17
Chapter 3 Electromagnetic theory, Photons. and Light Lecture 6 Pointing vector and Irradiance Photons Radiation Electromagnetic spectrum

Lecture6 Ch3 Photons

Embed Size (px)

Citation preview

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 1/17

Chapter 3

Electromagnetic theory, Photons.and Light

Lecture 6

Pointing vector and Irradiance

Photons

Radiation Electromagnetic spectrum

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 2/17

Energy of EM wave

It was shown (in Phys 272) that field

energy densities are:

20

2  E u E 

 

2

02

1

 Bu B  

Since E=cB and c=( 0 0)-1/2:

 B E  uu - the energy in EM wave is shared equally

between electric and magnetic fields

Total energy:2

0

2

0

1 B E uuu  B E 

   (W/m2)

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 3/17

The Poynting vector 

EM field contains energy that propagates

through space at speed c

Energy transported through area A in timet : uAct 

 EB EBcB E c E cuct  A

t uAcS 

0

0

00

0

2

0

11

  

    

Energy S transported by a wave through

unit area in unit time:  E  c2

The Poynting vector:

 B E S 

0

1

 

 power flow per unit area for a

wave, direction of propagation

is direction of S .

(units: W/m2)

John Henry Poynting

(1852-1914)

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 4/17

The Poynting vector: polarized harmonic wave

 B E S  0

1

 Polarized EM wave:

t r k  E  E   

cos0

t r k  B B  

cos0

Poynting vector:

t r k  B E S    

2

00

0cos

1

This is instantaneous value: S is oscillating 

Light field oscillates at ~10 15 Hz -most detectors will see average value of S .

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 5/17

Irradiance

t r k  B E S    

2

00

0

cos1Average value for periodic function:

need to average one period only.

It can be shown that average of cos2

is: 21cos

2

T t  2

00

00

0 22

1 E 

c B E S 

 

 And average power flow per unit time:

Irradiance:2

00

2 E 

cS  I 

 

Alternative eq-ns:

T T  B

c E c I 

2

0

2

 

Usually mostly E-field component interacts with matter, and we

will refer to E as optical field and use energy eq-ns with E 

Irradiance is proportional to the square of the amplitude of the E field

For linear isotropic

dielectric:

T  E  I  2

Optical power  radiant flux total power falling on some area (Watts)

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 6/17

Spherical wave: inverse square law

Spherical waves are produced by point sources.As you move away from the source light intensity

drops

t r k r 

t r  vcos, A

Spherical wave eq-n:

t r k 

 E  E   

cos0 t r k 

 B B  

cos0

t r k r 

 B

 E S   

 

 

  

 

200

0

cos1

2

02

0 1

2 E 

cS  I 

 

Inverse square law: the irradiance from a point source drops as 1/r 2

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 7/17

Classical EM waves versus photons

The energy of a single light photon is E=h 

The Planck’s constant h = 6.626×10-34 Js

Visible light wavelength is  ~ 0.5 mJ104 19

1

 

 c

hh E 

Example: laser pointer output power is ~ 1 mW

number of photons emitted every second:

 photons/s105.2J/photon104

J/s10 15

19

3

1

 E 

 P 

Conclusion: in many every day situations the quantum nature of 

light is not pronounced and light could be treated as a classical

EM wave

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 8/17

Photon counter 

It is possible to detect single photons

Example: photomultiplier tube (PMT)

Photon kicks an electron out of cathode

The electron is accelerated by an

E-field toward a dynode

The accelerated electron strikes

the dynode and kicks out more

electrons

Many dynodes are used to get

 burst of ~105 electrons per single

 photoelectron

The burst of electron current can

 be detected electronically

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 9/17

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 10/17

Radiation pressure

Using classical EM theory Maxwell showed that radiation pressure

equals the energy density of the EM waves:

2

0

20

2

1

2  B E u  

 

P

ucS 

c

t S t  P

This is the instantaneous pressure that would be exerted on a

 perfectly absorbing surface by a normally incident beam

Average pressure:

c

 I 

c

t S t  T 

T P (N/m2)

* for reflecting surface pressure doubles* in quantum picture each photon has a momentum:

 

h p k  p

or , where

 2

h

 propagation vector 

Experimental confirmation:

Compton effect

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 11/17

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 12/17

Example problem (continued)

cr  ji

 Ac

 P  E 

 

   

 

 

 

2sinˆcosˆ2

cosk ˆ2

0

 x

 y

 z 

t r k  B B  

cos0Magnetic field:It is in phase with E .

 Need only find its amplitude and direction.

0

00

21/   Ac

 P 

cc E  B

   

cosˆsinˆ21

0

0  ji Ac

 P 

c B

cr  ji ji

 Ac

 P 

c B

 

   

 

   

 

2sinˆcosˆ2

coscosˆsinˆ21

0

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 13/17

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 14/17

Radiation: accelerated charges

Electromagnetic pulse can propagate in space

How can we initiate such pulse?

Short pulse of transverse

electric field

Field of a moving charge

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 15/17

Radiation: accelerated charges

1. Transverse pulse

 propagates at speed of 

light2. Since E(t) there must

 be B

3. Direction of v is given

 by:

 E 

 Bv

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 16/17

Electric dipole radiation

Oscillating charges in dipole create sinusoidal E

field and generate EM radiation

7/27/2019 Lecture6 Ch3 Photons

http://slidepdf.com/reader/full/lecture6-ch3-photons 17/17

Electric dipole radiation

Dipole moment:

t d d 

qd 

 

 

cos

cos

0

0

 p p

 p

Electric field of oscillating dipole:

t kr k  E 

 

 

 

cos

4

sin

0

2

0 p

2

2

0

32

42

0 sin

32 r c I 

 

  

  

p

Irradiance:

* EM wave is polarized along dipole

* I ~  4 - higher frequency, stronger radiation

* No radiation emitted in direction of dipole