Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

Embed Size (px)

Citation preview

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    1/46

    PENGANTAR

    DINAMIKA STRUKTUR

    Bayzoni 2016

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    2/46

    DINAMIKA STRUKTUR

    Single Degree of Freedom (SDOF)Multi Degree of Fredom (MDOF)

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    3/46

    Single-Degree-of-Freedom System

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    4/46

    Single-Degree-of-Freedom System

    Sistem SDOF pada blok kaku dengan massa m, pegas

    dengan kekakuan k dan peredam viscous c.

    Blok massa hanya dapat bertranslasi pada garis

    tuggal.

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    5/46

    Persamaan Gerak

    Persamaan gerak diturunkan dengan menyeimbangkan semua gaya yangbekerja . Seperti terlihat pada gambar, gaya yang bekerja p(t) danmenghasilkan tiga gaya akibat gerak : gaya inersia fI, gaya redaman fD,dan gaya pegas, fS

    Keseimbangan gaya diberikan dengan:

    Setiap gaya-gaya yang diberikan pada sebe;lah kiri persamaan di atas merupakanfungsi dari perpindahan u, atau turunannya:

    Prinsip dAlemberts, gaya inertia:

    Gaya redaman viscous:

    Gay Pegas:

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    6/46

    Persamaan Gerak

    untuk Beban Akibat Gerakan Tumpuan

    Keseimbangan gaya

    Gaya inersia

    total perpindahan

    substitusi untuk inersia,redaman dan gaya

    pegas

    Persaman akhir

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    7/46

    Pada persamaan di atas, peff(t) menyatakan gaya

    efektif akibat pergerakan tumpuan.

    Kesimpulan yang dapat diambil bahwa gerakan

    relatif sistem, ur(t), yang ditimbulkan oleh gerakan

    tumpuan g(t), akan sama dengan gerakan total

    sebuah sistem tumpuan kaku, u(t), yang diberi aksi

    dengan gaya sama dengan Peff(t) = mg(t)

    Persamaan Gerak

    untuk Beban Akibat Gerakan Tumpuan

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    8/46

    Solusi Persamaan Gerak

    Apakah permasalahan linier atau non-linier

    kasus non-linier umumnya diselesaikan dengan

    metode numerik.

    Tipe bebanTingkat ketelitian

    Untuk menentukan response sistem SDOF, u(t),

    persamaan gerak diselesaikan secara analitis atau

    numerik. Pemilihan metode tergantung dari

    beberapa hal:

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    9/46

    Solusi Persamaan Gerak

    As for any linear differential equation, the complete general

    solution is the sum of complementary solution uc(t) and the

    particular solution up(t):

    The complementary solution is the solution of the homogeneous

    equation

    Characteristic Equation

    Using the notation

    s is solved:

    If c > 2m,s will be real valued,

    but if c < 2m, s will be a complex number.

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    10/46

    Undamped Free Vibrations

    If the system is undamped, i.e., if c = 0, s becomes,

    The response

    By utilizing Eulers equation:

    The result may be written in the form:

    This type of motion is called a simple harmonic motion.

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    11/46

    The quantity is the natural angular velocity of the undamped

    system (sometimes also referred to as the natural angular

    frequency) and is related to natural frequency f as:

    The reciprocal of f is called

    the natural period T:

    Based on the initial conditions: the displacement u(0) = B and

    velocity (0) = At at time t = 0

    Undamped Free Vibrations

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    12/46

    Undamped Free Vibrations

    The Equation of motion u(t) can be recast into

    The response is given by the real part, or horizontal projection,of the two rotating vectors.

    The phase angle

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    13/46

    Damped Free Vibrations

    If the oscillator is damped, c > 0, three different types of

    motion are possible, depending on whetherthe value of the term

    under the square root in the expression for s

    is zero, negative, or positive,

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    14/46

    Damped Free Vibrations

    The value of c that makes the value of the term under the

    square root in Equation 3.16 equal to zero iscalled thecritical

    damping, cc,

    At critical damping, the value of s :

    The response is

    By imposing the initial conditions the response is

    Critical Damping

    It is readily observed from that Equation, that the critically damped response does not involve oscillations about the zero deflection point

    and the displacement returns to zero in accordance with the exponential decay term. Critical damping is the smallest amount of damping

    that keeps a SDOF system from oscillating during free response.

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    15/46

    Damped Free Vibrations

    If the damping is less than critical, c < 2m, it is customary to

    express the damping as a ratio to the critical damping value:

    Where is called the damping ratio, the value of s :

    By using the notation

    D

    is called the damped vibration frequency. Note that for

    typical structures damping ratios rarely exceed about 10% (

    < 0.10), and D differs very little from the undamped natural

    frequency.

    Underdamped Systems

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    16/46

    Damped Free Vibrations

    The response is written as:

    By using Eulers equation, the response can be written in the

    form:

    The second term in equation above is of the same form as the

    simple harmonic motion of the undamped oscillator, except

    now at the damped, slightly lower frequency. The first term

    indicates exponential attenuation of the oscillations. Constantsof integration A and B are again determined based on the

    initial conditions u(0) and u(0) as before.

    Underdamped Systems

    v t( ) e t vov vo

    d

    sin d t vo cos d t

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    17/46

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    18/46

    REVIEW SDOF

    Undamped Free Vibration

    vo 1 vov 0

    1

    v t( )vov

    sin t vo cos t

    t 0 0.1 20

    0 5 10 15 201

    0

    1

    v t( )

    t

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    19/46

    REVIEW SDOF

    Underdamped Free Vibrationvo 1 vov 0

    8 d 9 0.05

    v t( ) e t vov vo

    d

    sin

    d t

    v

    o cos

    d t

    t 0 0.1 15

    0 5 10 151

    0

    1

    v t( )

    t

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    20/46

    Duhamel Integral

    In the following, an expression for theresponse to an arbitrary dynamic loading isdeveloped based on Equation 3.80. Theconcept is to first derive, based on Equation3.80, the differential response due to adifferential impulse, acting over aninfinitesimal time interval and then, basedon an assumption of linearity, obtain thetotal response as the summation (integral) ofthe differential responses. For the

    differential time interval d, the response is(fort > ):

    du(t) represents the differential responsecontribution of the impulse p()d to the totalresponse, which is obtained by integratingEquation 3.81 as:

    Equation 3.82, known as the Duhamelintegral,can be used to obtain the responseof an undamped2 SDOF system to any

    dynamic loadingp(t).

    For a damped system, the derivation isidentical except that the free-vibrationresponse initiated by the differential loadimpulse decays exponentially. The Duhamelintegral for a damped SDOF system is:

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    21/46

    Central Difference Method

    Metode ini berdasarkan pendekatan beda hingga

    turunan perpindahan terhadap waktu, dengan

    mengambil step waktu tetap ti= t, maka

    ekspresi untuk kecepatan dan percepatan adalah:

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    22/46

    Central Difference Method

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    23/46

    Central Difference Method

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    24/46

    Central Difference Method

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    25/46

    Central Difference Method

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    26/46

    Newmark Method

    Th 1959, Newmark keluarga time-stepping

    berdasarkan persamaan berikut:

    Parameter b gan g untuk menentukan variasi

    kecepatan untuk tiap tingkatan waktu dan untuk

    stabilitas serta ketelitian.

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    27/46

    Newmark Method

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    28/46

    Newmark Method

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    29/46

    Newmark Method

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    30/46

    Newmark Method

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    31/46

    Wilson - q

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    32/46

    Wilson - q

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    33/46

    Evaluation of Results

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1y(t)

    t

    Cen Diff

    Newmark

    Wilson-Q

    Theoretica l

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    34/46

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    35/46

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    36/46

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    37/46

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    38/46

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    39/46

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    40/46

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    41/46

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    42/46

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    43/46

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    44/46

    Linear Step by Step Procedure

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    45/46

    Non-Linear Step by Step Procedure

  • 7/26/2019 Kuliah 8-10- Pengantar Dinamika Struktur SDOF-1

    46/46

    Non-Linear Step by Step Procedure