60
K - pp Bound System at J-PARC F. Sakuma, RIKEN on behalf of the J-PARC E15 collaboration β€œThe 15th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon, MENU-2019β€œ Carnegie Mellon University, Pittsburgh Pennsylvania June 2 to June 7, 2019 1

Kbar-Nuclear Bound State at J-PARC

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Kbar-Nuclear Bound State at J-PARC

K-pp Bound System at J-PARC

F. Sakuma, RIKENon behalf of the J-PARC E15

collaboration

β€œThe 15th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon, MENU-2019β€œCarnegie Mellon University, Pittsburgh Pennsylvania

June 2 to June 7, 2019 1

Page 2: Kbar-Nuclear Bound State at J-PARC

Meson in a Nucleus?β€’ Lightest S=-1 meson, Ξšβˆ’

– Kbar-N interaction: strongly attractive in I=0

𝒖𝒖 𝒔𝒔 Ξšβˆ’

K-N scatteringNPB179(1981)33.

K-p atomPLB704(2011)113.

Wikipedia2

Page 3: Kbar-Nuclear Bound State at J-PARC

Y.Akaishi and T.Yamazaki, PRC65(2002)044005.A. Dote et al. PRC70(2004)044313. etc.Kaonic

Nuclei

BindingEnergy[MeV]

Width[MeV]

Ξ›(1405) = Kβˆ’p 27 40

Kβˆ’pp 48 61

Kβˆ’ppp 97 13

Kβˆ’ppn 118 21

3

c.f. Nuclear Binding Energyfew MeV @ A = 2,3

Predicted from attractive KbarN interaction in I=0Kbar-Nuclear Bound State

provide new insight on KbarN interaction in media

Page 4: Kbar-Nuclear Bound State at J-PARC

Theoretical Calculations on β€œK-pp”

KbarN int.Chiral SU(3)

(energy dependent)Phenomenological

(energy independent)

Method

Variational Faddeev Variational FaddeevBarnea,

Gal, Liverts

Dote, Hyodo, Weise

Ikeda, Kamano,

Sato

Bayar,Oset

Yamazaki, Akaishi

Wyceck, Green

Shevchenko, Gal, Mares

Ikeda, Sato

B (MeV) 16 17-23 9-16 15-30 48 40-80 50-70 60-95Ξ“ (MeV) 41 40-70 34-46 75-80 61 40-85 90-110 45-80

Ξ“ ~ 40-100 MeVB.E. ~ 20 MeV B.E. ~ 40-70 MeV

Page 5: Kbar-Nuclear Bound State at J-PARC

M(K

+p+p

)

β€œK-pp” Search via Stopped-K-

PRL94(2005)212303

6Li+7Li+12C(stopped K-, Λp)FINUDA@DAΦNE

β€œK-pp”

Page 6: Kbar-Nuclear Bound State at J-PARC

M(K

+p+p

)

β€œK-pp” Search via Stopped-K-

PRL94(2005)212303

6Li+7Li+12C(stopped K-, Λp)FINUDA@DAΦNE AMADEUS@DAΦNE

12C(stopped K-, Ξ›p)

M(K

+p+p

)

NO need ofβ€œK-pp”

multi-NA + FSI

EPJC79(2019)190

?

many BGs

Page 7: Kbar-Nuclear Bound State at J-PARC

β€œK-pp” Search via pp CollisionsDISTO@SATURNE

PRL104(2010)132502

p + p (Ξ› + p) + K+ @ 2.85GeV

Dat

a/Si

m

M(K

+p+p

)

?

β€œK-pp”

Page 8: Kbar-Nuclear Bound State at J-PARC

β€œK-pp” Search via pp CollisionsDISTO@SATURNE

PRL104(2010)132502

p + p (Ξ› + p) + K+ @ 2.85GeV

Dat

a/Si

m

M(K

+p+p

)

?

HADES@GSI PLB742(2015)242

p + p (Ξ› + p) + K+ @ 3.5GeV

?

PWA w/ N*+Ξ›K+

M(K

+p+p

)

NO need ofβ€œK-pp”

JPS Conf. Proc. , 082003 (2017)

many N*s

𝑝𝑝 + 𝑝𝑝 β†’ 𝑝𝑝 + π‘π‘βˆ—+ β†’ 𝒑𝒑 + 𝜦𝜦 + 𝐾𝐾+

Page 9: Kbar-Nuclear Bound State at J-PARC

β€œK-pp” Search via d(Ο€+,K+)X

M(K

+p+p

)

M(Ο€

+Ξ£+N

)

E27@J-PARC

PTEP(2015)021D01.

β€œK-pp”

??

M(Ξ£

0 +N

) d(Ο€+, K+)Ξ£0p @ 1.69 GeV/c

Page 10: Kbar-Nuclear Bound State at J-PARC

β€œK-pp” Search via d(Ο€+,K+)X

M(K

+p+p

)

M(Ο€

+Ξ£+N

)

E27@J-PARC

PTEP(2015)021D01.

d(Ο€+, K+)Ξ£0p @ 1.69 GeV/c

β€’ need to be confirmed with more statistics and a wide acceptance detector

β€œK-pp”

??

M(Ξ£

0 +N

)

πœ‹πœ‹+ + 𝑑𝑑 β†’ Ξ£0 + 𝐾𝐾+ + 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (QF)

(FSI)β†’ Ξ£0 + "𝑝𝑝" + 𝐾𝐾+

β†’ Ξ£0 + 𝒑𝒑 + 𝐾𝐾+

?

Page 11: Kbar-Nuclear Bound State at J-PARC

β€œK-pp” Search WAS Controversial..

??

?

What we have learned from previous experiments:β€’ Intermediate state is of importanceβ€’ Should use more simple reactionβ€’ Exclusive measurement is a key

J-PARC E15 experiment

Page 12: Kbar-Nuclear Bound State at J-PARC

J-PARC E15 Experiment

12

β€’ 3He(in-flight K-,n) reaction @ 1.0 GeV/c– 2NA and Y decays can be discriminated kinematically

Page 13: Kbar-Nuclear Bound State at J-PARC

J-PARC E15 Experiment

13

β€’ 3He(in-flight K-,n) reaction @ 1.0 GeV/c– 2NA and Y decays can be discriminated kinematically

Page 14: Kbar-Nuclear Bound State at J-PARC

Experimental Setup @ K1.8BR

14

Page 15: Kbar-Nuclear Bound State at J-PARC

15

qKn

IM(Ξ›p) vs. Momentum Transfer qKn

E15 collab., PLB789(2019)620.

IM(Ξ›p)M

(K+p

+p)

Page 16: Kbar-Nuclear Bound State at J-PARC

β€’ Can be interpreted as3 components

– Bound stateβ€’ centroid DOES NOT

depend on qKn

16

qKn

IM(Ξ›p) vs. Momentum Transfer qKn

E15 collab., PLB789(2019)620.

IM(Ξ›p)M

(K+p

+p)

BS

Page 17: Kbar-Nuclear Bound State at J-PARC

β€’ Can be interpreted as3 components

– Bound stateβ€’ centroid DOES NOT

depend on qKn

– Quasi-elastic K- abs.β€’ centroid depends on qKn

17

qKn

IM(Ξ›p) vs. Momentum Transfer qKn

E15 collab., PLB789(2019)620.

IM(Ξ›p)M

(K+p

+p)

BS

Page 18: Kbar-Nuclear Bound State at J-PARC

β€’ Can be interpreted as3 components

– Bound stateβ€’ centroid DOES NOT

depend on qKn

– Quasi-elastic K- abs.β€’ centroid depends on qKn

– Backgroundβ€’ Broad distribution

18

qKn

IM(Ξ›p) vs. Momentum Transfer qKn

E15 collab., PLB789(2019)620.

IM(Ξ›p)M

(K+p

+p)

BS

Fit the spectrum with 3 components

Page 19: Kbar-Nuclear Bound State at J-PARC

19

IM(Ξ›p)

IM(Ξ›p) vs. Momentum Transfer qKn

E15 collab., PLB789(2019)620.

β€’ Fit with 3 components– Bound state

β€’ centroid DOES NOT depend on qKn

β€’ BW*(Gauss form-factor)qKn K-

3He

1 GeV/c

n

Ξ›

p

nβ€œx”

Page 20: Kbar-Nuclear Bound State at J-PARC

20

IM(Ξ›p)

IM(Ξ›p) vs. Momentum Transfer qKn

E15 collab., PLB789(2019)620.

β€’ Fit with 3 components– Quasi-elastic K- abs.

β€’ centroid depends on qKn

β€’ Followed by Ξ›pconversion

2NA:β€œn” is a spectator

qKn

forward β€œn”

K-3He

1 GeV/c

n

Ξ›

p

np

p

K-

Page 21: Kbar-Nuclear Bound State at J-PARC

21

IM(Ξ›p)

IM(Ξ›p) vs. Momentum Transfer qKn

E15 collab., PLB789(2019)620.

β€’ Fit with 3 components– Background

β€’ Broad distribution

qKn K-

3He

1 GeV/c

n

Ξ›

p

Page 22: Kbar-Nuclear Bound State at J-PARC

22

IM(Ξ›p)

IM(Ξ›p) vs. Momentum Transfer qKn

E15 collab., PLB789(2019)620.

β€’ Fit with 3 components– Bound state

β€’ centroid DOES NOT depend on qKn

β€’ BW*(Gauss form-factor)

– Quasi-elastic K- abs.β€’ centroid depends on qKn

β€’ Followed by Ξ›pconversion

– Backgroundβ€’ Broad distribution

qKn

Page 23: Kbar-Nuclear Bound State at J-PARC

23

IM(Ξ›p)

IM(Ξ›p) vs. Momentum Transfer qKn

E15 collab., PLB789(2019)620.

β€’ Fit with 3 components– Bound state

β€’ centroid DOES NOT depend on qKn

β€’ BW*(Gauss form-factor)

– Quasi-elastic K- abs.β€’ centroid depends on qKn

β€’ Followed by Ξ›pconversion

– Backgroundβ€’ Broad distribution

qKnBS and QF are well separated in

0.35 < qKn < 0.65 GeV/c

Page 24: Kbar-Nuclear Bound State at J-PARC

24

β€œK-pp” Bound-State

E15 collab., PLB789(2019)620.

β€œK-pp”

Page 25: Kbar-Nuclear Bound State at J-PARC

β€’ Binding energy: ~50 MeV– Much deeper than chiral-

SU(3) based theoretical predictions

β€’ Width: ~100 MeV– Seems to be larger than

theoretical calculations (mesonic Ο€Y decays only)

Observed β€œK-pp”

Chiral Phenomenological

K-3HenX

Page 26: Kbar-Nuclear Bound State at J-PARC

β€’ Binding energy: ~50 MeV– Much deeper than chiral-

SU(3) based theoretical predictions

β€’ Width: ~100 MeV– Seems to be larger than

theoretical calculations (mesonic Ο€Y decays only)

Observed β€œK-pp”

Chiral Phenomenological

K-3HenX

the most reliable observation- simple K- induced reaction- exclusive measurement- good BG separation from 2NA

Page 27: Kbar-Nuclear Bound State at J-PARC

Conclusion I

27

β€’ We observed the β€œK-pp” bound state in 3He(K-,Ξ›p)n– Binding energy: ~50 MeV– Width: ~100 MeV

E15 collaboration, PLB789(2019)620.

Page 28: Kbar-Nuclear Bound State at J-PARC

28

We need further understanding

β€’ Spin/Parity of the β€œK-pp”– New 4Ο€ detector system is needed Future plan

Page 29: Kbar-Nuclear Bound State at J-PARC

29

We need further understanding

β€’ Spin/Parity of the β€œK-pp”– New 4Ο€ detector system is needed

β€’ Other decay channels– πΣN mesonic decay is theoretically expected to be

the dominant channelβ€’ Only YN non-mesonic decays were reported

Future plan

Page 30: Kbar-Nuclear Bound State at J-PARC

30

We need further understanding

β€’ Spin/Parity of the β€œK-pp”– New 4Ο€ detector system is needed

β€’ Other decay channels– πΣN mesonic decay is theoretically expected to be

the dominant channelβ€’ Only YN non-mesonic decays were reported

β€’ Reaction mechanism– Relation between Ξ›(1405) & β€œK-pp”

β€’ Ξ›(1405) has been considered as β€œK-p”‒ Theoretically, β€œK-pp” is expected to be produced via Ξ›(1405)+p”K-pp” door-way process

Future plan

Page 31: Kbar-Nuclear Bound State at J-PARC

31

We need further understanding

β€’ Spin/Parity of the β€œK-pp”– New 4Ο€ detector system is needed

β€’ Other decay channels– πΣN mesonic decay is theoretically expected to be

the dominant channelβ€’ Only YN non-mesonic decays were reported

β€’ Reaction mechanism– Relation between Ξ›(1405) & β€œK-pp”

β€’ Ξ›(1405) has been considered as β€œK-p”‒ Theoretically, β€œK-pp” is expected to be produced via Ξ›(1405)+p”K-pp” door-way process

Future plan

Page 32: Kbar-Nuclear Bound State at J-PARC

32

K- 3He πΣpn Measurement

β€’ Exclusive measurement of π›‘π›‘Β±πšΊπšΊβˆ“π©π©π©π© final state in K-+3He

β€’ Experimental challenge of neutron detection with thin scintillation counter (t=3cm) 10cm

t = 3cm

n detection efficiency ~ 3-10%

K- n3He

β€œX”

n

1 GeV/cΞ£

Ο€

Ο€

CDS

p

Page 33: Kbar-Nuclear Bound State at J-PARC

33

πΣpn EventsIM(nΟ€+) vs MM(Ο€+Ο€-pn) IM(nΟ€-) vs MM(Ο€+Ο€-pn)

Ο€-Ξ£+p nmiss Ο€+Ξ£-p nmiss

nmiss

Ξ£+ Ξ£-

nmiss

Page 34: Kbar-Nuclear Bound State at J-PARC

IM(π›‘π›‘Β±πšΊπšΊβˆ“) in π›‘π›‘Β±πšΊπšΊβˆ“π’‘π’‘π’‘π’‘ Final State

IM(π›‘π›‘Β±πšΊπšΊβˆ“)q Kn

Ξ›(1405) can be clearly seen in low qKn34

Page 35: Kbar-Nuclear Bound State at J-PARC

35

π’€π’€βˆ—π’‘π’‘π’‘π’‘ Final State

IM(π›‘π›‘Β±πšΊπšΊβˆ“)

Ξ›(1520)

Ξ›(1405)

Ξ£0(1385)~ 20-100 Β΅b

[evaluated fromΞ£+/-(1385)Ο€+/-Ξ›measurement]

~ 100 Β΅b

~ 150 Β΅bFit w/ FlattΓ© formula:

Re(z) ~ 1420 MeV-Im(z) ~ 15 MeV

(Ξ£(1385)πΛ/πΣ : 87.0/11.7%)

πΣpnnon-resonant

Page 36: Kbar-Nuclear Bound State at J-PARC

36

Ξ›(1405)pn Final State Selection

IM(π›‘π›‘Β±πšΊπšΊβˆ“)Select Ξ›(1405)pnfinal state

β€’ Below Ξ›(1520)β€’ Small contribution

from Ξ£(1385) πΣpn

non-resonantΞ›(1405)pn

Page 37: Kbar-Nuclear Bound State at J-PARC

37

IM(πΣp) in Ξ›(1405)pn Final State

IM(π›‘π›‘Β±πšΊπšΊβˆ“π’‘π’‘)

M(K

pp)

Dominant above the threshold

Ξ›(1405)pn

β€œKpp” ROI

Page 38: Kbar-Nuclear Bound State at J-PARC

38

IM(πΣp) in Ξ›(1405)pn Final State

IM(π›‘π›‘Β±πšΊπšΊβˆ“π’‘π’‘)

M(K

pp)

Dominant above the threshold

M(πΣp

)

This will be due to phase-space limitation of

β€œK-pp”πΣN decay.

Ξ›(1405)pn

BUT, statistically,NO significant structure

β€œKpp”πΣN mesonicdecay is theoretically

expected to be the dominant channel

β€œKpp” ROI

Page 39: Kbar-Nuclear Bound State at J-PARC

39

PS Limitation of β€œK-pp”πΣp Decay

IM(π›‘π›‘Β±πšΊπšΊβˆ“π’‘π’‘)

M(K

pp)

M(πΣp

) Ξ›(1405)pn

Kpp BW obtained with Ξ›p

Phase space of πΣpn

[BW] * [phase space]

Page 40: Kbar-Nuclear Bound State at J-PARC

40

Comparison of Ξ›pn & Ξ›(1405)pn

Ξ›pnM

(Kpp

)

Large CS of the Ξ›(1405)p compared to the β€œK-pp”Λp

Ξ›(1405)pn

Page 41: Kbar-Nuclear Bound State at J-PARC

41

Comparison of Ξ›pn & Ξ›(1405)pn

Ξ›(1405)pn

Ξ›pnM

(Kpp

)

Ξ›(1405)p production is dominant(energy-momentum mismatch is transferred to the proton)

β€²πŠπŠβ€² + 𝐩𝐩𝐩𝐩 𝐑𝐑 β†’ β€œK-p”+pΞ›(1405)=β€œK-p”

Intrinsic mK < EK

K-3He

1 GeV/c

n

β€œK-p”

p

np

p

K-

Page 42: Kbar-Nuclear Bound State at J-PARC

42

Comparison of Ξ›pn & Ξ›(1405)pn

Ξ›(1405)pn

Ξ›pnM

(Kpp

)

K-3He

1 GeV/c

nβ€œK-pp”

np

p

β€˜K-’

Ξ›(1405)p production is dominant(energy-momentum mismatch is transferred to the proton)

β€œK-pp” production is dominant

β€²πŠπŠβ€² + 𝐩𝐩𝐩𝐩 𝐑𝐑 β†’ β€œK-p”+pΞ›(1405)=β€œK-p”

Intrinsic mK < EK

K-3He

1 GeV/c

n

β€œK-p”

p

np

p

K-

EK < intrinsic mK

β€²πŠπŠβ€² + 𝐩𝐩𝐩𝐩 𝐑𝐑 β†’ β€œK-pp”

Page 43: Kbar-Nuclear Bound State at J-PARC

Conclusion II

β€’ We observed the β€œK-pp” bound state in 3He(K-,Ξ›p)n– Binding energy: ~50 MeV– Width: ~100 MeV

β€’ We found large CS of the Ξ›(1405)p formation compared to the β€œK-pp”– quite important information on the

production mechanism of the β€œK-pp” paper in preparation

E15 collaboration, PLB789(2019)620.

Page 44: Kbar-Nuclear Bound State at J-PARC

Need further investigationβ€’ More quantitative studies of the β€œK-pp”

– JP and other decay modes

β€’ Systematic studies of other kaonic nuclei:– Single: β€œK-ppn” via [K- + 4He], β€œK-ppnn/K-pppnn” via [K- + 6Li]– Double: β€œK-K-pp” via [pbar + 3He]

A new 4Ο€ detector with Ξ³/n sensitive detectors is required

Page 45: Kbar-Nuclear Bound State at J-PARC

Thank You!J-PARC E15 Collaboration

45

Page 46: Kbar-Nuclear Bound State at J-PARC

Spares

46

Page 47: Kbar-Nuclear Bound State at J-PARC

47

β€œK-pp” Bound-State

E15 collab., PLB789(2019)620)

β€œK-pp”

Fit valuesthat reproduce the spectrum:

𝐁𝐁"𝐊𝐊𝐩𝐩𝐩𝐩" = πŸ’πŸ’πŸ’πŸ’ Β± πŸ‘πŸ‘ 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬. βˆ’πŸ”πŸ”+πŸ‘πŸ‘ 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬. 𝐌𝐌𝐌𝐌𝐌𝐌

πšͺπšͺ"𝐊𝐊𝐩𝐩𝐩𝐩" = 𝟏𝟏𝟏𝟏𝟏𝟏 Β± πŸ’πŸ’ 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬. βˆ’20+𝟏𝟏𝟏𝟏 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬. 𝐌𝐌𝐌𝐌𝐌𝐌

𝐐𝐐"𝐊𝐊𝐩𝐩𝐩𝐩" = πŸ‘πŸ‘πŸ‘πŸ‘πŸπŸ Β± πŸπŸπŸ’πŸ’ 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬. βˆ’πŸπŸ+πŸπŸπŸ’πŸ’ 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬. 𝐌𝐌𝐌𝐌𝐌𝐌

π›”π›”β€œπŠπŠπ©π©π©π©β€ π‘©π‘©π‘©π‘©πš²πš²π’‘π’‘ = 𝟏𝟏𝟏𝟏.πŸ‘πŸ‘ Β± 𝟏𝟏.πŸ’πŸ’ 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬. βˆ’πŸπŸ.πŸ’πŸ’+𝟏𝟏.𝟐𝟐 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬. 𝛍𝛍𝒃𝒃

Page 48: Kbar-Nuclear Bound State at J-PARC

BG: 2NA followed by FSI

48

πΎπΎβˆ’ + 3𝐻𝐻𝐻𝐻 β†’ πΎπΎβˆ’ + "𝑝𝑝𝑝𝑝" + 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠→ 𝒀𝒀 + 𝒑𝒑 + 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (2NA)

(FSI)β†’ π‘Œπ‘Œ + "𝑝𝑝" + 𝑝𝑝→ 𝜦𝜦 + 𝒑𝒑 + 𝑝𝑝

πΎπΎβˆ’ + 3𝐻𝐻𝐻𝐻 β†’ πΎπΎβˆ’ + "𝑝𝑝𝑝𝑝" + 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠→ 𝒀𝒀 + 𝑝𝑝 + 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (2NA)

(FSI)β†’ π‘Œπ‘Œ + "𝑝𝑝" + 𝑝𝑝→ 𝜦𝜦 + 𝒑𝒑 + 𝑝𝑝

Page 49: Kbar-Nuclear Bound State at J-PARC

49

Comparison of Ξ›pn & Ξ›(1405)pn

`

kine

mat

ical

limit

Ξ›pn Ξ›(1405)pn region

Kpp

Kpp

β€’ No clear structure below M(Kpp) in the IM(πΣp)β€’ QF followed by Ξ›(1405)p is dominant

Page 50: Kbar-Nuclear Bound State at J-PARC

50

IM(π›‘π›‘Β±πšΊπšΊβˆ“) vs. IM(π›‘π›‘Β±πšΊπšΊβˆ“π’‘π’‘)

Small phase-space of β€œK-pp”πΣN

K- 3He

1 GeV/c

n

Ξ›(1405)

p

np

p

IM(π›‘π›‘Β±πšΊπšΊβˆ“π’‘π’‘)

IM(𝛑𝛑

Β±πšΊπšΊβˆ“

)

Page 51: Kbar-Nuclear Bound State at J-PARC

detectoracceptance

51

Detector Acceptance: Ξ›p vs. πΣp

detectoracceptance

π›‘π›‘Β±πšΊπšΊβˆ“π’‘π’‘

πš²πš²π’‘π’‘

M(K

- pp)

M(πΣp

)

β€’ Detector acceptance is different between Ξ›p and πΣp– At cosΞΈn~1:

β€’ Ξ›p: flat acceptanceβ€’ πΣp: limited acceptance

below the threshold

cf. π›‘π›‘Β±πšΊπšΊβˆ“π’‘π’‘π’‘π’‘-PS MCw/ detector acceptance

M(K

- pp)

M(πΣp

)

DATA

DATAMC

Page 52: Kbar-Nuclear Bound State at J-PARC

52

Neutron ID with CDS

dE vs. 1/Ξ² dE-cut dependence

5MeVee < dE

1.372 < 1/Ξ²(pn<1GeV/c)

Neutron can be identified with CDS

β€’ Ο€+Ο€-p events (3 tracks) in CDS with 4 CDH hits are selectedβ€’ a CDH hit with CDC-veto (outer-layer) is applied to identify the β€œneutral hit”

Page 53: Kbar-Nuclear Bound State at J-PARC

K-pΞ£+Ο€βˆ’/Ξ£βˆ’Ο€+ Cross Section

consistent with the references

53

Page 54: Kbar-Nuclear Bound State at J-PARC

Exclusive 3He(K-,Ξ›p)n

54

E151st

E152nd

Page 55: Kbar-Nuclear Bound State at J-PARC

55

sub-thresholdexcess

(Y* and/or KbarNN?)Quasi Elastic

K- + 3He K- + n + ps + psdΟƒ/dΩθ=0deg ~ 6mb/sr

Charge-ExchangeK- + 3He K0 + n + dsdΟƒ/dΩθ=0deg ~ 11mb/sr

DATA

MC

Semi-Inclusive 3He(K-,n)X

T. Hashimoto et al., PTEP (2015) 061D01.

Page 56: Kbar-Nuclear Bound State at J-PARC

56

Page 57: Kbar-Nuclear Bound State at J-PARC

IM(Ξ›p) vs. cos(ΞΈnCM)

57

M(K

+p+p

)

IM(Ξ›p)

cos(ΞΈn CM)

Structures around the K-pp threshold can be seen

= bound-state + quasi-elastic

Structures are concentrated in forward-n region

= small momentum-transfer

detectoracceptance

E15 collab., arXiv:1805.12275

Page 58: Kbar-Nuclear Bound State at J-PARC

Results of 3He(K-,Ξ›p)n [E15-2nd]

58

cosΞΈn dependence

0.95<cosΞΈn<1.0detector

acceptance

𝟏𝟏.πŸ’πŸ’5<πœπœπ¨π¨π¬π¬πœ½πœ½π’‘π’‘π‘ͺπ‘ͺ𝑴𝑴<𝟏𝟏.𝟏𝟏

0.75<cosΞΈn<0.800.80<cosΞΈn<0.850.85<cosΞΈn<0.90

0.90<cosΞΈn<0.95

Page 59: Kbar-Nuclear Bound State at J-PARC

Results of 3He(K-,Ξ›p)n [E15-2nd]

59

β€’ Above M(K-pp):– peak shift by recoil kaon energy

β€’ Below M(K-pp):– peak is independent to cosΞΈn

( ~ momentum transfer)β€’ Similar tendency as a theoretical

calc., but QF seems to be originated from recoil kaon

Peak position Width

Gaussian

Breit-Wigner

Sekihara, Oset, Ramos,PTEP(2016)123D03

B.S.QF

βˆ’

βˆ’ +=K

ppKQF MqMM

2

2

Page 60: Kbar-Nuclear Bound State at J-PARC

A Theoretical Interpretation of E15

60

Chiral unitary approach

M[K

+p+p

]

KbarNNbound-state

quasi-elastickaon

scattering

Sekihara, Oset, Ramos, PTEP(2016)123D03

UncorrelatedΞ›(1405)p

state

M[K

+p+p

]

B=16MeVΞ“=72 MeV

Opt.A (Watson)Opt.A (Watson)