists in consultation with the World Health Organisation. The device has a spectral sensitivity that is similar to TLV spectral dependence and allows us to determine the time to finish sunbathing for

, t i i ► Sljw

200 250 300 350 400

104

Page 90: ji. —W >fta

the day or for finishing the work at the artificial UV radiation source because further exposure to UV radiation would be dangerous.

Bactmeter

This device has a spectral sensitivity that is similar to the bactericide efficiency of UV radiation. It can be used in hospitals, microbiological plants, etc. to determine the necessary dose of bactericide UV radiation for disinfecting purposes.

actmeter

Fitophotometer

This instrument has a spectral sensitivity that is similar to the photosynthesis spectral efficiency of green leaf. The device allows us to measure the fitosentitive action of different natural and artificial illuminators for the vegetation. It can be used in hothouses and as well in photobiological investigations.

:ofotom-

The new radiometers are developed to measure continuous optical radiation characteristics but we can supply the devices with analogous spectral characteristics to measure the characteristics of pulsed radiation .

We would like to work together with you to extend the scope of the specialised radiometers, which have special types of spectral sensitivity needed for your practice.

105 -

Page 91: ji. —W >fta

3. ORDINARY RADIOMETERS

Luxmeter

This device has a special sensitivity that is correspondent to the curve. It has a wide scope of applications in practical photometry.

Monochromatic Radiometer

The spectral sensitivity of this device is formed by a high quality interference filter. The sensitivity of the radiometer is extremely suppressed outside the radiometer's spectral working range. Such portable radiometer may be useful for any narrow band spectral measurements at the laboratory, in ecology etc.

Laser radiometer

The laser radiometer can be used to measure the laser radiation flux in UV; visible, and infrared spectral range. This device may be useful at the laboratory, in biology, medicine, etc.

4. METROLOGY

The scales of fitophotometer, ermeter, UV dangermeter and bactmeter are graded in effective irradiance and exposure units We/m2 and Je/m2 which are recommended by international organisations; the scales of UV radiometer and monochromatic radiometer are graded in irradiance and exposure units W/m2 and J/m2; the scales of luxmeters are in luxes; the laser radiometers are scaled in W and J units.

The effective Ee irradiance (exposure Je) of a broad band soi/ce is determined as the magnitude, weighted against the peak of the correspondent spectral effectiveness curve, by the formula:

where Ex is the spectral irradiance (exposure) of source at the X wavelength, Sx is the standardised correspondent spectral effectiveness at t^e X wavelength. That means that 1 We= 1 W for a monochromatic radiation source at the wavelength Xq where Sx0 =1. By the analogous way the lux unit is determined with 1 W/m2 =683 lux at X0 = 555 nm.The integral radiometers are calibrated in the specialised laboratory of optical

radiometry .against the secondary standards of spectral irradiance and spectral sensitivity that were used in international intercomparisons guided by CCPR (Comity Consultatif des Photometric et Radiometrie). The radiometers are supplied with the Quality Certificate of National Metrological Service and can be additionally certified by Metrological Services of other countries, if the Metrological Service has sufficient experience in UV radiation measurements.

106 -

Page 92: ji. —W >fta

Specifications

The main parameters of the integral radiometers are listed in the Table 1.

Table 1

Type of radiometer

Leastmeasuredmagnitude

Dynamicalrange

maximum measurement errors %

workingmeasuring

device

referencemeasuring

deviceUV-Radiometers(A,B;C)

10 mWm2 104 15-20 3-4

uv-Dangermeters

10 mWem2 104 15-20 3

Ermeters10 mWe

m2 104 15-20 3

Bactmeters10 mWe

m2 104 15-20 3

Fitophotometers10 mWe

m2 104 - 3

Luxmeters 1 lux 105 10 -

LaserRadiometers 0.1 nW 105 5 -

MonochromaticRadiometers

1 mWm2

105 5 -

107 -

Page 93: ji. —W >fta

5. LABORATORY STANDARD SYNCHROTRON RADIATION SOURCE (LSRS)

The LSRS installation is the result of 20 years developments of the idea to create a laboratory, table-top powerful source of synchrotron radiation (SR) having well-known SR spectral characteristics. The SR is emitted by a bunch of relativistic electrons bunch rotating on the circular orbit with the frequency of 3000 MHz. The SR spectrum has an intensive continuum like the blackbody radiation with radiance temperature of about 105 K. The SR source may be extremely useful for optical laboratory, mainly for various investigations in UV spectral range but up to date the traditional decision was to built the optical laboratory near a big classical electron storage ring.

We recovered that it is possible to determine the optimal parameters of SR source to receive maximum spectral power of SR in the working spectral range. The magnetic field of 10 T allows us to achieve the optimal SR source parameters: the bunch of accelerated electrons has an orbit radius of a few centimetres, the energy of the accelerated electrons is about 30-100 MeV for vacuum and air UV spectral range. The prototype LSRS installation had been developed as the Russian national primary standard of UV spectral radiance. The LSRS was designed as a laboratory installation with the use of extensive experience in the fields of accelerators engineering, SR investigations, metrology, generation of the strong magnetic fields, etc. Now we are developing such type of installation to get stronger magnetic fields for the generation of SR with shorter wavelength and to get a prolonged lifetime of accelerated electrons' bunch. Of course, in the last case we must use the superconductive magnet. But the pulsed SR sources LSRS may have the widest application in future.

The base application fields of the laboratory SR sources are spectroradiometry (calibration of secondary standard sources and detectors), spectroscopy, microelectronics engineering, high-speed fotonics, etc.

Specification of the laboratory SR source LSRS

Table 2

The duration of the SR pulse, ms 1

Energy of accelerated electrons, MeV 20-60

Orbit radius, cm 2

Number of accelerated electrons in the bunch 109

Time of rate of SR pulses, min-1 0.3

Magnetic field amplitude, T 10

Consumed electrical power, kW 1

108 -

Page 94: ji. —W >fta

10 T 20

10 10 10 10 10 1 10

Fig.1.

The SR flux of LSRS per one accelerated electron ( in constant relative spectral interval AX/X=0.01) is represented at Fig. 1 in comparison with analogous installations. The spectrum of LSRS can be easy vadated with the energy of accelerated electrons.

LSRS is radiation safe and need no special radiation screening. To dispose the installation an area of about 3x4 m2 is necessary .

We can design and produce the SR source and are going to develop a new generation of various laboratory SR sources for all possible applications.

109 -

Page 95: ji. —W >fta

6. INSTALLATIONS FOR LIGHT SOURCES AND DETECTORS CALIBRATION

We supply four types of installations for calibration of radiation sources and detectors in this spectral ranges:

- 200-250 nm,- 200-400 nm,- 120-400 nm,- 40-250 nm.

The sources are calibrated in spectral radiance, irradiance, radiant power units and the detectors in spectral irradiance, spectral sensitivity, and flux units. These installation include monochromator, calibrated sources and detectors (as a reference), comparator, and necessary accessories.

7. SOLARTESTS

The Solartest installations are used for a fast testing of various materials and devices on the exposure to solar radiation and/or ultraviolet (UV) radiation. Such installations can be used in textile, industry, motor car industry, electronic components industry, etc. but they are most suitable for the testing of textile materials on the exposure to solar radiation (for lightfastness). The Solartest can be used as a high quality sun simulator according to the CIE (Commission Internationale de L' eclairage) norm #20 (TC-2.2) 1972.

There are sets of Solartest installations based on 3 basic units, having different irradiance levels, testing sample areas, etc.

The Solartest certification is made in the specialised laboratory of optical radiometry using the secondary standards of spectral irradiance that took part in the international intercomparisons guided by CCPR (Comity Consultatif des Photometric et Radiometrie).

Specification

Irradiance level, W/m2 750.. 1500

Testing sample area, mm2 10^10..200x200

Electrical power, kW 2..10

no -

Page 96: ji. —W >fta

8. SOLAR SIMULA TORS

The Solar Simulators are used for testing and measuring the characteristics of solar cells and batteries (the direct converters of solar radiation into electrical power). The Solar Simulator spectrum can be matched to different solar spectra that correspond to different climatic zones and seasons for ground-based conditions (spectrum type AM1, AM1.5, etc.) or to space conditions (spectrum type AMO). The Solar Simulator is based on the continues or pulsed xenon arc lamps with the corresponding spectrum correction and can create a wide range of irradiance levels in the working area (up to ten times more then solar irradiance in space near earth). The maximum dimensions of solar batteries that can be tested are 350x1300 mm.

Specifications

Continues Solar Simulators

max. irradiance kW/m2

max. dimensions of solar cells

mm

max.nonuniformity of irradiance

%

Spectrum type•

1 • 100x100 3 AM1, AM1.5

1.5 0 80 5 AMO, AM1, AM1.5

Pulse Solar Simulators

max.irradiance

kW/m2

Pulselength,

ms

max. dimensions of solar cell or

battery mm

max. non- uniformity of irradiance %

Spectrum type

1..10 0.8 250x250 3 AMO, AM1, AM1.5

1..10 0.8 350x1300 5 AMO, AM1, AM1.5

ill

Page 97: ji. —W >fta

9. DELIVERING OF OPTICAL DEVICES, MATERIALS, AND ACCESSORIES WITHSPECIAL PRICES

We deliver various optical devices, accessories, optical materials, including:

- specialised optical sources of various spectral composition and output power level for radiometry, technology and other feasible applications;

- various optical detectors based on semiconductor photoreceivers (germanium, silicon, gallium arsenide, gallium phosphide), or on photocells and photomultipliers having various photocathodes,

- various optical spectral devices including monochromators for ultraviolet, visible, and infrared spectral range, high quality interference filters, spectrophotometers;

- various accessories for optical measurements including optical supports and holders, light guides, power supplies for specialised optical sources, etc.;

- optical materials: various types of optical glass including quartz, magnesium fluoride and optical accessories made of these materials;

- calibrated radiation sources and receivers.

All the lamps may have been calibrated in units of spectral radiance, irradiance, or radiance power. The price of a calibration is 20 DM/spectral point.

With the lists below we are presenting devices that we have at our store. If you need more detailed information we are ready to send it to you at ones.

If the customer needs a greater quantity of the devices than shown below we will try to deliver them as soon as possible. We would also be glad to find some devices not shown in our list.

112 -

Page 98: ji. —W >fta

PRICES ARE VALID UNTIL MARCH, 31TH. 1994

Radiation sources

Type of lamp Power, W Stockingquantity

Price per itemDM

mercury 230 100 80

mercury 400 100 100

mercury 1000 100 130

mercury 2500 20 200

mercury 6000 15 300

mercury 12000 15 400

mercury-helium 12 100 80

hydrogen (quartz window)

25 90 100

hydrogen (magnesium fluoride window)

25 50 120

deuterium (quartz window)

30 60 80

deuterium (uviol window)

90 10 200

deuterium (quartz window) 400 7 600

deuterium (magnesium fluoride window)

400 7 600

xenon tube 2000 40 200

xenon tube 6000 40 400

113 -

Page 99: ji. —W >fta

Optical radiation detectors

Vacuum photocells

Type Spectralrange,

nm

Photocathode Dimension,mm

Stockingquantity

Price per itemDM

F-17 160-600 Sb-Csmassive

032x60 50 48

F-18 300-600 Sb-Cs Rbmassive

030X26 50 32

F-26 200-700 Sb-CsKsemitransparent

030x42x91 50 40

F-29 160-300 Rb-Temassive

030x35 30 290

F-32 215-1100 Cs-O

massive030x20 50 52

Photomultipliers

Type Spectralrange

nmPhotocathode

semitransparentNumber

ofdynodes

Dimensionmm

Stockingquantity

Price per item

DMCharacteristic

property

FEU-26 300-600 Sb-Cs 7 022,5x67 5 150 low flux registration

FEU-29 300-600 Sb-Cs 13 048x200 8 150 fast

FEU-71 160-600 Sb-Cs 11 031x107 20 260 UV

FEU-100 160-850 Sb-KNaCs 11 034x115 20 330 UV

FEU-106 300-850 Sb-KNaCs 11 048X160 20 350 threshold flux registration

FEU-127 300-600 Sb-Cs 10 028X97 20 350 special design

FEU-136 300-850 Sb-KNaCs 11 048.5X179 20 360 low flux registration

FEU-142 115-400 Cs-Te 14 022X95 15 950 UV-VUV

FEU-150 115-300 Rb-Te 11 031X102 12 1050 UV-VUV

FEU-154 115-210 Cs-J 14 022x100 20 1050 VUV

114 -

Page 100: ji. —W >fta

interference filters with mounting ring for visible and infrared spectrum range

Wavelength of maximum

transmission, Xm nm

Width of spectral transmission band at level 0.5xm, AX, nm

Transmission coefficient at Diameter, mm Price, DM

257 15 20 18 300285 5 30 18 300288 15 30 18 300290 10 30 18 300297 12 25 18 300300 12 30 18 300300 10 30 18 300310 10 30 18 280313 12 25 18 280315 5 30 18 280327 15 25 18 250325 5 30 18 250330 9 30 18 250334 10 25 18 250335 5 30 18 250340 10 30 18 250345 5 30 18 250350 12 30 18 250365 10 25 18 220370 9 30 18 220380 10 30 18 200390 10 30 18 200395 5 30 18 200

Semiconductor photoreceiversType Material Spectral

range, nmSensitivity area, mm

Dimensions,mm

Quantity Price for one, DM

FD-24K Si 300-1150 010 019.5x6 40 15

FDUK-2 Si 180-1150 8x8 019.5X7 40 40

FDP-1 GdS-PbS 180-560 4x4 013.5x5.5 20 310

FD-9G Ge 350-2000 4x4 011x5 12 35

115 -

Page 101: ji. —W >fta

Nuclear Instruments and Methods in Physics Research A308 (1991) 35-38North-Holland

35

Improvements of the TROLL-2 synchrotron and new developments

S.I. Anevsky, A.E. Vemyi, V.S. Panasyuk and V.B. KhromchenkoAll-Union Research Institute for Optophysical Measurements, 119361 Moscow, USSR

Information on radical improvements of the TROLL-2 synchrotron, a specialized pulsed synchrotron radiation source, is presented in this article. Two new variants for particle injection from a solid electromagnet to a ring one, as a specialized continuous synchrotron radiation source are considered. Particle pre-acceleration from thermal velocities to injection energy herewith may take place both in the synchronous and in the isochrone regime.

1. Introduction

Among TROLL-type pulse accelerators with a strong guiding field [1], the TROLL-2 synchrotron [1,3] is the simplest in design and is convenient as a specialized source for metrological measurements [2]. Therefore just this model (involving a multitum solenoid) was selected for improvement.

The guiding magnetic field multitum solenoids also include ferromagnetic core/superconductive circular electromagnets used for electron storage [4]. Unlike ref.[1], an attempt is undertaken to discuss the possibility of particle injection in these electromagnets using con­tinuous electromagnets with space variation of the mag­netic field (isochrone regime of electron acceleration).

2. Electromagnet improvements

To improve the energetic characteristic of the guid­ing magnetic field excitation system we select an elec­tromagnet of the type described in ref. [5], It is manu­factured by Ogourtsov and co-researchers of the Atomic Energy Institute named after I.V. Kourchatov. The elec­tromagnet consists of two fabric-based laminate frames with NiTi based wire windings which are placed in a cryostat filled with liquid nitrogen. There is a hole with a seal in the cryostat to output to a glass vacuum camera channel which is made to transport the synchro­tron radiation into the optical system. Electromagnet cooling allows the winding impedance to be lowered from 0.42 to 0.06 12. The winding inductivity is equal to 4.64 mH. The maximum value of the magnetic field induction in a 10 ms cosinusoidal pulse is 10 T. The repetition frequency is once per ten minutes. The mag­netic field is excited from a 0.02 F capacitor bank

charged to 2.5 kV, corresponding to the maximum value of induction. The battery is commutated on the electro­magnet by six T-630-type thyristors. A general view of the electromagnet with the pumping-out system of the vacuum camera is given in fig. 1. The critical wave­length of the radiation is 35 nm.

The design of the guiding magnetic field electromag­net has of course determined the special features of other units of the accelerator and, in particular, of the vacuum camera and the accelerating resonator.

37iFig. 1. A schematic diagram of the improved TROLL-2 syn­chrotron. (1) plastic cryostat: (2) electromagnet winding: (3) vacuum camera: (4) accelerating resonator; (5) coupling loops with rf generator: (6) dielectric inserts in the resonator: (7) thermo-cathode; (8) anticathode; (9) pump-out system: (10) device for fixing electromagnet onto massive base; (11) ap­pendix for outlet of synchrotron radiation; (12) liquid nitrogen.

0168-9002/91/S03.50 © 1991 - Elsevier Science Publishers B.V. All rights reserved I. SR SOURCES/FEL

Page 102: ji. —W >fta

36 S.I. Anevsky et al. / The TROLL-2 synchrotron

3. The vacuum camera and the accelerating resonator

Unlike the previous design [1.3], the accelerating resonator is placed inside the vacuum camera. The latter (simultaneously with the electromagnet) is auto­matically cooled by liquid nitrogen (fig. 1). This has an effect on its design, namely on the elements of connec­tion with the pump (magnetodischarged NMDO-type). Besides that, this requires increasing its size for the placement of the resonator. The cooling by liquid nitrogen improves the vacuum in the camera.

The cylindrical resonator of an Hm wave is made of a thin sheet of copper and has a slit along the generator and bases for the improvement of transparency to the guiding magnetic field. The placement of the resonator inside the vacuum camera allows its electrical strength to be increased in comparison with the aerial variant [1.3]. To improve the use of the guiding magnetic field (to increase the radius of a relativistic orbit), having the same dimensions as the electromagnet, dielectric em­beddings of ceramic in a polyethylene holder, from high quality dielectric material, were inserted in the reso­nator (fig. 1). The wavelength of the resonator with dielectric embeddings is - 16 cm. This determines the radius of the relativistic orbit which is equal to 25 mm and the electron energy at maximum induction which is equal to 70 MeV.

The accelerating field in the resonator is excited by a UHF generator with an anode modulation pulse GI- 7B-type tube having a special shape (see below).

4. The electron source

Unlike the simplest plasma gun in the models de­scribed in refs. [1,3], we use an electron source based on a thermocathode. For the plasma density to be severely dosed [1], a power supply is selected for each value of vacuum and accelerating field intensity. This com­plicates the use of the accelerator. The source with the thermocathode is made from a tungsten filament oper­ating on thermal inertia to avoid destruction by the forces of the magnetic field. This filament is placed in a special screen to decrease gating of the camera that is subject to damage during optical treatment of synchro­tron radiation. Electrons are accumulated in a potential well of the central region of the electromagnet. The field intensity changes in accordance with a saw-tooth law. The velocity of these changes are commensurable with the range of an electron path along the well axis when the electron oscillation amplitude in the central region of the accelerator does not exceed that of the one that satisfies conditions for particle capture into accelera­tion.

5. Some features of the operation mode

Graphs of the parameter changes of the electromag­net are represented on fig. 2. Anode modulation of the generator is made such that, during particle capture into acceleration to a relativistic orbit, the accelerating field intensity would be the maximally achievable one and corresponding to the pulse mode of a transmitting tube. For the rate of the magnetic field increase correspond­ing to maximal induction, the time from zero till ap­proximately double the value of the cyclotron resonance (relativistic orbit) is about 24 ps. Then, the power of the rf-generator decreases in accordance with the possibili­ties of tube operation in quasicontinuous mode. The transition from one mode to another occurs smoothly, in accordance with the decay of all modes of fluctuation from an adiabatic process and the change of the mag­netic field index with the radius. Such a mode of the accelerating voltage modulation allows - other condi­tions being equal - the accelerated beam intensity to be increased in practice by one order of magnitude to bring it up to 109 particles/pulse. We investigate the decay of all the modes of particle oscillations in the beam due to radiation friction (synchrotron radiation) and, besides this, artificially induced oscillations of the beam betatron vertical fluctuation by the decay reso­nant value of the guiding magnetic field for the im­provement of the beam metrological properties.

6. New developments

The process of particle injection with synchronized pre-acceleration of the guiding magnetic field into the ring electromagnet (TROLL-3 synchrotron), discussed in ref. [1], possesses a number of properties which are able to provide intense beams of accelerated particles. In principle, the intensity can be increased significantly.

Fig. 2. Illustrative charts (not to scale) of the change of TROLL-3 synchroton parameters in time: (a) induction of magnetic field (B0 is the cyclotron resonance field); (b) rf accelerating field; (c) saw-tooth voltage on potential well of

electron source.

117 -

Page 103: ji. —W >fta

S.I. Anevsky et al. / The TROLL-2 synchrotron 37

with other conditions equal, if we use a solid electro­magnet with a spatial variation of the field and a strong focusing for the pre-acceleration (particle injection in a circular electromagnet) (fig. 3). There, two modes are possible. The first one is particle isochrone acceleration in the constant field of a solid electromagnet to a radius corresponding to the kinetic energy being equal to the rest energy (the first resonance of betatron oscillations) [6] with further acceleration to the relativistic orbit of a ring electromagnet in the synchronized mode. Such a method is equivalent to a qualitative increase of the

5 8

TTsji/ i y / /

Fig. 3. A schematic diagram of isochrone pre-acceleration and electron injection in ring electromagnet (TROLL-3): (a) plan view; (b) sectional view at A-A. (1) Core of a ring electromag­net with weak or strong focusing; (2) winding of the ring electromagnet; (3) accelerating resonator of EH wave made of half-wave long line strips common both to continuous and circular electromagnets; (4) source of thermal velocity par­ticles; (5) continuous electromagnet with strong focusing (spa­tial variation of magnetic field); (6) winding of a continuous electromagnet; (7) vacuum accelerating chamber; (8) beam orbit. E - vector of electric accelerating field intensity; B -

vector of guiding magnetic field induction. •

Fig. 4. Illustrative charts (not to scale of the change of TROLL-3 synchrotron parameters in time. A - isochrone acceleration up to the first resonance of betatron fluctuations: B - isochrone acceleration up to relativistic orbit, (a) B - induction of guiding magnetic field in a border zone between two electromagnets. B0 - field of cyclotron resonance, (b) £ - electric field intensity in a resonator common to both continu­ous and circular electromagnets, (c) J - current of thermal

velocity electron source.

geometrical dimensions of the particle capture zone. Therein, the magnetic field of the solid electromagnet is to change in time approximately twofold from the origi­nal value corresponding to the cyclotron resonance in the central region to the output of all particles on a relativistic orbit. The second mode - isochrone pre- acceleration with the passage of some resonance of betatron oscillation [7], down to a relativistic orbit when the accumulation of particles occurs on it automatically according to the value of the current, which is defined by processes connected with the spatial charge of the beam. As electron isochrone acceleration for the first case is investigated experimentally, the second one re­quires a special approach. These two modes, apparently, can be used both for the further acceleration of particles in a ring electromagnet with subsequent realization of a beam of maximum energy, and also for the storage mode. In the last case all the injected particles (with an already circulating beam) must be accelerated up to the energy corresponding to appearance of the radiative friction (synchrotron radiation) to decay all the oscilla­tion modes in the beam with further returning of the accumulated beam up to the energy equal to the injec­tion energy from the solid electromagnet. Changes of the synchrotron parameters in time for both modes - the first and the second - are illustrated graphically in fig. 4.

References

[1] V.S. Panasyuk, Atomnaya Energiya 67 (2) (1989) 114. in Russian.

[2] S.I. Anevsky, A.E. Vcmyi, V.S. Panasyuk and V.I. Saprit- sky, Phys. Scripta 35 (1987) 623.

I. SR SOURCES/FEL

Page 104: ji. —W >fta

38 S.I. Anevsky et at. / The TROLL-2 synchrotron

[3] S.I. Anevsky. A.E. Vemyi. V.S. Panasyuk and V.B. Khromchenko. Nucl. Instr. and Meth. A26I (1987) 56.

[4] T. Tomimasu. Development of compact electron storage ring in Japan. Synchrotron Radiation News no. 4 (1988) pp. 28-31.

[5] A.S. Lagoutin and V.I. Ozhogin. Strong Pulse Magnetic Fields in Physical Experiment (Energoizdat. Moscow. 1968) pp. 45-47.

[6] A.A. Glazov, et al.. Electron model of circular cyclotron. Proc. 2nd All-Union Conf. on Charged Particles Accelera­tors (Nauka. Moscow. 1978) pp. 49-52.

[7] L.A. Sarkisyan. Relativistic Cyclotron (Moscow State Uni­versity. Moscow. 1990).

119 -

Page 105: ji. —W >fta

714 Nuclear Instruments and Methods in Physics Research A282 (1989) 714-715North-Holland, Amsterdam

USE OF SYNCHROTRON RADIATION FOR CALIBRATION OF A WORKING MEASURING -INSTRUMENT BASED ON PLASMA FOCUS

S.I. ANEVSKY, A.E. VERNYI, N.P. KOZLOV, I.V. KONEV, V.A. MALASCHENKO,O.Yu. MOROZOV and P.A. TSYGANKOVAll-Union Institute for Optical and Physical Measurements, Moscow 103045, USSR

One of the main problems of vacuum ultraviolet (VUV) radiometry using synchrotron radiation is the development of stable and reproducible secondary standard sources ensuring minimum loss of reliability during maintenance and transfer units of the spectral radiance (SR), spectral radiant power (SRP) and spec-' tral irradiance (SIR).

Working measuring instruments (WMI) in the VUV spectral range based on plasma sources have some disadvantages. For example, BRW ources are char­acterized by poor reproducibility (roo -mean-square de­viation (RMSD) up to 16%). The radiation removed from a CDVW (capillary discharge wit i vapouring walls) source [1] along the plasma jet axis k\ ds to degradation of the diffraction gratings and mirrors of an optical system. The radiation that is removed from a CDVW source plasma tongue is characterized by a relatively small radiant temperature. A laser .park has a very short radiation pulse length (about 10~7 s) and its reproducibility is worse than 10-20% < RMSD). Besides, one of the alternative VUV sources is a disclosed- vacuum discharge of an erosive magnetic-plasma com­pressor (MFC) [2]. The achievement of a high radiant temperature (about 40000-100000 K) and a high power

level in the short-wavelength VUV range is determined by the specific operation of the MPC and by the method of withdrawing radiation off the hot plasma area - the plasma focus. A hypersound jet is realized in vacuum MPC discharges and a cold plasma layer docs not accumulate around the jet. In these conditions an opti­cally dense screening jet is not created.

It is interesting to investigate the possible uses of the vacuum erosive MPC discharge as a working measuring instrument in the VUV range. For this purpose the experimental apparatus of a WMI SDR has been devel­oped. A general view of the apparatus is presented in fig. 1. The apparatus is based on a capacitive accumula­tor with an accumulated energy of 1.5 kJ, that is sup­plied by a stabilized high-voltage device having a charge-voltage uncertainty not worse than 0.3% in the voltage range of 1-5 kV. Radiation is removed from the plasma focus area transversely to the hypersound jet axis, so it practically docs not contaminate the optical elements with erosion products. A special cryogenic trap is provided for the deposition of these products. The setup design is axial-symmetrical to decrease the interference level.

The stability and reproducibility of the MPC radia-

U nJ •

FiRiNirPULse

•Fig. 1. General view of the apparatus. (1) '’athode, (2) dielectric insertion, (3) anode, (4) vacuum tank and (5) cryogenic tank; (A) plasma focus ;n a. (B) plasma jet, (C) cold plasma layer and (D) braking zone.

120 -

Page 106: ji. —W >fta

S.I. Anevxky et al. / Use of synchrotron radiation for calibration 715

Fig. 2. Spectral radiance of a WMI based on a MPC; the spectral resolution is 2.6 nm.

lion features have been investigated in the spectral range of 50-160 nm. The RMSD (on the basis of 20 measurements) amounted to 0.9%. The measurements have demonstrated the occurrence of a wide area with uniform radiance in the zone of plasm; i flow compres­sion. Its dimensions are: 5-10 mm along the axis and 2-3 mm in the radial direction. Also, some advantages of a WMI based on a MPC have been demonstrated: its outstanding stability and reproducibility, the wide spec­tral range of reproducibility of the SPD unit, its high radiant temperature, its simplicity of construction, the

compactness of the setup and its mobility. Th^ WMI SRD based on a MPC is assumed to be used in the short-wavelength range from 5 up to 40 nm.

References

[1] S.I. Ancvsky, in: Radiometry in the Near- and Vacuum Ultraviolet Spectral Range (Moscow, 1981) p. 57 (in Rus­sian).

(21 N.P. Kozlov and A.I. Morozov. Plasma Accelerators and Ion Injectors (Nauka, Moscow, 1984) (in Russian).

VI. METROLOGY

Page 107: ji. —W >fta

Nuclear Instruments and Methods in Phy-ics Research A308 (1991) 165-168North-Holland

165

Calibration of the absolute spectral sensitivity of a solar UV radiometer with the use of synchrotron radiation

S.I. Anevsky ", A.E. Vemyi ", D.A. Gonyukhb, T.V. Kazachevskaya c, I.V. Konev ",V.I. Sapritsky ", V.B. Khromchenko * and Yu.N. Tsigel’nitskii ca All-Union Research Institute for Optical ?nd Physical Measurements, 103045 Moscow, USSR 6 TsKB GMP, 249020 Obninsk, USSR ' Fedorov Applied Geophysics Institute, 12' 128 Moscow, USSR

The absolute spectral sensitivity calih ntion of a solar UV radiometer, intended for use on board a satellite for measuring solar illuminance at the HLye wavelength of 121.6 nm, has been carried out against a standard based on a synchrotron radiation source. The estimated overall calibration error is 2.8% (rms).

One of the major problems which gave impetus to the development of vacuum UV radiometry is the calibration of the absolute spectral sensitivity of radi­ometers, spectrophotometers and other radiation trans­ducers mounted on satellites for the study and forecast of the state of the ozone layer, ami the Earth's iono­sphere and other investigational purposes. The, main method for spectral measurements in vacuum. ultra­violet (VUV) is the use of synchrotron radiation (SR) [1,2]. Regardless of the diversity of the available tech­niques employing storage rings and synchrotrons, all of them possess certain drawbacks associated both with the use of synchrotron radiation and with the calibra­tion of the radiation receiver against a reference source. VUV radiometry is characterized by die possible loss of accuracy and even credibility of measurement results at each step of the calibration and u>: of the means of measurement. It is therefore necessa y to design a sim­ple and reliable technique to be us -d in this hard-to- mcasure spectral region. This papet is concerned with the analysis of the results of the implementation of a rather accurate calibration technique for the absolute spectral sensitivity of a solar UV radiometer at the HLye wavelength of 121.6 nm intended for use on board a satellite.

Over 85% of the ionization optic.il solar radiation is concentrated on the HLyn line. Modelling of the outer region of the Earth’s atmosphere and predicting its variations require the irradiance to hr measured with an accuracy of several percent [3]. To isolate the HLye line, one may employ a radiation receivei based on thermo- phosphorus CaS04(Mn) with a magnesium fluoride window. Such a combination provides a working spec­tral range of 115 to 150 nm with a peak sensitivity near

123 nm. The design of the on board UV radiometer SUFR-Sp is described in ref. [4].

The calibration of the radiometer is aimed at finding its absolute spectral sensitivity over the 115-150 nm wavelength range in the working regimes, at studying the stability and reproducibility of its characteristics, and at measuring its sensitivity threshold on the HLye line.

The calibration of the absolute spectral sensitivity of the radiation receiver over the 115-150 nm wavelength range is hindered, primarily, due to the lack of highly accurate reference receivers, since single-atom gas ioni­zation chambers are not used at wavelengths above 102.2 nm. Application of a standard SR source with a continuous spectrum for the calibration of the absolute spectral sensitivity of the receiver requires the employ­ment of a monochromator with a known spectral trans­mission factor. The problem may actually be solved with the use of an additional monochromator which should be capable, maintaining its positioning in vacuum, of turning around the incident beam to take account of the variation between the radiation fluxes polarized in the plane striking the lattice and in the plane perpendicular to it. This method required a great deal of effort to attain an acceptable accuracy and to avoid gross errors. The main sources of such errors are the zone nonuniformity of the diffraction lattice ef­ficiency, degradation of the efficiency under hard SR and other effects, and violation of their positioning when turning the monochromator in vacuum.

The calibration of the radiometer SUFR-Sp was accomplished in compliance with a technique chosen for the purpose, which is characterized by a convenient separation into relatively simple operations readily lend-

1. SR SOURCES/FEL0168-9002/91/S03.50 © 1991 - Elsevier Science Publishers B.V. All rights reserved

122 -

Page 108: ji. —W >fta

166 S.I. A u’vsky el al. / Calibration of a solar UV radiometer

ing themselves to metrological analyse and realizable with a high accuracy. At the first step, when the UV radiation produced by the synchrotron TROLL-1 [5] was used as a spectral radiance standard, the intensity of the radiation of five resonance lines produced by krypton, xenon and hydrogen discharge lamps was mea­sured over the 115-150 nm working range of the spec­trum. At the second step, the absolute spectral sensitiv­ity of the radiometer SUFR-Sp was measured by the integral resonance lamps with the use of a series of filters pre-certified in their spectral transmission factors over the operating wavelength range.

The optical scheme of the first calibration step is similar to that described in ref. [1].

The first calibration step is describi .1 by the follow­ing expression:

/(X)-Z.(X„)■ (X)fSR(X„) *(X„) i”(X)i(X,) *(X)

t(X) ASt?(X, X()E, R, 5) T(Xo) / /(X)dX

(1)

where/(X) is the radiation intensity of the

£(X0)

resonance lamp on line X over the VUV range;is. the spectral t ad iance of the

|'(X). /(X0)

tungsten strip lamp in the visiblerange at wavelength X0;are the comparator signals in mea­

/SR(X), /SR(X0)

suring the radiation produced by the resonance anil tungsten lamps, respectively;are the comparator signals in mea­

&(X). t(Xo)suring the SR;are the reflectivi ies of the flatmirrors;

t(X), t(X0) are the relative transmission fac- .tors of the monochromators per- • taining to the radiation polarized in the orbit plane and in the per­pendicular plane at wavelengths X and X0, respectively;

t}(\, X0E, R, S) is the relative spectral density ofthe SR flux at wavelengths X and X0 determined by the energy of particles E, orbit radius R and the final axial, radial and phase dimensions of electron bunch 5;

/(X) is the hardware function of theVUV-monochromator;

AX is the spectral interval isolated bythe VUV-monochromator; and

A 5 is the area of the radiating regionof the resonance lamp.

In accordance with eq. (1), calculation of the relative spectral density of the SR flux requires the determina­tion of the particle energy, orbit radius in the point of radiation as well as axial, radial and phase dimensions of the electron bunch. The number of accelerated par­ticles was eliminated from the calculation by introduc­ing a spectral procedure aimed at comparing the spec­tral radiance of synchrotron radiation and of the radia­tion produced by the tungsten band lamp in the visible range [5].

Under the conditions of the axial-symmetric mag­netic field of the TROLL-1 accelerator, the radius of the equilibrium orbit is determined by the frequency of the accelerating magnetic field. The energy of the particles is found by an optical method employing a nonlinear correlation between the relative spectral density of the SR flux and the electron energy [6].

It is common knowledge that the major contribution to the distortion of SR characteristics of a real-life source, as compared to the characteristics of a pointwise radiator, is introduced by the axial betatron oscillations

Table 1Basic components of errors in finding reso iance lines radiation power with the use of synchrotron radiation in the 115-150 nm wavelength range

Error sources rms error estimate [%] 1 2 3 4 5 6 7

(1) Calculation of relative SR spectrum with allowance made for errors in particle energy,orbit radius as well as axial, radial and phase dimensions of the bunch 1.4

(2) Measurements of relative polarization factors in the VUV region 1.2(3) Measurement of relativity of the mirror in the VUV region 0.8(4) Measurement of the comparator pulsed signals 0.4(5) Calibration of the tungsten lamp against t he black body model 0.3(6) Definition of the VUV monochromator hardware function 0.3(7) Other components 0.5

Total error in finding the resonance lines radiationpower in the 115 to 150 nm wavelength range 2.1

123 -

Page 109: ji. —W >fta

.s /. Anevsky et al. / Calibration of a solar UV radiometer

Table 2Calibration of the absolute spectral sensitivity of the radiometer SUFR-Sp

167

Designation of lamps, inflation

Anodecurrent

Filamentcurrent[A]

Resonanceline(nm)

Radiationpower(mW/sr)

Filtertrans­missionfactor

SUFR-Spsensitivity[V/W]

KsR-lP (xenon) 200 3 129.6 0.14 0.62 0.51 X107147 2.20 0.79 4.5 X102

KrR-lP (krypton) 200 3 116.6 0.40 0.03 0.81 X107123.6 1.60 0.49 1.15 X107

LGV-1 (hydrogen) 5 - 121.6 4.88X10" 2 0.36 1.12X107

of electrons. The best mode from t! c metrological view­point is the “large bunch” modi when the angular distribution of electron velocities .vithin a bunch ap­pears to be greater than the angular distribution of synchrotron radiation of a single cl ctron [6],

The ratio of polarization factors t in eq. (1) is determined with the help of a mirror polarimctcr [7].

Estimates of all major components of the error is finding the radiation intensity of 1 esonance lamps are summarized, in rms form, in tab e 1. The tabulated results serve as an overall characteristic of the synchro­tron TROLL-1 as a reference SR s< mrce.

At the second step, measurements of the spectral sensitivity of the SUFR-Sp radiometer were taken with the help of resonance lamps. The resonance lamp radia­tion flux was isolated by the aperture diaphragm so that the operating solid angle maintained its magnitude selected in the calibration with the use of SR. To now find the receiver spectral sensitivity, it suffices to sep­arate the contribution introduced into the signal by the resonance lines radiation flux. Since xenon and krypton lamps each radiate two lines which fall into the operat­ing spectral range, one should take extra measurements using a filter, for example, of mu ncsium fluoride, so that a system of two equations of : ic following form is obtained: i-

i- ir/(\)FJ(\)Sj(.\) AO, (2)

J- 1

where i is the signal of the calibrate el radiation receiver; j and n art the line index and the total number of lines in the lamp spectrum, respectively:Fj(\) is the radiation intensity of the y'th line;Tj(X) is the transmission factor of the filter at the y'th

line;Sj(X) is the receiver spectral sensitivity at the y'th line

we have to find; and A!2 is the solid angle.

An analysis of the stability of the solution to the system of equations (2) shows that with n «■ 2 the trans­mission factor of the filter should not vary within the

operating wavelength range by more than 20%. To prove the fact that the contribution of the xenon or krypton continuum and the molecular spectrum of hy­drogen to the signal is negligibly small, some extra synchrotron measurements of the spectral radiant power of the lamps have been taken in the entire operating wavelength range from 115 to 150 nm.

Table 2 presents the type of lamps that were used, their operating currents, the lines radiant power meas­urement results, the transmission factors of the mag­nesium fluoride filter and the obtained values of ab­solute spectral sensitivity for the radiometer SUFR-Sp. The overall calibration error, in compliance with eq. (2), is a sum of four components amounting, with regard for partial derivatives, to 2.8% (rms).

The stability and reproducibility of the sensitivity characteristics of the radiometer SUFR-Sp have been studied, using the synchrotron TROLL-1, systematically during three years. The annual deviation of the absolute spectral sensitivity did not exceed the calibration error. The sensitivity threshold of the instrument was found to be approximately 10“12 W with an accumulation time of 12.5 s.

The SUFR-Sp solar radiometer has been installed on the Prognoz-10-Intercosmos satellite and measurements in the spectral region X < 130 nm and at the HLye line were carried out during a period of minimum solar activity, thus the short-wave radiation flux was low enough. The intensity of radiation at the HLye line varied from 3.4 x 10'4 to 4.6 X 10"3 W/cm2, depend­ing on the presence of active areas on the sun. Accord­ing to our results, the mean intensity was 3.7x10"3 W/m2. This value is in good agreement with the value 3.9 X 10"3 W/m2 obtained from measurements carried out on the US satellite Solar Mesospheric Explorer [8]. In 1988, similar instruments, SUFR-Sp-F, calibrated in the above described manner have been installed aboard the FOBOS-1 and FOBOS-2 satellites intended to meas­ure solar radiation during the flight to Mars.

In conclusion, the optimization of the bunch param­eters obtained from the new reference SR source,

I. SR SOURCES/FEL

124 -

Page 110: ji. —W >fta

168 S.I. / nevsky et al. / Calibration of a solar UV radiometer

TROLL-2 [9], opens the door to an increased radiome­ter calibration accuracy in order to attain a mctrologi- cally better SR generation regime.

References

[1] M. KQhne, F. Riehlc, R Tegeler and B. Wende, Nucl. Instr. and Meth. 208 (1983) 399.

[2] J.Z. Klozc, J.M. Bridges and W.R. On. J. Res. Nat. Bur. Stand. 93 (1988) 21.

[3] D.F. Heath, in: Solar Energy Flux and Its Measurements, ed. O. White (Colorado Ass. Univ. Press, Boulder, CO, 1977).

[4] T.V. Kazachevskaya, D.A. Gonyukh and G.S. Ivanov- Kholodnyi, Geomagnctizm i Aeronomiya 25 (1985) 996, in. Russian.

[5] S.I. Anevsky, A.E. Vemyi, V.I. Kvochka, I.V. Konev, A.V. MakuVkin and V.S. Panasyuk, IzmcritcVnaya Tekhnika No. 12 (1987) 4, in Russian.

[6] S.I. Anevsky, A.E. Vemyi, V.S. Panasyuk and V.I. Saprit- sky, Phys. Scripta 35 (1987) 623.

[7] R.N. Hamm, R.A. Mac Rae and E.T. Arakawa, J. Opt. Soc. Am. 55 (1965) 1460.

[8] G.I. Rottman, COSPAR Report (Helsinki, 1988) p. 12.2.1.[9] S.I. Anevsky, A.E. Vemyi, V.S. Panasyuk and V.B.

Khromchcnko, Nucl. Instr. and Meth. A261 (1987) 56.

125 -

Page 111: ji. —W >fta

Physica Scripta. Vol. 35. 623-627. 1987.

The Use of Synchrotron Radiation of Electron Circles in Applications* 'S. I. Ancvsky. A. Yc. Vernyi. V. S. Panasyuk and V. 1. Sapritsky

All-Union Research Institute for Optical and Physical Measurements. Moscow 103045. USSR

Received August 5. 1986: accepted September 15. 1986

Abstract

The use of the synchrotron radiation (SR I in the vacuum ultraviolet (VUV) spectroscopy and radiometry opens new doors for a researcher. In this connection a consideration of SR characteristics of small size specialized SR sources, which can be available even in single laboratories, is given below. “TROLL" is an electron synchrotron with a cyclotron preacceleration. It has been developed as a specialized SR source for the calibration of VUV sources as secondary standards in the spectral range of 40-250 nm in the units of spectral radiance. In conclusion there is summary of advantages of small size accelerators.

Application of synchrotron radiation (SR) to studies in spec­troscopy and radiometry in the vacuum ultraviolet (VUV) range opens new doors for a researcher. An important advan­tage of SR is its high intensity which is particularly useful in the VUV and infrared (IR) ranges. For the measured par­ameters of the electron bunch — its energy, number of accelerated particles and radius of the orbit in the irradiation point — the SR spectrum may be estimated with a high accuracy. SR features have some other advantages treated in detail in [1-3].

A sole disadvantage of SR is-its small degree of afforda­bility. Each of the few SR sources listed in [2] is actually a complicated installation with a ring of several meters to several tens of meters in diameter. None of the accelerators listed in that reference is a specialized SR source; rather they are supposed to be used in SR experiments part time only. How­ever even the design of a specialized accelerating ring cannot satisfy the needs of all groups which require SR for their operation.

Hence consideration of SR characteristics of small size specialized SR sources affordable even to individual research laboratories seems most vital. An example of applying a small size synchrotron designed in the All-Union Research Insti­tute for Optical and Physical Measurements to VUV radio­metry is considered below.

In order to be able to compare the SR intensity of a small size accelerator against that of a large machine let us use the Schwinger formula linking the spectral density of the SR power radiated from the entire orbit with parameters of its electron bunch.

If we integrate the spectral density with respect to all angles of deviation from the orbit plane [4] and employ the correlation of the panicles energy with the value of on-orbit magnetic field induction

£ = 300 BR (1)

• This paper was contributed to the 8th Vacuum Ultraviolet Radiation Physics International Conference, held in Lund. Sweden. 4 8 August 1986. and will be included in part II of the Conference proceedings (editors: P -O. Nilsson and J. Nordgren).

where £ is the energy of electrons in MeV. B is the magneti field induction in T. and R is the orbit radius in m. then w< obtain a relationship useful for our further discussion whicl links the basic parameters defining the technical realization o the machine

PU) = 025NB'R*f(jSj (2

where P is the SR spectral power in W/m. /. is the workin: wavelength in m. N is the number of accelerated particles, is a universal function describing the SR spectral distribution and ;.c is the critical wavelength in m,

zc = 2.1 x 10-85-?£": (3

Relationship (2) shows that in order to increase SR power ai a given wavelength one should apply a strong magnetic field and operate within the area of maximum of the SR spectral distribution. The capability of increasing the radiation power due to the orbit radius growth is rather limited since the spectral distribution maximum is shifted toward the short wavelength domain with respect to the working wavelength with an increase of this radius.

Numerical analysis of relationship (2) indicates the exis­tence of the SR spectral power maximum corresponding to the orbit radius

£o = 1-9 x 10'4z-,:£-3: (4)

Here

;.c = 0.59/. (5)

Thus specifying the working wavelength and choosing the maximal magnetic field that we may attain a unique pair £ and R is obtained in compliance with eqs. (4) and (1) such that the SR spectral density at a given wavelength is maxi­mum. It is important to note that, in compliance with cq. (4). the optimal orbit radius rapidly decreases with the increase of the SR spectral density caused by the use of strong magnetic fields. This simplifies the technical problem since strong mag­netic fields may be realized in small volumes much easier. Then, in compliance with eq. (5), the working wavelength turns to be outside the maximum of the spectral distribution.

Formula (4) allows an important conclusion to be made: when using affordable magnetic fields, the optimal specialized SR source for the optical range as well as for the soft X-ray range should have the orbit radius of about several centi­meters. To go further into the X-ray range, some more increase of the magnetic field inductance is required. This is quite possible if one takes into account a small radius of the orbit. Thus, a magnetic field with the inductance of 30 T is reported in [5]. If the same magnetic field is applied to the

126 -

PiuMi a St riptu 35

Page 112: ji. —W >fta

624 S. 1. Ancvxky. A. Ye. Vernyi. l\ S. Panasvuk and V.

design of an accelerator the maximum of the SR spectral power turns to be around 1 A with the orbit radius of 10cm.

Formula (2) describes the SR power in the unit spectral interval, in particular that of W/m which is somewhat incon­venient for SR intensity estimation in different IR and VUV spectral intervals. More convenient is the use of a spectral interval which equals, for instance. 0.01 of the working wavelength. Generally, with a constant resolution D through­out the entire optical range

the SR power within the spectral interval Az = 0.01 z in the maximum of/(z/z0) is obtained from eq. (2) with the regard for eqs. (7) and (8).

£(z) = />(;.)(Az) = 2.5 x lO-^/VSz-'Z)-1 (7)

where N is the number of accelerated particles.In compliance with eq. (3) the design of SR sources for the

shortwave spectrum range should rest upon the use of strong magnetic fields. However the shortwave SR realized on the available equipment implies a large orbit radius due to the fact that the accelerators were optimized in terms of the maximal attainable energy of the particles.

A storage ring with a continuous radiation is the most convenient SR source. Availability of small size synchrotrons makes the above comparison of pulsed machines most vital. At present VNIIOFI researchers are active in designing two types of accelerators: one employing a 1.5T “ferrous** mag­net for the IR radiometry and another employing a 3.6 T superconducting magnet for the VUV radiometry. The design of an accelerator with a 30 T field and the radiation maximum at 1 nm is under way. Most possibly this sort of an accelerator will prove to be useful in one of the most promising SR applications - X-ray lithography where the optimal spectrum area is around 1 nm [6].

The VUV radiometry is one of the basic application areas for the unique SR properties. Let us consider the possibility of using a small size machine for the purpose exemplified with synchrotron TROLL.

TROLL is an electron synchrotron using cyclotron pre­acceleration designed as a specialized SR source applicable to calibration of secondary VUV standard sources in the wavelength range from 40 to 250 nm in the units of spectral radiance [7. 8]. The optical scheme suggested by Pitz [9] was chosen for absolute spectral measurements which permits the number of accelerated particles to be measured by means of comparing the SR spectral radiance with irradiation of a tungsten strip lamp pcrca libra ted by the absolute black body model. The use of optical scheme has made it possible to design an optical technique for particle energy measurements • developed specifically for a small size SR source. This tech­nique rests upon the use of a nonlinear correlation between the SR spectral flux power and the energy of particles. To measure the electrons energy a curve is plotted showing the ratio of the comparator signals proportional to the syn­chrotron radiation spectral radiance at two different wavelengths versus the excitation potential of the magnet. This curve is then compared against the analytical relation­ship of the spectral radiance at the two working wavelengths versus the electrons energy. The ratios of the comparator signals and the ratios of spectral radiances arc correlated by

- 127

/. Saprirsky

some unknown proportionality factor, the relative specti sensitivity of the comparator at the working wavelengtl The energy of particles versus the potential of the magr excitation system is described by the first n terms of the povt series with unknown coefficients. Operational values of t energy of electrons are obtained from the solution of a syste of N equations each corresponding to a single point of t experimental curve and reflecting the above functional re tionships (N ^ n + 1). The solution of this system equations yields the value of the relative spectral sensitivity the comparator as well as the coefficients of the power ser which describes the correlation between the operation mo of the accelerator and the energy of accelerated particles. T error in measuring the energy by the optical techniq amounts to 0.5 percent and is caused by the error of measi ing the amplitude of the signals and the difference betwe the actual SR spectrum and the ideal one estimated with t use of the Schwinger formula and caused by synchrotr- and betatron oscillations. The secondary VUV standa sources used for calibration are hydrogen or deuterium lam equipped with quartz or magnesium fluoride windows, xen< or krypton resonance lamps or Lymann continuum sourc based on capillary discharge with an evaporating wall.

Consider optical methods of measuring the number accelerated electrons and the electrons energy E through t synchrotron radiation (SR) of the beam and the specifics the SR characteristics of beams with small radii of the orb

Signal I at the output of the photoreceiver recording t synchrotron radiation may be presented as

J = NA(p J.' />(z, E, R, \p) Sdz di\t (

where A<p and A\p are the aperture angles in the orbit pla and in the perpendicular plane, respectively; z is t wavelength; £ is the energy of electrons; R is the orbit radii P is the SR spectral radiant power; S is the photoreceh sensitivity; z, and z2 are the boundaries of the spectral inti val defined by the condition PS % 0.

Three ways of defining I by optical methods are possib(a) measuring the photoreceiver signal from a sini

electron;(b) using a calibrated source, and(c) using a calibrated receiver.The first method is used in electron accelerators and co

sists in recording the SR from a small number of electro when the variation of SR intensity is of a discrete nature a: is caused by withdrawal of single electrons from the beam, this case it is necessary to measure signals comparable wi the photomultimplier dark current level. When SR sign; from a beam with large N are recorded, calibrated alter ators are placed in front of the photoreceiver.

The major error sources with this method are as follov1. Errors in the radiation attenuator calibration in a wi

spectral range with the attenuation factor from 106 to 10'2. Nonlinearity and instability of photoreceivers.3. Small signal-to-noise ratio in recording signals from

small number of electrons.The second method of measuring the number of panic

based on the use of a calibrated source and suggested by P [9] is more universal and applicable to pulsed SR sourc This method employs a comparison of the SR spectral ra< ance against the tungsten strip lamp radiance calibrated

Phvsh a Srripra 35

Page 113: ji. —W >fta

The Use of Synchrotron Radiation of Electron Circles in Applications 625

the black body model. The photoreceiver signal in this case is described by the equation

A* - NrvK?S,A<p&. j“j.2 A/- E. R. d* (9)

Denote the ratio of the photoreceiver signals /(/.,. £)//(^, E) as Q(f, /io, E) and the SR relative spectral flux £(/.„ E)i P(/^,E) as rjO-n 4, £"). Then the following system of equations may be written:

where K*K is the SR transmission coefficient of the monochromator, and rip is the reflection coefficient of a spherical mirror.

When using a tungsten lamp the photoreceiver signal may be expressed as

/, = L(z) AtA A<p Azr.ptfJS (10)

where K\ is the monochromator transmission coefficient for the lamp radiation.

Using eqs. (9) and (10) we obtain

= W) K\J' Pi'~ E, R,ij/) diA

(ID

The second method is presently used in synchrotrons DESY and TROLL. The advantages of the method stem .rom the fact that it disregards the impact of geometric factors, sensitivity of the receiver and absolute transmission of the monochromator.

Errors in finding the number of particles by the second method are largely caused by:

1. The distortion of the angular distribution of the SR flux spectral density and SR polarization owing to finite axial dimensions of the electron beam.

2. The tungsten lamp calibration errors.3. Nonlinearity of the photoreceivers.4. The errors in defining the relative coefficient of the spec­

tral device transmission of the SR and the lamp radiation which requires polarization measurements to be carried out.

The total limit error for the TROLL synchrotron is esti­mated around 3.5 percent.

The third method of finding N is in the use of a calibrated receiver. In this case the SR flux leaving the aperture diaph­ragm enters the monochromator with a calibrated receiver installed at its output. The receiver signal is written as fol­lows:

I = N&V A;.KJ*S> PO- E. R, *) # (12)

In this method, as compared to the previous one, some additional error sources are present caused by the need to measure absolute values of K,, Aq>, Aip and Az which is associated with certain difficulties.

The energy of particles was obtained with the use of the nonlinear relationship P(E). Spectral measurements of the SR flux were first made on the storage ring VEPP-2M in a combination with relative magnetic measurements.

The TROLL synchrotron has an azimuthal symmetric magnetic field, therefore its orbit radius is defined by the frequency of the accelerating HF field. This fact allows one to use only the relative spectral measurements of the syn­chrotron radiation to find the energy of particles. In the first method, measurements were taken at three wavelengths with two different values of £. In order to exclude the number of electrons, the measurements at two wavelengths with the same value of E were made simultaneously:

/(/.,, E) = PU^SAflKif) Az,/(Am E) P(^,E)SMKM A/,

dif' A)» E\ ) E)) _ ; __ 1 1 A \—r.—:-----err = —r.—:--FT - V,, i — L -

^2) *7v*/» "2)

System (14) is solved either on a computer or graphically with the help of a diagram relating 7U with £, and £» under given values of -2.

In the second method, measurements are made at two wavelengths z, and X2 with three values of the electron energy. Besides, a linear relationship of the particle energy vs. the voltage U of the battery charge of the synchrotron current pulse generator is used: £ = 4- axU. The system ofequations then may be written as follows:

P( A» Am E\) ff(A» ^"i) . • j -yg(A, Am Ez) ~ Zo, £,)’ ™

1 A)« E\) _ ^(A» E\) (15)j (>(;,, Zo, £3) " rj(x,,;^,£3)

E} - £, = 1/3 - £/,\E2 — £, U2 — C/j

This system is solved on a computer.The method allows one to find the values of £li3 with the

total r.m.s. of the measurement result less than 0.5 percent.In order to take account of a deviation of relationship

£([/) from its liner form, this relationship is presented as a power series with unknown coefficients.

The measurements of q(X2, Am £,) are taken with different ty's (/ = 1 to 6) leading to the following system of equations:

E, = a0 + a{ Ut -h a2Uf + a3 (/,3 + aA U*

fl(Ei) = jrg(U,)\ / = 1 - 6(16)

The solution of this system yields the working values £,. the coefficients of the power series, and the relative spectral sensitivity of spectral devices employed.

The energy of electrons may be varied not only changing the potential but also by changing the orbit radius varying the accelerating field frequency. This leads to a system of equations similar to eq. (9) substituting £(£) in the form of a power series with unknown coefficients:

f £, = 60 + b\ R, + b2R‘ + b2R] + btK*

W.) = <=1-6 °7)

This technique provides a much lesser accuracy of measure­ments as compared with eq. (16) but is of certain interest because of independent check-up of the result.

The presence of axial betatron oscillations of the bunch electrons leads to the occurence of a transversal component of the velocity of the particles and the particle distribution in the angles of deviation from the median plane. The maximum angle of deviation ijtxm is determined by the relative ampli­tude of axial oscillations in compliance with the following expression:

128 -

Physica Scnpta 35

Page 114: ji. —W >fta

626 S. I. Ancrsky. A. )c\ I’crnyi. l\ S. Panasyuk and W /. Sapriisky

(18)

where n' is the magnetic field index.The spectral density of the SR flux leaving the aperture

diaphragm of the optical system with an angular dimension is described by the convolution of the angular distribution function for a single electron SR and the function of the electron distribution in the angles of deviation from the median plane

QU) = A<p J"J J*’, P(;.. t - *')/<*') d* (19)

Since f(p') cannot be measured with an accuracy high enough, finding the absolute value of the SR spectral flux for a source featured by large axial dimensions turns out to be a complicated task. The distribution functionf(p') is measured by means of taking a picture of the bunch. Since the axial dimensions of the bunch vary in the synchrotron with chang- ' 'g energy of the particles in the course of the cycle the bunch ^notography should be taken with a high time resolution. In the case of synchrotron TROLL, the orbital period of the bunch is around 300 ps. The functionf(pl) is obtained with the use of a high speed photorecorder AGAT SF-1 with the time resolution no worse than 5 ps.

When the optical methods are used to find the particles energy or estimate the SR spectrum via optical measurements of the number of accelerated particles the SR relative flux should be included in the computation formulae:

1-1*: J". P^-' ^ ~ #

n(k) = ——------------------------------------------- (20)/W <A - P')f(P') d«A‘ dp

Finding for a large bunch implies transformation of this expression in compliance with the theorem on the mean:

= /*(/-) P*’ dip I" m P{p - p', /.) d \p' (21)j — a* 2 j — ^ i

where

f", PU, ip - P')f(P')dp'

ftU) = ----------------------------------- (22)111 P^-' ^ ~ ^') d'P'

If p'm > pm, p = MO) is independent of the wavelength and may be computed by the formula

?(/)PU. p) dp

F(zo, ip) dp(23)

Hence, rj(/.) is determined by the ratio of full SR fluxes at the working wavelengths.

The relative SR flux for an actual bunch is described by the expression (13). Consider the impact of the error in the characteristic angular dimension a of the bunch on the com­putation error which may be expressed as

drj a da rj

(24)

In the case of ip'm pm the accuracy of obtaining rj(/.) is

increased with axial dimensions. A “large" axial dimension of the electron bunch is most convenient for radiometric SR studies since the resulting angular distribution of the syn­chrotron radiation within the aperture diaphragm features a high degree of uniformity.

A result similar to above is obtained also in the case of polarized components of SR

r*\i p*w ~ #'Qtt) = —7^---------------------------------- (25)

1-1: 11 P'{* ~ d^'

In the case of a “large" bunch p'm P pm expression (25) may be essentially simplified:

QU) *1% PM) dp

JL PM) dV-(26)

The impact of the error in finding a on the overall estimation error is described by the expression

d dan = 5^5 (27)

Formula (26) may be used to estimate Q{/.) in the working spectral area from 40 to 250 nm with p’m = 15mrad. The angular distribution of the ratio of the polarized SR com­ponents for a source with large electron beam angular dimen­sions features a high degree of uniformity. High uniformity q(P) of TROLL synchrotron is especially useful in finding the effect of the transmission coefficient of the spectral device on the SR radiometric results.

Optical methods of diagnostics of the charged particles bunch guarantee fast and accurate measurements of the num­ber and energy of particles. SR sources with an electron bunch of large axial dimensions has certain specific spectral, angular and polarizational characteristics. Provided the elec­tron distribution in the angles of deviation from the median plane is much wider than the SR angular distribution of a single electron, the relative SR characteristics of such sources may be estimated with a high accuracy.

In conclusion let us summarize some advantages of small size accelerators.

1. The use of strong magnetic fields which are attainable only in small volumes opens a way of creating small size specialized SR sources featuring a much higher SR intensity in the optical range as compared to conventional accelerators whose orbit radius amounts to some meters.

2. The use of strong magnetic fields allows the design of SR sources also for the soft X-ray range.

• 3. The cost of construction and maintenance of small sizecyclic acelcrators with a strong guiding magnetic field is much less than that of the traditional SR sources.

4. An SR source operating in a strong magnetic field and with a small orbit radius is generally featured by the particles energy much smaller than that of conventional accelerators. Its radiation is featured by a great angle of deviation from the orbital plane which facilitates radiometric measurements sig­nificantly.

5. A small radius of the orbit allows an optical system to be used for collection of the SR from the entire orbit thus increasing the overall efficiency of the SR source.

129 -

Phvuca Scnpia JS

Page 115: ji. —W >fta

The Use of Synchrotron Radiation of Electron Circles in Applications 627

6. Synchrotron TROLL operates in the radiation-proof mode and requires no special protection means. At a trailing edge of the magnetic field, the particles return their energy to the microwave frequency field.

7. The design of a small-size SR source permits operation in the vicinity of the orbit.

8. The available SR sources have their maxima of spectral 3

distribution in the X-ray range. The presence of X-ray radi- 4 ation leads to the problem of heat scattering by optical 5. elements when working in a long-wave range. Short-wave 6. radiation is associated with additional difficulties of separat- 7- ing the spectral orders. Small-size specialized SR sources are free of all these disadvantages.

9. Only small radius accelerators are efficient SR sources in the infrared range where absolute spectral measurements are of great theoretical and practical importance.

References

I. Kulipanov. G. N. and Skrynskyi. A. N.. Sov. Fiz. (Uspckhi) 122. 369 (1977) (in Russian).Tcrnov. I. M.. Mikhailin. V. V. and Khalilov. V. R.. Synchrotron radiation and its application (cd. of Moscow State University). Mos­cow. 1983 (in Russian).Synchrotron Radiation (cd. C. Kunz). Springcr-Vcrlag, Berlin. Heidel­berg. New York. 1979.Tomboulian. D. H. and Hartmann. P. L.. Phys. Rev. 102. 1423(1956). Frikscn. F. J.. Rev. Sci. Instr. N2. 218 (1981).High Technology 3. N3. pp. 28. 30 (1983).Velikanov. S. P.. Kvochka. V. I.. Panasyuk. V. S.. Pankratov. S. G.. Sanochkin. V. V.. Stepanov. B. M. and Khromchcnko. V. B.. Atom- naya Energiya 41. 113 (1976) (in Russian).Anevsky. S. 1.. Kvochka. V. I.. Panasyuk. V. S.. Pankratov. S. G.. Samoshenkov. Yu. K., Simanovsky. M. F.. Sanochkin. V. V. and Khromchcnko. V. B.. Izmeritelnaya Tckhnika N10. 3 (1977)(in Russian).

9. Pitz. E.. Appl. Opt. 8. 255 (1969).

130 -

Phvsuu Scnpiu 35

Page 116: ji. —W >fta

m h as

1. mm#

2. mm¥■ $ 6 *? 2 n 2 6 B ( ± ) - 3 ^ 10 0 ( * ) ( 0 g li flj US # JB )

3. S M(1) *ii (7iwri-A)

space’94 £ec:ffis u z>*^%%Lnm&&m<Dm%L$kR\

m-t zmmzmzftoo

(2)

]<3%)-^3>#-ft>^-(Communicatuon Research Center) £• t^f*] Lx Ji i~ ¥

(3) *ii (7nt)r y zt> zt zmw&fficmt z>m

mmmz ft y0

4. a##

(1) *s (7;wr»-A)SPACE’ 94 # in

William C. Browm CONSULTANTMICROWAVE POWER TRANSMISSIONS SYSTEMS

Dr. Gay E. Canough PhysicistPassive solar heating and Photovo1taics specialists Design and installation

R. Bryan Erb, D. Sc.Assistant DirectorCanadian Space Station ProgramHouston Operations

(2) *f f

CRC (Comunication Research Center)Eric K. Tsang

Chief Business Development Office Cecillia S. L. Cheung, P. Eng.

Program Manager Business Development Office Joseph J. Schlesak

Networks Research Coordinator

131

Page 117: ji. —W >fta

(3) *n ant)U A F (University of Alaska Fairbanks)

Joseph G. Hawkins,PAssistant Professor of Electrical Engineering University of Alaska Fairbanks

5 . F*3 #

(1) *H (7Ah'»-A)

Space’94 (ASCI;Amerecan Society of Civil Engineers © Aerospace D i V i s i on C =k 5 H ^ ) C # in L x *l#*iili©f£;flJlc-3ir'XSIlE£fT-5 ttfcCx SPS(Solar Power Sattel i te; ^ 6 % ^ S-m) ®B9#S»'F)tS$g®S $• ff ^

BtT'ffl SPS© V 1 - V bf V T v y 9 7-' ■< ©ttK IC xi V X 1S6 =9 £ IV SPS»»CB9-t-51f«®*S-fTofc„ * B © I2 S S Sii i: 6$: 1C *f -f a E 1=] *>>' *V

SPSM%SfftODiltSStB B ^©MffliW&to, &*to 1C # fit tc± # < , B

izmm-tz c t i xt' < c t w At't ©em^'*o fio

it II 1C *5 It a £ & SI i* fi $ $• ti T ic )S -t."The History and Present Status of Microwave Aircraft”

*a ic a it a ?t *rs jt © w sea ttvoa® &*!!§&© cniT-fflES6katticot>T©a$s„"Solar Power Satellites, A Multi-National Network Enterprise"

& xSPS©,&#a I: o I'TM L. * B © R $ to ftBi^m

(2) * ± y

Industry Canada © a ft@f %Bf X 6(Communicatuon Research Center; W T CRC) £• tS IBJ L tz„ CRCli B * © NTT tm#©yp3ta:y-y3>»R©9f%ee ^ x »?,^ fr 7 ffcx Industry Canada © f « X ifc a C i: *>'6 ■ * W * fc (t ^ X •5 o

ieS21Kin±IC)RfTE$-fltljf L, *«*£©* fc*)tcm'ari:«£Sto £: "t a SHARP(Stat i onary High Altitude Relay P1 at f orm) It B t5! Bfl % + Xh a = C ©ltBXIi)fe±*' e>7-f>D$£g Ox CChlc.ka'EXiS-iiXiSi: L x v a c i: *>> x-fyo&ae##& L&xt'a. sharps+■ liEE©7,Dh>-f7,©Bfl%T)' 6*©7i-A'i^Sffi-aiter-aba»ix

a. r©fctox B®to7?— ht-S’Si, bisktjt lx m^iM^x'n^tz^t^^xti*). atetoicB*kiaxiLfct'Ei6]r-$>7> tlt>

132 -

Page 118: ji. —W >fta

(3) *n(rnt)7 9 ^ *±#:(University of Alaska Fai rbanks; JS T UAF) $■ R R3 L fc„

DAFT IS, L. i'StiliTVftt-fXJ** 5 M ® a « IC It * L T *5 *), 4- f$ © * B C Si It 5 WD® & » © * C-1: & 5 8H?i5, ^M~tt±0 7-fi'D®S«SI»Jf>7OD® 1C J: S8*£?iJ« L tz's V

Hfe± W C*l't?ms^s I'tfllliaifT'itDy'xJ F AlaskaZl IS, It B

*±ra©7f>D®^«lCo V'TIS B*©#^l:*#»

-3 * If fc 1' i: © M ft & W n X V> t:„

133 -

Page 119: ji. —W >fta

Bn m

ft B ft W> ft- ■&

2 ft 2 6 B (±) 3K ^ EE ) -*7 )V A t! — (A 1 buqtlerque)

2 fl 2 7 0 ( B ) SPACE94(B®i?»)#iD

2 8 B ( n) SPACE94(B^^E)S»D

3 n IB ( ‘X) SPACE94(B®^»)#iD

2 B (7k) SPACE94(BE£«)#in

3 B (7k) 7 77 7 — 7 —7 9 7

4 B (&) CRC' toB

5 B (±) 7 9 7-1/ —

6 B ( B ) ft -7 9 — ft — —*7 7 77

70 (0) 7v 7, turn

8 B (*) 7 7 7 7 -»7>7 7 > 7 7a

9 B (7k) 7 >7 7 > '> 7 a —

1 0 B (7k)(BK ffl )

CRC : Coimunicat ion Research Center

134 -

Page 120: ji. —W >fta

m ^ fcb m ^ ^

1. mmm&z

2. sasgiRg

¥E 6 3 £ 1 3 B-^FE 6^3^2 13

3. ill^l

K >f y o •> * y -y h *' ;t/ h x 707 'J

15Poiu was©** sews*

<7 OttblZ^ affift*OJR*«rfr^o

4. KS3 5fe. &#&«%

4.1 ±(1 - 7Kf£ - '< 4 X ;1/ y SSK 7 7 > b £t§!& (K-f*y)

$5 Po] & : Solar-Wasserstoff-Bayern GmbH,

Neunburg vorm Wald Plant Site

{£ PJr : Baernhof 1, 9243 1 Neunburg vorm Wald, F. R. Germany

TEL (09672)1831, FAX (09672)4155

fB@A# : Mr. Harry Shuele (Project Engineer Test Program)

RP9BM : *H7E%S-7KSS!ji • *J * * holiy^ho

cX7K&om= *

4.2 HYSOLAR lOkWlS^M ( K >f y )

15 Pol 5fc & : German Aerospace Research Establishment, Stuttgart

( hW ‘yjffi^sef^pyr DLR, > ^ V -y 7 *' yi/ h )

Institute for Technical Thermodynamics, Hydrogen

Energy Division 7j< S ^ ^ — SR )

{£ B/f : Pfaffenwaldring 3 8-40, D—705 6 9 Stuttgart 80, Germany

TEL (0711)6862-432, FAX (0711)6862-489

fB##i@j =;# : Dr. Werner Schnurnburger (Head of the Division)

15 Pol B ft : HYSOLAR 10kWf|f|$g t& O £ if % M % © ft U H S

4.3 7 a 7 7 7 h ^ n — ;u |fc jg ( K 4 7 )

15 Poj £ : Stuttgart University, Institute for Nuclear Technology

135 -

Page 121: ji. —W >fta

and Energy Systems ( y j. "J y "J if ^ h j^*F*

x % JV 4-'- y X -r IKE)

& 0r : Pfaffenwaldring 31, Postfach 801140,

D— 700 0 Stuttgart 80. Germany

TEL (0711)685-2481, FAX (0711)685-2010

f A # : Prof. Dr.-Ing. Manfred Groll

IS Pc5 g ft : 7jK 'i y (c fc

a - -y f

4.4 y F y i/ ^ yu 5 0 0 kW p v y x -r a (x^x)

: The Solar Power Station on Mont-Solei 1

Hi ft PJr : Mont-Solei 1 Solar Power Station

c/o Bernische Kraftwerke AG

3000 Berne 25, Switzerland

TEL (031)405111, FAX (031)405635

: Mr. Walter Aebi ( H xl $£ $$ )

IS § ft : Mont-Solei 1 500kW £ HEtfiRSIS

4.5 o-f y *|^x * vi/4-^ X )

IS P=3 ft & : ECOLE POLYTECHNIQUE FEDERATE DE LAUSANNE (EPFL)

DEPARTEMENT D’ARCHITECTURE (ITB)

LABORATOIRE D’ENERGIE SALAIRE ET DE PHYSIQUE DU

BATIMENT (LESO-PB)

& PJr : CH-1015 LAUSANNE. SWITZERLAND

TEL (021)6934341, FAX (021)6932722

f 8 4 #1 @ ^ # : Mr. Christian Roecker ( ~f n •/ i 7 h V — f — )

isp=iift :

4.6 7 V 7*- y a 7 y y/< y ( x >f X )

ISPn1ft& : UNIVERSITY OF FRIBOURG

Institute of Physics

& PJr : Perolles CH-1015 Fribourg, SWITZERLAND

TEL (037)826240. FAX (037)826519

@ # : Prof. Louis Schlapbach

Dr. Felix Meli

is p=i § ft •• - -y y *

136 -

Page 122: ji. —W >fta

5. S5P.?5fcSiJ©3SS*508lS?

5 . l *®-7k£-'<41 * y a£B67 x v h $6S3: ( K -f y)

±HSief8« £tJc* £«*£*> ti S **© * * * *' - y x -r iffllffiy? y h T

$ 5, c©-yx71AOgffiMII$EW3£i:i4'^+'-P4S0— SSSSSfii L T

fed, W»Sf ©ISiSii'iA S *i, il!iK8i>‘(Tt>«T l' So 7 o -y * ? h li,

Bayernwerk(60%), BMW(10%), Linde(10%), MBB(10%), S i emens (10% ) 0 E Pel

tbST-SIl!! £ tlTfc 9 s *#BB#(35%) 6BarvariaMi(15%)A:WR##^ LTV

So Phase I (1986- 1991) T-li 6 4 5 7JDM#$S A £ il, Phase II (1 9 92- 1 9 96 ) tc li

6 9 5 7J DM0&«#&&* iUl' So

O Sol ar-Wasser s tof f-BayernHK x y h 0 (Phase 1 : 1986—1991)

• x y h : 2 7 0 k W ( £ t§ H i « @ H O *|®fll * # & g, * ft

fil9 % 6 1 1 %©$##$, 2 47okWh0fK#S%*)

- (*mmm, mmmi&m. 7k@p«, - mm

• 7k flip tt ( 7 «-* i; I : 1 1 1 k W, 2 5 Nm’/h3K)

(itW^TSSIi : 1 0 0 k W, 2 2 Nm’/hi®)

• *'x 0ffl$Si:#ffS* (^8*'7oaigStL)

• 7ks*- X IfjgSls ( 5 . 0 0 0 N m ', 3 0SE)

• E£»' X EESH (5 0 0 N m *)

• «#7k£Bf «x x-y3y (3m’, TkSSiiSffl)

• *814® rife ( ') ySES : 8 0 k WmtJtEfi, 60kW*Sdi*)

( T VP fi US : 7 k W)

• 7kx - (2 o k wsr 2 $, %^#x#m)

• $(*7k£8mS$lS ( 3 . 5 6 - 6 -y V y y - X y y y, 1 2 0 6 MW 9 y 9,

1 S*t 3 0 0 km*}r"3)

(Phase n T li. T * 7P 7 x x*Bg®?6 (SSEiS) , 1 0 0 kW®«l7*i )

7k*Ps i o kwliSttllft^SWSiR?®. l 7 k

tmxsn, aesiiAsffbtts^s}

051688$© H. SchueleE# », 7" n y x ? h 0 B M, #6%, US % at ■ * © S&

£§lt i:E, L 7:o ^ S # £> li, x^-tkyy^-f y It BE ic fc it S ±

ffl£5&*a8jraiSi:7kJK* 4 7P#-8ffiS (WE-NETItH) 0K#e*SfhT

5ii6.IT NEDO i:*EI*S«5F%9rlctei7 S*®)t;%affl$lB?60S«

M£ttS£S&>J! Lfco

Ox'x y h ©M##ic, AIDERS £ ®7i®ia y x f- a (* 'K -f y

■. 7k®psg^®7k«s3it • sf m ■ mm®g7'x y h0#gKfaEKK0K#i(#m%-(#S66 6,1c, t±|g^8iSH@3F® S

M.£&£tr o ft o Sic, «»7k£g*i**-«!iSTlSS L*o 7kSP£«m®?6

137 -

Page 123: ji. —W >fta

It M ff It W. IK t T l' ti t> J; 7 x- * ->07° ** 9 h liR#toti%E6*#&t Ox ggrtt 6il* L T v tiV »>\ *®*%SIC *. ZQtlffi&lt 1 DM/kWhBlAx *SS5jl«tel± 7 DM/Ni’«±

C ti 5 tMSt fefc.nSiffiCiTSoti,,

o-fa * X.9 hT©$3?6®aFAKMLTtis X * A/4-'-i6(* i: LT©7k%*IJf§

itglUTiiCit, ES®SS®Ti±5eikS» < ? £ 5 II Ml «• W

t5Cii>b, S^ar-I*. iASfiTl'ftl'iCCitSofco l »> Lx $

asST©#*ffeM3gi*H*-eoaiaiRSfjfflfc®i'T* A^nstsjhfc,

5.2 HYSOLAR 1 0 k WIKIS ( M 7, DLR)

HYSOLARlix P ■< y t ■* V i? T ? £ T <D Efg&fflWZl 7 a * * 7 i- tS (}, *

«I * ;i/f-&*mS%6 7KS#ic <k 0 7kSKES LTSiggltoSir 5e$B©M

Bfg L T V 5o DLR StuttgartT'lix 10kW&©*^*#S6 7 7t/* V7k@#

WAs&ltSiix *BSto-3^MBSB-7j<mi)¥1t©iie$$ei: y x X AfSff,

7kSI@tt®dtS¥©5f%»ill®SftTVio Phase I (1 986~ 1991) 5IT, $6.

Phase U ( 1 99 2~ 1 99 5)KilA/T-V 50

O DLR Stuttgart© 7kS x * 71/ *' — t$ FI "C li x 3 ~ 4 5 77 DM/3E © ^Xx to 15 A ©

Alt, 7-5 ?7|«SK i. S7k«»fflKtt*l«S©B0^. 5itSffl7 7V* v*s

9 y h ©nans £ sea®u ies7k*8aafs«©Km»>'ii» £>*i.t vti0on e d o tmfr L, *®iESS^©iS»OffiSi:9t'tLf.l5ftiffo ti =

O HYSOLAR li, ttidiS©->'7f itu<£<, '< -f T- y -i y It J: 5 7k&© S IE M AgteSSffiS Lti8$BKmSt!iT-£5 = -e©ti©s $Sz6®aFAS-S«to*‘©

is a to c# i ic < t'iociti^to

5.3 7a7-,7#*t*? 9' □ - A/$(jt ( K -f y )

Bf Jgl6-x * 7L+'-y t. -f ©Groll»glix »6i, *#,

©m'i^#^#P!6 Lx TkmmaaAms#?*!#%%%&%©#%&*5

Yf bfir v ?,= 7kSSt@AA©9f%Tltx B *©» 5?# t t> Ssiffiis* 50

Q7kSx * ;v*' - i *S®@AA©lCa (-KSrfex Tk&lriEx JftfJffl) © B*

iztsit i, ssssis-ff ^ ^Ex

7k$®iEAAB5»T-itx AA©7k^{k#ttffl$Sg^$$6S««© t - h .+: y y

*5*Ox *mm©#2#'jm (#s, %$x #%) *ifgl^w^ytfetin'*.

O - V 7 71/ - 7k#<b%S%©Ka5a%C|*l L T lix K -Y y T (i B * C Jt '"< T 6> ti

oanrteOx YfffifiHfcS ttTfci-fx Asas-ffiogfl^s-il*

5 S$fi® @ k li SJ ^ T i.' ti v =k 7 icYSIYatLtio

138 -

Page 124: ji. —W >fta

5.4 FVU'fJi' 5 0 0 kW PV'^fA (XU)

• (**&*: 5 o k w, : 7 0 77 k wh)

• l£g&g (?§*£ 1 . 2 7 0 m(Dlh±CD^iBm. 2 0.0 0 0 m2)

• AUSrfc (Siemens#^ > V ^ 1 0,5 6 0 ^

: 5 0g> lil: 4,5 7 5 m\ fEl/SE : 8 4 0 V)

• SEjSS ( 1 6 k V AC)

- (±1##% : 1 2-1 3 %, < y ^ : 8 0 - 9 0 %,

A 7° 7 y h : 1 0 %)

• PJrmg£ (8.5 B7?SFr)

^ifi&LljlISWcl&ggft/cC©^? y h (i, 7 >f XCDSW&W%§fEI^SIE7,o

;J s. 9 b £ LTlti^tl, 12%^#%]^ 3 PHALK Mont-Sulei lt&£ (C X §t W

1 9 9 23E#ti> ftT V -Bo C ©%S70 7 y h T te, XUT'O

y 7.

fffctlTl'io f 0f:&, ttiw (ft*. if*, 3C##) (#, #,

m, B) ##*#& LT, S9:iK«j?r£ •> ^ f $ tit fc ^ S4Ettfl&tt, LliEOSaint-ImierXII^^ti: 5* - 7 il ft S ft, ft? tfr £ ft T l'-B 0 £ 7c,

* -y ^ iftf?0*0aiEfT?ii* s I'** 3

swjmft4tjp;£££&mz3tft^&itz y x x a (c^it^ nr v £0

Stiii'f y ^ - £ EE 3s ted: K> 1 6 kVACTil^ S ftT V -Bo

OM©*-r ^©JE^T, Aebi^d^y 7 y h offjjitti,

-3/:#, as^n^U'saf®^

*0»I£E»&0£*iJfli#&. S&g

OBf^OBIcii 1 kW/mJJ^iOBlfI^i 5iOC ^ B ti, @0

/;i6^ y^'-^-0fPil®§?i^T0^1lT> E 7K S © fcti It *>' 8 5 0 V, 0 A

£H^l, mtn*& <b tix \'t& & o /co

3 kW0/J\##& 2 7] @8t, 7 0 kW©«ft*I*I£ 7 5 0 ©P7r, 5 0 0

kwoA##^ i 2 mm-eigg l, 2000^(cu mwiimme) o. s %*±WiTlc%n T'il&tJ c LtuBo U'U *HSr6© ^ ti < ,

Uc, 3 kre 5 73 SFrO SB! #*>;&» t> , CO| U'ifSStlii®:b~etr> r>tz o

O Mon t-So 1 e i 1 © 11^8 "C Ji, Mil. 1 SFr/klfhT\ x * ^ 4-' - ~s >f '* -y 77 >f A # 6 ^ t M# & £ ft T V /Co

•>x f a©ia© Ritut<t it«*, lD±0%#-C0#%~0fij#A:^x. ^ft. i- 0%^, 1 6 kwii«0£g|asS!J£ S

n b <h o c £ x * o fz0

139 -

Page 125: ji. —W >fta

5.5 *Bi*A4:-S«8iai5SI ( X 'i x )

0*P!* * ZWX&'fr htitii ?, ic H S rfe *>'S ±

^-ntoOSSf-cov'Tli6B^6g(j-fc =OSB®Sja#tt»> e. ®loa@Bt± s^: s tlfc DEMOS !TE»i* <0 - ^®jg^» ^ e l^= *^®*®#s®*i6®i:e<tiii5tt#gx-^ ®sj

fS^-XtafciStS® <k -5 T* ^ fco B*S3tiB^StiTfc<i#x ffiB* ftS L T

JiOCiT-Sot,

5.6 7 'iy-)V*¥ S' .» 5 -y y •>< -y ft jg ( X -1 X )

j:5*ffi®itrojr^acspiET-*•),

*B«s®et%t>5<ii6Tte6n5= fata, 7x#emA&@@®#@#.@

tK*.tti:©M«©l@»J!ct>®J9<a></T*s£>tis WiS«?S**?'-?*f53g3tiT

I'So na?«M»c*So 4@®l@$r-(±,

Mel ift ICMont-Solei 1 t EPFL® KBS C fc Wifi L ti l' fc0

iiu,

«L MteS?c-3i>TKi!BSft»fc.

OM#a#©*%a#RiRf I'T. 15 L Sr ^ *=O B* t Rttl 1C felt s - -y >r » - 3kJR{fc$i«7t®8f3E6l!ISl t ffia{fc®»|SjKo o

T. -O fco

6. KBS*TA#L7=M*g#V % E

th Pal ft g M V X E S

(DSolar-Wasserstoff- 1) SOLAR-HYDROGEN ( 7° n -7 7 h £fi££S8:fh L /c

Bayern GmbH /Mi?)

2) Solar-Hydrogen Project (** y 7 u y h )

3) A.Szyszka : "Neunburg vorm Wald - test

center for solar hydrogen technology".

(snwoyoi?*^ hiSj&s^iiEeis&tf

$n«©ltH««$'EL7t«SS 1 9 9 3^ 6 fl )

4) K.Hoelzner and A.Szyszka : "Operation of 20

kW, h gas-fired heating boilers with hydro-

gen. natural gas and mixtures of hydrogen/

natural gas". 1 9 9 3^3^.

140 -

Page 126: ji. —W >fta

(2)HYSOLAR 10kW expe­

rimental facility

s ft

©University of

Stuttgart, IKE.

Prof. Groll

©PHALK Mont-Soleil

©EPFL, LESO-PB

(d -if y

©UNIVERSITY OF

FRIBOURG

(7 <j y - ^ -k ¥)

5) J.Tachtler and A.Szyszka : "Car Fueling with

Liquid Hydrogen". 1 9 9 2^10^.

6) #%§###/< >7 L/y h.

1) A.Brinner et al. : "Test results of the

HYSOLAR 10kW PV-electrolysis facility".

Int. J. Hydrogen Energy. 17(3), 187 (1992).

2) H.Steeb and H.Abaoud: "HYSOLAR pogeram

achievements". Proc. 1st Int. Conf. on New

Energy Systems and Conversions, Yokohama,

Japan, p. 1 3 9 , ( 1 9 9 3 ).

1) University of Stuttgart, Institute for

Nuclear Technology & Energy Systems (IKE)

£ $3 l tz y 7 1/ v h0

2) Prof. Groll©9f%STtii $

sm) „

1) CENTRALS SOLAIRE MONT-SOLEIL ( ;* y 7 U y h)

2) R.Minder : "The Swiss 500 kW Photovoltaic

Power Plant PHALK Mont-Soleil", Proc. 11th

E. C. Photovoltaic Solar Energy Conference,

p.1009 (1993).

1) x * 4/ (LESO-PB) t icd

fifeM 7F ih >f h (DEMOS ITE) © $3/h y 7 u y h

( —^) .

2) DEMOSITE NEWS (Feb. 1994). 1 2 3 4

1) 7 v y -

2) ( 1 9 9 1-9 2).

3) LeclancheSrtfeti: O - -y - 7k S <fc: $ H ffe ®

y 7 y y h .

4) X 'f 7TyP7eX®iSilg§(C|^gd:tL/c*H7fc%

l'>Xf AOffi

141

Page 127: ji. —W >fta

1 . Sf3?E—7 PV-DSMB8il®E%«tlAP$2. ffiSSSKS #E S.3. m« x^i^-sb x^>^-ttssffiE%s4. HS<D83fi8 ¥J$6¥3/313B~3/12 3B5. iSr=fl5E NED07->>b>»$9r, AsnoPower Inc., B32H$5j|gx^;U*'-E%9r,

PV-USA Office, PVUSA Maui Site, Hawaii Bectric Co.

6. P$lC<J:9f#5nfi:fi£E 6.1 *®Tlc%E%$7,n->'i 7

jESSIE

jsv^T t> r(OSt^T'*# < $1bL--07)$>5 ±n-S5. M%ftei*co4>&V>t,©T-t,

SELTV-B, GlTtc4-iICiS9$T-CiES, hi— ->7 7’©0!l££>lf £, &*, EW(7)# At: 3

• PVMaT *M*;ev7i-;H!IM©Ji7'o^7At #S©«**|S]±rifStt. 4-E3¥ PbT(c600—1j00075 KA^SA^S,

• PV:BONUS Btlffl*^jti%m->XTAtDrf?®1$tr3|EL^gg%7’n-yx^ K 5 ¥[19152,500

75 K;i/©5F$0• pvusa • he.

Emerging Modules Technologies(EMTs) (20kW?l!E© 7 H’) i:Utility Scale(US)system (200~500kW©Iffly^rA) BB%,

• University center-of-excellence W^T’d->'xy h, r7 17x8s8f5?frt

->'a —>*7 If4A^i;®5tWf:KEOtltt?:fT 7,62 PV-DSM «fc -5>$7) ©SSHIS) M#

NRELT'OIST'tt, 1999¥£T'©fHlt LX >■/&%%&t'CDzi z

yx-r-AT'lSvIW,,, SE»$T33VIWP6#AT* 9 , $8$®to$:W75f*i$to^PV- DSM-> XTAii^liv^flET'^S,

PG&Ettt; * we fc M.tf-2 1C ti&RS) 15 ± UT 5 SEttf 12t© X -5 * If- 7 St *fflfcLTIS*®fe£fOTUfcDSMS:E*.-Cw3. U>6>L&*)*£>, ilB&<£/9®!B£E;VCVi.5© x+fttemfittf'&btix^'Zfr-itzo ttz. sra©tr-^f©A®jtism->^7A(oig«i^cDi®

S(60%Gl±)A>e>$e?t5^LO->7.TA5:#ELTV»5„ AH #%e•>X -74. A-'S&f 5.X

tttenxh £ ©2 7 &ttiRI2A*itrmt-fZ t is t frft•£,PV:B0NUS15 2 £ PVTISMv XfA li&vSSil5©3tS@@©*B$;*> 6 SS$$#6/)^ < , 5*15*3

V^XtR#©W^9, TESBS^&toSSCTliPV-DSM^DSM-y X t A15 <k -o TEATS5&E

6.3 PVMaT

v^<-7z)‘gigtc.Bkn5 7,D-yx7 b (S!jS!3:«cOB»Ht:&if) •yx-;iz©M%©1tE(AstroPower*'ffl^)g:#5Cf©mSl2E%MI5l2t7 5 77

±lv7e;k7 7XA®mffiT-v^>5ntv^1$&:$:fflv^Tiesm*llS16$:^l7Sz$$:ff5xS %$&0et©X&9, 4-^©%S«8EIC7>v^TEEf6.4 f©%

E^+f'f KT#Cd-TeAI@m*l:OWT©IM'M%2 l-oo&S. tifr-otziznfrtitz, SiE7’n-t7*iti:eto®ig (500UUT) X'AESikua

u-c®ntv>-5 c ux-*^ 7,

142 -

Page 128: ji. —W >fta

JSttttiSMSf**ca E3

1.

2.3. tti5S#0)K6

mm®®,

4

5

zssffiEmm a zee^s mm a

(&&im&<nmizmmzTi:ZALi£b%<nmt l t)

(ffi!i#^4^y.±©*^tt[si«cD®ffi(c-CISa (1 0£i£) ):1994¥3,H13B~1994¥3/123B

. 9t6B£ : 7 k D*£*B

. «bs£ :ax^j^-•

. 0rfl$£i8l£i : NEDO Washington OfficeNED07->>h>a»E

E%E&. 3ESR&3SO £1BA)

d. Qiffie. TEL NO.f. FAX NO.g. Etth. memme#

(X>ft£ : *@&« :E»

Suite 924,1800 K street, N.W., Washington DC. 20006202-822-9298202-822-9289aBT'toPieBfTZtoffiS t #15tSI5fcto»i§irE x 7

mm

(@@#^4 SU±(0#A#Mm)%%mcT;Eim (1 0£&) )

(£»»<££ \t&&m tc sn#£ , amm c itmm& t iea.

fcfc'U SfrBffflSE, B^->>tK->'7A^CD^O«^li, CtfcU EAti^E)

l.

j ■ k.

5. 2

esaetti5S5tat;Btow

a. 0f«b.

I£l

&L

ryAstro Power Inc.,mm&

(mmgR## s#&#) *ea)

Solar Park Newark, Delaware, 19716-2000 302-366-0400 302-368-6474pv-d sMs/XTAomm&tmmam

NO.NO.

d. &0re. TELf. FAXg. B# •h.

e#Barnett Allen M. Dr.) President

143 -

Page 129: ji. —W >fta

: Keith Grayl E (Ms.,)fan Vice President, Operations

@Ec« Hall Robert B. (Dr.)fan Vice President, R & D Director, Si-Film Products

@Ec£ Leach Philip J. (Mr.,)fan Director of Sales

©S;£ Lasswell Patrick G. (Mr.,)fan Manager, Production Engineering

©ELS Mauk Michael Dr.)fan Research Engineer

®ftS Beck James (Mr.,)%n Senior Design Engineer

©BcS, Aschenbrenner Peter (Mr.,)fan Director of Marketing

©EcS Birk mire Robert W. Dr.)fan Manager, Electric Materials, Institute of Energy Conversion,

University of DelawareTel:302-831-6218, Fax:302-831-6226

(ftStttt. S. tofaOJEKiCgKiTiEA)(1 OSi£) )

(£»©»£ttBL&«li;:£&#flI]#*, SMtvliaisefclEA, fcfc'U £®H]£St B®->>zK-y»vixW©SE©i®^li, SUSVX h

BC^hL, EAli¥5) i. SiJfilSIfT# : &L j . SSSigR

® FV-DSMM&<SS52-l>Test and Analysis of a Dispatchable, Commacial Building Photovoltaic-Demand

Side Maiqgement System

^©AB^mmmti-rf Kea>>^f ^©itatistff-p.653, Technical Digest of the International PVSEC-7, Nagoya, Jap at, 1993

AUftf&S->XTA5rSfflLfcSIg-tM K«*eS'>3fi©td>^\©tEffl0»© UtESliEfcnX hfFlitCov^T©*S,

© ABSiti • ^ya-;HI<##52-2>Astro Power Developing Powerful Silicon Cells

—Astro PowerlB is ttB iSSttfiAB'SftfilMI^—Mbncfy, August, 19, 1991, NEW TECHNOLOGY WEEK

20~50AmSE->V 3>AB«#6 (tSS£) (gil 8%U±) ©B/flE*.

<R#52-3>Ham easing the Surfs Energy with Efficient Solar Cells- i%%$ABmmi: i a ABi*^¥-©fiJffl - Strategic Defence Initiative Technology Application Report August 1992

AlGaAs/Si J'ifLtBSM (%$2 7%) ©#B:f|-E*.

144 -

Page 130: ji. —W >fta

<Sfl-52-4>Large Area Silicon-Film™ Solar Cells for Power Applications

mxmm'y V 3p245, Technical Digest of the International PVSEC-7, Nagoya, Japan, 1993

v a t iwtt ®cdi8&„<K 1^52-5>AstioPower Fabricates 675 cm2 Solar Cell, Largest Ever Reduced

—AstroPower 675cm2:fi:SliBiftOS!!fb, Si® A—

PHOTOVOLTAIC Insider's Report, VolXI, No.l 1, November, 1992 15cm x 45cm*ffl«*Hm#t6cDi|i8/|-o #^A170Wt y rr. -;p£ itifflo

<Sf#=t52-6>AstroPower Shipping "Silicon Film™" Modules to PVUSA Projects -AstroPower<OPVUSA^©->U 3 No3, Vol.12, March 1993, Photovoltaic News

T-ti'x-y-'f hy a. -^©tt^E*,,(## : $tmaaX-\tt<£\>tOZ. iPVUSA Office)

<$IFi52-7>Astro Power receives $6.4 million for research -E%^S64075 K;l/6E(S-University of Delaware UpDate, Vol.l 1, N629, April, 1992

x*;Pb 14 3 ¥F=fl 1C 5007: K;P£58So

@<SF52-8>Seffl/<>7 V 7 b-$S

«ts, sesyu3>*niffi, •-tt«, ss• ft m

<KF52-9>Delmarva Power ttPJISPVFtSMCOISTbE* <KS52-10>EnvironmentFriendly Industries Emerge

NCC Business, January, 1993 <R#52-11>LED#877E*<@F52-12>D-*;vfrKIE*

k. @S*« :5. 3

a. : 7* V*-£%Bb. HB9£i : National Renewable Energy Laboratory

c. : Solar Energy Research Facility

(SrSSBR# E%Br£. 3ESBt6H) &EA)d. 1617 Cole Blvd Golden, Colorado 80401e. TEL NO.f. FAX NO.g. B69h.

: 303-3846432 : 303-3846490 : NREUC11 j 6

: Tay'lar Roger W. Mr.,): Reject Manager, FV Applications & Market Development

SBi3nD0-H,

145 -

Page 131: ji. —W >fta

@15; & : Surek Thomas (Ph. D.)SflS : Manager, Photovoltaics Rogram

(3>6£ : Witt C. Edwin Sr., (Ph. D.): Reject Leader

(PVMaTfflS): Wallance Willian L (Ph. D.)

%# : PV Engineering and /^plications Branch

(rvrmwxnmimjimm©&;& : Mrig Lax mi (PE.)

: Senior Engineer & Task Leader

: Stone Jack L (Ph. D.): Technical Director Photovoltaics Rograms

(®s#*'4 (i o&m))(£18W»£l4flq£i5f;i&#;!JD#«,tztzl, s-arassE, ma^vxh^mtttZCbbb, iEAti7$)

i . : & Lj .

® xmm&mi<R#53-1>NREL PV Program: Histay and Highlights

- NRELc&ih 5 xmmmmmmm 6ga-tr-„

<SF153-2>PHOTOVOLTAICS: Ptogtan Overview Fiscal Year 1992 printed 19933)-*mnm7a?r7£.®wi 992^$-

1 9 9 2¥E©SltoSe«6ffl/<>7l/7 K <SR53-3>PHCrTOVOLTAICS: Program Overview Fiscal Year 1993 printed 19942)

-*H®t!!7,nX7AtKEl 9 9 3¥JS- 1 9 93¥gO@ito5EfB6ffl^>71/7 K

<2> PVMaT (yO.aX9 A) B8#<KR53-4>PVMaT A Governmenl/Industiy Partnership for US. Competitiveness printed 1992.7)

-PVMaT KBOStttOtzlbO&lff • mMR<D/*- h X~> 7 7*- PVMa’tC'7V«0«El$B^> 7 > 7 K

<S#53-5>PVMaT Histay aid Current Status - July 1992 printed 19927) -PVMam«$!:#R 1 992¥7fl- 7i-X 10)1^71:. x^-hLfcXny'i7 h<DiHJ)-o

<$$S-53-6>PVMar History and Current Status - October 1993 printed 1993.10) -PVMaTgiSicatt 1 9 9 3¥1 Ofl-

146 -

Page 132: ji. —W >fta

2Bt LT4mmwfviSjL? b(0##(D%%#o<3>UPG M#

<8853-7>Utility Photovoltaic Group My 940202)

<8853-8>Utility Photovoltaic Group Members (940202)

<8853-9>Utility Photovoltaic Group Oiganization (940127)

<K853-LQ>Utility Photovoltaic Group Program Summary (1994.1)

UPGoaSo ® PV:BONUSS5S

<8853-1 l>PV:BONUS - Developing a US. Market of PV in Building -FV:BONUS-®»fflAI»9fcf&S©*OTfi®©IS?S-

© HElifcblM®<8853-12>Brazilian Rural Electrification Pilot Reject Background, Status and Plans

-7'7-»fffltfitft/WD7 F7’n9'i7 HDWe, HttfcfHH- March 16,1994

■fy -jMza iizmmwitnz x z n ©es!S£bj!B8»

<8853-1 3>Interim Qualification Tests and Procedures for Terrestrial Photovoltaic Thin-Film Flat-Plate Modules

NREL/IP-213-3624, April, 1993® -eofifc

<8#53-14>Photovoltaics for Municipal Planners (printed 1993.4)

-<hnwLmmm<ntzih<D±Wi]t5m!s-z7-M.- *n wid*itssemuxsivy b»

<88-53-15>Step into the Future of energy-efficient building design and renewable energy research printed 1993.10)

kf/PKiM- a -S E R F <D71/7 K

<8853-16>Pbotovoltaics Program Plan FY1991-FY1995 printed 1991.10)

9 9 1-1 9 9 5¥$-*A*8:fbG >71/7 b.

<8853-17>PH0T0V(XTAICS:New Opportunities for Utilities printed 1991.7)

Uy b»<8853-18>Photovoltaic FUNDAMENTALS printed 19919)

-AUltfSBcD HU­AI®'SflSroilgKiovvtroilig^/t >71/7 bo

147 -

Page 133: ji. —W >fta

<SE$-53-l9>Question and Answers: Photovoltaics for Regulators printed 1992.4)

*i)tlS«l:-9V»tOQ&A^0/^7 U 7 ho mtoft-Httok. Sill :

5. 4a.b. : Pacific Gas & Electric Companyc . : Research And Development

(mmgpm# mnm&. zm&m *ea)d. GBr

e. TEL NOf. FAX NOg. Sft

: 3400 Crow Canyon Road, Sunset Bldg., San Ration, CA 94583

510-866-5259510-866-5447PVUSA<DmWR&bWnWsX7‘'l*0aI1£&lZ.'O\,*X<D

h.

: Farmer Brian K (Mr.,)!%# : PVUSA Project Manager

<2)Bz£ : Winter Rick (Mr.,): Program Manager, Battery Systems : Whitaker Charles M. (Mr.,): Vice President Engineering, ENDECON

(1 0£i£) )(&#*##& * jb*&« k jn#£. %#mc \mm& t> ea0fcrtfU £ISM£«L WD#V%h#^^

EAtt^K)i. wmftm : * Lj.

(D pvusa

<R#5.4-1 >1992 PVUSA Progress Report -1 9 9 2¥PVUSA»»tt5Mfi£-

PVUSA(D#^#&#o<^#5.4-2>Construchon of the 500kW ac Kerman Photovoltaics Power Plant

-500kW^7-7>±|#^%%y%TA(Dm#&-Power-Gen 93, November 17,1993

hOURKloVi'rEiBbfeliXo<M#5.4-3>Grid-support Photovoltaics: Evaluation of Criteria and Methods to Assess

Empirically the Local and System Benefits to Electric Utility

PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, VOL1,

148 -

Page 134: ji. —W >fta

233-250, 1993pvusa*—Has, Ea«5fe<0«

<Kfi544>PVUSA Keen an Costs “PVUSA Keen an CO n X h —

23rd IEEE PVSC, May 10-14, 1993

»i$9/Wp-5-(Ote(7)#ffl7l>'$334/Wp ttiUf$22/WP) T66.

<KFl5.4-5>Operations andMaintenance at PVUSA: UtilityPerspectiveon the OperationofPV Systems

-pvusAcom^ta?:23id IEEE PVSC, Mty 10-14, 1993

(cov^t Ei$ UfcllSC.<##5.4-6>PVUSA Photovoltaics for Utility Scale Applications

-pvusa

© $S#6->x-rAM#<SS6.4-7>PROGRAM PERSPECTIVE Goal:Reduce Transmission and Distribution Costs for

PG&E-7,d^?A<D#A* B8T: PG&ElC*lt53IES3X hcKBSt-

ttrtSE^o<g^5,4-8>UnLITY SCALE BATTERY DEPLOYMENT

-njjg&mmx'vwmMv&B-tf-c> * y hffli: LZaWmtik'/ZTAViZgli ■ MEESHtC^v^TEiESn

TV>5.<gS5.4-9>TRANSPORTABLE BATTERY SYSTEM ECONOMICS

-^iHUggmi/x-rArosgfti-tf-x*y bmtLxomui^mnvmmiz-oi^xosmmmiL. o

iF(D2MW2Bfr=HS* yxt Afr'$700/kWZ'&mfiX& ZZtZWhfrIZ Ltzc® te±LWxmyt%n->XT&w«

<SF54-1OotolE® -> X T A <7)3/8 T - ? ( 1 )<g$54-lWS32$-> X t" A <7)3/8 T - * (2)

® PV-DSMM#<SF54-12>PHOTOVOLTAICS AS A DEMANDS IDE MANAGEMENT OPTION: BENEFITS OF A UTILITY-CUSTOMER PARTNERSHIP

• m%ntnz£zmk-Worid Energy Engineering Congress, October, 1992

v5cl u-'y ashm&whfrizl. ag&mmm&iz «t s^Asani m hfriz ltv»s. P VUS A*-7 3 X £>£fcfft t LT„

® -5-Offe

149 -

Page 135: ji. —W >fta

O' P

<58145.4-13>R&D Program 1992 Annual Review PG&B:& if7 i< y h

k. sm*m :5. 5 £tiiE5t&t/E69#

a. i?r6B£ : 7.* U #£*Sb. : Maui Electric Company, Ltdc. :

(RfrssiiHW (sbe«, mnmz. $srsii) %ea)d. £9r (ftt) PO Box 398, 210 Kanehaneha Avenue, Kahului, Maui, Hawaii

e. TEL NO.f. FAX NO.g. Efth.

96732-0398(*M h) Kihei, Mali, Hawaii 96732-0398 (*tfc) 808871-2368 (ftt) 8088718350

PVUSAVMfd HOSitbigic.

Hugues Ogier Mr.,)IRP. Administrator, Customer Service Development Sato Ken Mr.JEngineer, Engineering Department

eflOTjeiC-BKiSKTEA)(ES#»?4fey.±(7)»irl4|Sl«i(7))KSlcTEiiE (1 0£iZ) )

%##iz&EAo7cA?UiffEAttf'S)

i. mmisilT# : &Lj. §SZ$m

<SS55-1> (1989.11-1993.12)

5. 6 tBSSft&t/BftlF. ffr&S£ : 7* 'Jtl'tmm■ t£B88> : Hawaii Electric Company, Inc.

c. :

(3f*85««¥ (WHS, 3EBP&W) %EA)d. &m PO Box 2750 Honolulu, Hawaii, 9684(10001e. TEL NO. : 808-543-7070f. FAX NO. : 808-543-7898

g. Eft

h.(Dft£

: Aird3lt5S®#6->Xf A<D5J6gi4tZov»T©jKJi.£»

: Hirata Edwatd Y. Mr.J : Vice Resident, Planning : Nakamura Alva K. Mr.J

150 -

Page 136: ji. —W >fta

: Manager, Transmission & Distribution Planning Departure : Wong Hamish H. (PE.): Senior Planning Engineer

(D£S£i : Nqgata David J. (Mr.,): Electrical Engineer, System Planning Department

©£S£i : Oshiio Paul N. (PE.): Senior Electrical Engineer, System Planning Department

©J££i : Yau Gemini: Electrical designer D, System Planning Department : Seki Arthur (Mr.,): Energy Specialist, Engineering Department

(B)Pc€, : OdaJeun (PE.): Senior Planning Engineer, System Planning Department

(9)f££i : Tokuda Ronald S. (Mr.,): Staff Assistant

(1 o&m)), ®mmiz\tmm& tsea0

fcfc'U #UD#UXh

3S%|3|ff# :&b

<##5.6-1 >Renewables on the Rise

p.17, EPRI JOURNAL, June, 1991

<##5.6-2>On-site Utility Applications for Photovoltaics

p27, EPRI JOURNAL, March, 1991

3% b&ttfD&zi/Z'rAtEW&mm •

<##5.6-3>Electricity from Alternate Energy: A Progress Report from Hawaiian Electric Company

: ^r74Wl&&0'MW®Lt&-<Xm3-*)V*?-<Dmk£2 0 1 0#^TO#AT#^^L^X>71/7 K

<##5.64>Electricity from Sun and Wind: Perspectives and Activities of the EPRI Solar Power Ptogram printed 1991.7)

-xmtmzxznti: efriab^ot rn^7a<deetmm-ABJ:^;l/^r—>71/7 K

©^Oftk<##5.6-5>Hawaiian Electric Industries, Inc. 1992 Annual Report

151

Page 137: ji. —W >fta

-A7>r

<##5.6-6>Energy Tips & Choices: A Guide to ai Energy-Efficient Homefcrinted 1993.07)

(7)@bS£iIlR : /\^7.<D134 K-

k. SSW 6.

AB

2/13 mm 19:00 am

3M3 Washington 19:42 #J#

3/14 l\ED09'»l~>W£ffi

Washington 17:33 am

Philadelphia 18:35 iiJE

3M5 AstroPcwer Inc.,

3/16 Philadelphia 11:50 am

Denver 14:00 mm3/17 NREL

Denver 16:40 titiSB

San Francisco 18:12 m#

3/18 PV-USA Office

3/19 San Francisco 14:10 am

Kabul li 17:32 $iJS

3/20

3/21 PVUSA Mali SiteMali Bectric Co.

Kafulii 17:00 am

Honolulu 17:40 mm3/22 Hawaii Bectric Co.

Hondiiu 13:15 a#

3/23 mm 17:10 IiJS

7. NED07'»

152 -

Page 138: ji. —W >fta

4-@tom35Et4X-7—fZtfrh<DftM¥%> S?)tc^T^-$® h> b<D^m^wtztimmx'i>zzt&a<n

mmzmz',8. AstioPower Inc.

NREL£aUTPVMaT7‘n->'x7 h tc#))nLTVStSitrCWTl&TcISa®* -*-© 1 -OX $>3c Wtc-ecor^^-f tT-f l*mBtltc:NREL^*®S#6M%(04'-C.'«jifS<l:LT@i8

UTv^t^x7^cDi^;i/^-^W^0T^*S)9, SlciiZIc&jfeUTnatmvh HZZtfrhi>M%ll-CSSo &*. T7 7 x7*#C>:o*;V*'-$iMF?M<Dii#fc &SB St; t4&V>*>'4-BH4tol91--£ XtftX^tZo

AsdoPOxwr Inc./^OXiif^ibTtt. 7-f 7-r>7-f 7SS^P> StoSH (miOOkrn) 1:4 9#%^^^. 7v> b7Xt4-x-3-7^5>AMTRAK (*B<9>8t;itffllSi) fcffl

LWilmington ®VCTS U (R2 0km) T'tetT.5 C 2: t;&S0SS]t;PV-DSM'>X7LA(7)I.^$:fi;V< AstroPower*tt6ttft, ST#$ffr*8irE%0fT'CO

*^%m±*t;-7V»TCi77T'f b'T-f. NEDOT'ro^H^fgBfflSaitttDMfSttffS, 1/

8. 1 PV-DSM-vx-rACUKltipaE*->7-rAI4PV:B0NUS7'n x 7 b (93®#®) ©loi LTDelnwa Power & Light

Co. (r^vAvie*#*!:) tAsboPOwer Inc. tn&mmiZX-m.mZiXtzi'Z.T-^X&i* PV:BONUSI4iSWO#|Bl7’D-yx7 h2:LtaET-*50

->77AE$l4*ISa®g*:146kWp, efiSEtBTjttAC batteiy imdule(102#®)$:|ijffl L/i tf-7Sfi31.5kWEilS*25kWhT' b 7 7 71: 4 6#E £ST480VXiTeffi*$tlZ0 7

ffl*^*a»t;iaigLfc*>7'r-Afflfcftt;asW)Sefi^:tiJ*i:Jteb'C20%a±<o«^

H*j£jLfc««tt'J'$*i/7r2>,-C% I4f LXv^. »»*#txmw%<n‘&&fr&fr-itz. *fBil£5|SUT—-7<9£'7'x-;n&J6teO/<*

^-etmEsn. —^ijt:8-7otyx-;i/*:#tf. ^n^55ijr*#t«$nrv>fc. —on-tn- <X>X% $ tilOx 10cm%##,S-C6 9. —7©£-7'x-;K9>-9--f Xit40 x gOcnfSET'ifc 7 fc«,

S©tf-7*y bfflfcv^CfCtfefeTffivHSttfc (*W) X-h^fz^ EBf-<#t4/<^

>iat7)gE$rI@-effK E®-eii3^77(0*i;j:i9 77^*'Sig55tLTv^;Cj:T'$>5„ ^$a®t;-7vx-ai2ara*iii;E*b. t'o

63E«SSt;gc8tLz, )b;k7x-7 3 7t;4 9ffiffl^fit;*7fcfc©iJt»!l$;i'ifco iSSS »©«!®t LXtii/-)We*6»>'. 74Xk.<DZk.Xt>r>tz<,

S&$a#6<7)3 7 b ^'®^©T'GMt;®ffl$nTV^ g«i*ffl/<y x U -(DELC02000) <D®.m*;:f'%.LX'<>2>k.<r>Zt.X$>r>tZo

zsimnmm-fz c t ttsesaffioswatet^meiicfcvvc:

tb»T«Lv^v»-5rkXSl.ro-S$:Efc. ot9. HEt;:4 9SE$!ILfc3ES1g8£fT

<0$a?6t;d3V»X-y-;V7x—>3 7H*'jlff L. S®tfc->47'-77-rA;bi@:h-5,, *f*tLT 14. t4DCOC3 7/<- 7#©*m I: 4 9 #%%©NIEmE£ Ttf. KFUS

< vtzx*mnm<D^.±^.M<Dm<r>ah-o^amxbit

153 -

Page 139: ji. —W >fta

WbE-X.itfMifclftte'T—?OW*>-a£>1tH%:'tib<DC bXir^tz,,s. 2

fiSJICA B. Barnet<t 9 ±##%© 3 X h Eil UKO^T©®;!)^ 9 2000W*T cellT1.4~2$/W. moduleT'2~3W. 's7.Tl*X35-45yW<DS}.mft$>-ot2t, #(:»#{}: I: s.^6fcv^xj3 9, -by s. v?±£smm<DX:mm&£mi$.Lxm®mitzitfr:!>b\,>jj&£?£MUT*33. T3ll4PVMaT7’n->'x X t-©—Hi: LTDOE (13-t^-f) . NREL6>5>+)-d<-h$tL’tv^„

ES-tr;i/<7)#@tl4. -9-/X h k-b±ic»JE®*liei6£l£@L*;2T'*ll)fc£®Er5 f'rfxh'9. Phased UTS "3 $>3„ 08.1Cf©ESe^f» WtC3SB»t)(0llTT^

7 7 ;V*flE)t6©#ieSrSffl UTSitS:}®* S T6C49 ig$mt£@ 5 t> ©T$> 9. &*? to 1:142 X 6ft2© t)©T'ffi* 170WpS tf-BUTV^o

08.1 PVMaT7nyi 0 KAstroPcwer lnc.)(DE:

■5-©fifetCffiB1-^#Sii*ffii:UTLPEfliquid phase epitaxisy)i£K-7V»T©«Sii£l9$:S tt*E. 36B©gB£jE^U*:. C©*@t4Sn#©#mmfl:Si. As#©%S»E#U%e

^T-Btoitf5teS©E6$rffb-e-5S*T'$.9. £.»$$©«)£*, nTfiET£>5 k©T £T- $>3*» KS©$E±K-9-7'X h U- h£BS. t©±l:SnE0

tSSSrESS-ti-. &©i8it$i:T©^SE£5ltffi'tr £1;: 4 9 8#Jtt^U/- h ± tea x ©£®®s£m&i-51,©t-*>s» *ss©«^t^e©«

8. 3 tx7x7*#ix*;l'4r-$BE?ti?r

154 -

Page 140: ji. —W >fta

AstroPows- Inc.tomtO##ll:*9. E?£EIt B tttOElz: 141972¥t\ $ffito(4BtC 10^13i:'

43, tx 7 x 7*^ttl50¥(7)E5Et:W

f- £ i: CO Z £X * o tz 0CuS*®Sfl6to@s6toSltl%I.-ti-Tt)

% o/s0 25x 25cm2'C'2mmt"'7

Sffi!7S>lgJ$$ftT45 9.to-9-'I' XT'10%*SAfc-t^T'fcSoCuInSe2IC-3V»tt4*:xyy$rffifflU^

iESN£(T hemal Evqjoration)T'14%KJl-h<0

&f&tfX’X\>Z£<F)££Xhr>tZ' If- b"-AI:Z3 CdTelC "7V>T I4RF&V DCX/-?-y 7 9 >t/ 1C <fc 9 Kit VX V>5

£<DX£X&-itz, #IC, A K5 7A14 U T S4iT V > 3 ©T*E%5r 168E

89tCiS»TVi59. NRELf >/<-$PM-toA'-;l/x>l:*9, x

>/<-^#A^BK#Xl 5~2 054®

%&&&. 2 3r^6iIK*llx4.;w^-E %86K»ifr$Sn, 8Hf3liS»T-$>9, 6*Rmz !4E%#^*AINRELt0jltl »>e>§|o@U-C< SittOXicffex*:,,

Ji', A?,Grc<,e£(y

4f4

01) LPE lk*>€l£- a

/

9Et*:T't47 * —» - 7 9 X t -ffitOESK#^ I r3 @ 0X tX V > •£ tz ttX& -3 fc„afW 5*ES607 7 x -t t'x4, *!!*%$'> Xx

AtOBiffgSt, UTtoe*StCovvtlftiJJfcSttfco 1tKSW^C7)#|S|7'D'yx9 h**BS%, fSE54t>Bfle>»>t:-e CDS|S]IC’>7 h 0-tv>-5itDEP&££ltfco9. 1 -tr;i'fflfc

a#53-l(:m-7wXE%^Sl44:, 6-a<0-t;HCOV»-aK5EB8*Sltfc„ SS#|Wl7‘nyx7 h<kLTS-l§iS->U 3 > C80—’82) , y-t^V7 7 X -> 9 n >('84~

'87, '87-90, 90—) . 3MSHWSC86-89, 90-). PVMaT(91~W69. f»(0*-C.'(4K

SSE^-Otcaff0-70*9. E$-t;vBB%<0SlM4E< fc-oTn*.<0<0B8®T*liUniveeity center-of-excellence pmgamlZZ 9x77x7TC#x.f,;l/f—

8l 81 SF^filr (Institute of Energy Conversion, Uni vereity of Deraware)i: v 3 — y 7 IFiAl5? (Georgia Institute of Technology)K@5t69£S^t9iHtt4:fTo"tv>£ i:to£. )f049-D;te.

7e;i/7 7X*R#m%l:-7V^Xl410%aTto%$Xt^ifNft4i%9t:m#69t:E4U4s?etoc tx*9. =¥tnmt>5v-y-*73>

^r*es**nato<o$i!is • M.mzm*.w-3tzz£K~y\,>xm&zj>x$>itz.

b< kmc itxa-3%.

155 -

Page 141: ji. —W >fta

tikOT/U XkLXCd-

9, KTSiftfflStti:-7

X h ft ti fritz, #(:$S1$K-ov^T*»(0Et:

ft%&mfrh%.tzk£<D tint Lt©Iitti;*BLTv-5

^5R©*®ef6©3X hfl.il LztC-^V^T 4-5lv3Xh ©<E"h>'ig^ri> i: & S Mfliirifl. £ ft* £ k fr bttZ b friD&Wi&lX'l'—7 X— ;l/©<£'-®14£!® VX Ho tz,9. 2 PVMaT (*!!S®*vx--.jPS}ffiEtotD3ES7,nX7.A) M#

PVMaTIPV Manufacturing technology) I4tK Si©8$ #"7l CO fiAtoiBt Iff ■ hft-->77"T'$>9. &<D3r3(D7i-X»^fiEl)fi-3Tvi5<, m 1 7x—XlilHEtoffig, #2 7x-Xti$!ffi:tfSBW<D®S©<S8;. ^3 7x-Xl4^->'i-;Haifit;*ii<D5t#W«:S

#1 7x—Xli 1 9 9 im(:%TL. m2 7x-X©4t,mi 7x-X#*nA#©2Aa ■5:Of6®&aiKJ:-E>2B©X7-h. SS3 7x-Xt,M66§ft-CH*<>

^SroSiffljkEk^toT-vfcES^tiTIC^f^'. @F=gi:.Bkn57,D-yi7 ht)*5>o 4-#: 3 ¥Ffl-C600~l,00075 Ktl/Sr&A^ET'* *,♦Solarex Cotporation (Phase 2A)

Lag e-Ate a, Triple-Junction, Amotphous Silicon (a-Si) Alloy Production Scale-Up

(Am#3l#^7fAt;P0)B8%)+h'fX056m2BL±T'. $$&©$fj$10%. 75%©iKnEMML 10MW/yr<O$jSEET'E«$ll.

05/W£$1.14/W£T*ffiiS6f *» 3¥H-@©1¥B<,♦AstroPower, Incotporated (phase 2A)

Siliconf ilm Photovoltaic Manufacturing technology

('> U 3 >»MAHEffi®!ifiS*)i/V 3>##9x/\Km. -tr;WbXn-trx©BtA. f-ea^*>'x-;HHiia«©BBf6K J:

1. 3^#l:th/XU2m2fl70W^ti*©*HS#l6;ex- jl/£ 19MW/yrT'4SI"5Ihffl.<rtU;ovnTtt7®©AstioPOv«rT'PffltaATVn2)« >

♦Siemens Solar Industries (Phase 2A)Photovoltaic CznchralsldCz) Silicon Manufacturing Technology Improvement

(cz-> <j 3 xz z 3Cz->V 3>tf)ffigl6]±, 7x/\%i)aiLR% (V'f-VV-) ©|S]±. -fr;HI:Sto©tSa,

e -yX -iHtiSStif© BSML ?:4: *) Ki#3 % h e6. 3¥M©1¥So

♦ENIECH, Incorporated (Phase 2A)Photovoltaic Manufacturing Technology Improvements for ENTECHs Concentrator Module

Photovoltaic Module Experience Curve1970 $100/W

1975 $30/W

1980 S12/W

1985 S6.75/W1992 $5/W

1995 $3/W

Projected

2000 < $2/Wi i i 11

Cumulative production (MW)

09.1 AUSittova-A/CoX hgBtilS (*^5.3-1)

156 -

Page 142: ji. —W >fta

(ENTEom^mt y x )*yx-;pa5»IC^v»T©Ejg£*©ffl±^ti:j: 9, ItBET^iaOMW/yrcO^gESA1

2¥tf-e©i¥io (#m%#©*©z ?)♦Mobil Solar Enagy Corporation (Phase 2A)

Thin EdgeDefined FilmFed Growth (EFG) Octagon

(8M17 -yESSESSSf#)3 > f x - X $lJ##©EmK#%A 1C <£ >9 E6©400/r mJ¥© t,©6200±50/zmtc L, 1

5>rfitCl 2&©yx/\£S!3T5^$. 3fM"B©lf B.♦Utility Power Group (Phase 2A)

Amoiphous Silicon Photovoltaic Manufacturing Technology

(t^b>7 7X->V3 y*BSto$!ifiSffi)/<y7—y>y©i*^(c<t 5 3x h y 7 > <t me#*© 7 7 t-, 3¥thB«

♦Energy Conversion Devices, Incorporated (phase 2A)Continuous Roll-toAoll Amoiphous Silicon Photovoltaic Manufacturing Technology (n-JU7-o-;na57;E;lr777->U 3

3i^7?A7t;P7 7 7y U 3 +h-f X0.3mx 1.22m"C$%#©%$11%, 3¥H-B©1¥B. ®*1’m#D-;l/7-D-;H;etSlOOMW/yr7'7>b©M%'C,

♦Spire Corporation (Phase 3A)Automated Solar Cell Assembly Tean Process Research

ess-y V 3>*BStojeyx-;v©EilKffiBB%. 200/um@$©7xAC0tiSl'3Evo 2

¥IH@©1*FB,♦Springbom Laboratories (Phase 3A)

Photovoltaic Manufacturing Technology(*Hm?6EiSSffiB8%)

EVAfethylene vinyl acetate)<y^ V x —A/CO 3591^x7) SHE i:36ft©lSHiB.5t. ic £fi8

3¥mei©l*FB»(ffi : -*-lcd3V»-CtttoffitCEVA©S$ERg@Ai$>»). EBj: U"aWiBIC<t5%

ft. 2)ffe©WtS!S#Jlc«t5ie*. 3)*? 17#7 H: J:5 fc Wf b,$E6li^©J: -5-A-^e>EELfc, *3feXliiiS(ci

±E©ENTEClto^v^ e>£)fcB©BBi: ti:#*e>nr.

B*y-*-ommmx-iDffimznnLx^z =mgi4*?$>5„)9. 3 PV:BONUS (Building Opportunities in US. for Phcrtovoltaics)Etoffl*H)li%SyXT"LfcM%7’D yX y h-Ci>1. 5¥fffllc25007?

h';P©^$T-$>n. *t©Jtl3JE*T-*5o mr©tit&7’nyx7 h *?$,£„♦Delmalva Power & Light

Dispatchable PV

PV ti v <7. 1#1S>♦Energy Conversion Devices

Roofing ShinglesUT©*H®f6©M%.

157 -

Page 143: ji. —W >fta

♦Solar Design Associates sc modules

't en-©s6$oisi±„♦Advanced Photovoltaic Systems

Building facades

l/-COf81;ev''a-^©M560♦FIRST. Inc.

Manufactured homes

9. 4 HEtSAntft&ffomufzxym&'Oh', icas&fcfr-y-cus. i?*i47'yy;K

f a (DC^6iSff4’<D7,D-yx^h0mtLX7’7-y^omt3i<t. 35oe<DS<t (so-) t’d

y'x^ hi:400ffi:12<7)^R(7)m («<T) 7’nyx? h j^aBSWe* 0. ivtcm

I0)^$T*$)5o 5F>IC5 *9r-C5$3ygZi'ttr-»</N^7'U y K->XfAi:7V>Tt)IRf$-e$> 5 t © c tx$>-n fc.9. 5 ^©(6

1994~1999¥*T-<D@ffim©Bl*lSS(07'nyx^ h^UT, h#

V-7-d<>7’^e^fflT'15MWp. * t> 5)*>'EH?ifi6i)T:35MWPWAfPV-DSM-7X -r A1: OUT14tt*®6£ *TT 56<0 tf'PHtAZtzZv t^^CtX&itz, X-Mt LT14. 1994¥»>'1007: K;P, 1995¥*' 1000-18007! KtPi:Je»:tiiDS-e-5 t<DC tX’&^tz, *©(61:8^*7^3007! V^XWW m<T)i/Xy-^iftZ^lZbOZtXtbitZ'1 0. PVUSA3f7-( X

■9->77>->X3S$»>6l46li)VlCJ:'9 5 05NSJS (ftl 0 0 km) M‘51fV7t7 lCPVUSA©tf74 Xj5>'*>$.

o ftmmo&m i trxs> 5.liUtolC, S:fr3: 9S*43MtitS£0F3M©&Bo'lt, *l»JfeJ8*ffll&*B?6©|sM*7ji£.

NEDO l:j3l75SB#6©M%t*Si. U Ky XX7n-«te©gSfitt;Ki:-7V>TiftB/!£fTv». WT©#«a»cov»XttltSltfc.10.1 PVUSA©#^

PVUSAttBt t <7>t$to 1:3:0 eA£ttia6S©*Eft%®y XrAtW® • ^ECET"5 t>©T'$>5<, 2 "7©?E5S© M5E $:(?•:> TV^Sp —7liBnerghgMxlules Technob- gies<EMTs)T$> 0, i;!U420kWgJt©7’ U-f ©M%T<fc 0, (6Al4Utility Scale(US)system T'200~500kW©36ffl vXtAT'SS,

1987^3: Or-tfXt-f h ICtEMT-KOBE^MteSdi. T-^X-^-f HCIiSSEMT-2. EMT-3*3:tmS-l^'«S:SnTVk5. $(61:14 7 y t A re;p 7 r X*nsf6ic 3:5EMT-1 -7 -f7 7<oemt-2**vepco (a—y-rsTiMt) . lttSdfc^^yous^-x^ys*3:UrNYSERDA (-x-3-7(flx*;i/:F-E%BB%tSKI) £©4tiwii:3:0*&$ftTv>SpPG&Ed)^i:#gf6y y o T)-3&a 6 w-7

tz, COttltT-tZXV't hTfcgfflSttTViT. *-?>+)-/ H4f^<TC©*3((:Z

158 -

Page 144: ji. —W >fta

sit mtwvc tX'&nt;,, £ fUf*©^§Uc X 9 2-3©->V

lttserst.©T4, /<$-;!/If

$>*<,PVUSAg <*

T-tya-;H*gff«©@ieife ft£8@LTu S o Standard Test Condition

■ 1991 Q 1992

On-peak hours indude 786 to ' through October, from noon to

12 hours on weekdays in May pm.

?Out of service from late June 1991 until July 1992

Figure 4-8PVUSA Davis EMT Array Capacity Factors During PG&Es Summer On-Peak Hours

6tq -eiism 010.11(*#5.4-1,10)©JSfflttJgig&Sfrfe-Cfe-So t©##A(4lfPVUSA Test Condition (PTOit^U

B*t&ftl000W/m2, ES20X3. @i$lnVs"e$>-5. X HHIECfiEt§XE$S fit V> 5NOCT(D&frt Bet^ffSOOW/m2)*'®^S t£»XhS C t

%©#*mv j: 6 o %tzt>miowm), Lxm&niz&wn

C©ra^lCOV^TI4ft«T'i$^S„10. 2 «±miKl:j3HS##y%TA(\CBattety)

PG&E©Ht HI ill IS Shingle Springs Peak Load Reduction

fiXlib — f'Jl'tL T©S*6©Sgll 1980¥-ftJ: 9 I5tf- %OiiM&LXg Tv»5?6i, 1^-^#

< &9o-o £>£« Mfl:K©#v^

If. E©£S8ftW©if* (010.2)

V

*5o *©*t®fcL tiSSStoic f 5

2MW/2Hr Battery System 08/02/93

: 1.69 MW: ! ;

MW 3 X

0 1 2 1 « 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hours

STORAGE TECHNOLOGIES US80 PROJECT

f-©#l (*#5.4-7)

bfflSSte^XT^toBB^fr-oTvi*£©c£T-£>r>/•-:<>9. B^lfSlIf2MWX'2 1:

®ffl1"-5i6SS#tklfB«lSfflT-$>9. *©ffiffll!fflIfDOD8 0 % 1: V> -5 #

159 -

Page 145: ji. —W >fta

I

cn0

1

ri 4»8«si- >. id * « $

• ¥ Or 5 ri VPS 4 S Tt 5+ j3Sr f( ° K %-k X Or rt« St 9$R F d 3 BE n

8* W Mf *t<5A

# flta m fifW >. 9*d<r d04 $

4 <'>4

33-

d ft

0r>

Si

ft flu 8 or k $ d ^» V R

ti-f»— */*Or

/v ^ <>4 Si S3 # f* ° $> rH

1 ffl S r04 a QV -& rH vl% d * ft r H& ft 0* {Ji* M »•w # » q: s y

8 > ft or ^ l m 36 st n"I

m> »$

S q# y d % B V

>4d S' St > 04 0° a

d a' OVSB y y d

TPH 04 8 8

<t a \j n 5 - nun ®I 94 H St Co vj* y BK 1*1

r^VdioRvliS q: d >4 ° y m- r 3 Ml

8 d w5 St yd ^

<>4 ee yi° y Si

^ T yH X X hdw 8 4 <

S t^ ^ w St M, 5? >

m -9+ <- % 04 >4 9 94 2-0Ny ti- % ti* H M dV fV 3l at m S= # atmi m 3 8 m f* VllflnW cg>§> 3 3 # » fc <r Mrr 3 d a d ° Z"N S.fffs9%m

04%

<r

0*d94 l

rr7 tji*

w$

Si

M' ft X./• 8 V S JSf

» Or 4 8 % 4 £8 3<- 8 Or V

X. S' vj f i mlw 3 8 i> X 9t hSOr «8 3 & T d 0 e>* Ss

M <r # % SI- y v-z/X 0 fi 3 t—* 04 ttt>s <r » h- 8 ft pha A 8 Xy Or 94d 94 0 r> V d ybo $ d 5 Si SI- xl

<r <r fi 1> 04 Vy (Y A ft o X$ 8 o H T H& a ft 9 d 33 #

?1

% 8 I s

I I

I|I

l I

t I

Efficiency (%)

(—* m □ Si Xr 8 3*t—* Mi s M X.Zo 1 m o 94 1 ft »

8 fi p^ V Vr 9 rr. V Or dhd m m » y fi 8 CO 1 94 d 4< at >4 BH » Xf 9 si- WC pg?E

dra (V Xi vX Hh m y 0 «-

CZ) » w- #8

Mi y &■> 8 f d d 0 8 ° 84 fi di iH 8% V £ AS ft d

ak 94 o m S >4 fi StXK'

# my

r> $ rd Q

S' m 9d

r x3

>4 V -B- 8 ✓X m fi x3t Mi 4* roS' H y u>

raU tfr 04 8 oV y “remA 9 » it o% d P» 04 % fi #> IHim St- to-

Q* B 8 Pti 94V Htnm v5 K' an r> <r d mav y ' >4 x3

<T\ A 5 Mi Hit 8y S' ay I fi 8 #d r^- y 8 0<r a* 8 # M 8 d fi p^A m X rK cffl hr K 44r< V 94 xjv 9 g fH}Or B X>-, y # a 9v" r f i r% an 1 9 * d 9^ d% m Vr >4 5b <r 04# » pV- 9 S' 94 A Or 0% 8 » 9 t> 94 Or 8 94VS3- K Pfi FT W Or 8 ft x36 # r 3H ^ ft Or t—1y y d 7 m Or. Or d O° g <r IB # -M d & #

fi O* an fi si- 0 53F8m ° m 0 9 0 Tt EEm JJS & <r Or y ° 4-r % d e-ffl y- 4< 04d 94 3* ' 8<r t—* 8 y nn- 8 <-04 m iw y S A A

8 M, a # Or

Page 146: ji. —W >fta

I

I

S S' m ^ ® a M S! n E s 31 ^ W) 3 t* S i¥ (f i » ' Ma#t*^^8#R04

dvlEi»^nb!-dQtriO I a5^/«gF + cffl» ^ a % a d - qi i# # t A ' <» i$ a ■ at s $*«»II*»n;>Oi*o<dS:r*»' S? 0. Inn c.ti-9-citii | sap-tfinP$3xi«iZ«lq;S' » B H> e* d $ Xf a ° o. 0SSx SMJti' nt- U6 o»nss^-^eeibi (vT^as^Qo^x-^bt0

i:d53MS09S»tr

c fY V nX.X tND A -fit r -X xjXI 5S & d ft XX X IS a. 4^ 0 t—‘om % % 0 <r 8y -X 94 c rA 3 A 53-tt> m d 'V S 94 OXf¥ y l

ft}H VT

0^ V S3 w> t—» -X g d# d i—* X #&94

*<* ft9B

mg

w#nS

aOk

4 ft 4 M urrr yX Or 9-r * 94IND d

V ft o* m yj <rT 9-r ft c 5} A3i & E wxj °a y d< r- X

M m % y \_x 4

Or vF K\3 50 M- w Pi 33* r IB my d g

m 0< <r n © 94& A m SvT* ft rv V94 rv r n -Xm? 53- d 3 3S i <T ft* a# J$n A yft d ° dt 94d y 4t—• # i—* Acn ° St 0 d

ft 3 Pi$ y 4? S SSJft 94 94 r dd -fit i—‘ -X S*

3 Sr * v5» EL* i—• 'd St §> 98 N

Page 147: ji. —W >fta

t=T

1. ###

* * * * - * * * * - witm

2. Egmsm

T y V * .^y7?y>/%3 a tl a 1994 ASME/JSME/JSES International

Solar Energy Conferenced Hi # a i * d * H x * ;i, *'- © $f 3E §f| ^ £ ff o T l'

3.

m*&s(zmKmmmf

4. #9S%9fW!

19 94^3^ 23 8 - 1994^3^ 318

162

Page 148: ji. —W >fta

5. asBgts«tcxs$eiM

m & M*t& u r=i # n § to

¥J$6*3A23B B* *C»(j£EB)

SEC ti 6f%iii8iMac/z Dfyf n Df'/f n

3£24B * Dfyf IfX 7W *-* 7K i-t ❖

3A25B * ❖ r/f-f ❖

3J326B ❖ Jltl'' lH tmma f/77'/yX3

o * 19944p0Sti:l8x*

3A30B * rmyni <1*76

3A31B Bz& XA(J$B)

163 -

Page 149: ji. —W >fta

6. 3S$flg

6 . 1 * V 7 * w ■=• (California State Polytechnic University)

c © * ¥ 8c It o x r y -if vk x o * ,c,>i6j6> 6 $ icSt?i6t30SR- -v A W tl- tv c $ Ox *

-v y v< x It El 1

Bid. No. 79 K V' S Chris McDonald* SP*iJtl, *3* ©BUR tf*IS x 4- vv *' - ©Bf

£»«©£¥*??« 7 *„ £ffl*¥it* y 7 * vi/r-r (Hitfo-lT, «*, SEx

is, I?, mma^-x t##x *?vp.>x P5yg®(»t:¥aiPi

fciffiotl'J, *ffli*vl/*'-<D8f%ltl993^6i6Et:KS«ISnt:8® - i *

W 4>* f - (The Center for Regenerat ive Studies, # # 8# 1 #M )

Tff ti t>tv S C b K ti o fto C O-b y 9 — ? lt0t#©3S® £&£? § S «t 5 ICx KM

KK-,fcS*^B?7krlfeli:*»x *fcx tg*SB4 L *««!=.««* S i £ k l£x *

18 x * w 4-- - £ spj fl§ * S ti » Cx vt v y ^ yy - 5SEK.k

AISEi&x *E###x ®*x vM <yy-58*RtfW«

gEEto®V'»-f»vv-(b6@5c:i:4'Ee<)CBF%6ffi:tifctt57-ST*$o

SSOSSilt, ESI. 5l© T VP i #®$ (Sjf$0. 75~ 0. 77) ©K»®£ 24801

V'x t - h v< /f T’S x^-U y y x y y y ( ffi*5~7KIO 1= J: S 38 ® 58 41 »? 5S R9 ®i B

tiSiE Lx ttfFSElStfBliteStitiiCSTifcotio

■ty^-oiiai Ltx @^6Mtl@59: s h.x AT©##Ht8*&$a?&0x

ggji&stifctc^Tiofco @#iit#&t©*#m 6 L Tx * i y -x *4J63S:(8$x

1S1$$) t LTB® Sh.x £ffi»**S3l®lti £*fcBSHfc taj® £*£? S S *>©f?

EES£^$tH IT V S = C ® * y ^ - Itl993^fn 6 19 96^©4^@T?^fiffl#t45)? K

vPBt±T®E9:Sh.S^$t?*8o

6. 2 ES 414 * * vv 4^ — Bf USE (National Renewable Energy Laboratory)

f y /< - x J-vl r- y c* s H* Bti 4 vi/+'-5f 3S§r£S5SSI t ti„ f y /< - It A

□ ISOTiATx S8t 5, 280 feetKfcOx " Mile High City” £ t> B? It tl T V So t tix

t' y >■•'- It o •, 4- - iliK©$15 mile K& 9x 7 X V h OH < oi>©iSgS 1 5 C

t *«? g 4 NTT* So 91® Itx *1 Pfl ® »*8fc o fc © 15 inchTx B M B It f ^

310 h ? * So -e ® ft »x X K it * * ic * 6- J? ti ti it tv it ti 6 ti v a £• h »$ 4> ti v->0 L*>lx A%? t 9 ti * &x ^Itfi8?x 7 ? t @#K?#ltx l~2fl ? t, iliE

i> £, V'fi ( C tv * Chinook findst V' 5 ) < £x # ® <t -5 ti IS % It ti S ■€• o T

& So

COJt^ti§l®*ftK*5v:®PISEItS®lx 1974*1*11* * vvf -

© t> <£ Tgifi S tlx 1977*P7t! £ L TS»*Mi& t tio f ©%x 1991*19.! Kx

Ox C© J: 5 tigfitCEEStVx itwt-fOflSTT?, i -v K

0 * X h W^0r©8a© t> £ TiS * tVT V' So © X f , 7 lt®#«50A?x 199

4^$©5f%T-*lt ZttHWTf KWT * So

£$tiBf%^ff It (##8# 2 E®) x

1) *181 * vi/*-- (E®*#b±S8:B®PVy x t an #Rtx S$x ESfflx affifflti

164 -

Page 150: ji. —W >fta

£0«i2;i'ffi&fc*flI'e*B*»*»0MI8*ffi.'x ^ % FgM&a

B9f%£frti: -? T VBo ASM tco vr ttx * 7 - '* 7 tf 7 7* 4 iz sa;xR«tttoa0*»*k»«©Wft ■ JRWtt £x T^f-fAo *y x t a&£&tt509F$&?Ttt o T i' So )

2 ) m#

3 ) tK^J4) mm5 ) ##% * *4-'-6) %.mmn7 > mm®10 v •* >r * ;v<b-e £ -Bo

6. 3 1994 ASME/JSME/JSES International Solar Energy ConferenceB$#### ( JSME) ^ B AA%x 4 ( JSES) &W,m L T 7 / V * toft

(ASME) *Hx***-«F3 (SED) #£{ilhBARgx*yV4---BI&£§ilcSflnL y^o ^ ^ ^ xT0ii:$Sfestin St. Francis HotelTgflfi S ttfco miB tcliT > V * 0^^9f%S<D^«i>0Young Engineers Forum»*&3tlS ttx t ti. A® x^P4-'-0^iiH (CASME0#6^@BP9^#0##m#^^m ( Industrial Power

Conf. ) t> l*Hi £ titleARgx * ji#-tix B A$j06fi;£7ft££t/83ft £ nt0 ##

ii 2^tc gljftx 18sessionTfif tt t>tlt: KK & * tl £ K) 'P U 0

#fln#tefal06£ ( 29B (C B ASME$#^T 0#%^##%) B * £> ft 10£

#jdl^o mguT ^ T / y. ^.y >-r y« ^©-®B A5> ARBllTtfe *> X T,^4f,^:Sffl0tlS§0 Solar Ground Test Demonst rationx A R#«c<*B3#m) o

K fcx 2 9 Bn 12B# <* 9 §8fril*:Lunchen0&±Tx £ Xl! © % S ** * 9x NEDO0#R9f^^%?^%t>4LT^BH#S#0#^” Solar Refrigeration System us ing Hydrogen-Absorbing Alloy” ^8f Ito

7. fc^Di:

5. 0 BSStCifc B «k 7 ICx SECttx IF > 7* A T li T # 4 V F * V bffiMtltZ &^ tztz Z C ^ *©*:*>x $ ;v4---9f%Bfrfc:$!E Ltfi®** CiHfco

B#6x y F / y F^^BCtii^mT^B^x L fz* ') y * Guest Logic£EA U FAX’? £ ft If x

StTi biB^x *v¥ 4 7 9f#ar4>m:&#4= x * 9f%^0 «k 5CRiltf (DOD) ^x^v+'-f (DOE) 0##09f^Bif&m#yBi#^x #rJ£BKB 0 (cm~2»a# & B 6 0a$&&5#to a^S^E%efrtc IfSflT t> S6icAtLBb'^^--fey^-*$*B^0C<k’Cx ^-C^K^tBCii Lt0

%r,Tx r > «; * tz*>#baix

165 -

Page 151: ji. —W >fta

y h * v h a c t »$£.$•?* a c t »!*>»• tz„ $ fiu *ISx*;v4---®E%i6S®m¥StXHl66»K#flDLT> ry y*itSBI6>

TSv*8@cHoTi6iltcP%6ji»Ti'a C <k #*>*» o fc„ fc#B t li * ® #& % S y x -r- a ® 9f % gg % it *r » fc ft r v ti v »>\ r y y » -c it a e ® *

Kffi V'SEGST-5 y h *?S*I*T * a DOET 11 y 7 - £'< 7 * y f> 4 y » S% &toffiE4-ffiv/:5SK«t5*lll!6%S-yx x a ® gg %»>'$$ T t> tt± m fi It T 6 < „

£ ffiStt £ Lt*»intl'5CiKll*£> L fc„tite. R-<-ye*SBI L *«Mffl2|j|£}g« Lfto

166 -

Page 152: ji. —W >fta

Ca\

'Poi

v/ Uvt

i ver

sSENT BY:Cal Poly. Pomona ; 3-11-94 ; 4:16PM ; CTR, H05P, MGMT, -* 0298 58 57871# 4

Pled

SB m

ee^r

V\ex

iz~,

Tnar

tkyo

ui

Page 153: ji. —W >fta

1. tij§E B 6!i(DOE) KU^A'f-r-v K V - 7 -> X t Att$-KRg U x *I@t6%

s. *#«#6$cMt-5H-ex s%ttzHWicovTo*ms#x mmz'aio ttz. *ii$¥Si (NASA) £toR9U

m*'t>Z7 <) - 77'r-to0iKicoVTmfTAfcti'6fT'5 =

2. iJBiDfeRCKMffl

¥S86^3B 1 8 B~¥l$6#3fl 2 8 H (11BIH)

3.

*B88ER§%S# * HI R £(Bt) «A¥B$ie •> xt A8f%M%i8#

n-eeasB* /j\ # m

4. isiyjfc&EXfTAfc-tmsn(1) U S E F*He«*»»3fftirrA6-ti- (3J319B)

AS© ttiSSx 4r 7 a - A-KCFNASAtofyx-y y ^ - ;UX fTAA-ti-SB •VT$8B&tXfTAfr-ti-S-ffi fco

(2) J-A-(f 7 K V — 7 X t A t£ (United Solar Systems Corp.) (3fl 2 1 B)1100 West Maple Road Troy, MI 48048 TEL:313-362-4170 FAX:313-362-3892

BK# Mr. Subhendu Cuba, Ph. D (Vice President, Research and Technology) Mr.Jeffrey Yang, Ph. D (Drector, Research and Development)

S # NEDO : *1IIS*X USEF :

UNI-SOLAR A^nyRO^SSflA-^-X

United Solar Systems Corp. (USSC) liEnergy Conversion Devices, Inc.(ECD) t B*04-t J >iOA#AttT-1990BKI§32;S tlfc. Al - •> + iD^-XT-liJB-rSfifeOM^S-ffoTl'-So i ->»'>W-r h dA H$fl.©

h EM1 IC*tt£S£* V 7 * + 1 2 0 A©fi£**T«lsSSftrV5„ 1995# 4fllcfSffl®T'$T-^'- - h-o.-xic 1 § tan v i®7iD77A->')3 y j -;u;&«iscf3"e465o

169 -

Page 154: ji. —W >fta

&%.1M 1 8 BICx U S S Ci<7^*77X^ V 3 7*B#*/<*VG©xf--7'

wiewio. ;o:iatlx #*±l@@#/<*;Gic J: S@3 x hC37-7

•f )IK-X 6 ti S i>®T-*5 i7 + 7 7X# tlfco

LfcDr.Guha < tlTz,

BUS LfcDr. Guha (i*©ISI£© 4>*i <£ -5 A$l7?;fe So Dr. Guha IcXttlfgSg L7 * VG 7 7 X 7 V 3 -7 a -vuiffiux lOfESSE*

SilSfiSfcffltSD 1 0. 2%©%%%f Idl 0 0 <miH©JEJHS*S!« (3# H±®B#MR*i:fflS) Tf#5nfcfit*J. tt*®tOJISeBT?®«i^lil 1. 8

0 O^HHIHl-SLtl 0. 2 %©im$W;6<» b ttTrv 3„ a

K(i 9 0°C — 4 OTOfiKBMScin'TfTfcfiTfc'&B^tt©** t>©t? 10# Blif t 7 7r-r tiitfflfib 0 2 0#HliffifflW*6i®c iT*«0

u s s c L ;i/t 7 ^. - ;G® 17 -7 0#%iimm©^i@^Si:<&5o USSCTliZf G 7XX9L-VG©*B8@®±IC7;e;G7 7 X 7 V 3 >K6BeSLTV5„ 1 4inXl/2mile x5/10001n t ©Xx 7 GX Xf - A- 7 - 1 S18WC, 3 »9 7 xA^iClT-x # 7 7 3 7 7 7 7 izM% L 3 @©*BBt66 -SlcSSt-5 t)©T-*5= 5 Oin/minrnxf- KTSSigT'S 5„ ingle*©®#

S C T'i fc ( 1 □ -f le* o fc©(i5 *'5 h U -) „* 7^-;G©S!#liy #73©x7 7 7^-lc*SXJ*Tfi:^Tl'5 £©C i„ /

*73©I#(i£< 1 S/Hr (*BI±10$/Hr) 6T<tV' if o TV'fc„ /<*VGggMA<X7 7 GXXf-/GT-^5 C 6 (± 7 7 * 7 t' U 7 7 »<*So

SB©BffiC®#» 5 C. £i<ttJfcx $7:x *#ift7!©S*gl;:ie 58 |glc-e©-9- 77,;G4Sti-T < titzo

[3X1 tcoi'T]

Dr. Guha ©®MffiTEI:$f o• 3#*?i©e*#t^S«li 9 6*7 1/kWH T-tb->tZo •affix A V 7 * /Gx7T-©J#£

SIS:#ffi= $ 7/W (e7zL-;G+7 7/<-? + 7 77 ') 7 cnr«7)#$§#«li2 5*7 1/klH 7?* So

• #$x Xi-y + 73 (S&tijTmjl© B P.BIB 7 Hr/day) Trlietss«= $ 2. 5 o/vrtutui

9*71 /k*H 6T# So °r*g7r*S 63|xS 6©C i0• at*7?©*- -*> 11±

i o y *'w©set-B®#« = $ 5/W (t 7 i-A+7 G'? - H 77 + ') 7 7'#&A6') %+]#*&## 18*7 l/k*H T-*So

170 -

Page 155: ji. —W >fta

£l±x Dr.Cuha tt§{tlC^£T? «J - > x* 5*»*7fejpJfflO|?3fett«:ifci#S0^ ^DDDO^^LT<tlfco

C Dri<i£< T'Dr.Guha ©®tf £ I'fc J; $ EH L fcc

(3) if- — y 3 >/< — :J g > -f '<4 XU. (Energy Conversion Devices, Inc. )1675 West Maple Road Troy, MI 48084 TEL: 313-280-1900 FAX:313-280-1456

Mr. Stanford R. Ovshinsky (President)Mrs.Iris M. Ovshinsky (Vice President)Mr.Michael A. Fetcenko (Vice President), Ovonic Battery Company Mr. Paul R. Gifford, Ph. D. (Director), Ovonic Battery Company

^ Jj NEDO : 4»JHSfi, USEF :OVONIC HYDRIDE BATTERYS

USSCODr.Guha *<*g^ LX < *U -Htclfify] L/Co Energy Conversion Devices, Inc. (i 7 ^6 71/7 T Mr. Stanford R. Ovshinsky 1C Atib 6 0& -o tz0 USSC BE JS CD Ovonic Battery Company4-'^^O—‘y ^

(NiMH) S^it LTV5 chS-9 zlt< tif-Co

% v r'jiLOT'i^ GMttt'<v f- ')m&<Dtztb(D&#£:ft%WL\LtZ>Zt\zte~>tzt (DZfZ&Zo Mr.Giffordri<p*ffl£f£BJLT< tlfcMfttf-t 9 6 0^0SW^iag»$itt5i0C4n-Bo hiET-titiV

? Ttttt < tt5* # v V*n<tpi:«i;:saE®< %a

<bSi:TU5 <b S-^Tvy-Co 5 >x x bT'lttrv U > £ £ £ < <Lf y 0x y f ;!/*#/< y 7 V te—y >r )l • ij V l au ^ A/< 'yf'JCio X

5 koT'tfv u >tcEEt-5i>cD\zt&z> tmmzfttzoUS££f*3LT<*U

171

Page 156: ji. —W >fta

(4) (DOE) (U. S. Department of ENERGY) (3/3 2 2 B)1000 Independence Avenue, S. I. Washington,DC 20585 TEL.-202-586-1720 FAX: 202-586-8134

3flt£# Mr.James E.Rannels (Director, Photovoltaic Technology Division) £ -fi NEDO : USEF :

©Photovoltaics Program Plan FY1991 ~ FY1995 ©Photovoltaics Program Overview Fisical Year 1993 ©Solar Electric Applications and Directory of the

U.S. Photovoltaic Industry (DOverview of U. S. National Photovoltaics Program

( Mr. James E. Rannelsz&AC: 5 0)

4 / n 1995^^ TO 5(Photovoltaics Program Plan FY1991 ~ FY1995) £ tz TUff tP’C^> -S 0 DOE

0^1^ Office of Solar Energy Conversion £ S y ? v a > £> 9 ^ 0 ~FPhotovoltaics Division^' & 6 0 Mr. Rannelsii 0 Director"^ £> 6 0 DOE 0§

Uf-f f-i v Rannelsg#^#(:^T< tl&O* 74 Xlc^ft£ -3 /Co

vrttw^s^LT^b-D/co ms. 5TU5. 1996^^ <3%^ 5 LTU6 60C

C J: <h#r,TlV:o

ya ^7 A0^-;l/(iMr. Rannels0m^(: <ETE£

(1991)mm®(1995 -2000) (2010 -2030)

a-/(/%#:(%) 5-15 10-20 15-25my#@ (0/kWh, $1990) 25-50 12-20 5-6> X T (Years) 10-15 20 30IS:«Sg*(«») <50 200-1000 10. 000-50. 000

2000^$T(:^^< 6f)^gm(:1000MW. 5OOMW0|£S£SS^SI£f 5 C i0C

1 0 / *) . V - y > X V - 7 X KV-7(2 y y/wmmmc&a)

tizmizr vyl 5^mcui2~i5f/kwh0#y##(:%&6a^fi&o **eii

^ C(±16^/kWh0pJ#g#^&6 60C

172 -

Page 157: ji. —W >fta

B*T'(i3KI coi@AfflvU-7 h v -fv ZtkU^tzo 9MS/3KW nfkkzix h ri<iE V <b$8£0

(^Utility Apprication System <hS *9 '>X-r 9 *€* -5 Ck\ztz2> k^m o0 & * <£> 3. — f-4 'if ^ (^ijx. V - 7 x S^Tlx ^ -f vl/) tc <£ -3 6 (Supplier costTAvoided cost 6# 9 ) o 7sU— h\ ^^x\l-vX'ttzmmtfmteZo <-%o- KoseEti 30 Aih (to-?vm& 12— 13 0 /kWh) T&9x C <hS7o

1991^5»^^-hlfc5 * k&9 £ titzt»oT&ad<x m&oFimiT'ttBmk'iotim&i'D'Dcbt), am%LW.&'at>u I'ic: kT'&^tZo

Mr. KannelsOyf7 ^ X ic A 7L<D1f > 771/ (•>- y >XO|^5ci) &#/<< n*y ^7>

DOE (0*74 *<Dcpl$Mi)'< E@i#iD £ftTVfc0 t+a'Jf-f lcS*>n^©TlH|l.'T*5 L©rt? choc <hT& o /:«

(5) (SPACEHAB) (3£23B)Cape Canaveral.Florida

Bi^S" Mr. Courtney G. Roberts (Senior Technical Staff)McDonnel Douglas Aerospace, Space Systems P.O.Box 21233 Kennedy Space Center,FL 32815 TEL:407-383-5902 FAX:407-269-6201

Mr.A.K.Glaab (Principal Engineer)McDonnel Douglas Aerospace

Mr.James 0.Behling, JR. (Payload Operations Engineer)McDonnel Douglas Aerospace

% # NED0 : cWHmmx USEF :SPACEHAB Payload processing Facility Experimenter's Handbook

- |>7Dt7'»^77’>lJf-f (SPPF)£*|2g LIlO 1 m&'f >7^D-->3>li:li3S

0x^-x^y^E^tiTvfco

T W:o 7 tz£>(DX v 7 7 v 3 g£> X^ - X'n 7'lC^fT L Tl£E£ tlTV/Co

l@ROr2Pglc(i l llo^x b7-9-^%.V 7d<&0#4O##3E###

sn^i§:Ex eom^dfmm^x ^-f^ot-bx^n

173 -

Page 158: ji. —W >fta

X ^ - X'' 7ft#SPPFiiNASA KSC#PPF(Payload Processing Facility)!: ft t»6 fcOtx KSC #PPF T'#ft3lli*5U<!:#C iT'fcSo

77f h#13M5* ^Su!CEf3j&Sb!i'Rjt6i#C iT£ 5o NASA# t 7-f-f Mi:SLT{iiTX^-XAW*X h-7-Cft^oTfT 9#T/7X h7-(iMt,f 5i5#z)<^Ui#C 6T&&0

n-if #2/3 (iCCDST*5o SifiCCDS# ? £ 6 o# ^ >/<- ri<x k° > 7 i? h L /: <hEIVTL^^<h#Er=1l-^ L#(:M#0:L^6#c 6T&60

X<-X/\7tUiA#-C#&&d<7c^:(:NASA#—#T&a

(6) NASAir^T-fX<-Xt>^- (KSC) (3/323B)John F.Kennedy Space Center KSC,FL 32899 TEL:407-867-2829 FAX:407-867-7644

McDonnel Doug las# Mr. Roberts <t Mr. Glaab^X ^ — X -t > ^ — f*3 ^rfflF^ It < tl tz o %##^-7 4" XtiX^-X-try^ 0 NASA# —Mi LTfL#^ LT V50S F U!:|HH-£f5txSi LTPPF(Payload Processing Facility)^ VPF(Vertical Processing Facility)2&£># v ■y h ;b##Jl##^r%^ L f:o PPF T (i#% IML-2# f >f/l/-y3 C i fcti /: o ttz

Z. tti<ft*iz0 ^gMteZttzti<??F fi(iB*T(i6& CT (if #,&#&<% < y-:C iT&£0 fEUfik

5 LTVfCov-r h ;L#U * (iPAD-A iPAD-B # 2 * % t)<PAD-A C(i4^(:fT±<f5 vt

h MSTS59) *<E-dTV/: b #B¥) 0

O/xh'J T;Vjl V 7f:!i?ixf- v 3 >#gr L UM & fcti3eTU/:oii:^< k s cofc±tz±mtWim\zitigfrzntzo

(7) NASA-7 3 >v>x^t—X-tr>^ — (JSC) ( 3 J3 2 4 . 2 5 B)Lyndon B.Johnson Space Center,Houston,TX 77058 TEL: 713-244-0193 FAX:713-244-7622

Mr. Robert R. Peeples (Engineer, Payload Integration)ffe ^ Jj NEDO : USEF :

s F-3/:oPOCC(Payload Operation Control Center) S& Bfj £ 5E (f/: o #%(i#\z4 <y h i: U - 7 yb41 T* c /:0POCC#^M:H^^;M^CSR(Customer Suppor Room) *9 f # oBMC A o f:Q ^ ^

174 -

Page 159: ji. —W >fta

□ - f ctiJsl±IUn4'l':

'>+ h;l/^ek?>#^SX'r- L/ 3 y ^7y L. '>+ h;uou y ^ h*y hrtRCX^EXy"- '> 3 y ? 7 y :/rt fc A £ C t tflh* tza NASDA d'GO

JEM t y ^7 7 '> 5 jl U - * t>

S F UO@iR(:#t»6^A#(:"oL^TONASA6^y xti y •> 3 >i:^t5

fcrh fr^b-ti-^fr-D/co

usEFta-7 hmm&uom%*%:vtzo

175 -

Page 160: ji. —W >fta

DOE-a-X aR 199-mfll8Btt

x*yi/^=Stix !@®Rmf/A##|s|RmTx SSmax h©&¥#<!:tiSSfiSl::isti-

x^A^SSKS Bill White li.‘x^-fx? KV-xittOCO US6.26 h©E£Hlii&flJ<!::ife*©ffi*tf<&ffi

$Sr<i:Tp^^©ieiljlwfcVT—eL/tt.® j: LT#*6di$6 C 6&KEf 6 fc©7?*5"& ou "3 f2 o9rLV'*llit;%S^-*;l'ti^'-yxT#H©x3.-!K- hxa.-XT-E:/x > h lc «fc 9 SSig

Sft5„DOE • Sfi^i^or ->X ? > Hiitt Christine Ervinti, C©E*

i@*%m/<*;i/©mm(iag©%t#x#,j\yoh©rsb^ict>$fcg&sfr'*5ino “3 t. o

C © ^□ y a: ^ KiClimate Action Plan T©@5 <b 5 $—i^T* 50 ItEff,5 C 6&Cfm#S#©#^rpj#-s©7 / 0 t) © -> a. 7 Office i <£ 5 t.

©T'*5„c©SKS®ici±*'xx/tx;ncftt>5 3 v- ->-wi^-x©£m£ffiiS-f

il60Ervin ti. ES«£ffli'fttf. it[S]£©ttglcfct'T

°rigtiSK*l»Sr6^-*-'h©B®<i:1-5 C 5 *#**#*'6 ©S*Sffili2 5~5 OM/KWH T*5„ ESffirTli 1 6t>l/KWH lc fc o T?t < CitfMffSne$$toici±i 2w/kwh ttzztimmzhzx,

Ervin liglc. C©B®li§IW«|l«-M$-flc4BS^*<ffifflLTV'5fc©<!;|s|®tfl,* xTistig-v/co

-DOE-

176 -

Page 161: ji. —W >fta

U S S C — JL — X if? 1994$l)118Btt

V - K

7 ->> h >D Clix 1994$ 1^188%#--***%#/<* 7b 1:11? 6 x T - 77b ($» 041') 4g&#l#l 0. 2%;6<:l4'1't"./ K V — 5 ->Xt A£t (USSC) l: J; r> Ti8J$S ft

tiM. aHfj Ky-x->XtAitlii*7b43 >/<-7 3 xtt(ECD) 6 4•y y >tt© i? 3 4 > h '"t>?• + — tfJb 5. %#Bx47b4#(D0E) Relational Renewable Energy Laboratory (NBEL)t: J; r, T%*S :fl48r3!!^ti7Nb4 7 7 >7i/3>©7e7b7* X -> V 3 y 7 □ 4 y-x''-*7bl:jb'l.'TjlJ$$:h.4<,

U S S COgStSlexy > h LTDOEOi^AW • fri* 7b40 7 ->X ? > bS*t

Christine Erviniix "A#. D 0 E/ASI4tl=!l:>tt L4S 4JSST-* 9 1 0%SȴOv4 7b x h yisiifnx zmKimMibiMKit Z c 4 i:46 c 6

fcOT-*5" 6CO$fr$ffffiL4o

*H)6%Siix v fco-eaiii:)r4 Uf«c$A4 t>©©—-xT-x tSSic*il)'5Ex.4;b4'0—oT-*5o $4x 1993$10til:X U 7 h >48cKS4 4t4Climate Change Action Plante 451? 6 5fcafi$$fi©@645 fcOO—or*5o U S S CH*Sx tiST'$t)4g V (10/ *'W/$) 7t7b 7fX->U3>7D'iTv;l/4y-t>5'->E>©V-7/t*Ab9'5>h;£'/';-y —TfflO — x-$- h-^.-xieastS6^*L4o 1 9 9 5$l:ktma©TS?*S.

ttSES4«BK L 4 C OE551± D 0 E ©$®J© 4 N R E Lf07«7tA->')n>7n?x) H£-S C 4 3 x h -7 x 7 - KAS6 • $mZo Zx A icjsuTillS;* tt4„ AH • @c

E*l=lO*S4g61]iiCO^'Blct5y 5*Hoa&tt$-@Sf 5 C 6T*5„ -e LT*HA

H4i<#^o$#-C##l4#@&@< C 4T-*5<,

U S S C4E CDlix Htt4 b i 7 4 7W© h cm-|:*5jS<x 1 9 8 7$JZ1*D O E/N

R E LocoZnZx Ai:ft*LTiTx 4 7bRtf/t* 7b©26i|si::l3 VTS-ofrotaSES

£*i£LT£4„ SfFHtiSubhendu Cuba 1f±i''fH'5 f--At:,6 ^ TN R E L/U S S C

fS®3X b - 7x7 - KOM $ 6. 2603 A^fi07Af-)t >)b3>7t4/7t X7 V 3 77o4 y - x/t*vbe$V'XT-6 8mo 4)61:1?4)414.

lx- bB;5©y-x't*7ba<U S S Cl:J;t)H%dti4. cniiitHit^iAieStSt 540l:*«X'<7 h 7bl:*t L 3 8S©g4 x> 4-b7b£bg V .£ h V 7" 7b 17b*

LTV5 c 4T-$5. XT-X;b4#^l± 1 0 0 0^PbIy-x6

C 6T-$$BStl4. |Sie/<vfOy-x/<4;bO%%%$A<l 1. 8%T'*6C4;6<NRE L 7?Etig$ 4l40 C 41 (i N R E L t: *3 V'T»J* y - x '<4 7bT? ftffl £ ft 4 A * T-7?E 4,£V'

177 -

Page 162: ji. —W >fta

7 txi/'J u'sTu btfx-ZJbfMt LTMi:^^^EES^?§a'ti'So :0lH^t3fcPv 77»yh4^f^yi/-> 7 7 7n7*>>H0Si

iLTi<ftJbntl'5o D 0 E/NR E L KTtVl/? tX->'Jn >7 n>f

o^7A£l 0££Lbfc*>fc&«lfrLTl'*o ^ITSI,

fcfr L O y 7 L /Co

3L+- :jnyj<- i? B 'ST *<4 xfch(i7^-A/7 ^ %#0^#K#Tjr,6o ** J y \t* 7 4

xm§> 2fH^ V -tN

###

178 -

Page 163: ji. —W >fta

'i *' ') x • K -f y 1C te y 5 V - 7 - •> X T A

l. tt $

i . i sat g w* |@ x * vu *' - fu ffl S ® M % C s ® M K ® t) ffl A T fc- 9 , ^ ® * T fe #

I'Ttt. Tl' Soa- c T-, 4-0-f *- v X <b K-f y Kfctf a»r3R«»4®5flEB05Stta®H3ltfc«fc tfg

c isiwi ttMi^fT^fc.

i. 2 m§esS6JS S#

B*-f y v- •> a y#AStt J6«^*a«BfSS0fr Hjg AM?

1.3 X y" a — W«6?3fll 30(H) ~ 3 fl 2 0 B (B)

n b trims

3 n138(B) a y K y #

#16 8

1 4 B(/3) n y K y E T S U (ENERGY TECHNOLOGYSUPPORT UNIT)S6P«3

i 5 B i'k) □ y K y Imperial College

1 6 8 (7k) d y K y %7 7 y ^ 7 ^ i> i

#168•SFUS

1 7 8 (7k) 7 7 ̂ ? 7 71/ h71/ K ? 4 7 ^ y -t* — ^ y7 7 7 7 7 ̂ h

BASF t±E5N5

1 8 8 (A) 7 7 7 7 7-y ;i/ y7 7 y 7 7 7H>

K-i

1 9 B <±) 7 7 7 7 7 ;l/ h #168

208(8) #168

179 -

Page 164: ji. —W >fta

( E T S U )2. ENERGY TECHNOLOGY SUPPORT UNIT 2 . 1

4 ¥ v x (c fc m v - 7 - ^ x f ^ ©i^is

2 . 2 ffiPnl B Nf . Mfb#(1) B# 1 9 9 4 ^ 3 ^ 1 4 B (73 )(2) % fu # Dr. Adrian J Cole

2.3 IlSIa S(1)0*80##

E T S U IL 4 +'n®DT I (Department of Trade and Industry) ©TSlfilS T do 5 A E A (Atomic Energy Authority)© 1 T do 5 o A E A (i # # # # # x

x mw-v-'i t • x * *- \zmir zwnRxf y*)■ * 9 y E T S uoi^ifl^ Q X *<2)x*^4r-©S»3SW£®4E50Jffl*ffl£-f-S 2 o0SP^S,5J. (i^ 2 5 0 ATx 4 0 0 0 7J d-: y K/*E (# 6 8«R/$E) Tfc 5oe t s u ©m#©^@;^#% i

(2)4 4- V x (c $3 (7 -6 '/ — 7 — '> 7 f 0 7 7 T ^ 7* V — 7 - y x -r aIS® E C fcfctf 5 X * /P+'-^ROF'gSRJix B#45%x Ty'x 18%x 5^22%

"€-©#!% T\ tfx O 5fiJ£-£*^Uo JA'f 4'J 7t'(ix dtWWS5CiJ:D, x

ltdx wmt LTitEiiffl^Sx ^txti7 7 V 4 4-' V X T 5 $ tlTU 3o0 /< v y 7' y - 7 - y x t a^y7Ti4J*K-0fi5 o ^nti^o i-o»r%##

0iil^*7X7r^^x 1/f y^5<b/,^Tx

V50 2 (CjgBgRfT&fcm©-* y 7e;v£^iho * © *31 it tt d? V * -d?*4 h dDvx zl * a Tfcti^T D x X n .y h 7 y K CD 7# 7 X n'-T&ffi £ tltzM

mv&Zo f <x ^ mt^ommtm-dtv*0

0±l#db#% y x f A

B*OR-tr 7x ■* y 3 - L TrS%(z:^|5l5T^^:S*T V 5 6 0CiT^o/Co

180 -

Page 165: ji. —W >fta

3. IMPERIAL COLLEGE 3 . 1 SHSl^S

3 . 2 KPdl BB# •(1) HB# 1 9 9 4 ^ 3 £ 1 5 B(2) ̂ 15# Dr. H. F. W. Taylor

Taylortfcjg y £ tlx^ /: 1 9 6 8 > 7 8 ^ (c 4z ^ y h

/c#x 2 E5fcB £ tlTfc 9x f/ ^ y ? A I'TffiE cF tl T V & 0

3 . 3 H$£n HI7K&&/&l/c#ui*»y? a m^y-

v v -&e%BHkKi&mx E^asLTzgii • 7j<^L/c^x L

rmRUykmzi&mLTm&znzc l/»Lx u =x b-ftttsm&<DT$m&&2> £ t&Q % Ico\'TPtm L /Co

(D7k%7K^r^% < t Zjj'&t LTx i» £ mW.it't £ <D T ft < xC a # © 4> /<£ U M * 7 4 ^X'J^4 h SrEFH^fflT £ /£ V ;K ttz^ yf /- h % &^#/:o

d){/VEV - Ltxf ;Pv/iJ/- h 3 n >f y ;v y V * /j:5 C i lu J; ^ T 71/ *7 y # © /<£ V £ *sf# £ tl 3 © T t* /«£ V £ T K >f

x ^ S {/ /c O

®^^tiiB]±o/ci6{c^fflf siibf ^ ydx cn0j?STtin^i^^yy aF a oTx '// h 7 h (c

D tc < < ^JfoBtfy^S: < % £ CDT-titi V/»0 SJS© ^ * - %'A^Mit L T li if ? ^ i l«' 9 7 F s<4 7=&f Itfco 3

3 (Cx MmOffi.-f'&WM 4 {^7F"t*o

181

Page 166: ji. —W >fta

4 . BASF 4 . 1

4 . 2 im BBt •(1) BB# 1 9 9 4 $ 3 £1 7 B(2) j£S Dr.Gunter Herrmann

4 . 3BAS l~6mm '> V * ^

#T5AER0GEL ( 7 x d >? 7V ) £§giS L T fc 9 x * © £ ft (i £TF © ii0 T & 6 o

: 0. 02W/mK (0. 0172kcal/m-h*t) atlOT

ssiemmSgSTsox

: 130-— 140kg/m3

: 90%

tom##, 2So

SSx 7 x o V= ;v£$s L/zBASOGEL (V ¥ 71/) © §gil iz m 0 L T is 0 s n .y (>77^ K'Of x h4I^^<lr§s LTSiilSS

T 2> t <D C. t~e $> -O tZo '< '/¥ 7 X n y> 71/ £ IW

\z.$ t>\z.ii-tfy&TzitmiTuz¥mw<Dffimmr'&z>(Dx\ m©a#mm

D lot? O. 018W/mK (0.0155kcal/m-h-tK

2 0 0 °C T' 0. 029W/mK (0. 0249kcal/m-h • t) b 1C ^ &> ©T* 3o

£ tz '< '/ ¥ 71/ ti

m# = 6o/4otf ^ $ zKzo&fcmmfr&T'tz c t it,

cowmmz&mtz t. m<ommtfwz&m'tzWiS* v

fo20%m g*ffi©*S«gffl©»rf!&tmtt i £ J: 5s>f 7 - • &EJ$ • y^©*gffl/jNS*gffl©Bff*k»S©ffiffl^iiJn-r-5T*6 b &t>ti Z>o

182 -

Page 167: ji. —W >fta

5. K4 tmWftpJi5 . l SlSfiS

7 ; y ^ X ®E£K£©3M*HS

5 . 2 im BBt • fctJE#

(1) Bm 1 9 9 4 $ 3 /§1 8 H

(2) J& S Dr. W. A. Kaysser (0rS) Dr. H. Schneider (-tr 7 S -y y X □!$§)Dr. S. W. Hulsmann (E% M)

5 . 3 IpI $ In S:

(Dm&onm

• x * /i/*'- -r y / n s

O0liic^lt btirfe* Ox * y h x y y y © * - b' y^^?m^i#8200T]'7,i/y (#ui8#M)x

^fy^g&3S74007j v;vy (#}243SA)x i ^ u i?-M

$P^^m^4900T]7;l/y (^32#A)Tx *

(&J 3 93EA/1991 $E)T* So

l *BI»T* Dx t 7 < / y xfl5^®jpJffl«r*^LTx IfiT ( 1200°Ckl±) T © BfT& tf*4 © E2E£ fT o T *$ «9 x

*©W3£»fittx t 7 S V ? Xx |*bbb^Sx (C&A, So ##E

^©E^MtelxJ 1 0 0 ST* So

(2)E^^sffl-fe 7 ; y y %

SST ( 1200°C£U:) S/:$b(Cx SiCi Ti ^ tz.JiSiCi C©1££#*4x t 7 $ •y?x=>--r>f y £ftT V So

SiC/Cl#^##(j: 7 % y /<- (c^%n%#t/#;5g#3rzg^ Lx 900TT%6%#x M(c

1600eCTS^j^E Lrfp ^tlx ** y h #©#0^E^ 3 - ^ v '<TM% LTl' S

X X y + h juiDfm? 4 ;i/ Lt^sW^iSo c ©%e##©^E##iilO-15W/(m-K) (8. 6-12. 9kcal/(h*m*t)) (200—1700*0 £*£l't>0T*So T ;l/

$ - 1^ A y •; >y- h y 7 y >y -y h #{8fB £ tir v S0Jti$* -o fc**x JKS^ffiM&T

f*Bfr&&t£ck 9 t; LS^5lto±tcS^^'E^nTVSo

-k7;-yyx3-T^y yttjEj^E^b^tor^oiS^o^^x p v d j$^7*7 x*

7 S y ? x ©Bfr&Ji&ftS&ffirTx o - ^ X o >f X ■£ B MWC^tl X y y y y - * - t £[ijT 3 ^£tF*9 ICx 9- b* y S ¥£T* So

£ H*0®EB!fcg (IIA) x ¥BB^g (ElJSSAf) <h ©^IWE^Sil«bT i^tocitiofco

c^Lx ¥16

183 -

Page 168: ji. —W >fta

6 . i tab3-BfflSlili. 4 *''J x • K -f y S-SSB3 It 3 - d ,-•(£ fc It 5 x * •

C £*sffi**o C©$T«IC'f *• V x ffl -f y ^ V T ^*#Ry K -f 78BAS FSKRl'T, » ?±SfE Bf£T * i S ft *B ®r *& W *4 © ® it

SRy'ttEK-^ vTs

(Dm#K V'gg* ,u y o A=£-(gy L 61'JSO Rl«6tt*f* * <1 £o

®M*!,##*©e#©@K&#l#f & c £ K J; 0 4 iic»r*itt#6*>*|S]±^2. °3«6tt

A>" * * C £ o

*©1W$£S/l £ £ IlflfttS o^loai^ 4-m© rsxresv-5--yxt AHflm&EBimj

ilS-BrS £ £&&#-#-3.

184 -

Page 169: ji. —W >fta

£ PS ti <6 ^ A1

$l#©fFaJ£§ttTT$^

si * ^ f - -

Tl70 m«ffi«iiK®?fiS3Tg 1*1^ * 18 03-3987-9421 (* ISfllS)