171
ASTRALE ‘DCONTRACT’ ENHANCING TASK N°3 Contribution of LIFE ENV/INF/NAT projects to the implementation, dissemination and further development of EU environmental policies and legislation Water Sector August 2012 (Final Ver. 1)

LIFE Water Study

Embed Size (px)

DESCRIPTION

Pilot Study on WaterContribution of LIFE ENV/INF/NAT projects to the implementation, dissemination and further development of EU environmental policies and legislationThe principal objectives of the study were to:Review current water related legislation and agree a list of key directives to be assessed.Review all water related projects to determine which key directives were considered, examine trends and what the costs of implementation were (both total and EC contributions).Review selected projects relating to the implementation of key EU water legislation, including the Water Framework Directive, using SWOT analysis.Review of selected projects that provide new solutions and best practice for implementation of EU legislation and policy in the most efficient way and a high potential for transferability within the EU. Selected projects also allow understanding of factors for failure or success of certain approaches.

Citation preview

Page 1: LIFE Water Study

   

  

ASTRALE ‘D‐CONTRACT’    

ENHANCING TASK N°3   

Contribution of LIFE ENV/INF/NAT projects to the implementation, dissemination and further development of EU 

environmental policies and legislation   

Water Sector     

    

           August 2012 (Final Ver. 1)

Page 2: LIFE Water Study

[Water Sector Report August 2012]   

 TABLE OF CONTENTS 

Executive Summary .............................................................................................................................. i 

1.  Introduction ................................................................................................................................ 1 1.1.  Limitations to the Study ................................................................................................................................ 3 

2.  Recent Developments in Delivery ................................................................................................ 5 

3.  Evaluation of LIFE ENV/INF water projects in relation to EU water policy and legislation ............. 7 3.1.  Overview ....................................................................................................................................................... 7 3.2.  Policy sectors and legislative texts considered by the LIFE ENV/INF/NAT projects ..................................... 10 

3.2.1.  Framework Directives ............................................................................................................................. 10 3.2.2.  Pollution Control ..................................................................................................................................... 14 3.2.3.  Aquatic Organisms .................................................................................................................................. 19 3.2.4.  Human Health ......................................................................................................................................... 21 

3.3.  Means of Intervention ................................................................................................................................ 23 3.4.  Specific national/ regional/ local approaches developed by LIFE projects ................................................. 25 3.5.  LIFE projects playing the role of catalyst for the implementation of national/ regional/ local water 

programmes ................................................................................................................................................ 27 3.6.  Cross cutting policy ..................................................................................................................................... 28 3.7.  LIFE Water sector projects and Natural Water Retention Measures .......................................................... 30 3.8.  Gap Analysis ................................................................................................................................................ 32 3.9.  Third Countries (TCY) – a special case ......................................................................................................... 34 

3.9.1.  LIFE‐TCY and the promotion of EU policies outside of Europe ................................................................ 35 3.10.  Project Costs ............................................................................................................................................... 37 

3.10.1.  Total Costs and EU Commitment ........................................................................................................ 37 3.10.2.  Project costs by Directive .................................................................................................................... 39 3.10.3.  Cost Comparison with other Programmes ......................................................................................... 40 

3.11.  Best of LIFE projects .................................................................................................................................... 41 

4.  Analysis of the achievements of LIFE ENV/INF projects in the water sector ................................ 43 4.1.  SWOT Analysis ............................................................................................................................................. 43 4.2.  Areas in which LIFE water projects are especially successful (Strengths) ................................................... 43 

4.2.1.  Alternative remediation approaches ...................................................................................................... 43 4.2.2.  Alternative preventative solutions .......................................................................................................... 45 4.2.3.  Management solutions for waste water in the urban environment ....................................................... 46 4.2.4.  Assessment and improvements of quantitative status in groundwater ................................................. 46 4.2.5.  New technologies for the continuous monitoring of surface waters ...................................................... 47 4.2.6.  Cost effective programme of measures .................................................................................................. 48 4.2.7.  The Horizontal Approach – linking water management to other policy sectors .................................... 49 4.2.8.  Projects with high potential for transferability ....................................................................................... 49 4.2.9.  Standalone Successes ............................................................................................................................. 51 

4.3.  Areas in which LIFE water projects have failed to meet their policy objectives (Weaknesses) .................. 53 4.3.1.  Scale ........................................................................................................................................................ 53 4.3.2.  Varying costs ........................................................................................................................................... 54 4.3.3.  Weather and technical problems ............................................................................................................ 55 4.3.4.  Technical limitations ............................................................................................................................... 55 4.3.5.  Human factors ........................................................................................................................................ 55 

4.4.  Continuing or new threats which make it difficult for LIFE water projects to implement policy (Threats) 55 4.4.1.  Sustainability .......................................................................................................................................... 56 4.4.2.  Transferability ......................................................................................................................................... 56 4.4.3.  Data access and reference information .................................................................................................. 57 

Page 3: LIFE Water Study

[Water Sector Report August 2012]   

4.4.4.  Unknown long‐ term results ................................................................................................................... 57 4.4.5.  Wider administrative and economic threats .......................................................................................... 57 4.4.6.  Difficulties in obtaining access, rights and permissions .......................................................................... 58 4.4.7.  Lack of close collaboration and consensus with stakeholders ................................................................ 58 4.4.8.  Insufficient harmonisation and different interpretations of policy ......................................................... 59 

4.5.  LIFE projects contributing to the development of new water related policies and legislation (Opportunities) ............................................................................................................................................ 59 

4.5.1.  Projects proposing new legislation ......................................................................................................... 60 4.5.2.  Projects working on complementary sub‐legislation to already existing texts ....................................... 60 4.5.3.  Projects developing new approaches not yet covered by existing EU legislation ................................... 61 4.5.4.  Projects providing input for specific water management related legislation ......................................... 62 4.5.5.  Project contributing to the revision of water legislation ........................................................................ 62 4.5.6.  Projects contributing to further develop water management related norms and standards ................ 63 4.5.7.  Projects assessing and disseminating environmental legislation ........................................................... 64 

4.6.  Preparatory Projects ................................................................................................................................... 66 4.7.  Factors for success and failure .................................................................................................................... 66 

5.  Conclusions and recommendations ........................................................................................... 71 

Page 4: LIFE Water Study

[Water Sector Report August 2012]   

LIST OF FIGURES 

Figure 2‐1: Trends in Projects through Time for Principal Directives ........................................................................ 5 Figure 2‐2 Trends in LIFE Projects Dealing With Pollution Control ............................................................................ 6 Figure 3‐1: Detailed Analysis of Projects Related to the Water Framework Directive ............................................. 11 Figure 3‐2: Relative Proportion of LIFE Projects contibuting to Directives Relating to Aquatic Organisms ............. 20 Figure 3‐3: Delivery Mechanisms for Policy Implementation for all Projects .......................................................... 24 Figure 3‐4: Breakdown of Delivery Mechanisms by LIFE Brand ............................................................................... 25 Figure 3‐5: Distribution of Total Project Values for LIFE ENV projects ..................................................................... 38 Figure 3‐6: Distribution of Total Project Values for LIFE NAT projects ..................................................................... 39 Figure 3‐7: Total Cost Comparison – LIFE vs other EU Funds ................................................................................... 41 

LIST OF TABLES 

Table 3‐1:  Number of LIFE projects per water directive ............................................................................................ 7 Table 3‐2 : Table of Cross Cutting Legislation ............................................................................................................. 9 Table 3‐3: LIFE TCY Water Sector Projects ................................................................................................................ 34 Table 3‐4: TCY Projects Promoting EU Policy outside Europe .................................................................................. 35 Table 3‐5: Total Costs of Delivering LIFE Projects in the Water Sector ..................................................................... 37 Table 3‐6: Highest and Lowest Ranking Projects on Total Cost ................................................................................ 38 Table 3‐7: Cost Breakdown by Directive ................................................................................................................... 40 Table 3‐8: Average Cost of Projects .......................................................................................................................... 40 Table 3‐9: Best of LIFE Awards – Water Projects ...................................................................................................... 42 Table 4‐1: Scaling Issues with LIFE projects .............................................................................................................. 54 Table 4‐2: Factors for Success and Operational Threats of LIFE ENV/INF/NAT Projects in the Water Sector .......... 67 

LIST OF BOXES 

Box 1: Phytoremediation .......................................................................................................................................... 30 Box 2: Strengths of the LIFE projects ....................................................................................................................... 43 Box 3: Weaknesses of the LIFE projects ................................................................................................................... 53 Box 4: Threats to the implementation of water policy ............................................................................................ 56 Box 5: Opportunities for LIFE projects to influence policy ....................................................................................... 60 Box 6: Deficiencies in current water monitoring programmes ................................................................................ 63 

ANNEXES 

Annex 1: Long list of LIFE ENV/INF/NAT projects  Annex 2: Finalised matrix of all projects analysed for water legislation Annex 3: Further assessment of projects considering the Water Framework Directive Annex 4: SWOT analyses for critical analysis of selected projects  

Page 5: LIFE Water Study

[Water Sector Report August 2012]   

ACRONYMS  

AR  Artificial Recharge  

BAT  Best Available Technique  

BWD Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC (Bathing Water Directive) 

CEC  Cation Exchange Capacity  

CFP  Common Fisheries Policy  

CIS  Water Framework Directive Common Implementation Strategy  

CODs  Chemical Oxygen Demands  

CW  Constructed Wetland 

Discharge 

Directive (76/464/EEC; 80/68/EEC and) 2006/11/EC of the European Parliament and of the Council of 15 February 2006 on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community (soon to be repealed by the WFD) 

EAP  Environmental Action Programme 

EC  European Commission 

ECGMS  European Coordinating Group for Marine Strategy  

ENV  LIFE Environment Policy and Governance strand 

EQS 

Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council 

ETAP  Environmental Technology Action Plan  

EU  European Union 

FASRB  Framework Agreement on the Sava River basin  

Floods  Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks (Floods Directive) 

FP7  Seventh Framework Programme 

GES  Good Environmental Status  (as set out in the Marine Strategy Framework Directive ) 

GES  Good Ecological Status (as set out in the Water Framework Directive) 

GIS  Geographical Information System 

Groundwater 

Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration (Groundwater Directive, included in WFD) 

GW  Ground Water 

HELCOM  The Helsinki Commission, Baltic Marine Environment Protection Commission 

INF  LIFE Information and Communication strand 

INSPIRE  Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community 

IPPC Directive 96/61/EC and 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (Integrated Pollution Prevention and Control)  

IPR  Intellectual Property Rights  

IUCN  International Union for Conservation of Nature 

LIFE +  European Union Financial Instrument for the Environment (2007‐2013) 

LIFE III  European Union Financial Instrument for the Environment (2000‐2006) 

Page 6: LIFE Water Study

[Water Sector Report August 2012]   

LIFETrack  LIFE programme monitoring database 

LTER  European Long‐Term Ecosystem Research Network  

MBR  Membrane bioreactor  

MPA  Marine Protected Area 

MS  Member State 

MSFD Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive) 

MSGs  Marine Strategy Groups 

NAT  LIFE Nature and Biodiversity strand  

Natura 2000  The EU wide network of nature protection areas established under Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora (Habitats Directive) 

Nitrates  Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (Nitrates Directive) 

NREAP  National Renewable Energy Action Plans  

NVZ  Nitrate Vulnerable Zones P&T   Pump and Treat 

POM  Programmes of Measures  

RBMP  River Basin Management Plan 

RD or RED Directive 2009/28/EC of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Renewables Directive or Renewable Energy Directive) 

RMS  River Modelling System 

SMEs  Small/Medium Enterprise 

SUDS  Sustainable Urban Drainage Systems  

SW  Surface water 

SWOT  Strengths Weaknesses Opportunities Threats 

TBT  Tributyl tin, a widely used anti‐fouling paint and persistent pollutant of marine systems 

TCY  LIFE Third Countries strand 

UV  Ultra‐violet 

UWWT  Directive 91/271/EEC of 21 May 1991 concerning urban waste‐water treatment 

VOCs  Volatile Organic Compounds  

WFD Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy (Water Framework Directive) 

WHO  World Health Organisation 

WISE  Water Information System for Europe 

WWTP  Waste Water Treatment Plant 

Page 7: LIFE Water Study

[Water Sector Report August 2012]  i 

EXECUTIVE SUMMARY 

 Protecting the quality of Europe’s water resources has been a high priority for the European Union since it started adopting legislation in the area of environmental protection in the mid 1970s.  This first generation of directives established a series of quality standards aimed at protecting human health and the living environment, including surface water used for drinking water, bathing water, fish waters, shellfish waters and groundwater. However, the quality standard approach proved insufficient for protecting Europe’s polluted waters and, in the 1980s, the EU started to focus on the sources of pollutants. This led to the Directive on Urban Wastewater Treatment (UWWT), the Nitrates Directive and the Directive on Integrated Pollution Prevention and Control (IPPC).  To make this patchwork of policies and legislation more coherent, the EU adopted the Water Framework Directive (WFD) in 2000, creating a global and unified approach to water legislation.  The WFDs combined approach for point and diffuse sources links the requirements established in the other directives through the programmes of measures.  This integrated approach has more recently been adopted in an effort to protect the marine environment and in 2008 the EU’s Marine Strategy Framework Directive came into force with the goal of achieving Good Environmental Status (GES) in Europe’s Seas by 2020.  LIFE is the EU’s financial instrument supporting environmental and nature conservation projects throughout the EU, as well as in some candidate, acceding and neighbouring countries. Since 1992, LIFE has co‐financed some 3506 projects, contributing approximately €2.5 billion to the protection of the environment and over the 20 years that the programme has been active approximately 21.6% of the projects funded under LIFE  have been related to the water sector1. Furthermore, projects are overwhelmingly successful (with more than 80% of projects reaching all or nearly all of their objectives) and the LIFE programme is generally well aligned with relevant legislation and/or policy.    Clearly, water sector projects form an important part of the LIFE programme; but how does the programme impact on water policy and has the programme responded to the changing impetus of the regulatory framework?  In an effort to answer these questions the LIFE Unit commissioned the External Monitoring Team (Astrale) to undertake a special study to review progress to date.   Reviewing all the projects from the last 20 years would have been an impossible task and so the review focussed on water projects from 2005‐2010; this included projects which had finalised and ones which were relatively new and had only preliminary results.  The Astrale team reviewed around 150 water related projects which have been funded during the last 6 years and selected 33 of these for detailed assessment.  All brands of the LIFE programme have been represented in the study.  All projects were analysed in terms of the water directives that they  are related to in order to gain some understanding of the proportion of projects contributing to each directive; a subsequent gap analysis revealed those legislative areas which are not well served by LIFE projects.  On examination of the spread of projects throughout the various directives there are some areas where LIFE projects are not well represented and the Floods, Environmental Quality Standards and Shellfish Directives have the fewest projects.  The reasons for this are not clear although it is possible that project proponents do not always mentions all policy areas that the project is likely to influence.  Nevertheless, there is certainly scope in all three directives for LIFE projects to make a contribution to the implementation (at least to certain aspects) of these policy areas.  The majority of projects addressed some aspect of the Water Framework Directive and so a further breakdown of WFD policy areas revealed that typology and the delineation of water bodies, economics, monitoring and 

1 Overview of environment projects funded by the LIFE programme 1996 – 2008, GHK study 2010

Page 8: LIFE Water Study

[Water Sector Report August 2012]  ii 

Programmes of Measures (POM) do not attract many projects. The report draws out some good examples of LIFE projects contributing to the requirements and objectives of the different directives.    The study also considered the overall costs of the programme and calculated the relative costs associated with each directive. The WFD is the directive which receives most attention in terms of number of projects and in terms of total EU commitment of some 137 million Euros between 2005 and 2010.  The average cost per project for delivery is perhaps a better indicator of the average cost of the programme and although the WFD projects tend to have a slightly higher unit cost than other projects there is very little difference in the cost of delivery between the directives for any single project.  However, the average cost of NAT projects is much higher (almost double) that of the ENV projects, although the reasons why this should be so were outside the scope of this study.  The projects examined covered a broad range of water issues addressed and solutions proposed and examined all stages of the policy development and implementation process. The number of projects with the express aim of elaborating actual policy is rather low. On the other hand, a considerable number of projects develop or demonstrate concrete water utilisation, remediation and prevention practices, demonstrating a range of economically feasible and environmentally sound options which could contribute to setting the standards for future policies.   The in depth analysis of the selected projects examined the strengths and weaknesses of the LIFE projects in relation to their impact on the water directives and went on to assess the opportunities and threats to reveal areas where the programme could improve or areas that need to be addressed if the impact on policy is to be more widespread than at present.  The strengths of the LIFE projects lie in their ability to develop alternative remediation approaches and preventative solutions contributing to water policy issues.  Undoubtedly there have been some major technological advances in water treatment (contributing to the UWWT Directive) as well as some outstanding examples of projects contributing to the implementation of river basin management plans through the integration of data capture, modelling and management techniques.  Some project outputs have a high potential for transferability or replicability, although it is often difficult to determine whether the full potential has been realised as this often occurs some time after project closure.  This latter point can also be considered as a threat along with long‐term sustainability as it is often difficult to both maintain the momentum of a project and find continued funding once the LIFE funding has been exhausted. A new, and emerging, threat to the legacy of some LIFE projects is the macro economic climate with some projects reporting difficulties in developing innovative technologies further in the current economic climate.  Few weaknesses, i.e. factors which prevented absolute success, were identified in the projects and although some were outside the control of the project design, for example poor weather conditions at critical times in the project cycle, most could perhaps have been prevented through stronger project design (e.g. technical limitations, getting the right stakeholders involved to encourage wider delivery and human factors). Variable costs was a recurring theme  and some technologies developed and demonstrated by LIFE projects have proved to involve high capital costs that may act as barriers to their wider uptake and commercialisation. Other technologies demonstrate variability in cost performance on a site‐by‐site basis and so are less attractive to prospective investors.   In terms of future opportunities, there are two policy support areas where LIFE projects could be more influential, provided that such support is built into the project design. These are projects which assess and disseminate environmental legislation and projects which contribute to the further development of water management related norms and standards. In essence it would be unrealistic to expect most LIFE projects to contribute to policy formulation due to their limited size and the generally local scale of operation.  

Page 9: LIFE Water Study

[Water Sector Report August 2012]  iii 

In addition, this study demonstrates how the LIFE projects contribute to the various stages of the policy cycle, highlight where the strengths of the project lie and examine the opportunities that may arise as a result of the changing regulatory landscape.  The role that LIFE projects can play in each phase of the policy cycle can be assessed by examining their relevance in the four stages of the cycle.  Scoping: some projects were already working on cost effective programme of measures before quantitative targets became obligatory in EU legislation. In cases such as LIFE05 ENV/DK/145 Odense PRB – AgriPoM the project demonstrated the development of a cost‐effective programme of measures to reduce levels of nitrogen and phosphorus originating from agricultural activities prior to the deadline. However, in the LIFE portfolio, projects of this nature are few and we could only find two projects that set out to define programmes of measures.   Policy development: few projects are directly linked to the development of new environmental policies. A specific type of project (preparatory projects) is dedicated to this purpose and there is only one for the water sector which was the UK project LIFE06 PREP/UK/002 TRITECH ETV. This project was useful as in 2002, the EU adopted the Environmental Technology Action Plan (ETAP). A key aspect of ETAP is the development of improved testing, performance verification and standardisation of environmental technologies through defined processes. The TRITECH‐ETV project set up and ran a pilot scheme for the verification of environmental technologies, including waste water treatment.  Policy implementation: This is without doubt the main strength of the LIFE programme.  Numerous LIFE projects are dedicated to policy implementation, for instance by demonstrating how (future) EU policy targets can be achieved (e.g. LIFE07 ENV/NL/576 PHARMAFILTER provides innovative methods to treat hospital waste water for drinking water), by  contributing to the implementation of EU policy at the national level (e.g. LIFE09 ENV/RO/612 CLEANWATER which helps develop a modern water management system for Romania) or by demonstrating technologies (e.g. LIFE06 ENV/B/359 MULTIBARDEM that demonstrated the multi‐barrier technology in Belgium and Austria). Several projects have contributed to a better understanding of how EU Directives covering different policy areas can be implemented without conflict.  For example, the 2011 award winning project LIFE 06 ENV/D/485 Moveable HEPP has had a significant influence on local policy makers/regulators’ perceptions of hydropower and has proved that, with careful implementation, the ecological benefits (WFD) and the economic operation of hydropower plants (under the Renewable Energy Directive) are not contradictory and the requirements of both directives can be met.  This is, arguably, the area where LIFE projects excel and make the largest contribution to EU policy.  Policy evaluation / review: although, due to the demonstration nature of the LIFE programme, this element is less prominently represented in the project portfolio, there are one or two good examples of LIFE water projects contributing to policy review (e.g. LIFE07 ENV/L/540 M3 which identified shortcomings in the WFD Common Implementation Strategy).    So, how well do the projects actually serve the policymaker? External evaluators tend to value the practical experimentation which LIFE projects contribute to policymaking, and they acknowledge that projects are relevant to EU policy. According to the LIFE+ mid‐term evaluation2, LIFE projects “provide opportunities for the development and testing of ideas for policy development and implementation which, based on real conditions and actions on the ground, provide feedback and insight on what is feasible or less feasible, identifying good practices where possible.” The LIFE III ex‐post evaluation adds3 that “in terms of utility at the European level, the projects by and large have a link to one or more pieces of EU or national legislation and/or policies, and their objectives and scopes are in line with that legislation.” 

2 http://ec.europa.eu/environment/life/about/documents/com2010_516_final.pdf 3 Overview of environment projects funded by the LIFE programme 1996 – 2008, GHK study 2010

Page 10: LIFE Water Study

[Water Sector Report August 2012]  iv 

 In conclusion, LIFE projects excel at policy implementation but have less direct influence in other areas of the policy cycle. While LIFE projects do respond to changing legislation (i.e. response to the call for development of integrated RBMPs under the WFD) the manner of delivery (i.e. local/regional, small scale, innovative and highly technical projects), has not changed a great deal over the years. However, this may change with the advent of larger, integrated projects proposed under the new LIFE instrument (2014‐2020).   It is recommended that the LIFE programme encourages beneficiaries to submit applications that contribute to those areas of water policy that are currently poorly addressed, such as the programmes of measures, and that beneficiaries should be more precise in terms of which areas of the WFD they aim to focus on, e.g. groundwater monitoring or river basin management plans. Furthermore, communicating the results of the LIFE projects to the water managers in a form that allows them to answer critical questions is seen as an important outcome of this study and the analytical tools developed to complete this analysis could be improved and updated to provide this vital information link.

Page 11: LIFE Water Study

[Water Sector Report August 2012]  1 

 

1. INTRODUCTION  The LIFE ENV and Eco‐innovation Unit requested that Astrale EEIG should, in the context of the Enhancing Tasks of Astrale C contract, assess the contribution of LIFE ENV/INF projects to the implementation, dissemination and further development of EU environmental policies and legislation, focusing in particular on resource efficiency.    Accordingly, Astrale EEIG undertook a ‘pilot study’ in 2011 which, besides providing an in‐depth analysis of waste projects funded by LIFE, informed subsequent studies (input needed, methodology, ideal frequency of the updates, etc.). As a result of the pilot study the LIFE ENV and Water Unit requested a similar study concerning the contribution of the LIFE project to EU environmental policies in the Water Sector (as part of Astrale D contract).  The Thematic Unit D1 (Water), represented by Ms. Evdokia Achilleos, and Mr. Jose Rizo of Unit D2 (Marine Environment & Water Industry) have been involved in the design and finalisation of the report.  The Thematic Unit D1 did not identify any specific problems related to the implementation of the water related directives but they expressed some interest in identifying projects related to water re‐use or addressing pharmaceutical pollution in water.  Therefore, the principal objectives of the study were to: 

 

Review current water related legislation and agree a list of key directives to be assessed. 

Review all water related projects to determine which key directives were considered, examine trends and what the costs of implementation were (both total and EC contributions). 

Review selected projects relating to the implementation of key EU water legislation, including the Water Framework Directive, using SWOT analysis. 

Review of selected projects that provide new solutions and best practice for implementation of EU legislation and policy in the most efficient way and a high potential for transferability within the EU. Selected projects also allow understanding of factors for failure or success of certain approaches. 

Relevance of project approaches  The relevant directives were analysed and grouped under the following headings: 

 

Framework Directives 

WFD: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy (Water Framework Directive) 

MSFD: Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive)  

IPPC: Directive 96/61/EC and 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control)  

Floods: Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks 

Pollution Control 

UWWT: Council Directive 91/271/EEC of 21 May 1991 concerning urban waste‐water treatment 

Page 12: LIFE Water Study

[Water Sector Report August 2012]  2 

Nitrates: Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources 

Discharge of Pollution Directive (76/464/EEC; 80/68/EEC and) 2006/11/EC of the European Parliament and of the Council of 15 February 2006 on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community (soon to be repealed by the WFD) 

Groundwater Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration (included in WFD) 

EQS Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council 

Aquatic Organisms 

Directive 2006/44/EC of the European Parliament and of the Council of 6 September 2006 on the quality of fresh waters needing protection or improvement in order to support fish life (soon to be repealed by WFD) 

Directive 2006/113/EC of the European Parliament and of the Council of 12 December 2006 on the quality required of shellfish waters (soon to be repealed by WFD) 

Human Health 

Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption 

Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC 

Although some of these directives will be repealed by the WFD in the future it was relevant to analyse the projects in terms of these directives because they were still active during the timeframe of the projects analysed. Many of the projects still referred to these directives and were clearly targeting them in their original applications. 

 A long list of projects was developed covering the period from 2005 through 2010 and thus included projects from LIFE III and LIFE +. The start period of 2005 was selected because this linked to the beginning of the implementation of the WFD which was considered to be the main directive considered by the majority of the LIFE projects.  A long list of 244 projects from the ENV, NAT, TCY and INF brands was established. This long list also covered projects that were not directly water related but included water management aspects ‐ the full long list can be found in Annex 1. The analysis of these projects led to the rejection of 33 projects which mainly dealt with waste issues and were only marginally relevant to water and horizontal issues like soil remediation and alternative energies. A further 14 projects were removed from the main analysis because they were TCY projects and as such could only contribute to the implementation of the directives if they targeted ‘common’ water bodies shared with Member States.  However, these projects have been analysed separately to see whether there were any synergies in implementation in the Member States and whether there were any projects where developed technologies could be usefully transferred to the Member States.  The remaining 197 projects were then analysed in terms of the principal directives outlined above and the results are presented in the following section. In each case the project was rated as specifically contributing to the objectives of a directive as the principal objective or as a secondary objective. Projects have been 

Page 13: LIFE Water Study

[Water Sector Report August 2012]  3 

included in the short list regardless of their success or failure, considering that lessons can be learnt from both.   The majority of projects (113) focussed on the WFD and so these projects were re‐analysed in more depth to determine which parts of the WFD LIFE projects focussed upon and whether there were any significant gaps that the LIFE programme could address in future rounds.   

 The total costs for all projects and the EC contribution under LIFE were assessed and allowed an overview of the overall spend associated with each directive. In addition, an average cost per project has been calculated in an attempt to evaluate whether projects servicing some directives are more costly than others.  Many projects also combine water protection with other environmental issues like renewable energy directive or climate change mitigation; these links have also been taken into account.  The scope of the study does not allow an in‐depth assessment of all 197 projects. However, an assessment of results – as far as available – is given in the matrix presented in Annex 2. These projects allowed a broad analysis of the overall coverage of LIFE projects in relation to the main directives and the WFD in particular but also provided valuable information concerning information gaps i.e. main directives of parts of the WFD that are poorly addressed by LIFE.  A further 35 projects were selected for a more detailed evaluation using a SWOT analysis approach. These projects have been selected according to their relevance for the Water Thematic Unit, but also according to the trends that can be observed from the overall assessment. Chapter 4 gives more information on the relation of projects to water protection legislation.  The concluding chapter examines where LIFE projects intervene in the policy cycle and draws together the strengths of the programme as well as summarising the opportunities that present themselves to the LIFE programme going forward. 

1.1. Limitations to the Study 

 First it must be said that it is often difficult to determine which specific policies a project may be related to as this is not always explicitly stated in the application.  The applicant is only obliged to complete the tick box at the beginning of Form A which gives an indication of the general area of policy the project is related to.  Thus, while all of the projects analysed state that the focus of the project is on ‘water policy’ there is no imperative for the project proponents to give any further details concerning the specific directives they are contributing to.  Of course many projects give further details elsewhere in the application but this is not often recorded anywhere else.  As a result, searching documentation (such as the LIFE database and Astrale’s LifeTrack) using key word searches often does not reveal the required information. It would be very useful if there was a specific area on the LIFE application forms that allows the applicant to state the specific policy areas considered by the project.    Some projects, especially those that are highly technical, tend to focus very much on the development of technology and rather less on policy implications and so it is sometimes difficult to find the material relevant to a policy study of this nature.  Indeed, for some projects on the long list it was only possible to map the broad policy area that was being considered. Projects of this nature could only be assessed in these terms and could provide very little additional information.  As projects often relate to more than one specific EU policy or directive, it is sometimes difficult to link a project exclusively to one legislative text. The multiple relations of LIFE ENV projects in particular4 to EU 

4 Note NAT projects tend to far more precise in terms of relationship to policy

Page 14: LIFE Water Study

[Water Sector Report August 2012]  4 

legislation make it difficult to establish clear and definite relations between projects and EU policy. This can be regarded as a limitation of the study.  In terms of sustainability, transfer and replication it has only been possible to determine the potential for this to occur because these factors can only reliably be assessed after the project has closed.  Although some projects do have ex‐post monitoring visits, this was not used as a selection criteria, and it is only through this kind of monitoring that the real longevity of a project can be scrutinised.  There was not really enough ex‐post data to make any robust conclusions.  Finally, although some gaps in the portfolio have been identified it is not certain whether these are due to the fact that prospective beneficiaries do not submit applications for these areas or whether applications covering these subjects are largely unsuccessful (i.e. do not pass the evaluation stages).  The information required to answer this question was not readily available in the evidence reviewed for this study.

Page 15: LIFE Water Study

[Water Sector Report August 2012]  5 

 

2. RECENT DEVELOPMENTS IN DELIVERY  Looking at the 6 years of the LIFE programme, it is interesting to observe that the number of projects which claim to relate to the Framework Directives have not changed a great deal despite the considerable progress in water policy and legislation.  Figure 2‐1 shows the number of LIFE projects which respond to each of the four Framework Directives over the last 6 years.  It is clear that the majority of projects claim to contribute to the implementation of the WFD.  While this is true for many projects there are some that simply quote the WFD as related legislation but do not in fact make any contribution to its implementation. The focus of LIFE projects on the WFD suggested that a further breakdown of projects, in terms of the areas of the WFD that they addressed was required and this is discussed further in Chapter 3. 

 

Figure 2‐1: Trends in Projects through Time for Principal Directives 

 

  

The number of projects considering the MSFD is perhaps lower than would be expected with a maximum of 10 projects in 2009; and over 50% of these are NAT projects which tend to focus on establishment of marine protected areas or conservation of individual species. Therefore, some of the strategic aspects of the MSFD such as the implementation of the ecosystems based approach and the developing of monitoring systems and programmes of measures are poorly addressed by LIFE projects.  However, most Member States are still at the first stage of implementation which involves an initial assessment of the current environmental status of the waters and so it is possible that there will be a greater emphasis on marine projects in future rounds of LIFE.  The Floods Directive is also poorly covered by LIFE projects and this is perhaps surprising as the initial requirements of this Directive calls for identification and mapping at the river basin level and the development of flood management plans; both requirements illustrate the synergies between the Floods Directive and the WFD.  We could only find a small number of projects which recognised both directives and this appears to be an area where LIFE projects could make a greater contribution.  However, it is recognised that the final stages of implementation of the Floods Directive requires Member States to put in place preventative measures, probably requiring major infrastructure, and so this aspect of the Directive may well be served by other EU funding sources (i.e. structural funds).   The IPPC Directive is the only one to show a steady decline in LIFE project numbers from six in 2005 to zero 

Page 16: LIFE Water Study

[Water Sector Report August 2012]  6 

in 2008, 2009 and 2010. The reasons for the decline are not clear but it is possible that the projects have focussed more on the individual pollution control directives (Figure 2‐2).  These individual pollution control directives were addressed exclusively by ENV and INF projects (no NAT projects) and tended to be mainly technical projects dealing with: 

 

solutions for waste water treatment in a variety of industries; 

innovative technologies for reducing nitrates from point and non‐point sources principally from agriculture; 

methods of dealing with pollution of groundwater, generally linked to nitrates as well; and 

techniques for reducing pollution to surface and groundwater.  

Figure 2‐2 shows the trends in LIFE projects involved with the five directives dealing with pollution control. There are few real trends in the data with perhaps the exception of an increasing number of projects considering groundwater and a decrease in the number of projects addressing discharges, but the numbers are quite low and so it is not certain that these are real trends.  It is appreciated that all these directives, apart from the UWWT, will be repealed by the WFD in time, however, the projects cited these directives and so the assessment here is valid.  One gap appears in the LIFE portfolio, only one project (LIFE08 ENV/IT/399 EnvEurope) cited the development of Environmental Quality Standards (EQS) as an objective but this was secondary to the WFD.  This is clearly an area where LIFE projects could be more influential.  

Figure 2‐2 Trends in LIFE Projects Dealing With Pollution Control  

 

  

Trend analyses were not completed for Directives dealing with Aquatic Organisms and Human Health becuase there were too few projects to make a meaningful assessment.  However, on examination of the 18 projects dealing with protection of fish waters there was an even spread of projects across all years with the exception of 2009 when no projects were funded in support of this directive. 

Page 17: LIFE Water Study

[Water Sector Report August 2012]  7 

3. EVALUATION OF LIFE ENV/INF WATER PROJECTS IN RELATION TO EU WATER POLICY AND LEGISLATION 

3.1.  Overview 

Most of the LIFE water projects assessed for this study focus on more than one water protection policy or directive and many of them are also linked to other environmental areas. Table 3‐1 shows the water protection directives the projects focus on as a priority.  

 

Table 3‐1:  Number of LIFE projects per water directive 

Directive    No of projects 

Framework 2000/60/EC  Water Framework  113 2008/56/EC  Marine Strategy  28 96/61/EC and 2010/75/EU 

Integrated Pollution Prevention 

12 

2007/60/EC  Flood Risk  8 Pollution 

91/271/EEC  Urban Waste Water  28 

91/676/EEC Nitrates from Agriculture 

25 

76/464/EEC; 80/68/EEC; 06/11/EC 

Discharge of Pollution 

20 

2006/118/EC  Groundwater  14 2008/105/EC  EQS  2 

Aquatic Organisms 

 2006/44 Fresh Waters to Support Fish 

18 

2006/113/EC  Shellfish  1 Human Health 

98/83/EC  Drinking Water  8 2006/7/EC  Bathing Water  3 

 

Each category is dealt with in more detail in Chapter 4 below but it can be seen that the majority of projects deal with the Water Framework Directive and that some areas of legislation are poorly addressed by LIFE, for example there are very few projects that deal with bathing water, shellfish waters or EQS.  The main analysis of projects is presented in Annex 2.  However, many projects deal not only with the Water Framework Directive but also cite other areas of water legislation that have been considered in either a primary or secondary function.    Table 3‐2  below shows how LIFE projects can relate to several different aspects of water legislation and indicates the cross cutting nature of many LIFE projects5.  There are a number of projects that cite more than one directive.  It is quite possible to see how there could be a link between the Floods Directive and the WFD, a good example of which is LIFE06 ENV/D/461 FLOODSCAN (see information in sidebar below).  

5  The total exceeds the number of projects assessed, because many projects focus on more than one directive.

Page 18: LIFE Water Study

[Water Sector Report August 2012]  8 

Equally it is not surprising that there are links between the WFD and the IPPC. A good example of this is project LIFE05 ENV/B/517 INSIMEP, a successful project for treating metal‐contaminated groundwater on site by accelerating naturally‐occurring biogeochemical processes: obviously the project also considered the Groundwater Directive.  One project, LIFE07 ENV/EE/122 BaltActHaz, had the overall goal of taking joint Baltic countries’ action towards implementation of the WFD, the MSFD and the IPPC Directives as well as the HELCOM Baltic Sea Action Plan. It achieved this through a reduction of hazardous substances by improving the current permitting system and enhancing better chemical management in pilot areas. There was a large element of awareness‐raising amongst the stakeholders in this project which proved most effective.  It is also not difficult to understand why there could be strong interactions between projects delivering pollution control solutions and the WFD, since the Groundwater (76/464/EEC; 80/68/EEC; 06/11/EC) and Discharge of Pollutants (2006/118/EC) Directives will be repealed by the WFD in due course.  A good example of these synergies is the project LIFE06 ENV/F/158 ISONITRATE which set out to improve the management of nitrate pollution in water using isotrophic monitoring.  The project acted at the river basin scale and also produced an innovative form of monitoring. Although the technology was successful it is uncertain whether there will be a major uptake of the monitoring method due to the need for local decision makers to be 

on board. Similarly the Dutch project LIFE06 ENV/NL/167 WET successfully demonstrated a number of techniques for the further treatment of effluent from WWTPs in order to achieve the standards of the WFD. Several techniques have already been implemented at the beneficiary’s WWTPs.  In terms of the directives dealing with aquatic life, most are NAT projects, and most are also relevant to the WFD.  The majority are river restoration projects to restore ecological or chemical functionality to a water body.  LIFE has invested a great deal in projects of this nature and there are many good examples which are discussed in more detail in Chapter 4 below.  One current LIFE project, LIFE09 INF/UK/032 RESTORE is seeking to build a sustainable network linking policy makers, river basin planners, practitioners and experts across Europe to share information and good practice on river restoration activities. Applying sustainable river restoration serves both the Habitats Directive and the Water Framework Directive at several levels. River restoration at the local level aims to create and improve habitat conditions for key species; at regional level supports the Natura 2000 network; and across Europe can improve the entire ecological status of river basins. River restoration can also assist with adaptation to climate change by strengthening ecological networks and providing climate space. River restoration activities play a crucial role in developing best practice approaches for flood risk management, especially through flood storage, serving the interests of the EU Floods Risks Directive. If it is successful, this project could make a lasting contribution to the implementation of the WFD, the Floods Directive and the Habitats Directive.   

LIFE06 ENV/D/000461 FLOODSCAN 

A project which developed a new technology for fast, precise and cost‐efficient hydraulic 2d‐modelling of flood (hazard) areas by combining laser scanning with remote sensing data. The project results contributed directly to the Floods Directive and are linked to the objectives of the WFD where the mitigation of the effect of floods is required.  In addition, the results in the area of web‐mapping contribute to the INSPIRE Directive (Directive 2007/2/EC). 

Page 19: LIFE Water Study

[Water Sector Report August 2012]  9 

 

Table 3‐2 : Table of Cross Cutting Legislation 

Primary legislation is given on the vertical axis, secondary legislation is given on the horizontal axis  

WATER legislation 

Framework Pollution  Aquatic Organisms Human Health

2000/60/EC WFD 

2008/56/EC MSFD 

96/61/EC IPPC 

2007/60/EC Floods 

91/271/EEC UWWT 

91/676/EEC Nitrates 

80/68/EEC Discharge of Pollution

2006/118/EC Groundwater

2006/44/EC Fish Waters 

2006/113/EC Shellfish

98/83/EC Drinking 

2006/7/EC Bathing

Framework                         

2000/60/EC Water Framework    2  6  7  12  17  10  9  10  5  4  4 

2008/56/EC Marine Strategy      2  0  0  1  2  0  1  0  1  0 

96/61/EC and 2010/75/EU IPPC        0  2  2  3  1  0  0  0  0 

2007/60/EC  Floods          0  0  0  0  1  0  0  0 

Pollution6                         

91/271/EEC UWWT            1  3  0  0  0  2  2 

91/676/EEC Nitrates              3  2  0  1  2  0 

76/464/EEC; 80/68/EEC; 06/11/EC Discharge of Pollution               2  0  0  0  0 

2006/118/EC Groundwater                2  0  0  0  0 

Aquatic Organisms

2006/44 Fish Waters                    3  0  0 

2006/113/EC Shellfish                      0  1 

Human Health                         

98/83/EC Drinking Water                        0 

2006/7/EC Bathing Water                         

   

6 Note 2008/105/EC EQS has not been included in the analysis as there is only one project

Page 20: LIFE Water Study

[Water Sector Report August 2012]  10 

Projects dealing with Human Health are also closely related to the WFD.  A particularly good example is LIFE06 ENV/IT/235 Kolisoon which developed a new automated method for the analysis of Escherichia coli in waste water effluent. The environmental benefits of the project come with safeguarding bather’s health through rapid assessment of faecal pollution of bathing waters and so contributes to the Bathing Water Directive and the WFD, providing an interesting input to the discussion on how and if the faecal contamination of discharged effluents can be kept under control in relation to the implementation of these Directives.  Similarly, LIFE06 ENV/F/136 MARECLEAN has developed tools and approaches for a risk‐based reduction of microbial pollution discharge to coastal waters, thus contributing to the Bathing Waters and Shellfish Directives as well as the MSFD. While the project uptake was achieved in one territory in France it failed to transfer to the 20 coastal states of the EU, which was one of the more ambitious objectives. Although the product is potentially transferable, the dissemination was not as widespread as envisaged.

3.2. Policy sectors and legislative texts considered by the LIFE ENV/INF/NAT projects 

3.2.1. Framework Directives  The number of LIFE projects related to the main framework Directives over the period 2005 through 2010 is illustrated in Figure 2‐1.  Each directive is examined in more detail in the sections that follow.  Water Framework Directive (WFD) 2000/60/EC The EU adopted the Water Framework Directive (WFD) in 2000, creating a global and unified approach to water legislation.  The WFDs combined approach for point and diffuse sources links the requirements established in the other directives through the programmes of measures. The WFD topic is very wide and constitutes an important base for water legislation and there are many complex projects addressing both water quality and quantity issues, presenting integrated and combined approaches and diffuse sources examples as well. The main objective of the WFD requires surface freshwater and ground water bodies ‐ such as lakes, streams, rivers, estuaries, and coastal waters ‐ to be ecologically sound by 2015; the first review of the River Basin Management Plans should take place in 2020.  The initial analysis indicated that the majority of LIFE projects in the water sector since 2005 cited the Water Framework Directive as either a primary or secondary legislative consideration.  In fact 113 projects out of 197 projects screened were in some way related to the WFD. It is appreciated that many of these projects also deal with related water directives (particularly in respect of nitrates and groundwater) which will come directly under the WFD when the individual directives are repealed.    Error! Reference source not found. (see section 3.7) illustrates the complexity of the projects and demonstrates that each project can contribute to a number of different areas not only within the WFD but also draws in other water directives.  All these projects deal, in one way or another, with phytoremediation (i.e. reducing pollution in surface waters using plant based materials).  They deal with both point and diffuse source pollution, agricultural land and the restoration of habitats.  The technologies they employ can have widespread application.  So the very nature of the WFD means that it covers a broad range of topic areas and so in order to produce some sensible conclusions the projects were re‐examined in more detail according to the sub‐categories suggested by the Water Unit and indicated below:  

Characterisation of the river basins  Typology, delineation of water basins  Pressures and impact analysis  Economic analysis 

Monitoring Programmes  Surface waters  Groundwater 

Assessment of Status 

Page 21: LIFE Water Study

[Water Sector Report August 2012]  11 

Ecological status of surface water  Chemical status of surface water  Chemical status of groundwater  Quantitative status of groundwater 

Planning Process  Stakeholder and public participation  Integrated river basin approach  

Programme of measures 

Reporting and information and data management  The 113 projects were made up of 90 ENV/INF projects and 23 NAT projects; the breakdown between categories is given in Figure 3‐1 below and a complete breakdown by category is given in Annex 3.  

Figure 3‐1: Detailed Analysis of Projects Related to the Water Framework Directive 

 

  

In order to assist WFD implementation, the EU Member States and the Commission developed the Water Framework Directive Common Implementation Strategy (WFD CIS), which was agreed in May 2001. In particular, Member States were encouraged to contribute to working groups responsible for developing analyses of pressures and impacts and best practice in river basin planning. According to the LIFE Focus Brochure (Life and Europe’s Rivers, 2007), it was here that many LIFE Nature projects had been particularly 

influential – promoting the key activities of the strategy, namely: the sharing of information; management of information and data; development of guidance on technical issues; and the application, testing and validation of guidance7.  It is interesting that five years on from that publication, impact analysis, ecological and chemical status of surface water, stakeholder participation and management of information and data are still well addressed by LIFE projects in general, but by LIFE ENV projects in particular. Indeed the analysis in Figure 3‐1 shows that since 2005 LIFE NAT projects have focussed heavily on the improvement of ecological status of water courses with a relatively small contribution of projects involving stakeholders.  This suggests that there has been a change of emphasis amongst the NAT projects since 2000, but that overall, LIFE projects still contribute to many critical aspects of the WFD.   These principal areas of activity are dealt with in some detail in Chapter 4 through the detailed analysis of the selected projects.  Nevertheless, it is relevant to mention some good examples of projects that consider 

7 Life and Europe’s Rivers. Protecting and Improving our Water Resources. LIFE III Focus Publication. 2007.

Page 22: LIFE Water Study

[Water Sector Report August 2012]  12 

the less well covered aspects of the WFD and this discussion can be found in section dealing with Gap Analysis (section 3.8) below.  Marine Strategy Framework Directive (MSFD) 2008/56/EC 

Like the WFD before it, the MSFD aims to achieve good environmental status (GES) of the EU's marine waters by 20218 and to protect the resource base upon which marine‐related economic and social activities depend. It establishes four European Marine Regions on the basis of geographical and environmental criteria. Each Member State ‐ cooperating with other Member States and non‐EU countries within a marine region ‐ are required to develop strategies for their marine waters. Key requirements of the Directive are:  

An initial assessment of the current environmental status of the waters. 

A detailed description of what Good Environmental Status means for waters, and associated targets and indicators.  

Establishment of a monitoring programme to measure progress toward Good Environmental Status.  

Establishment of a programme of measures for achieving Good Environmental Status.   Table 3‐1 shows that a total of 28 projects have considered the MSFD in some form or other since 2005. The majority (10 projects) were in 2009, one year after the Directive was launched (see Figure 2‐1).  Some projects, such as LIFE06 ENV/B/362 ECOTEC‐STC target specific pollutants – in this case TBT (Tributyl tin, a widely used anti‐fouling paint and persistent pollutant of marine systems) – to achieve good environmental status.  Although principally contributing to the objectives of the Common Fisheries Policy (CFP), the pioneering actions of LIFE05 ENV/E/267 BE‐Fair, a project which focussed on reducing marine waste streams and discards, illustrated the steps that will need to be taken to comply with the MSFD, as it provided elements of an integrated approach to the sustainable management and governance of estuarine areas.  The project followed the ‘ecosystem based’ approach, and provided solutions to comply with the objective of ‘improving the ecological status of all marine areas’ in the forthcoming years, also integrating economic considerations. This was a very good example of the compatibility (and possibly synergy) between the MFSD and the CFP.  Some projects such as LIFE08 ENV/S/271 WEBAP seek to develop highly technical solutions to specific problems, in this case the development of two different models of a wave activated aeration pump designed to combat oxygen depletion caused by nutrient inputs and eutrophication in coastal waters.  Others address the need to clean up coastal waters (to achieve GES) through raising awareness about priority pollutants.  One such project is LIFE 10 INF/EE/108 BaltInfoHaz, a project which aims to build on the experience gained through the successful LIFE07 ENV/EE/000122 BaltActHaz (see section 3.1) by strengthening consumer demand in the three Baltic States for products free of hazardous substances. This will be done by changing consumption patterns among pilot stakeholder groups and through communication of the environmental message to policymakers nationally and internationally.  Finally, there is a group of NAT projects which deal with a very different aspect of the MSFD, namely improving conservation of a species or group of species and strengthening protected area networks both in the coastal areas and offshore.  In 2009, a small number of new LIFE projects focussed on this aspect of the MSFD.  Projects like LIFE09 NAT/IT/190 ARION and LIFE09 NAT/ES/534 Life Posidonia Andalucia work with a single species and the main objectives, respectively, are to improve of the conservation status of the bottlenose dolphin in the Marine Protected Area (MPA) of Portofino, Italy and to improve the conservation status of Posidonia oceanica meadows in Spain’s Andalusia region. A more ambitious project is LIFE09 NAT/LT/234 DENOFLIT, this four and a half year project aims to produce an inventory of marine species and habitats for the development of a Natura 2000 network in the offshore waters of Lithuania.    

8 LIFE and the marine environment. Promoting Sustainable Management of Europe’s Seas. LIFE III Focus Publication. 2006. 

Page 23: LIFE Water Study

[Water Sector Report August 2012]  13 

There can be no doubt that projects such as these make a significant contribution to the implementation of the MSFD.  Integrated Pollution Prevention and Control Directive (IPPC), 96/61/EC and 2010/75/EU The IPPC Directive requires industrial and agricultural activities with a high pollution potential to have a permit. This permit can only be issued if certain environmental conditions are met, so that the companies themselves bear responsibility for preventing and reducing any pollution they may cause.  Furthermore, IPPC concerns new or existing industrial and agricultural activities with a high pollution potential, as defined in Annex I to the Directive (energy industries, production and processing of metals, mineral industry, chemical industry, waste management, livestock farming, etc.).  It establishes a procedure for authorising these activities and sets minimum requirements to be included in all permits, particularly in terms of pollutants released. The aim is to prevent or reduce pollution of the atmosphere, water and soil, as well as the quantities of waste arising from industrial and agricultural installations, to ensure a high level of environmental protection.  Examination of Table 3‐1 shows that 12 projects aimed to contribute to the IPPC in some way between 2005 and 2010.  The trend graph in Figure 2‐1 shows that the majority of these projects (6 in all) were funded in the 2005 round under LIFE III and so IPPC, at least in the water sector, is not well covered during LIFE+.  In general, LIFE projects assist the IPPC by developing new technologies to improve water quality either in the industrial or agricultural sectors thereby addressing some of the issues related to both point source and non‐point source pollution. Clearly there is some advantage in the development of these technologies as it assists the organisation in the permitting process under IPPC.  There are several good examples of where LIFE projects have developed new technologies, such as LIFE05 ENV/IT/846 BATTLE which developed a demonstration methodology (treatment plant remotely controlled by an expert system) for efficient waste water reuse in the textile industry. The project promoted the sustainable use of water, reinforcing and providing integrated water management in line with the WFD and the integrated methodology provided an effective contribution to the application of the IPPC Directive and, enabling a sustainable use of the water in critical industrial sites, may represent a good methodology for similar approaches in other industrial sectors.  Similarly, LIFE05 ENV/E/302 Ecodiptera implemented a management model for the ecologically sustainable treatment of pig manure in the Region of Los Serranos, Valencia‐Spain and the LIFE05 ENV/UK/121 PROMOTHE MBR developed a means of process water recycling with a thermophile membrane bioreactor installation for treatment of high temperature waste water, containing varying chemical oxygen demands (CODs) with almost zero waste (sludge) production.  Finally, the LIFE05 ENV/D/182 WAgriCo project promoted water resources management in agriculture through the compilation and implementation of programmes of measures to reduce diffuse pollution from agriculture.  LIFE projects assist the implementation of the IPPC Directive through the development of specific technologies. However, even the most successful technologies are rarely transferred or replicated on a wide scale.  This is probably because the project proponents wish to retain the intellectual property rights (IPR) of the product and so the innovative solutions have to compete in the market place on a commercial basis, or find additional funding from elsewhere to commercialise the product.  Floods Directive 2007/60/EC The Floods Directive aim is to reduce and manage the risks that floods pose to human health, the environment, cultural heritage and economic activity.  The Directive required Member States to first carry out a preliminary assessment by 2011 to identify the river basins and associated coastal areas at risk of flooding. For such zones they would then need to draw up flood risk maps by 2013 and establish flood risk management plans focused on prevention, protection and preparedness by 2015.  The Directive applies to inland waters as well as all coastal waters across the whole territory of the EU.  

Page 24: LIFE Water Study

[Water Sector Report August 2012]  14 

The analysis in Table 3‐1 shows that only eight LIFE projects seek to contribute to the Floods Directive.  However, some of these projects, like LIFE06 NAT/FIN/129 Kokemäenjoki‐LIFE where attempts to improve wetland habitat for specific bird species under the Habitats Directive, provide indirect benefits in reducing flood risks by increasing wetland areas and retaining flood waters.   Other projects like LIFE06 ENV/D/461 FLOODSCAN (see section 3.1) were designed to implement the Directive through actively mapping the flood risk areas.  Similarly, LIFE08 ENV/LV/451 HydroClimateStrategyRiga will make a significant contribution to the implementation of the Directive through the mapping of hydrological processes, the subsequent development of Flood Risk Management Plans for Riga City and increased awareness of stakeholders to the risks of flooding. The main objective of the project is to create the necessary means to ensure that hydrological processes intensified by climate change in Riga are adequately investigated and incorporated in the city’s planning system, thus mitigating their current and future impact to economy and society, nature and biodiversity, water resources and human health.   Clearly the HydroClimateStrategyRiga project also relates to the Climate Change Strategy as does LIFE07 ENV/S/908 GreenClimeAdapt where an industrial area in south‐eastern Malmo will have been turned into a green climate adaptation area with open storm water management and enhanced biodiversity and recreation. The storm water system built in this 45 ha project will retain 90% of a 10‐year storm event. If applied at a European scale, the risk of local flooding could be drastically reduced. The run‐off water will be cleaned before reaching the recipient by sedimentation and filtration in ponds and other retention systems.  While there are some excellent examples of LIFE projects making valuable contributions to the Floods Directive it is disappointing that there are not more projects dealing with this important topic, particularly in relation to flood risk mapping and the development of management plans.  

3.2.2. Pollution Control  

The contribution of all LIFE projects to directives dealing with pollution control over the period 2005 through 2010 is illustrated in Figure 2‐2.  The LIFE portfolio has been dominated by projects considering the UWWT, Nitrates and Discharge of Pollution Directives averaging between 4 and 5 projects funded per directive on an annual basis.  The Groundwater Directive has very low support throughout but does show a gradual increase from 2005 to 2010. It is not certain whether this is due to a lack of applications under this strand or whether applications are made but are unsuccessful. The EQS strand is probably the area least covered by LIFE projects, with only two projects even mentioning the directive.  

 Urban Waste Water Treatment Directive 91/271/EEC The UWWT Directive (91/271/ECE) is one of the most costly pieces of EU legislation to implement. It sets requirements for pre‐treatment of industrial waste water entering collecting systems and the disposal of sewage sludge. The Directive requires all urban areas with the equivalent of more than 2,000 inhabitants to conduct at least secondary (biological) treatment of their wastewater. For those in sensitive areas, or those with more than 10,000 inhabitants, more stringent treatment is required.    Annex II of the Directive requires Member States to draw up lists of sensitive and less sensitive areas which receive the treated waters. These lists must be updated regularly. Member States are responsible for monitoring discharges from treatment plants and the status of the receiving waters. They must ensure that the competent national authorities publish a situation report every two years and send it to the Commission. Member States must also set up national programmes for the implementation of the UWWT Directive.  The Directive timetable indicates that all MS should have fulfilled their obligations by December 2005. The main 

requirements are described in Articles 3, 4 and 5 of the Directive.9 Despite this, Table 3‐1 shows that 

9 COMMISSION STAFF WORKING PAPER 6th Commission Summary on the Implementation of the Urban Waste Water Treatment Directive SEC (2011) 1561 

Page 25: LIFE Water Study

[Water Sector Report August 2012]  15 

significant numbers of projects featuring Waste Water Treatment are still being funded through LIFE.  In fact there were nine projects funded as recently as 2008, which implies that there is still work to be done to achieve GES.  Of the 28 LIFE projects contributing to the UWWT (see Table 3‐1) over 20 focussed on providing new technical solutions for the treatment of waste water.  There are numerous examples ranging from the development of Best Available Technique (BAT) for water reuse in textile SMEs (LIFE05 ENV/IT/846 BATTLE) to the improved treatment of storm water (LIFE05 ENV/IT/000894 ESTRUS).  Several projects funded between 2005 and 2007 developed new membrane filtration techniques to improve water purification; examples are LIFE05 ENV/IT/868 PERBIOF, LIFE07 ENV/IT/439 PURIFAST and LIFE05 ENV/UK/121 PROMOTHE MBR.   By 2008, projects were aspiring to more complex objectives with concepts designed to link improved waste water treatment to alternative water uses in semi‐arid regions, thereby addressing resource efficiency agendas as well as simple waste water treatment (e.g. LIFE08 ENV/GR/551 PURE).  The main objective of the LIFE08 ENV/P/237 WW4ENVIRONMENT project was to implement an optimising tool for the management of wastewater treatment facilities, using operational and energy consumption data to determine and minimize the carbon footprint of Waste Water Treatment Plants (WWTP). This helped to achieve both the EU’s environmental impact and energy efficiency objectives.. The Spanish project LIFE08 ENV/E/118 GREENLYSIS looked at the production of hydrogen and oxygen via electrolysis powered by renewable energies to reduce the environmental footprint of a WWTP.  Paradoxically, the 2009 and 2010 projects appear largely to revert to the development of techniques for waste water treatment, albeit with refinements such as ultrafiltation membrane technology (LIFE09 ENV/ES/467 UFTEC) and removal of different types of pollution load such as volatile organic compounds (VOCs) (LIFE09 ENV/FI/568 VOCless waste water).   Throughout the period 2005‐2010 a steady number of LIFE projects have focussed on pioneering techniques such as ultrasound treatment (LIFE05 ENV/F/67 SOUND SLUDGE), thermo‐catalytic low temperature conversion techniques (LIFE06 ENV/D/458 LOTECOTEC) and pyrogasificiation (LIFE08 ENV/F/489 PYROBIO) for reducing and removing sludge in waste water and sewage treatment plants.  Other projects, such as LIFE06 ENV/D/460 SLUDGE2ENERGY, dealt with waste prevention through sewage sludge reuse for efficient energy generation in waste water treatment plants.

As the principal activities of the UWWT Directive should already have been met by the Member States by 2005 it is difficult to see how the projects, which are clearly linked to improved waste water treatment, could actually assist implementation.  However, although the technology should never stand still and that some of the advancements made via LIFE projects will undoubtedly contribute further to improved waste water treatment they can no longer be said to link directly to policy implementation in terms of the UWWT Directive.  The innovative advances in 2008, where projects were linked with other directives, were more appropriate in terms of policy implementation and it is a pity that these were so poorly represented in subsequent years.  The one remaining part of the UWWT Directive that requires implementation is the monitoring phase.  Although this is an area that would be well suited to LIFE projects no projects dealing with monitoring could be identified from the data.   

Nitrates Directive 91/676/EEC The Nitrates Directive is one of the oldest water directives and it will soon be repealed by the WFD.  Its principal aim is to prevent nitrates from agricultural sources from affecting ground and surface waters. It requires Member States to (1) detect waters that are already affected or likely to be affected by nitrate pollution, (2) designate all those areas that drain into waters that are polluted as vulnerable zones, (3) develop action programmes within the vulnerable zones, and (4) monitor and assess the action programmes and revise them as needed to achieve the Directive’s goals.  Member States must establish codes of good agricultural practice to be implemented by farmers on a voluntary basis. The action programmes for 

Page 26: LIFE Water Study

[Water Sector Report August 2012]  16 

vulnerable zones must include measures set out in the codes of good practice and those needed to limit the application of any nitrogenous fertilisers to soils, which may require investing in livestock manure storage facilities.   The implementation of the Nitrates Directive is carried out in a number of stages. Member States are required to:   Identify surface water and groundwater affected by pollution or at risk of being so;  Designate vulnerable zones;  Establish a code of good agricultural practice to be implemented by farmers on a voluntary basis;  Set up compulsory action programmes to be implemented by all farmers who work in vulnerable zones.  

 The Nitrates Directive is much more flexible than the UWWT Directive, giving space for voluntary schemes and variability with the ultimate aim of establishing good agricultural practices.  Table 3‐1 shows that a total of 25 LIFE projects focussed on the  implementation of the Nitrates Directive and Figure 2‐2 shows that the majority of these projects were funded in 2005 under LIFE III (7 projects) and in 2010 (8 projects).  The 2005 projects were evenly split between the northern and southern Member States but the majority of the 2010 projects were in southern Member States with Spain, Italy, Greece and Malta featuring in the portfolio. Some of these are analysed in detail in Chapter 4.  Overall the projects fall into three broad categories:  

Those that rely on the development of new technologies; 

Those that develop alternative cultivation practices; and 

Those that provide a management solution.  

Among the innovative projects providing new technical solutions are LIFE05 ENV/GR/245 EnviFriendly, a project which developed environmentally friendly technologies for rural development; LIFE05 ENV/UK/137 NITRABAR which developed a multi‐barrier for diffuse pollution from agricultural systems; LIFE06 ENV/F/158 ISONITRATE which developed isotopic monitoring and sono‐chemical technologies for the improved management of nitrate pollution in water; LIFE05 ENV/E/289 FERTIGREEN where the project demonstrated the technical viability of the use of gasification of irrigation water (although the effectiveness of the gas injection into irrigation water (fertirrigation) system to reduce nitrate contamination was not as successful as expected). The LIFE08 ENV/GR/570 HydroSense project developed and implemented a site‐specific management system for reducing irrigation and chemical inputs to soil and groundwater. In particular, variable‐rate irrigation reduced water consumption by 20% in comparison with uniform irrigation and variable‐rate fertilisation reduced nitrate pollution by 20% and pesticide/herbicide inputs by 50%.  Possibly the most interesting technological developments will be demonstrated by two Italian 2010 projects which are both exploring the use of zeolite to reduce nitrate pollution. More than 50% of natural zeolitic rocks consist of zeolites, a group of minerals with special physical and chemical properties, such as high and selective cation exchange capacity (CEC), molecular adsorption and reversible dehydration. Zeolites can take up ammonium (NH4), which is found in fertilisers, and release it at a slow enough rate that it can be absorbed by the roots of plants rather than be dispersed in groundwater.  LIFE10 ENV/IT/347 UNIZEO is developing urea‐based nitrogenous fertilizers coated with zeolite which they hope will significantly reduce pollution due to nitrogen. LIFE10 ENV/IT/321 ZeoLIFE aims to exploit the zeolitic cycle by adopting an integrated approach that reduces the nitrogen content in livestock effluents and agricultural soils, and improves the yield and economic efficiency of irrigation water and fertilisers, thus reducing pollution of fresh water and groundwater and overexploitation of water resources. Both these projects are at a very early stage and it will be interesting to map their development and assess the applicability of the method to other 

Page 27: LIFE Water Study

[Water Sector Report August 2012]  17 

regions with zeolitic formations10.  Many of the more recent projects have pioneered methods for alternative cultivation of soils or have utilised alternative methods of cleaning up nitrate pollution. One such project, LIFE09 ENV/ES/431 CREAMAgua will be creating and restoring natural ecosystem structures of wetlands and riverbank forests to reduce inorganic nutrients ‐ nitrates and phosphates ‐ and salts from agricultural runoff and improve the biodiversity in agricultural areas degraded by intensive agricultural use, in the area of the Flumen basin in Spain. In Poland, project LIFE08 ENV/PL/519 EKOROB will construct ecotones to improve water quality in the Sulejowski Reservoir and, as an innovative element, the project will include ‘de‐nitrification walls’ that form a barrier to nitrates from non‐point source agricultural areas as well as areas without sewer systems. In the wall, groundwater polluted with nitrates flows through a sawdust‐filled ditch situated vertically to the direction of the flowing water. In an oxygen‐free environment, the process of denitrification takes place, in which nitrogen compounds are removed from water to the atmosphere.   There are several 2009 and 2010 projects where alternative agricultural practices are being trialled in an effort to reduce nitrogen and phosphorus inputs from livestock, through amendments to animal diets (as in LIFE09 ENV/IT/208 AQUA), or on arable farms through changes in the way that fertilizers are used.  A Polish project (LIFE10 ENV/PL/661 Biorewit) aims to reduce soil and water pollution through the gradual replacement of mineral fertilisers with new soil eco‐activators – the target is at least a 20% decrease in mineral nutrient emissions from greenhouse production to groundwater. While a Belgian project LIFE10 ENV/BE/699 DEMETER aims to achieve a higher level of soil organic matter in Flemish and Dutch agricultural soils thereby decreasing the nutrient load in the environment. A Greek project LIFE10 ENV/GR/594 WASTEREUSE is developing best practice guidance for recycling of agricultural wastes in the Mediterranean region by recycling nutrients and water.   Finally, LIFE projects also address the implementation of the Nitrates Directive through changing agricultural or water management regimes.  A number of projects have developed management models as a tool to reduce nitrate pollution. LIFE05 ENV/E/302 Ecodiptera successfully implemented a management model for the ecologically sustainable treatment of pig manure in the Region of Los Serranos, Valencia‐Spain and LIFE09 ENV/RO/612 CLEANWATER project intends to develop, at the river basin scale, an integrated water management system to identify waters under threat and designate nitrate vulnerable zones. The beneficiary will develop the management system based on the Strahler stream model of surface water flow and pollution transportation and the River Modelling System (RMS), which computes the transfer of nutrients in groundwater systems. The system will contain software capable of calculating the environmental impact of activities and changes.  Another project (LIFE09 ENV/FI/000569 GISBLOOM) intends to develop a web‐based mapping service with interactive portal (LakeWiki) aimed at facilitating participatory river basin management.  Discharge of Pollution Directive 76/464/EEC; 80/68/EEC; 06/11/EC The Directive 76/464/EEC on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community was one of the first water related directives to be adopted. It had the ambitious objective of regulating potential aquatic pollution by thousands of chemicals already produced in Europe at that time. The Directive covered discharges to inland surface waters, territorial waters, inland coastal waters and groundwater. In 1980 the protection of groundwater was taken out of 76/464/EEC and regulated under the separate Council Directive 80/68/EEC (1) on the protection of groundwater against pollution caused by certain dangerous substances. Directive 76/464/EEC has since been codified as 06/11/EC. This Directive will be repealed by the Water Framework Directive from the end of 2013.  The Discharge of Pollution Directive introduced the concept of List I and List II substances, which were listed in the Annex to the Directive.  The purpose of the Directive is to eliminate pollution from List I substances 

10 There are between 40 and 50 Zeolites which are naturally occurring minerals formed when volcanic magma and ash meets with seawater

Page 28: LIFE Water Study

[Water Sector Report August 2012]  18 

and to reduce pollution from List II substances.   As with other directives, LIFE projects provide valuable technological solutions to reducing or eliminating dangerous substances in water and Table 3‐1 indicates that some 20 projects have considered the dangerous substances directives over the last 6 years.  The Hungarian project LIFE05 ENV/H/418 SUMANAS developed a complex water treatment technology to remove methane, ammonia and arsenic from groundwater and the LIFE07 ENV/B/22 BACad project is developing a full scale bio‐augmentation technique for the cost effective remediation of volatile toxic and carcinogenic organo‐chlorine compounds.  In contrast the Estonian project LIFE07 ENV/EE/122 BaltActHaz is directly targeting the reduction of dangerous substances entering the Baltic Sea by a series of measures designed to raise awareness in the Baltic States and provide management tools to support better decision making by the stakeholders. A Swedish project LIFE09 ENV/SE/351 Mare Purum is developing an anti‐fouling alternative to TBT based paints for use in the shipping industry.  Groundwater 2006/118/EC This Directive establishes a regime which sets underground water quality standards and introduces measures to prevent or limit inputs of pollutants into groundwater. The Directive establishes quality criteria that takes into account local characteristics and allows for further improvements to be made based on monitoring data and new scientific knowledge. The Directive thus represents a proportionate and scientifically sound response to the requirements of the Water Framework Directive as it relates to assessments on chemical status of groundwater and the identification and reversal of significant and sustained upward trends in pollutant concentrations. Member States will have to establish the standards at the most appropriate level and take into account local or regional conditions. The Groundwater Directive requires:  

Groundwater quality standards to be established by the end of 2008;  

Pollution trend studies to be carried out by using existing data and data which is mandatory by the WFD (referred to as "baseline level" data obtained in 2007‐2008);  

Pollution trends to be reversed so that environmental objectives are achieved by 2015 by using the measures set out in the WFD;  

Measures to prevent or limit inputs of pollutants into groundwater to be operational so that WFD environmental objectives can be achieved by 2015;  

Reviews of technical provisions of the directive to be carried out in 2013 and every six years thereafter;  

Compliance with good chemical status criteria (based on EU standards of nitrates and pesticides and on threshold values established by Member States).  

 Table 3‐1 indicates that 14 LIFE projects have contributed to the Groundwater Directive and several of these are featured in Chapter 4 of this report, thus demonstrating that this is an area where LIFE projects excel in helping to implement the legislation in a variety of different practical ways.  One area where LIFE projects contribute a great deal is in assessing and modelling risk to aquifers.  The Slovenian project LIFE07 ENV/SLO/725 INCOME exemplifies how risk registers can be developed from integrating precise spatial data on aquifer characteristics (geology and hydrology), pollution sources and groundwater quality status into a GIS environment. This information is then used to develop different models of groundwater flow, risk assessment in impact zones and probability assessments of accidental pollution.  The LIFE08 ENV/D/021 MAGPlan is developing two innovative technologies and a suite of modelling tools to prevent threats from point sources on the good chemical status of groundwater in urban areas.  Other LIFE projects provide innovative solutions for directly reducing inputs of pollutants to groundwater.  The LIFE09 ENV/B/407 VOPAK‐EXPERO3 will demonstrate the applicability of an in situ chemical oxidation technique for the remediation of soil and groundwater contaminated with a cocktail of organic contaminants in very high concentrations at an explosion sensitive site.  The Greek project LIFE10 ENV/GR/601 CHARM will demonstrate different technologies for the remediation of groundwater bodies with high concentrations of Cr(III) and Cr(VI).  

Page 29: LIFE Water Study

[Water Sector Report August 2012]  19 

EQS Directive 2008/105/EC This Directive lays down environmental quality standards (EQS) for priority substances and certain other pollutants as provided for in Article 16 of the WFD. The aim is to achieve good surface water chemical status, in accordance with the objectives specified in article 4 of the WFD.  The EQS sets out standards for:   Fresh water in respect of pollution control; freshwater quality/freshwater pollution; surface water; 

effluent waste water/discharge; hazardous substances; and  Marine waters in respect of pollution control; marine pollution; marine pollution (land‐based sources); 

effluent waste water/discharge; hazardous substances.  This Directive is not well served by the LIFE programme although the reason for this is not clear.   Table 3‐1 shows that only two projects refer to the EQS Directive and both projects are primarily considering different directives with the EQS as value added project benefits. The Finnish project LIFE08 ENV/FIN/609 CATERMASS aims to develop climate change adaptation tools for the Finnish River Basin Districts to mitigate impacts of increased leaching of acidity and associated metals from acid sulphate soils drained for agriculture and forestry. The project implementation includes mapping and risk classification methods for acid sulphate soils and the construction of prototype testing fields which include subsurface controlled drainage systems, pumping systems, tailored cropping and cultivation schemes.  Although the primary legislation considered is the WFD, the acid sulphate soils contain high concentrations of cadmium which is one of the EQS Directive priority substance metals. As the project moves into its final year the infrastructure stage has been completed and the initial results of the mitigation methodologies are promising.  The project will produce technical guidance documents so that the project outcomes can be reproduced in other areas where acid sulphate soils are problematic. 

 The main objective of the project, LIFE10 ENV/ES/521 AQUATIK, is the development and validation of an advanced monitoring system for control of organic priority pollutants in treated wastewater effluents. The project environmental benefits refer to the quality of surface water and specifically to the EQS Directive. It is developing and validating an advanced system for control of organic priority pollutants in treated wastewater effluent through the use of a cost effective smart tool capable of detecting and quantifying pollution. The smart tool will be driven by selected innovative technologies such as automatic on‐line concentrators and biosensors to detect pollutants.  

3.2.3. Aquatic Organisms   

Fresh Waters Directive 2006/44/EC  The Directive aims to ensure that fish populations living in water‐courses and lakes are protected and, accordingly, it lays down quality criteria which apply to designated waters.  Member States are expected to comply with these criteria in order to reduce or eliminate pollution and to allow various freshwater fish species to be maintained at balanced levels.  The Directive covers running or standing fresh waters which support, or could become capable of supporting, fish in sufficient numbers to maintain a natural balance and diversity.  Under the Directive the Member States are required to designate the fresh waters which are to be considered suitable for fish‐breeding. These are subdivided into two categories:  

Salmonid waters: waters which support or become capable of supporting fish belonging to species such as salmon, trout, grayling or whitefish; and 

Cyprinid waters: waters which support or become capable of supporting fish belonging to the cyprinids or other species such as pike, perch and eel. 

 The Directive requires Member States to establish 5‐year programmes to reduce pollution or improve the quality of designated waters and set limits for pollutants. The Directive determines:  

Physical and chemical parameters applying to designated salmonid and cyprinid waters;  Guide values and mandatory values; 

Page 30: LIFE Water Study

[Water Sector Report August 2012]  20 

Methods of analysis or inspection; and  Minimum sampling and measuring frequency. 

As the Directive protects fish population it is not surprising that LIFE NAT projects focus more on implementing this Directive than on other water related policy. Table 3‐1 shows that 18 LIFE projects have focussed on improving the status of fresh water and Figure 3‐2 shows that by far the highest proportion of these were LIFE NAT projects.  On examination, the 18 LIFE projects exclusively deal with issues concerning the optimum physical requirements for designated salmonid and cyprinid water.  Some projects also deal in a limited way with chemical improvements and some have developed monitoring programmes.    

Figure 3‐2: Relative Proportion of LIFE Projects Addressing Directives Relating to Aquatic Organisms 

 

  

The implementation of the majority of projects is based around four main objectives i) restoration works on degraded habitats ii) physical changes in river morphology iii) removal of obstacles to improve connectivity and iv) changes in agro‐silviculture practices in riparian zones. As a consequence a wide variety of river restoration techniques have been carried out by LIFE projects throughout the Member States.  One UK project LIFE09 INF/UK/032 RESTORE is now compiling information on best practices in river restoration which will act as guidance for future LIFE and non‐LIFE projects working towards implementing the Water Framework Directive.  A significant number of LIFE projects deal with habitat improvements for the Atlantic salmon (Salmo salar) and lamprey species.  LIFE05 NAT/D/057 Lippe‐Aue restored the natural river and floodplain dynamics to increase habitat for the Atlantic salmon and the river lamprey (Lampetra fluviatilis).  The project successfully restored the hydrology of 17 km of river and within eight months a total of 8,000 fish of 29 species were recorded.  LIFE05 NAT/B/090 Life Grote Nete also restored river hydrology for lamprey species and LIFE05 NAT/UK/143 STREAM restored suitable hydrology for Atlantic salmon and lamprey species  Some projects are extremely ambitious in their proposals for the removal of obstructions, for example the Danish project LIFE05 NAT/DK/153 Houting successfully decommissioned two hydroelectric power stations that were causing obstructions for migrating houting (Coregonus oxyrhynchus).  While other projects, LIFE06 ENV/D/485 Moveable HEPP, seek alternative solutions to obstructions through the installation of moveable hydropower installations allowing the upstream and downstream migration of fish species (see section 3.6 for a more detailed analysis of these projects). 

 

Page 31: LIFE Water Study

[Water Sector Report August 2012]  21 

Alongside the morphological changes to the river habitats several projects have also made significant improvements in riparian zones and as a consequence water quality is improved. The techniques used to bring about these improvements are rarely innovative but they are effective and generally either target removal of non‐native woodland species, thinning of dense vegetation on river banks to provide dappled shade and changes in livestock management to limit access along the river banks and so prevent excessive siltation in the river.  Such practices are being successfully employed in LIFE07 NAT/IRL/342 IShannonSACLAEO a project which is restoring a section of a Natura 2000 river for salmon and lamprey using in‐stream habitat restoration and riparian management to improve water quality.  The project relies heavily on the cooperation and involvement of local farmers to bring about changes in livestock management in the riparian zone and reduce siltation in the water column and on the river bed.  

 Most projects combine the restoration techniques and water quality improvements with some form of monitoring to assess the effectiveness of the interventions in terms of target fish species.  However, one project, LIFE08 NAT/UK/201 ISAC is using a more innovative approach by monitoring water quality using diatom assemblages. Diatom communities respond rapidly to changes in water chemistry and can be used as an indicator of improving water quality before changes are seen in the fish populations.  Shellfish Waters Directive 2006/113/EC The aim of the Shellfish Waters Directive is to protect or improve shellfish waters to support shellfish life and growth. It is designed to protect the aquatic habitat of bivalve and gastropod molluscs, which include oysters, mussels, cockles, scallops and clams. The Directive requires Member States to designate waters that need protection in order to support shellfish life and growth and sets physical, chemical and microbiological requirements that the waters must either comply with or endeavour to improve.  The Directive provides for the establishment of pollution reduction programmes for designated waters. It only applies to coastal and brackish waters and to those species that are edible.  Table 3‐1 shows that only one LIFE project contributed to the shellfish Directive and Figure 3‐2 shows that it came from the LIFE ENV strand. The French project LIFE06 ENV/F/136 MARECLEAN, aimed to improve water quality in 12 designated mussel/oyster production areas.  Although at the end of the project there was a significant improvement in water quality at most designated areas the project did not entirely meet the objectives because not all the sites fully complied with the Directive.  It is quite possible that a number of other LIFE projects that deal with coastal pollution can also have some influence on shellfish areas although none are specifically stated. 

 3.2.4. Human Health 

 Drinking Water Directive 98/83/EC The objective of the Drinking Water Directive is to protect the health of consumers in the European Union and to make sure that water is wholesome and clean. It sets standards for 48 microbiological and chemical parameters that must be monitored and tested regularly. In principle World Health Organisation (WHO) guidelines for drinking water are used as a basis for the standards in the Directive. It:  

Sets quality standards for drinking water quality at the tap (microbiological, chemical and organoleptic parameters) and the general obligation that drinking water must be wholesome and clean. 

Obliges Member States to regular monitoring of drinking water quality and to provide to consumers adequate and up‐to‐date information on their drinking water quality.  

 Table 3‐1 indicates that there are eight LIFE ENV projects which may have a direct link to the Directive, although it must be said that the majority of these do not specifically cite the Directive and thereby indirectly improve drinking water quality mainly through activities related to the WFD or the Groundwater Directive. One such project is LIFE07 ENV/SLO/725 INCOME in Slovenia which is addressing groundwater pollution in the Ljubljana area through chemical analysis and hydrological monitoring but will have long term socio‐economic benefits in terms of more healthy drinking water and a higher awareness of the importance 

Page 32: LIFE Water Study

[Water Sector Report August 2012]  22 

of unpolluted groundwater. Similarly, the French project LIFE07 ENV/F/173 SEMEAU does not specifically refer to the Directive but has one action which establishes a strategy for trapping phosphorous from farming activities in the Saint Etienne area. This action includes the preparation of guidelines for the protection of drinking water supply drains due to be completed in April 2012. The Polish project LIFE08 ENV/PL/519 EKOROB is developing a phyto‐remediation method for reduction of non point source pollution to improve water quality in the Sulejowski Reservoir used as a source of drinking water.  One of the few projects that is contributing to the implementation of the Directive, but again indirectly, is LIFE09 ENV/IT/056 WIZ which aims to use spatial mapping to deliver future drinking water management conditions to adapt to climate change.  The project services include integrating and projecting existing information about drinking water demand trends, infrastructure capacity, investment costs and climate change impacts on water resources.  The results will be made available to planning authorities in Italy.   Bathing Water Directive 2006/7/EC Research into bathing water and human health since the original Directive’s introduction in 1976 has led to the development of the revised Bathing Water Directive (2006/7/EC), which will be implemented in stages up to 2015, when the original Directive will be repealed.  The revised Directive uses two parameters to assess water quality, Escherichia coli and intestinal enterococci, using a four year data set for each set of results, and sets much tighter standards than the original Directive.  There will be four classification categories: Excellent (approximately twice as stringent as the current Guideline standard); Good (similar to the current Guideline); Sufficient (approximately twice as stringent as the current Mandatory standard) and Poor, for waters which do not comply with the Directive’s standards. There will be a new requirement for information about water quality and potential sources of pollution at bathing waters to be provided on signs and via the internet.  Regular reviews of the list of bathing waters will be carried out and the public will be encouraged to participate in the review.  Key dates for the introduction of the revised Directive are: 

 

2012: Signs must be in place at all bathing waters by the beginning of the bathing season. 

2014: Final bathing water report using the standards of the current Directive  

2015: First set of classifications using the new parameters will be published, based on the data set commenced in 2012  

2016: The current bathing water classification will be displayed using standard symbols that will be in use throughout the European Union. 

 Only one LIFE ENV project actually contributed to the implementation of this Directive. LIFE06 ENV/F/136 MARECLEAN was specifically designed to reduce microbial pollution discharge to coastal waters. The objective for the 40 km of coastline covered by the project was to reduce the number of bathing sites rated ‘sufficient’ according to the Directive from 5 to 2 areas and from 3 to 0 for those rated poor. At the end of the project bathing water quality had improved but not to the targeted extent.  However, the water quality modelling showed that the project targets would be met by 2012‐2015 thanks to the implementation of the overall project actions. The main sources of coastal pollution were found to be i) from non point sources coming from coastal rivers due to cattle farming and ii) a substantial impact from the overflow of sewage after heavy rainfall.  The project developed a risk based assessment tool to reduce storm water overflow (which has been adopted by the local authorities) and introduced better cattle management procedures on two sensitive rivers. 

Page 33: LIFE Water Study

[Water Sector Report August 2012]  23 

 Other Human Health Related Projects not covered by the DWD or BWD There are two innovative LIFE ENV projects which bring positive benefits for human health whilst contributing to either the UWWT or WFD Directives objectives.  The Spanish project LIFE07 ENV/E/794 TEXLEGIO designed, developed, installed and tested a pilot plant that combines the technologies of ozone and UV radiation to offer a technically viable solution for the elimination of Legionella bacteria from surface water used to supply at risk equipment or transferred in air currents.  The new technology is comparable with current treatments using chlorination based prevention and control systems as well as being much more effective, safer and more environmentally acceptable.    The Dutch project LIFE07 ENV/NL/576 PHARMAFILTER developed an innovative waste and waste water management concept for hospitals, which are a major source of waste water containing human waste which is further contaminated by medicine residues and endocrine disruptors.  In the Netherlands alone around 130 hospitals discharge 20% of this waste material while the 7 million households contribute the remaining 80%. The medicine residues and endocrine disruptors are not effectively treated by conventional waste water treatment processes.  

3.3.  Means of Intervention  

Arguably, all LIFE projects aspire to assist with the implementation of one or more directives as the analysis in Section 3.1 clearly demonstrates. It is, however, true to say that for many projects precisely how they contribute to policy is not as clearly defined as perhaps it could be.  Many projects, where improvement in water quality is an objective, tend to use the WFD as a ‘catch all’ directive and often fail to elaborate specific links between the project and the policy.    In an effort to explore how projects intervene in terms of policy intervention, the 197 projects were further screened to assess the methods and means for delivering the project.  This led to breaking down projects into the following action areas:  

Development of new/innovative technologies. 

Demonstration of good practice or management techniques. 

Stakeholder engagement and awareness building. 

Data collection, data management and modelling. 

Monitoring. 

Policy. 

It must be remembered that many LIFE projects are designed to deliver more than one of these categories, for example the dissemination strand of most projects involves some kind of awareness building but awareness‐raising has only been included in the above analysis if it was a primary objective of the project (for example the LIFE INF projects have awareness raising as a primary goal).  An example of this is project LIFE07 ENV/UK/943 PISCES which has, as its over‐riding action, engagement with stakeholders to deliver an ecosystem‐based approach to delivering the MSFD.  

LIFE07 ENV/NL/576 PHARMAFILTER 

 

The PHARMAFILTER unit established in the hospital includes a waste water treatment unit using a membrane bioreactor (MBR) followed by post‐filtration treatment by oxidation and adsorption.  The initial results are extremely promising and the project hopes to demonstrate 80% reduction in medicine residuals and endocrine disruptors in hospital waste water by the end of the project.

Page 34: LIFE Water Study

[Water Sector Report August 2012]  24 

Similarly, some projects do have more than one primary objective and in these cases more than one activity has been recorded for the project. An example of this is the Luxembourg project LIFE07 ENV/L/540 M3 which is developing integrated modelling and monitoring approaches for river basin management and evaluation and the output of this project could be of interest to other WFD working groups.  Figure 3‐3 show the breakdown of projects in terms of delivery mechanisms for policy implementation.  It is very clear that the majority of projects help to implement policy through either the development of innovative technologies (28%) or the adoption of best practices/management (39%). A moderate number of projects involve stakeholders/awareness building (13%) or data collection and modelling (12%) as their primary activity.  Only 5% of projects are designed to deliver some kind of monitoring programme and even fewer are actually designed to directly affect policy (3%).  

Figure 3‐3: Delivery Mechanisms for Policy Implementation for all Projects 

   A further breakdown of delivery mechanisms by LIFE brand is shown in Figure 3‐4.  Of the two main delivery activities virtually all the technological innovations are provided by the LIFE ENV brand, showing that this is an important means of developing and testing new technologies to deliver improved water management. Projects promoting best practices or improved management of resources are evenly distributed between the two main LIFE brands and this serves to illustrate the fact that the majority of LIFE NAT projects are specifically designed to promote best practice and rarely have truly innovative elements.  There are many good examples of LIFE projects demonstrating these two delivery mechanisms and these have been mentioned in the previous section.  There are very few projects that are designed to improve monitoring. Even though this is a key element of the WFD only 10 projects overall have monitoring as part of the project architecture and even fewer address any kind of harmonisation of monitoring across the Member States. Therefore, the Italian project LIFE08 ENV/IT/399 EnvEurope is particularly ambitious as it designed to make best use of the vast range of monitoring data collected across Europe at both the national and international level which are often incompatible.  The project aims to build on the work of the European Long‐Term Ecosystem Research Network (LTER) and to provide an analysis of the long‐term ecological data and its comparison across eco‐domains. In so doing the project will supply relevant scientific support to EU environmental policy and conservation in an integrated ecosystem approach. Similarly, the Spanish project LIFE09 ENV/ES/456 AG_UAS is developing a highly innovative cost‐effective, spatial tool for more efficient, sustainable, water monitoring and management, in line with WFD requirements using remote sensing.  

Page 35: LIFE Water Study

[Water Sector Report August 2012]  25 

Figure 3‐4: Breakdown of Delivery Mechanisms by LIFE Brand 

 

   It would seem that the majority of LIFE projects (at least in the water sector) do not set out to have a direct input into policy making although there are one or two notable exceptions.  The project LIFE07 ENV/E/794 TEXLEGIO set out to reduce and eliminate Legionella pneumophila bacteria in water using alternative methods to those accepted by the Spanish water regulator.  As a consequence of the successful results obtained from the project the team developed a proposal for adopting new legal regulations within the EU to adopt this new technology. A new Italian project LIFE10 ENV/IT/394 WARBO has been specifically set up to facilitate the regulation of Artificial Recharge (AR) and to respond to the need to safeguard, protect and enhance water ecosystems.  In southern Europe AR is considered to be an appropriate and effective tool to protect groundwater quantity but it is not regulated at either the national or the EU level. To guarantee the correct application of recharge techniques, legislation needs to define inter alia where and how to abstract water and the chemical and physical nature of the recharge water. The WARBO project will develop specific experimental protocols that will define the administrative procedures to be followed and will specify how to manage recharge activities and in so doing will make a direct contribution to new legislation. 

3.4. Specific national/ regional/ local approaches developed by LIFE projects 

In many cases, LIFE projects do not only relate to EU legislation, but also national or regional law with their activities. This is especially the case in countries or regions – such as Flanders in Belgium or Catalunya in Spain, where the local legislation is already very advanced and can be more detailed than EU law.    Water projects are perhaps uniquely placed in their requirement to cross boundaries and borders either following river courses or in wider bodies of Europe’s seas and oceans.  In this respect water projects sometimes have to deal with non‐Member States which may have a direct impact on the outcome of a project.  One such example of a truly international project was LIFE05 NAT/LV/100 Baltic MPAs, which made a significant contribution to the protection and sustainable use of marine biodiversity in the Eastern Baltic and involved Lithuania, Latvia and Estonia. However, due to the close ecological connectivity of the Baltic Sea ecosystem and taking into account serious threats originating from the adjacent non‐EU territories, the project involved some key stakeholders from the North West Russian Region in the threat assessment, awareness and capacity building activities.  In fact a set of high quality dissemination products were prepared and distributed including a film and a book aimed at the general public and published in English, Latvian, Lithuanian, Estonian and Russian, which can still be accessed from the website www.balticseaportal.net. 

Page 36: LIFE Water Study

[Water Sector Report August 2012]  26 

 Some projects have a distinctly national approach and restrict their activities to within a single Member State; although it is frequently acknowledged that the results or outcomes may be readily transferred to other Member States.  The project LIFE09 ENV/FI/569 GISBLOOM aims to build capacity to ensure better integration of climate change into river basin management plans in Finland. It will demonstrate an integrated model to quantify the effects of different climate change scenarios to help tackle threats of eutrophication and algal blooms.  It will use an innovative combination of nationwide data and models for hydrology, land‐use changes and nutrient loads to generate data and real‐time forecasts for algal blooming in river basins and around 48,000 Finnish lakes on a daily basis. A new feature will be a web‐based map service and interactive portal (LakeWiki) aimed at facilitating participatory river basin management. This process will inform the selection of measures for river basin management plans in eight pilot areas. Their implementation will be subject to cost‐benefit analyses. By working to integrate climate change effectively into river basin management plans and to develop a participatory approach, this project will contribute to the achievement of the environmental objectives of the WFD, the MSFD and the Nitrates Directive. Although the geographical scope of the GISBLOOM project is limited to Finland the tools which will be demonstrated and evaluated are applicable to all the other EU countries.   Small island states such as Malta and Cyprus are readily suited to national projects as the LIFE08 ENV/CY/460 WATER project demonstrates.  The overall goal of the project is to strengthen the scientific foundation of water management programmes, including developing criteria for pollutants with high potential impact on environmental quality and biodiversity. As such, the project will establish and demonstrate an innovative set of methods and tools for the design and implementation of programmes for the preservation of the high environmental quality and good ecological status of water bodies in Cyprus.  Regional projects may refer to a particular area of a country, an example of which would be LIFE05 ENV/H/418 SUMANAS a project designed to sustainably manage and treat arsenic bearing groundwater in Southern Hungary.  The project constructed and operated a pilot plant that is able to remove ammonia, methane and arsenic from water with 98% efficiency and assessed the scale of arsenic content (and estimated the cost of removal) in groundwater in Southern Hungary.  Alternatively, the term regional is often used to describe a specific location (often a former state or country) within a member state.  An example of this would be the LIFE06 ENV/D/461 FLOODSCAN a project elaborating detailed flood hazard and flood risk maps using an automatic data compression procedure. In addition, a cost‐effective method for the use of classified data of land‐cover has been developed and is being applied throughout Bavaria.   Some projects are more ambitious in nature and cover a number of regions such as the Spanish LIFE07 NAT/E/732 INDEMARES project. Goals set out in the MSFD provide a legal impetus for extending the coverage of Natura 2000 into offshore territories and projects such as INDEMARES are helping to pioneer methods that can assist marine areas comply with the Directive.  Early outputs identified suitable sites and selection criteria that prioritised locations with diverse features or varied biodiversity in natural states. Project sites also had to be representative of other areas into order to provide replicable results with good multiplier opportunities (thus ensuring the EU added value of INDEMARES). A total of ten locations were then chosen from the Atlantic, Mediterranean and Macaronesian regions. LIFE is contributing €7.7 million of EU funding to support these prospective members of the marine Natura network and final project outcomes are anticipated towards the end of 201311.  However, it must be acknowledged that the majority of LIFE projects (especially those developing a technological solution) tend to operate on a local scale rather than a national or regional scale and international projects are the exception rather than the rule. Nevertheless, local projects can play an important role in implementing local policies (or byelaws) and meeting local regulatory requirements.   

11 http://ec.europa.eu/environment/life/features/2012/marine.htm 

Page 37: LIFE Water Study

[Water Sector Report August 2012]  27 

3.5. LIFE projects playing the role of catalyst for the implementation of national/ regional/ local water programmes 

 An inherent objective in most projects is to help catalyse wider implementation of national/regional or local water programmes. A characteristic feature of a LIFE project is how much potential it has for replication and transfer to other sectors or locations. Regrettably, the ability for a single project to perform this catalytic role depends not on the success of the project outcome but more on the ability of the project to attract the required interest and financing to move it through to the next step of commercialisation (for technical solutions) or operationalisation (for models and management solutions). The 2011 LIFE Environment Conference examined the critical success factors and barriers to further implementation in a session on ‘The Multiplier Effect – How Good Solutions Spread’. One clear conclusion from the conference was that LIFE projects require a certain set of market conditions in order to fully realise their potential.  One excellent example of a project that has catalysed a huge amount of interest both nationally and internationally is the UK project LIFE06 ENV/UK/409 OpenMI‐LIFE.  Essentially the project team has designed a piece of software that allows various models to ‘talk’ to one another.  The implications for such a tool in respect of implementing the integrated river basin plans demanded by the WFD are impressive.  For example a groundwater model could be linked to a coastal hydrodynamic model and allow the user to determine the impact of artificial recharge of a groundwater reservoir on coastal dynamics.  The tool is so powerful, and has so many applications, that there has been as much interest in its further development from Northern America as there has been from Europe.  Thus the project can be said to have truly catalysed the implementation of water policy on an international scale.  Clearly, this achievement is exceptional but there are other projects that may make a substantive difference provided the market conditions are favourable when the project closes.  An example may be the more recent Italian project, LIFE08 INF/IT/308 WATACLIC, which seeks to reduce water use in urban areas using both communication and fiscal tools.  Despite the fact that water scarcity is a recognised problem in the Southern European Member States there is a general lack of interest by Italian public bodies in water‐related issues (and municipalities in particular), as they do not recognise water as a key problem in their urban planning activity. More generally, the need to reduce water consumption at household level is not widely perceived by different stakeholders. For the final users this is probably due to the low price of water: in Italy the whole water service, including sewage and wastewater treatment costs around 1€ per cubic meter.  Furthermore, a recent report for the Italian Government by the association of water management companies states that “Data from Water Plans clearly shows – contrary to what is asked by the European Water Framework Directive – an increasing trend in water resource demand, thus clearly showing Italian difficulties to conform to EU policy.”12 After two years of implementation the project is achieving its objectives but the real test will be if the key organisations in the public sector adopt the WATACLIC principles and in the current economic climate it may be difficult to increase water charges to realistic levels.  Nevertheless, if the project is successful it could assist the Italian water authorities to make a major step forward in meeting the requirements of the WFD.  On the local level, the Greek project LIFE05 ENV/GR/245 EnviFriendly significantly reduced nitrates, nitrogen and phosphorus pollution in the water of pilot areas (through phytoremediation and river bank erosion controls), also by generating awareness among and synergy between local authorities (with eight municipalities involved as partners)and also including residents, for a more sustainable use of water resources. At the EU level, the project has contributed to the implementation of the WFD as the Evrotas River Basin is highly likely to achieve its environmental objectives by 2015. In addition, the project managed to involve in its activities, mainly with the aim of ensuring the sustainability of the results, the Central Water Agency of the Ministry of the Environment in Greece (the authority responsible for the implementation of 

12 UTILITATIS 2010 ‐ "Studio ed elaborazione di un quadro operativo per l’impianto gestionale dei servizi pubblici locali. Presidenza del Consiglio dei 

Ministri. Dipartimento Affari Regionali. Organismo Intermedio PON. "Governance e Azioni di Sistema 2007‐2013". Asse E Obiettivo Specifico 5.2. 2010"

Page 38: LIFE Water Study

[Water Sector Report August 2012]  28 

the Water Framework Directive). This organisation has shown a real interest in the project with the desire to transfer project results to other Greek river basins.  So again the LIFE project has acted as a catalyst for further implementation of the WFD in Greece.  One final example comes from the UK where the LIFE 07/ENV/UK/943 PISCES project is beginning to make a significant contribution to the implementation of the MSFD outside the project target area of the Celtic Sea. In a recent breakthrough the project team has been able to influence how the MSFD working groups throughout Europe can implement the ecosystems based approach called for by the Directive using the direct results of the project.  PISCES is in its final year and is putting the final touches to peer reviewed guidelines for implementation of the ecosystems based approach which could be adopted by all Member States.  In conclusion, although it is difficult to assess the real success of LIFE projects as catalysts for wider implementation of EU policy in the water sector, there are some quite remarkable examples of how single projects can, given the right circumstances, have an influence over a much greater area or larger group of people than could have been anticipated at the start of the project. 

3.6.  Cross cutting policy  

Other directives  indirectly considered by LIFE projects seeking to find solutions for water management and protection are the Waste Directive, the EU thematic strategy on urban environments, Climate Change, Renewable Energy, as well as the INSPIRE and Habitats Directives already mentioned above.  The potential issues raised by Member States trying to implement a range of EU Directives are best illustrated by examining a number of LIFE projects relating to more than one directive. The following combined case study looks at the Water Framework Directive in relationship to the Renewable Energy Directive and provides some interesting insights as to how some of the apparent conflicts in implementation can be resolved. The lessons learnt from this exercise are applicable to all Member States.  The Renewable Energy Directive 2009/28/EC (RED) sets ambitious targets for the proportion of energy generated from renewable sources for all Member States, with an overall EU target of 20% of energy produced by renewable means by 2020. The National Renewable Energy Action Plans (NREAPs) prepared by each Member State in 2010 indicate that an overall increase of 50% in electricity generated from hydropower sources will be required to contribute towards these targets. According to estimates of the future potential generating capacity of hydropower in the EU the required increase is achievable by improving the generating capacity of existing plants and by developing new installations. However, the hydropower industry has identified the influence of the Water Framework Directive (WFD), and in particular its focus on improving ecological aspects at the local level, as a significant barrier to the development of hydropower and its subsequent contribution to the wider RED objectives.  The findings from two workshops organised through the Common Implementation Strategy (CIS) activity on “the Water Framework Directive and Hydromorphology”, together with the “2010 Statement of the Water Directors” provide a number of key recommendations. These include instruments, technical approaches and strategies for promoting the development of hydropower whilst meeting WFD objectives. LIFE funding has enabled a number of projects to develop, test and further advance progress on meeting a number of these recommendations, whilst others have provided useful lessons in the implementation of WFD alongside RED.  LIFE 06/ENV/D/485 Moveable HEPP very successfully implemented two small scale hydropower plants, where a moveable turbine and generator unit are placed into an existing river weir and combined with other measures (such as fish ladders to enable upstream migration). This innovative technical approach allows water to flow through the turbine for power generation, and over and under it, improving fish migration, bed‐load transport and flood safety. The approach directly responds to the Water Directors’ call for win‐win solutions that enable hydropower development accompanied by improvements in water ecology and 

Page 39: LIFE Water Study

[Water Sector Report August 2012]  29 

minimum flow rates, and directly addresses the need to pay greater attention to the effects of hydropower on downstream sediment transport and fish migration. Furthermore, because the technology is designed to be retrofitted into existing or abandoned weirs, it can significantly contribute to the aim of improving the connectivity of water bodies at the catchment level, with the additional economic and environmental benefits of hydro‐electricity production. According to the project the technology achieves 11% higher returns and costs 16% less than a conventional plant, hence challenging the theory that the mitigation measures, that are often required to ensure improvements in ecological status under the WFD, leave hydropower development unprofitable. Market interest in the technology is substantial, with the development of a further 25 plants already initiated in three other Member States.  LIFE 09/ENV/UK/026 Hydro4LIFE is testing and promoting the application of the International Hydropower Association’s Hydropower Sustainability Assessment Protocol in the EU. The Protocol is an enhanced sustainability assessment tool which is being used to measure and guide performance in the hydropower sector.  Whilst the Protocol cannot be used to strategically assess a catchment or sub‐catchment as a whole, a number of applications of the Protocol at sites along a catchment area could be used to inform an overall strategic approach, a key recommendation of the Water Directors and CIS working groups.  There are a further three LIFE projects that facilitate a holistic approach to the deployment of hydropower in specific catchments and sub‐catchments, each with a different mix of driving influences and a different set of consequences for hydropower.   LIFE 10/NAT/AT/016 Netzwerk Donau plans to upgrade all but two of the hydropower installations on the Austrian Danube and its tributaries. The project, which is the largest ever to receive LIFE funding in Austria and is led by Austria’s largest energy producer, plans to use established methods such as fish passes and ladders to ensure connectivity throughout the sub‐catchment area. The project constitutes the main hydropower component of the overall strategic plan for the Austrian Danube and its tributaries and responds to both the WFD and RED.   LIFE 07/ENV/B/038 WALPHY deals with a smaller section of a sub‐catchment but forms a component of the overall strategic approach to river restoration in Wallonia. Whilst the project deals with all aspects of river restoration in line with the requirements of the WFD, it has demonstrated a flexible approach when considering the role of hydropower in the sub‐catchment area. Where the owners of weirs have expressed a desire to develop small‐scale hydropower plants instead of removing weirs, the project has constructed fish passes and other mitigation measures to enable the development of sustainable hydropower, helping to contribute to RED objectives whilst maintaining the ecological status of the river.    

LIFE 09/ENV/UK/026 Hydro4LIFE 

 

The Protocol assesses the four main stages of hydropower development: Early Stage, Preparation, Implementation and Operation. Assessments rely on objective evidence to create a sustainability profile against some 20 topics covering all aspects of sustainability. The Protocol has already been cited by the CIS working group as a potential tool to assess and improve the effectiveness of mitigation measures. It also has the potential to be used as part of a common, clear and transparent method for the application of RED Article 4.7 exemption requirements across the Community, as it provides a framework that enables a comprehensive assessment of the socio‐economic and environmental impacts of a particular hydropower development.

Page 40: LIFE Water Study

[Water Sector Report August 2012]  30 

LIFE 05/NAT/DK/153 Houting had a very different set of primary drivers in targeting a Habitats Directive 

Annex II species by removing physical barriers to the migration of Houting (Coregonus oxyrhynchus) in four river systems, including decommissioning Denmark’s second largest hydropower plant (Karlsgårde Power Station). This an example of a strategic catchment level approach that first prioritised a specific species of Community importance, with positive secondary effects on the ecological status of the four river systems through restoration measures, hence contributing to WFD objectives. The fact that the project led to the decommissioning of hydropower generating capacity was also consistent with Denmark’s national priorities for RED, as the Danish NREAP placed very low priority on hydropower, with plans for no further increase in hydropower generating capacity between 2010 and 2020.  

3.7.  LIFE Water sector projects and Natural Water Retention Measures 

 The ability of natural features to retain water delivers a number of important ecosystems services directly related to water including flood protection, water provision and the improvement of water quality (see Box 1).  However other benefits can also be realised such as improvements of soil quality, provision of habitat, cultural services, air quality, climate regulation and, especially in peat bogs, storage of carbon and climate change mitigation. LIFE projects have the potential to contribute to the growing evidence base on the benefits of natural water retention measures, as well as demonstrating innovative management practices in an area of growing interest across the EU.  

 With the LIFE NAT theme funding a large number of river, floodplain and wetland restoration projects, often primarily driven by the Habitats and Water Framework Directives, a large body of work exists that could be used to underpin the development of policy. LIFE06 NAT/FIN/129 Kokemäenjoki‐LIFE, which attempts to improve wetland habitat for specific bird species under the Habitats Directive, provides indirect benefits in reducing flood risks by increasing wetland areas and retaining flood waters. LIFE05 NAT/D/057 Lippe‐Aue demonstrated best practice in engaging with riparian farmers to ensure the long‐term management of restoration measures that seek to promote the development of typical floodplain meadows and the occurrence of rare bird species in the Lippe floodplains. LIFE08 NAT/D/000013 Elbe bei Vockerode is using natural protective measures in the Elbe floodplain to provide the necessary future flood protection. Incorporating natural techniques, the relocation of a dyke will result in extra retention areas, and the preventative values of natural ecological flood protection will be enhanced.  The project aims to set a precedent for the restoration of large river systems in middle 

Box 1: PHYTOREMEDIATION 

Some LIFE projects have dealt with improving water quality by using various forms of phytoremediation.    LIFE06 ENV/F/133 ArtWet successfully demonstrated that agricultural nonpoint‐source pesticide pollution could be mitigated by constructing artificial wetland ecosystems to act as a filtering mechanism for runoff.  The project contributed to the implementation of the WFD, the Priority Substances Directive and the Pesticides Directive simultaneously.   In Italy the LIFE08 ENV/IT/406 REWETLAND project aims to set up an integrated environmental enhancement programme for the implementation of constructed wetlands (CW) and wide‐spread biofiltering techniques along reclaimed canal networks. The CW pilots will test the system’s ability to reduce water pollutants and increase biodiversity closely connected to the process of environmental restoration of the basin network of the Agro Pontino.   LIFE 08 ENV/IT/390 ECOMAWARU is in the process of developing a water and wastewater management scheme adopting phytodepuration with micro algae to significantly improve the quality of effluent that is reused for irrigation purposes. 

Page 41: LIFE Water Study

[Water Sector Report August 2012]  31 

Europe.  

Seeking to bring this expertise together, LIFE09 INF/UK/032 RESTORE is building a sustainable network linking policy makers, river basin planners, practitioners and experts across Europe to share information and good practice on river restoration activities.  The project promotes the fact that river restoration activities such as re‐connecting brooks, streams and rivers to floodplains, former meanders and other natural storage areas, and enhancing the quality and capacity of wetlands,  can increase natural storage capacity and reduces flood risk. 

 LIFE projects also provide examples of the use of river restoration and other measures such as SUDS to offer flood protection and other benefits in the urban environment.  LIFE 08 ENV/E/099 AQUAVAL aims to extend the use of Sustainable Urban Drainage Systems (SUDS) to regions where they are not currently used through the demonstration of techniques including bio‐retention zones, detention basins, filter drains, filter strips, flow control systems, infiltration trenches and basins, permeable paving, retention ponds, soakaways, swales and wetlands in two municipalities in the Valencia region. The objective of LIFE07 ENV/S/908 GreenClimeAdapt  is to turn an industrial area in south‐eastern Malmo into a green climate adaptation area with open storm water management with enhanced biodiversity and recreation. The storm water system built in this 45 ha project will retain 90% of a 10‐year storm event. If applied at a European scale, the risk of local flooding could be significantly reduced. The run‐off water will be cleaned before reaching the recipient by sedimentation and filtration in ponds and other retention systems. 

Natural retention measures have also proved to be effective in improving water quality. LIFE06 ENV/F/133 ArtWet successfully demonstrated the mitigation of agricultural nonpoint‐source pesticide pollution and phytoremediation using artificial wetland ecosystems. LIFE 06 ENV/DK/229 TREASURE successfully demonstrated a selection of robust, efficient and simple technologies including sedimentation, plant uptake, filtration and fixed‐media additives for the extended treatment of stormwater runoff from small, medium sized and large urban catchments. The treatment facilities were constructed as natural and recreational elements in the form of semi‐natural lakes or ponds contributing to a positive improvement in the aesthetical and recreational value of the urban environment. LIFE09 ENV/ES/431 CREAMAgua will be creating and restoring natural ecosystem structures of wetlands and riverbank forests to reduce inorganic nutrients ‐ nitrates and phosphates ‐ and salts from agricultural runoff and improve the biodiversity in agricultural areas degraded by intensive agricultural use, in the area of the Flumen basin in Spain. 

Afforestation and soil management are effective natural water retention measures. LIFE09 ENV/ES/447 The Green Deserts main objective is to demonstrate the feasibility and effectiveness of new tree planting techniques in desertified, poor and/or rocky areas. Innovative ‘waterbox’ technology will be applied to restore the capacity of degraded soils to retain water and reinforce existing capacities for supporting plant life. Waterboxes will be tested to assess their suitability as a means of capturing rain and condensation for use in cultivating Hedera plants along roadsides, where the plants are intended to absorb traffic‐related air particulates and CO2.   

Aside from the water sector projects identified for the purposes of this study, LIFE has funded a number of bog restoration projects, which too have important lessons for natural water retention measures. For example, the purpose of LIFE06 NAT/UK/134 Active Blanket Bog in Wales was to bring about a significant and sustained improvement in the condition of blanket bog in key parts of two SACs in Wales. As well investigating the storage of carbon and methane, the project carried out a number of hydrological and water quality surveys to establish the value of ecosystems services provided by the bog. The project area serves as a catchment to Lake Vyrnwy, a reservoir serving North West England. There was huge concern about the impact of water quality following drain blocking, with increased particulate and organic matter causing health concerns and the need for additional treatment of the water to ensure it was of drinking quality. This proved not to be the case. The hydrological surveys also demonstrated the ability of an active bog to retain water for longer, therefore providing an important defence against flooding. 

Page 42: LIFE Water Study

[Water Sector Report August 2012]  32 

3.8. Gap Analysis 

 On examination of the spread of projects throughout the various directives there are some areas where LIFE projects are not well represented.  Table 3‐1 shows that among the directives themselves Floods, EQS and Shellfish Directives have the fewest projects.  The reasons for this are not clear as there is certainly scope in all three directives for LIFE projects to make a contribution to the implementation (at least to certain aspects) of these policy areas.  In terms of the Floods Directive it is possible that project proponents feel that LIFE funding is insufficient to address some of the issues and that structural funds are more appropriate for implementing the directive i.e. flood defence mechanisms.  On the other hand the project analysis shows that there are a number of projects (see section 3.7) which do address the directive but that this is rarely acknowledged by the project proponents.  A good example of this is LIFE 08 ENV/IT/406 REWETLAND which aims to contribute to the WFD but, in creating artificial wetlands, also addresses the Floods Directive although this is never acknowledged in the project documentation.    Likewise there are probably more LIFE projects that contribute to the Shellfish Directive than appears to be apparent from the analysis.  Arguably, all projects that aim to improve water quality in coastal areas could potentially make a contribution to the Shellfish Directive.  As a result, the contribution of the LIFE programme to these particular Directives is probably under‐estimated.  In contrast, the lack of projects addressing the EQS is more likely to be a true reflection of the actual situation because it is unlikely that projects will contribute to the development of EQS if it was not an original objective of the project.      Within the WFD some policy areas do not appear to attract many LIFE projects, these are typology and the delineation of water bodies, economics, Programmes of Measures (POM) and to a certain extent monitoring programmes for both surface and groundwater.   Only two projects dealt in some way with typology (or the delineation of water bodies) and only a couple of projects dealt with Programme of Measures.  The Italian project LIFE08 ENV/IT/413 INHABIT is an ambitious project which deals not only with these topics but also with a number of other WFD areas (impact analysis, integrated river basin management and data management).  The project, with a total budget of €2.2 million, aims to integrate information on local hydromorphological features into practical measures to improve the reliability of implementation of RBMPs in southern Europe. The focus is on rivers and lakes in two areas in Italy, covering a wide range of environmental features and water body types. The outcome of the project will serve as a basis for the implementation of RBMPs over larger areas in Italy and, possibly, the whole of Europe.  The project includes classification and evaluation of catchments according to the most up to date WFD classification tools and development of Programmes of Measures to address uncertainty in classification. They will produce guidelines on how and where the new set of measures should be adopted to aid the achievement of good ecological status by 2015.  The project LIFE05 ENV/DK/145 Odense PRB – AgriPoM had the main aim of producing an Agricultural Programme of Measures.  The main output of the project was a cost‐effective Programme of Measures to reduce nitrogen and phosphorus losses from agricultural activities in the Odense river basin in order to meet the WFD objectives ahead of the official time schedule. The project was successful in meeting its objectives. Despite the fact that there are very few projects that deal with 

LIFE05 ENV/DK/145 Odense PRB – AgriPoM 

Developing an Agricultural Programme of Measures 

Page 43: LIFE Water Study

[Water Sector Report August 2012]  33 

POM this area has been identified as a strength of the LIFE projects (see section 4.2.6) and so it would be a good area to encourage more applications.  The economic considerations of the WDF are rarely addressed by LIFE projects despite the fact that such considerations are probably the most important drivers of policy implementation.  However, there are some examples of LIFE projects that have looked at various economic and fiscal aspects of the WFD delivery and have made useful contributions to resource efficiency and more sustainable water use.  Addressing mismanagement of water resources is a priority objective of the WFD. One of the main challenges is ineffective water pricing policies which generally do not reflect the level of sensitivity of water resources. The way forward, according to EC (COM(2007) 414)13, is putting in place water tariffs based on a consistent economic assessment of water uses and water value, with adequate incentives to use water resources efficiently with adequate contributions from different water users to recover the costs of water services.   The project LIFE06 ENV/IT/255 A.S.A.P produced a protocol for reducing ground water abstraction together with an economic model concerning tariffs. The application of the ASAP protocol brought about a number of benefits (increasing the life of infrastructures, reduce maintenance costs of plants and facilities, reducing mean time between failures, reducing mean time to recharge) and so had a subsequent impact on tariffs. However, the protocol cannot be regarded as a solution in cases of network losses generally in places where the reticulation system is aging and only a full revamp of the infrastructure would have an impact on resource efficiency and costs. Clearly this scale of project is outside the scope of LIFE and this may be one reason why so few projects deal with costs.  Project LIFE08 ENV/GR/570 – Hydrosense produced a full cost assessment of water uses at the watershed level derived by aggregating the financial cost, the environmental cost and the resource cost and suggesting that the cost should be recovered through water pricing.  The project produced best and worst case scenarios.  These assessments should trigger a policy response towards a radical reform of the water pricing policy in Greece.  Using a different approach based on stakeholder engagement, the WATACLIC project (LIFE08 INF/IT/308) will produce a “concept document” of an “optimal” water tariff scheme (possibly including hints concerning economic tools other than tariffs) aimed at reducing water consumption. The project expects the document will be subscribed to by a minimum of 20 “entities” (including Regions, Basin Authorities, Provinces, Municipalities, Public utilities) and will be officially submitted to the new Agency in charge of Water Service Regulation in Italy.  Several other projects calculate the costs of interventions and provide some kind of cost benefit analysis, but these do not really explore the use of fiscal or economic management tools.  One such project is LIFE08 ENV/GR/551 PURE which aims to transform an existing network of pipelines that are currently distributing treated wastewater for irrigation, with no control, no monitoring, no pricing and no management plan, into an upgraded system that provides high quality alternative water resources for irrigation, in a sustainable manner and in accordance with the principles of the WFD.   Projects involving monitoring programmes of either groundwater or surface waters are also under‐represented in LIFE projects although it is true that many LIFE projects undertake some form of monitoring as part of the project activities.  However, there are some good examples of monitoring projects such as LIFE06 ENV/F/158 ISONITRATE which developed an innovate approach to monitoring nitrate pollution in water using isotopic technology.   

13 Commission Regulation (EC) No 414/2007 of 13 March 2007 concerning the technical guidelines for the planning, implementation and operational use 

of river information services (RIS) referred to in Article 5 of Directive 2005/44/EC of the European Parliament and of the Council on harmonised river information services (RIS) on inland waterways in the Community

Page 44: LIFE Water Study

[Water Sector Report August 2012]  34 

These projects clearly show that there is further scope for LIFE projects to implement areas of the WFD that are currently under‐represented in the programme.    However, there is an issue of timing of the directives and the length of time it takes for a LIFE project to produce results.  This is highlighted by the LIFE 07 UK/ENV/932 PISCES project which commenced in 2009 and is due to close in December 2012.  The project aims to assist the implementation of the MSFD and has produced a Guide to implementing the ecosystem approach.  The Guide will not be available until October 2012 but the MSFD called for all Member States to produce targets and indicators by June 2012; clearly the project outputs were not developed in time for the initial stages of implementation of this directive but may be influential in the development of the Programme of Measures which are not due for the MSFD until 2015.  There are a number of reasons why certain directives (or parts of directives) appear to be under‐represented in the LIFE programme, these include:  

The project proponents have not recognised that their project could influence directives other than those that they originally cited in their proposals; 

Project proponents do not consider LIFE funding appropriate for certain directives; 

The length of time it takes to approve and implement a LIFE project does not fit with the implementation timetables of some directives; 

Applications for LIFE funding supporting  certain directives (or parts of directives) are not successful but it has not been possible to assess whether this is the case as the application information was not available for this study; 

The importance of some directives is not stressed in the annual call for LIFE applications.  There could, of course, be other reasons for the apparent lack of support for certain directives but it has not been possible to determine which the main influential factors are because the necessary information to assess this was not available at the time of this study 

3.9. Third Countries (TCY) – a special case 

For more than 15 years, LIFE‐Third Countries (LIFE‐TCY) has provided financial support for environmental actions in countries bordering the Baltic Sea and the Mediterranean (other than central and east European acceding states and candidate countries), supporting them in improving their environmental performance and management capabilities. This LIFE brand also aimed at contributing to the strengthening of national environmental policies and at increasing environmental protection in the EU‐bordering regions. The main aims were thus capacity building, on the one hand, and enhancement of priorities determined by EU environmental policies, on the other14.   This report covers LIFE projects’ contribution to the implementation of water related directives and policies since 2005. Out of the 31 projects financed in these two years, 11 have been identified as related to the water sector (and are listed in Table 3‐3 below). 

Table 3‐3: LIFE TCY Water Sector Projects 

Project number and acronym 

Title  Type of project  Comments 

LIFE06 TCY/TN/275 COPEAU 

Network for water quality monitoring Capacity building  National authority

LIFE05 TCY/CRO/111 IBM 

Wading toward Integrated Basin Management 

Policy related SAVA River 

LIFE05 TCY/CRO/108 CROWATER 

Strengthening of public‐private partnership in order to improve wastewater management in Croatia 

Policy related National water utility

14 European Commission. 2007. LIFE‐Third Countries 1992‐2006: Supporting Europe’s neighbours in building capacity for environmental policy and action.

Page 45: LIFE Water Study

[Water Sector Report August 2012]  35 

Project number and acronym 

Title  Type of project  Comments 

LIFE06 TCY/ET/226 IBISS 

Italian‐Egyptian Capacity Building in the Integrated Water Supply and Sanitation 

Capacity building  Knowhow transfer

LIFE06 TCY/ET/232 FLAFLOM 

Flash Floods in Egypt: protection and management 

Capacity building  Flood Directive

LIFE05 TCY/GA/115 HAGAR 

Environmental action for the sustainability of natural resources through recycling of water and sludge from marble production 

Capacity building  Local authorities

LIFE05 TCY/MA/141 MOROCOMP 

Design and Application of an Innovative Composting Unit for the Effective Treatment of Sludge and other Biodegradable Organic Waste in Morocco 

Capacity building  Knowhow transfer

LIFE06 TCY/INT/246 SAVA RIVER BASIN 

Protection of Biodiversity of the Sava River Basin Floodplains 

Policy related SAVA River 

LIFE05 TCY/TN/150 SMAS 

Capacity building for an early assessment system of drought in three countries of the south shore of the Mediterranean sea: Algeria, Morocco and Tunisia 

Capacity building  Trans‐boundary and involvement of national authorities 

LIFE05 TCY/IL/130 SUSTAINABLE JORDAN 

The Sources of the Jordan River, Humans and Nature 

Capacity building  Regional Master Plan

LIFE06 TCY/IL/240 TRANS‐BOUNDARY WATER/PRO‐AQUIFER 

Protecting trans‐boundary groundwater sources from pollution: research, training and guidelines for Israeli and Palestinian municipalities 

Capacity building  Local authorities

 In line with the objectives of the LIFE‐TCY strand, these 11 projects either concentrated on capacity building (8) or on the enhancement of the implementation of EU policies (3). For obvious reasons, projects aiming at the promotion of the implementation of European policy frameworks were those undertaken in acceding and candidate countries, such as Croatia or generally in the Balkans (see Table 3‐4 for more details).   

3.9.1. LIFE‐TCY and the promotion of EU policies outside of Europe  

While most projects funded under the LIFE‐TCY programme were inspired by and used as the basis for their actions EU legislation and best practices, only three projects were identified in this report as directly aiming at the enhancement of EU policy directives and policies. These are shown in Table 3‐4 below:  

Table 3‐4: TCY Projects Promoting EU Policy outside Europe 

Project number and acronym  Project title Beneficiary LIFE05 TCY/CRO/111 IBM  Wading toward Integrated Basin 

Management Lonjsko Polje Nature Park (LPNP) Public Service 

LIFE05 TCY/CRO/108 CROWATER  Strengthening of public‐private partnership in order to improve wastewater management in Croatia 

Croatian Waters 

LIFE06 TCY/INT/246 SAVA RIVER BASIN 

Protection of Biodiversity of the Sava River Basin Floodplains 

IUCN ‐ The World Conservation Union 

 

Interestingly, all three projects implemented activities in the trans‐boundary Sava River Basin, which extends from Slovenia (an EU member) and also covers considerable parts of Croatia, Bosnia and Herzegovina, Serbia, Montenegro and a small part of Albania. It is the third longest tributary of the Danube River (and the 

Page 46: LIFE Water Study

[Water Sector Report August 2012]  36 

largest by discharge) and its importance in the European context in general and in the Balkans area more specifically is beyond doubt. Two of the three projects tackled different management aspects of the river basin, contributing to the implementation of the WFD in this part of Europe and, more specifically, to the adoption of the River Basin Management Plans. With regards to the tasks foreseen by the Water Framework Directive, the projects established the basis for implementation by putting in place procedures, action plans and decision making bodies to facilitate integrated river basin management.  The LIFE05 TCY/CRO/111 IBM project reached agreement for an official management plan and for the establishment of a programme for integrated river‐basin management for a nature park in Croatia (Lonjsko Polje). This park is the largest maintained inundation area in the Danube catchment and, at the same time, the key flood control system for the Sava river basin. The project ensured that several important requirements of the WFD could be applied in this area. More specifically, it established a Stakeholders' Committee to ensure a participatory approach, elaborated a management plan for the Park and collected data on the ecological and habitat status of the park. 

A more ambitious project was the trans‐boundary project LIFE06 TCY/INT/246 SAVA RIVER BASIN which aimed to support the elaboration of the Integrated River Basin Management Plan for the River and build management capacity for the implementation of the Birds and Habitats Directives in the involved countries. It had a direct contribution to the implementation of both the Water Framework and the Flood Directives. It identified threats to Natura 2000 habitat types and species and defined the ecological network in which biodiversity, rural economic development, flood prevention, and other issues are taken into consideration.  Another important element of the project was its contribution to trans‐boundary co‐operation in a politically troubled region. In fact, the Framework Agreement on the Sava River Basin (FASRB), which entered into force in December 2004, was the first multilateral agreement in the region signed after the Dayton Peace Agreement (1995) with Bosnia and Herzegovina, Croatia, Serbia and Slovenia as Parties.   The LIFE05 TCY/CRO/108 CROWATER project, on the other hand, aimed at developing national water and wastewater management procedures by supporting Croatian Waters in creating a new laboratory for analysis of biodegradable components in wastewater. The project outputs contributed to the national water protection strategy and to the country's ultimate compliance with the WFD.  Thus, TCY projects have made a valuable contribution to the implementation of the WFD in situations where there is a shared resource or common water body.  As far as capacity building is concerned, the LIFE‐TCY funding tool has assisted in the pursuing of this objective in non European countries in different ways. For instance on a local level, funding has facilitated the transfer of technological know‐how to improve water and sanitation services (in Egypt), enhanced the capacity of local authorities to address problems associated with the treatment of debris, sludge and water from the marble industry (in Palestine), assisted in the development of an early warning system for flash floods in the Sinai peninsula and promoted trans‐boundary water management capacities in two demonstration municipalities in both Israel and Palestine.  In some cases, projects were also successful in influencing national or regional regulations and procedures. Such was the case in the LIFE05 TCY/TN/150 SMAS project ‐ implemented in Algeria, Morocco and Tunisia ‐ which facilitated the adoption of a trans‐boundary approach to prevent the environmental degradation associated with droughts in North Africa, by introducing early warning systems to enable the countries to deal with and adapt to periods of low rainfall. In the case of the project LIFE05 TCY/IL/130 SUSTAINABLE JORDAN funding was decisive in assisting in the creation of a regional framework for sustainable development in the Upper Jordan River in Israel, involving the preparation of a master plan for land use designation, environmental management, flood prevention and proper drainage; the putting in place of a participatory approach; the development of ecotourism in the area and the enhancement of ecological agriculture practices. 

Page 47: LIFE Water Study

[Water Sector Report August 2012]  37 

3.10. Project Costs 

3.10.1.  Total Costs and EU Commitment 

 The Water Unit requested some assessment of the costs involved in delivering the projects.  First it must be remembered that there are two cost components; the total cost of the project which includes the beneficiary and partner contributions, and the contribution made by the EU. This second contribution varies depending on the type of project and the different depreciation rates applied to infrastructure and equipment costs in LIFE projects. Wherever possible the final cost calculation of the project has been taken into account ‐ that is the actual cost of the project and the actual contribution made by the EU. Clearly this cannot be done for projects which are still open and in these cases the commitment costs have been included.  Therefore this assessment can only paint a broad picture of the costs involved in delivery. Table 3‐5 below shows the broad breakdown of project costs for all projects and also broken down by LIFE brands.  Over the period 2005 through 2010 the EU has committed a total of 215 million Euro to project supporting water policies and this has been matched by 292 million Euro coming from the beneficiaries, partners and co‐financiers in the Member States.  A further breakdown reveals that 60% (or 129 million Euros) is committed to funding LIFE ENV projects and the remaining 40% (or 85 million Euros) is committed to LIFE NAT projects. However, LIFE ENV projects make up 76% of the total projects and so it can be concluded that LIFE NAT projects cost more to deliver than LIFE ENV projects in terms of EU contribution.  This is supported by average cost per project data as this clearly demonstrates that a LIFE NAT project costs in the region of 50% more overall than the LIFE ENV projects and the EU contribution is, on average, 1 million Euros per project higher for LIFE NAT projects.  

Table 3‐5: Total Costs of Delivering LIFE Projects in the Water Sector 

 

 Total Project Costs 

million Euro EU Contribution million Euro 

No of Projects 

Total for all projects  507  215  196 Total for ENV/INF projects  333  129  150 Total for NAT projects  174  85  46 

Average cost per project  2.5  1  ‐ Average cost per ENV projects  2.1  0.8  ‐ Average cost per NAT projects  3.7  1.8  ‐ 

 A closer examination of the distribution of individual projects shows that for LIFE ENV projects there is a narrow distribution with the majority of projects costing between 0.5 and 2.5 million Euros in total with by far the largest number falling with the 1‐2 million Euro bracket (see Figure 3‐5). The figure also shows that there are a number of very small projects with a total value up to 0.5 million Euros and a small number of mega projects with very high overall costs in excess of 10 million Euros.  The highest and lowest cost projects are shown in Table 3‐6.  This table shows that projects with the highest total cost do not necessarily receive the highest grant contribution from the EU, indeed this is rarely the case, with the notable exception of LIFE10 ENV/DE/158 HWC which topped the list for both highest total cost and highest community contribution.  At the lower end of the cost scale the ongoing Maltese project LIFE10 INF/MT/091 Investing in Water had the lowest total budget and lowest community commitment. 

Page 48: LIFE Water Study

[Water Sector Report August 2012]  38 

 

Figure 3‐5: Distribution of Total Project Values for LIFE ENV projects 

 

   One interesting feature has emerged from this exercise.  In the Best of Environment projects for 2011, three water projects made it into the top 5, LIFE06 ENV/D/485 Moveable HEPP, one of the highest budget projects, LIFE07 ENV/PL/605 Lake recult. in Gniezno one of the lowest budget projects and LIFE06 ENV/E/044 ES‐WAMAR, a 6 million Euro budget project.  All have been extremely successful in implementing policy and have clearly made an impact within the LIFE and Water Units of DG ENV (see section 3.11).  

Table 3‐6: Highest and Lowest Ranking Projects on Total Cost 

 

Ranking  Project  Total Cost Million € 

EU Contribution Million € 

Top 5 ranked highest total cost projects 1  LIFE10 ENV/DE/158 HWC  16.7  3.42  LIFE10 ENV/NL/028 OMZET  14.4  1.53  LIFE06 ENV/D/478 IWPM  12.4  1.84  LIFE05 ENV/UK/127 QUERCUS  9.7  1.35  LIFE06 ENV/D/485 Moveable HEPP  7.8  1.6Bottom 5 ranked lowest total cost projects 5  LIFE07 ENV/PL/605 Lake recult. in Gniezno 0.43  0.214  LIFE10 ENV/SK/086 Geohealth  0.42  0.213  LIFE 07/INF/UK/750 Ecoanimation  0.39  0.182  LIFE10 INF/FI/052 Saimaan lohikalojen  0.36  0.181  LIFE10 INF/MT/091 Investing in Water  0.34  0.17

 

Page 49: LIFE Water Study

[Water Sector Report August 2012]  39 

  

Figure 3‐6: Distribution of Total Project Values for LIFE NAT projects 

 

  

Figure 3‐6 shows the distribution pattern for LIFE NAT brand of projects.  The majority of projects in this brand type have a total cost between 0.5 and 4.5 million Euros with the greatest number of projects falling in the 1.5 – 2 million cost category.  There are no very small projects with budgets up to 0.5 million Euros and the lowest total cost project is LIFE09 INF/GR/319 PROM.SUS.FIS.PR.PRESPA with a total budget of 0.75 million Euro. There is a greater percentage of high cost projects, i.e. projects with a total cost of over 10 million Euro, in the LIFE NAT brand (6%) than in the LIFE ENV brand (2%).  The highest total cost project is LIFE07 NAT/E/732 INDEMARES (15.4 million Euros) and the project which receives the highest community contribution is LIFE05 NAT/DK/153 Houting (8.0 million Euros). 

 3.10.2. Project costs by Directive 

 The costs for each Directive have been analysed in an effort to determine how the costs of the LIFE programme are allocated.  Only those Directives where there is enough data to make a reasonable analysis have been examined and the results are shown in Table 3‐7.  It should be noted that some projects consider more than one Directive and so the costs for some projects will appear in more than one category.  The WFD is the directive which receives most attention in terms of number of projects and in terms of total EU commitment of some 137 million Euros between 2005 and 2010.  The MSFD is served by a much smaller number of projects and consequently attracts less funding with only 36 million Euros committed by the EU in the same timeframe.  The other Directives examined are only appropriate to the LIFE ENV brand and so have fewer overall projects.  The UWWT and Nitrates Directives are more or less equally served by the LIFE programme with committed funds of 23 and 25 million Euros respectively while the Groundwater Directive has the least number of projects and receives some 14 million Euros from the EU in order to implement the projects. 

Page 50: LIFE Water Study

[Water Sector Report August 2012]  40 

 

Table 3‐7: Cost Breakdown by Directive 

 

  Total Projects  LIFE ENV/INF  LIFE NAT   Total 

costs15 EU 

Commitment No of 

Projects Total Costs 

EU Commitment 

No of Projects 

Total Costs 

EU Commitment 

No of Projects 

WFD  323  137  123 219 88 98  103  49 25MSFD  72  36  28 25 11 13  47  25 15UWWT  66  23  28 66 23 28  0  0 0Nitrates  50  25  25 50 25 25  0  0 0Groundwater  27  12  14 27 12 14  0  0 0

 The average cost per project for delivery is shown in Table 3‐8 and although the WFD projects tend to have a slightly higher unit cost than other projects there is very little difference in the cost of delivery between the Directives for any single project.  However, within the WFD and MSFD the average cost of NAT projects is much higher than that of the ENV projects.  For the WFD the average total cost of an ENV project is 2.2 million against a NAT project of 4.1 million Euros and for the MSFD the figures are 1.9 and 3.1 million Euros respectively; once again emphasising the fact that NAT projects are more costly to deliver on a per project basis. 

Table 3‐8: Average Cost of Projects 

 

  Average Total Cost of Project Million € 

Average EU Commitment Million € 

WFD  2.6 1.1 MSFD  2.5 1.2 UWWT  2.3 0.8 Nitrates  2.0 0.9 Groundwater  1.9 0.8 

 The majority of projects are relatively low cost considering that many of them deliver new technologies or try out management approaches on a relatively large scale. There is no clear reason why NAT projects cost almost twice as much as ENV projects, however, except perhaps that NAT projects do undertake more concrete actions over a wider area and many include land purchase, NAT projects are generally longer than ENV projects and the EU financial contribution can be greater in a NAT project.    

3.10.3. Cost Comparison with other Programmes  Finding directly comparable data on other EU programmes is difficult but there are some published data that illustrate whether LIFE projects are reasonable in terms of cost of delivery.  A comparison between the average costs of delivering a project under different EU funding mechanisms16,17 is presented in Figure 3‐7 below.  It is appreciated that all the programmes represented in the figure have different purposes and objectives which makes direct comparison problematic.  However, it is still useful to look at the costs of delivery of the various programmes as this does give some indication of value for money.  

15 All costs are given in millions of Euros 16 http://www.eulaks.eu/attach/EULAKS_Deliverable_D.1.2_IRD_LAC_Project_Participation.pdf 

17 http://www.cadses.net/media/files/CADSES_Results_Brochures/1143_cadses_results_iii_web.pdf

Page 51: LIFE Water Study

[Water Sector Report August 2012]  41 

Interestingly, the LIFE ENV brand has one of the lowest costs per project of all the programmes and there is very little difference between the European Regional Development Fund (ERDF), Interreg and FF7 packages which all fall between 1.9 and 2.6 million Euro per project.  Interestingly, the Integrated Water Management strand of the Interreg programme, which is arguably the closest match to the LIFE water projects, is identical to the average cost of a LIFE project in the water sector.   

Figure 3‐7: Total Cost Comparison – LIFE vs other EU Funds 

  LIFE NAT projects are amongst the most costly and are only surpassed by FP6 projects.  Given that LIFE projects are extremely successful, with some 80% of projects achieving their objectives according to the ex‐post evaluation of the LIFE III programme, the LIFE programme can be considered to be cost effective and good value for money at least in comparison with other EU funded projects. 

3.11.  Best of LIFE projects 

 One way of recognising the success of a LIFE project is through the Best of LIFE project awards which are made on an annual basis.  Scoring of completed LIFE projects began in 2004. The system was introduced by the Commission, following an initiative taken by Sweden and the Netherlands. A set of ‘best practice’ criteria (adapted to each strand) was developed in collaboration with the Member States. These criteria included: projects’ contribution to immediate and long‐term environmental, economic and social improvements; their degree of innovation and transferability; their relevance to policy and their cost‐effectiveness. In view of the importance of these aspects to project success, project beneficiaries are also required to provide an After‐LIFE Communication Plan and an analysis of the long‐term benefits of the project with their final report. This information forms an integral part of the evaluation process.   All completed projects are initially technically assessed by the LIFE Unit’s external monitoring team (the Astrale consortium). The monitors rank all the projects that ended during the year to produce a first list. The final selection is undertaken by the Member States.   The objective of the exercise is to help improve the dissemination of LIFE project results by clearly identifying those projects whose results, if widely applied, could have the most positive impact on the environment. Clearly this only applies to projects that have officially closed and so, in terms of this report, only those projects from 2005, 2006 and a few from 2007 will have been evaluated in terms of the Best of LIFE projects awards. The best LIFE water projects to date are shown in Table 3‐9 and cover both LIFE ENV and LIFE NAT brands.  Details of these projects can be found by clicking on the website links below.  

Page 52: LIFE Water Study

[Water Sector Report August 2012]  42 

Table 3‐9: Best of LIFE Awards – Water Projects 

 

Award Year  Project  Weblink 

2009  LIFE05 ENV/GR/245 EnviFriendly  http://www.envifriendly.tuc.gr/ 2009  LIFE06 ENV/NL/167 WET   2009  IFE05 ENV/IT/868 PERBIOF  http://www.perbiof‐europe.com/  2009  LIFE05 ENV/DK/155 AGWAPLAN  http://www.agwaplan.dk/agwaplan.htm  2009  LIFE05 ENV/B/510 TOPPS  http://www.topps‐life.org/web/page.asp  2009  LIFE05 ENV/B/517 INSIMEP  http://wwwa.vito.be/insimep/  2010  LIFE06 ENV/IT/235 Kolisoon  http://www.lifekolisoon.it/ 2010  LIFE06 ENV/UK/409 OpenMI‐LIFE  http://www.openmi‐life.org/  2010  LIFE06 ENV/B/362 ECOTEC‐STC  http://www.hydrex.be/  2010  LIFE05 NAT/D/057 Lippe‐Aue  www.life‐lippeaue.de  2010  LIFE05 NAT/UK/143 STREAM  http://www.streamlife.org.uk/  2011  LIFE06 ENV/D/485 Moveable HEPP  http://www.moveable‐hepp.com/  2011  LIFE07 ENV/PL/605 Lake recult. in Gniezno   2011  LIFE06 ENV/E/044 ES‐WAMAR  http://www.life‐eswamar.eu/ 

     

Page 53: LIFE Water Study

[Water Sector Report August 2012]  43 

 

4. ANALYSIS OF THE ACHIEVEMENTS OF LIFE ENV/INF PROJECTS IN THE WATER SECTOR 

4.1.    SWOT Analysis 

A total of 33 projects were selected to go forward for further analysis. Selection was based on the following criteria: 

Project must have some tangible results. 

Good cross section of the directives. 

Number of WFD policy elements (projects dealing with more than one WFD issues). 

Project is approved by the monitoring team (for good implementation). 

Geographic variety (ensuring geographic variety from many Member States).  These projects have been analysed to identify the areas in which LIFE water projects are especially successful (Strengths), areas in which projects have failed to meet their policy objectives (Weaknesses), examples of projects contributing to the development of new water related policies and legislation (Opportunities) and continuing or new threats which make it difficult for LIFE water projects to implement policy (Threats). It is important to underline that some of the projects analysed are still on‐going, and hence the analysis is based on progress and results to date. It is also important to note that the full impacts of LIFE projects are often not visible at the end of the projects and that it may take time for projects to feed into the development of policy and to transfer to other settings. SWOT analyses for all 33 selected projects can be found in Annex 4.  

4.2.    Areas in which LIFE water projects are especially successful (Strengths) 

 The strengths of LIFE projects lie in eight main water related areas, which are discussed in more detail in the following sub‐chapters and are indicated in Box 2 (adjacent text).  Also included is a section (see 4.2.9) that deals with stand alone successes which focuses on projects which have excelled in delivery of an isolated issue that is perhaps country specific, develops cutting edge technology or demonstrates innovative practice in a specific topic area.  Common threads, related to the different policies, are drawn together in section 4.7 below.    

4.2.1. Alternative remediation approaches  Throughout the LIFE programme18 investigated during this study, project proponents have been particularly 

18 LIFE III, LIFE+ and LIFE10 

1. Alternative remediation approaches  

2. Alternative preventative solutions 

3. Management solutions for waste water treatment 

in urban environments 

4. Assessment and improvements of quantitative 

status of groundwater 

5. New technologies for the continuous monitoring 

of surface waters 

6. Cost effective programme of measures 

7. The Horizontal Approach – linking water 

management to other policy sectors 

8. Projects with high potential for transferability 

9. Standalone Successes 

Box 2: Strengths of the LIFE projects 

Page 54: LIFE Water Study

[Water Sector Report August 2012]  44 

successful in developing alternative remediation approaches to environmental problems as the case studies that follow demonstrate.  A Belgian project LIFE 05 ENV/B/517 INSIMEP demonstrated the precipitation of metals in situ by acceleration of biogeochemical processes that may occur naturally. The strengths of the project were the different hydrogeological conditions at the three test sites, the combination of two different metals at each site and the thorough use of modelling to explain the results and to design a full‐scale remediation. This technique proved to be more sustainable than pump and treat as no above‐ground waste is produced; less electricity is consumed, which reduces the carbon footprint; and there is no discharge to surface water. 

LIFE 08 ENV/IT/390 ECOMAWARU is in the process of developing a water and wastewater management scheme adopting phytodepuration with micro algae to significantly improve the quality of effluent that is reused for irrigation purposes. The project is implementing two treatment plants at different scales: one at an urban catchment area, designed to treat only a portion of the entire wastewater flow and one in a rural setting that treats the entire wastewater flow.  The application of micro‐phytodepuration systems could present several opportunities because they need smaller surfaces than macrophyte processes and because they obtain a product with an added value, microalgal biomass, which could be directly re‐used in agriculture as nitrogenous fertiliser or, depending on the quality and quantity, used for producing chemicals, animal feeds or bio‐diesel. The new technologies developed by the project are easy to manage and ecologically friendly. They could be integrated into rural communities, particularly those sparsely populated communities that suffer from a lack of suitable sewage treatment facilities. The project is producing a handbook containing technical documentation about design, installation, maintenance, management and control procedures of the phytodepuration system, to enhance the reproducibility of the approach in other locations.  A Dutch project LIFE 06 ENV/NL/167 WET was also successful in demonstrating the technical feasibility of a number of innovative waste water treatment processes to achieve the standards for effluent set in the WFD. The project developed a process to remove  phosphate (P) by metal salt dosing and nitrate (N) using a carbon source 

supported dentrification process that can be combined in a one filter configuration. This resulted in a structural achievement of the WFD standards for Ptotal (<0,15 mg Ptotal/l) and Ntotal (<2,2 mg Ntotal/l).  The project also developed the use of Advanced Oxidation Processes resulting in a reduction of medical remnants and pesticides by more than 70% and achieved a disinfection level up to the hygiene limits set in the Bathing Water Directive. The removal of heavy metals, organic micro‐pollutants and suspended solids was also achieved using the same combination of techniques  The single filter set‐up of the process enables the WFD values for nitrate and phosphate to be achieved at a considerably lower cost (about 50%) than the set‐up with separate filters for N and P removal. The removal of other WFD priority substances was also investigated in the second monitoring phase of the project, in 

LIFE 08 ENV/IT/390 ECOMAWARU

 

Micro‐phytodepuration system 

Page 55: LIFE Water Study

[Water Sector Report August 2012]  45 

which Advanced Oxidation Processes (using ozone, hydrogen peroxide and uv‐light) were tested and proved successful.  Another Dutch project LIFE 07 ENV/NL/576 PHARMAFILTER provides innovative methods to treat hospital waste water. The Pharmafilter concept aims at processing solid organic waste and waste water in a hospital environment in an integral manner that will lead to the recycling of components and production of energy. The Pharmafilter unit that was set up by the project (a mobile unit outside of the hospital that treats hospital waste water and organic waste) has been processing all waste water (with human faeces) from a hospital since November 2010. Furthermore since January 2011 the installation began processing some organic waste (from bed pans, kitchen wastes, etc) by connecting a grinder to the Pharmafilter unit. A second grinder was installed in March 2011 and another 18 grinders were installed in the period up to September 2011. The project is in its closing stages but independent qualified laboratory research has already proved that Pharmafilter removes medicines, germs, cytostatica, röntgen contrast liquids and hormone disturbing substances from the water. Pharmafilter uses different purification steps to eradicate and clean the waste water of medicines. The end result is clean, purified water (including disinfection through ozone) which at the final stage is apparently clean enough to drink.  Furthermore, the project also demonstrates resource efficiency, as the organic material, including the bio‐plastic products is digested and the total mass is reduced by 90%.  The digestion process converts the solid matter into biogas, then this biogas is used for heating up the digesters and delivers power to the water purification plant (60 ‐70% of energy used by the Pharmafilter is generated by the unit from methane). This digestion process eliminates viruses and bacteria and the digestion of the waste requires fewer trucks to transport the waste away. The remaining waste will be recycled or turned into a second source of energy. 

4.2.2. Alternative preventative solutions 

 In many cases polluted groundwater contains a mixture of both organic and inorganic contaminants. The abatement of such pollutant mixtures is not possible with a simple barrier/zone based on the removal of pollutants by either physico‐chemical or biological means. However, such pollutant mixtures might be treated using a combination of different reactive barriers/zones. Such a combination is defined as a Multifunctional Permeable Barrier (MULTIBARRIER).  This approach requires the efficient synergistic interaction and compatibility of different pollutant removal processes, often of microbial and physico‐chemical key‐components of the system.  

 A Belgian project LIFE 06 ENV/B/359 MULTIBARDEM demonstrated a multibarrier as a sustainable solution for preventing mixed contaminants spreading in groundwater.  The approach developed consists of a tailor‐made combination of different types of permeable reactive barriers and reactive zones in which pollutant removal processes are active. Groundwater flows through the system during which the pollutants are degraded or immobilised. As such multibarriers prevent further spreading of the pollution to the downstream area.  As well as trialling several innovative multibarrier concepts (including the use of grape mark as a slow release C‐source in a barrier; and the use of zeolites as an in‐situ buffer with potential for auto‐regeneration), the fact that the project was performing field trials as opposed to the more common laboratory scale evaluations of multibarriers, including the demonstration of classical biological nitrification/denitrification under in situ conditions, was in itself innovative. 

The LIFE 06 ENV/F/133 ArtWet project focused on preventing agricultural non‐point source pollution by pesticides through the establishment of low cost vegetated treatment systems (biological systems) to mitigate the risk of pollution. The project achieved a high demonstration value by delivering 11 prototype constructed wetlands in four different countries which achieved a retention performance ranging between 40 and 80% of 18 pesticides over a two year monitoring period. A technical guide was produced to enable the low cost technique to be readily transferred to other locations and other sectors (such as urban runoff water treatment, other non‐point source pollution such as nitrate or phosphorus pollution, erosion limiting, downstream biodiversity protection) for small scale implementation.  The project identified constraints in setting up artificial wetlands in current legal frameworks in three different countries concluding that a 

Page 56: LIFE Water Study

[Water Sector Report August 2012]  46 

harmonisation of European legislation would be needed to make the setting up of constructed wetlands easier.  

4.2.3. Management solutions for waste water in the urban environment  

Surface waters and stormwaters from urban areas present a considerable problem when discharging pollutants to the sewage system. There are few methods to treat polluted run‐off waters and large volumes of polluted surface water end up being processed in normal municipal waste water treatment plants, which cannot cope with occasional large volumes.  LIFE 06 ENV/DK/229 TREASURE successfully demonstrated a selection of robust, efficient and simple technologies including sedimentation, plant uptake, filtration and fixed‐media additives for the extended treatment of stormwater runoff from small, medium sized and large urban catchments. The treatment facilities, which demonstrated an average pollutant reduction rate of 70‐85 %, were constructed as natural and recreational elements in the form of semi‐natural lakes or ponds.  By contributing to a positive improvement in the aesthetical and recreational value of the urban environment, the demonstration plants/ponds received support from the local community, as well as contributing to the environmental awareness of local people. The technology can also be applied for related purposes such as treating drinking water polluted with, for example, arsenic or heavy metals or treatment of phosphorous polluted surface waters. 

The principle of dealing with surface water run‐off at source is an established practice in the development and redevelopment of surface run‐off systems (including Sustainable Urban Drainage Systems (SUDS)) in many parts of the world, but there is lack of experience in Southern European countries. In this regard, LIFE 08 ENV/E/099 AQUAVAL  aims to extend the use of SUDS to regions where they are not currently used through the demonstration of techniques including bio‐retention zones, detention basins, filter drains, filter strips, flow control systems, infiltration trenches and basins, permeable paving, retention ponds, soakaways, swales and wetlands in two municipalities in the Valencia region. The project is also in the process of developing sustainable Urban Water Management Plans for both municipalities. The project is in a strong position to demonstrate the potential benefits to the local area other than improved water quality (including realising economic advantages from the use of grey water and the benefits from a reduction in the urban‐heat island affect). There is also a significant opportunity to incorporate the use of SUDS in urban planning requirements for new developments as a consequence of the results obtained from the project, as well as the promotion of the use of the techniques and strategies between architects and engineers.  LIFE 10 ENV/DE/158 HWC ‐ Jenfelder Au is in the early stages of demonstrating an integrated wastewater disposal and energy generation system designed to improve water quality by preventing rain and grey water from being polluted with black water and to save energy by systematically treating and utilising separated wastewater streams. The system, which is being integrated into the development of 700 new apartments in Hamburg aims to minimise the dilution of sewage with drinking water by the use of vacuum toilets. The system will be subject to an environmental and economic cost benefit analysis to assess the potential viability of the scheme and its transferability to other housing developments.  

4.2.4. Assessment and improvements of quantitative status in groundwater  

Two projects based in Italy are demonstrating different approaches to improving the quantitative status of groundwater under current negative drawdown conditions and future climate scenarios. LIFE 06 ENV/IT/255 A.S.A.P developed a procedure for preventing the over‐exploitation of groundwater systems through an integrated approach to optimising networks that combines technologies such as leak detectors, GIS and modelling systems and simulators. The project successfully demonstrated the approach on an aquifer fed system in Pisa, reducing groundwater abstraction by 11% and reducing system losses from leaks by 15% over the course of the project. As a result, the negative drawdown trend of the piezometric level of the aquifer was reversed with an average build‐up of + 0.3m from 2005 to 2008 and peaks ranging from 0.5m to 1m. The approach also reduced energy consumption from pumping (and the related emissions) by 10%. The ASAP Protocol raised remarkable interest among local and regional public administrators. It was included in the 

Page 57: LIFE Water Study

[Water Sector Report August 2012]  47 

White Paper "A Strategy for Water Supply in Tuscany" and has been replicated at the water utility of the Fiora Aqueduct (another utility of Toscana Region).  As well as contributing to the WFD objective of improving the quantitative status of groundwater, the project also provided a potential contribution in achieving a sustainable economic and pricing model for water supply. Financial resources for bulk reconstruction and/or rehabilitation of water networks are seldom available. More often annual allocations suffice just for maintenance with a limited quota for on‐going rehabilitation. The project protocol translates even limited resources into effective action plans for efficient abstraction and leakage cut‐down, increasing the life of infrastructure, reducing maintenance costs of plants and facilities, reducing mean time between failures and mean time to restore.  LIFE 07 ENV/IT/475 TRUST is in the process of developing an approach to adapt the groundwater resources of the Veneto and Friuli Plain to the adverse impacts of future climate change. The project is using a combination of climate change scenarios that supply the temporal series of precipitation, temperature and evapo‐transpiration for the 21st century that will affect the hydrological balance in the study area; remote sensing techniques based on the elaboration of satellite images to determine the water deficit for irrigation of summer crops in the study area;  and mathematical models of the hydrologic basins and groundwater to establish how the hydro‐geology will evolve in consideration of climate change and determine appropriate measures (including managed aquifer recharge using surface flood waters) to ensure sustainability of groundwater resources. The project area is extremely complex from the hydro‐geological and water management perspectives as it gathers a wide variety of water uses (irrigation, hydropower generation, domestic drinking water supplies and industrial users). The project has so far been very successful in enhancing the governance and integrated management of water resources of the river basin by engaging these stakeholders through a technical board. 

4.2.5. New technologies for the continuous monitoring of surface waters  Currently, the monitoring of surface water pollutants generally involves ad‐hoc analysis of water samples collected within specific monitoring campaigns. These approaches are often time‐consuming, labour intensive and expensive to operate. However, the implementation of the WFD requires Member States to gain a better understanding of priority pollutants (chemical (as listed in WFD Annex II) and biological) entering surface waters through the establishment of monitoring strategies that combine surveillance with operational and investigative monitoring.   LIFE 06 ENV/IT/235 Kolisoon has developed a monitoring device enabling the rapid, low‐cost assessment of faecal pollution. The system is capable of fully automated sampling, filtration, detection and data transmission of the faecal indicator bacteria Escherichia coli, providing operators and regulators with an online solution for monitoring sudden variations in microbial contamination of effluent and an effective early warning system to prevent pollution episodes. With assessment times taking just a few hours, the system eliminates the anomaly of being able to gauge the microbiological quality of water bodies only 24 hours after a sample has been taken. This time lapse has long posed a threat to public health, particularly where bathing waters are involved, and increasingly from the re‐use of treated/untreated wastewater in an ever widening range of applications. The prototype also provides a feedback tool for the disinfection process, enabling the amount of disinfectant to be finely regulated according to the level required. The technology is transferable to a wide range of end‐users including wastewater facilities, environmental agencies, and the disinfection industry.  

LIFE 06 ENV/IT/235 Kolisoon

Development of an innovative, low‐cost prototype monitoring system enabling rapid assessment of faecal pollution. 

Page 58: LIFE Water Study

[Water Sector Report August 2012]  48 

LIFE 10 ENV/ES/521 AQUATIK is in the early stages of testing new methods and techniques for the monitoring of selected priority pollutants in surface waters. The project seeks to develop a new automated prototype to measure pollutants discharged in wastewater effluents and related spills in quasi‐real time. From the WFD list of priority pollutants, the project will focus on seven, including pesticides, alkylphenols and phthalates. These have been selected due to their widespread presence in waters across Europe and especially in the study area. The project will design and construct an automated self‐controlled device for the detection of the selected priority substances and then demonstrate the prototype at selected wastewater treatment plants in the Barcelona area. 

4.2.6.  Cost effective programme of measures 

 The Water Framework Directive schedule has set the definition of the Programmes of Measures (POM) in 2009 as a milestone in achieving good ecological status (GES) of waters by 2015. The definition of the POM should ideally be the optimized combination of implementation costs and ecological effects. In practice, the POM will be influenced by political agendas, the level of planning detail and validity of the supporting data; all of which will be highly variable. Hence, there is a need for accompanying scientific actions that will guide and benchmark the intended POM in their development stages. This is especially true for the less obvious environmental pressures on water bodies. So far there are only a few tools for evaluating measures with respect to their effect on the ecological status of surface water bodies.   The on‐going Luxembourg project LIFE 07 ENV/L/540 M3 is very important from this perspective as it is applying the latest developments in monitoring and modelling concepts to specific river basin management measures. The M3 project (once completed) will provide the water managers in the three participating regions with state of the art means to optimize decision support, planning and monitoring of efficiency of water basin management measures. This will be achieved through a combined use of monitoring and modelling in three regions of distinct hydrological and economical catchment structure. Furthermore, the project will apply emissions models to the three regions together with a critical analysis of input data needs and cost‐efficiency for decision support.  The project is also in the process of developing overall practical guidelines and field reports on the optimal use of models and monitoring to fulfil the WFD requirements in three regions with catchments of different scales, hydrology and human impacts and pressures. The project has already identified that regulators and river basin managers prefer to adhere to threshold motivated monitoring than monitoring aimed at improving process understanding and source allocation/quantification. The project emphasises that the latter are prerequisites for the successful initiation of POM. The project has also discovered that monitoring campaigns are needed to confirm the magnitude of a certain pressure, i.e. via the calculation of river loads or the estimation of exposure.19  A Danish project LIFE 05 ENV/DK/145 Odense PRB – AgriPoM was very useful as it demonstrated the development of a cost‐effective programme of measures to reduce levels of nitrogen and phosphorous originating from agricultural activities in the Odense river basin. It prepared a Pilot River Basin management plan, elaborated an input for the EU Strategic Steering Group, as well as demonstrated and made available the project’s results to other environmental and rural development authorities and stakeholders within the EU.       

19 Modelling Monitoring Management  Monitoring data assessment report, Application of integrative modelling and monitoring approaches for river basin 

management evaluation http://www.life‐m3.eu/fileadmin/M3‐life/downloads/guidelines/Monitoring_Data_Assessment.pdf

Page 59: LIFE Water Study

[Water Sector Report August 2012]  49 

4.2.7. The Horizontal Approach – linking water management to other policy sectors  

LIFE 06 ENV/D/485 Moveable HEPP very successfully implemented two small scale hydropower plants, where a moveable turbine and generator unit are placed into an existing river weir where it is combined with other measures such as fish ladders to enable upstream migration. This innovative technical approach allows 

water to flow through the turbine for power generation, and over and under it, improving fish migration, bed load transportation and flood safety.  The technology demonstrated for the first time that the ecological aspects of the re‐establishment of fish passability and bed load transport can be combined with positive economic aspects, an improvement in the efficiency of hydropower plants and improvements in flood control. The approach is independent from national/regional aspects and merely depends on the size and shape of a river. There are hundreds of small weirs (with low heads) in Europe, and indeed across the world, that may be suitable for this technology and the interest from potential buyers is very high, with two further power plants already under construction. LIFE 05 NAT/DK/153 Houting is on course to achieve its main objectives of removing physical barriers to the migration of the Coregonus oxyrhyncus (Houting) in four river systems (ensuring access to approximately 117 km of water courses), the re‐establishment of the natural hydrological regime in over 20 km of the river Varde and the restoration of some 25km of physically degraded water course. Building on the recommendations of the National Management Plans for Houting and Salmon, the project is targeting the whole range of the Houting in Denmark and the EU. The project is expected to lead to an improved condition in four Danish Natura 2000 sites, 

housing in addition to Houting a number of other Annex II species, including Salmo salar, Alosa fallax, Petromyzon marinus, Lampetra fluviatilis, Lutra lutra and Margaritifera margaritifera. Whilst the project specifically contributes to the Habitats Directive, it will also assist in meeting the objectives of the Water Framework Directive by restoring the continuity and natural water regime of four river systems.  LIFE 07 ENV/B/038 WALPHY directly responds to WFD requirements by undertaking work to maintain or recover the good ecological status of two water bodies as part of the Wallonia regional plan to implement the WFD. The project is also realising benefits in terms of the Habitats Directive by improving conditions for Atlantic salmon, sea trout Salmo trutta and eel Anguilla anguilla, and has implications for the Renewable Energy Directive as it works with small‐scale hydropower developers to implement alternative measures to dam removal. 

 4.2.8. Projects with high potential for transferability 

 It is important to underline that the success of LIFE projects is often not visible at the end of the projects.  Innovative projects often have problems during the early stages due to technical adversities or planning obstacles and the breakthrough of the technology to be demonstrated comes only after the end of the project.  In management or process projects much depends on whether the stakeholders are willing to take up the outcome of the project and move it forward.  Therefore any assessment of the sustainability of a project is frequently subjective and based on the potential for the project outcome to be transferred or 

LIFE 06 ENV/D/485 Moveable HEPP  

 

The project is a good example of economic factors (the production and sale of electricity) driving ecological improvements, with the technology helping to fulfil the goals of the “Rhine Action Programme“, “Salmon 2000“ and “Rhine 2020” as well as the Water Framework Directive, Habitats Directive and Renewable Energy Directive. 

Page 60: LIFE Water Study

[Water Sector Report August 2012]  50 

replicated rather than objectively based on actual results.   A number of water projects were identified that have either already started to transfer their results to other regions, Member States or outside of the EU, or have high potential to do so once fully implemented.   For example, in the case of LIFE 06 ENV/D/485 Moveable HEPP, following the successful demonstration of the moveable hydropower plant technology the beneficiary almost immediately commenced further installations in Germany (Thurfeld (2 x 900 kW) and Hausach (300 kW)) and was at the contracting stage for the installation of plants in The Netherlands (2 x 800 kW), Austria (7 with 650 kW, 12 with 1.300 kW each) and a further four plants in Germany (600 kW and 1,250 kW).  The beneficiary also commenced the process of conducting feasibility studies for some 80 plants in Africa, and has attracted interest from Thailand and other non‐EU states through regular guided tours of the LIFE funded demonstration plants. The guidelines for using ecosystems approaches to reversing damage to the marine environment developed by LIFE 07 ENV/UK/943 PISCES have been specifically developed to be transferable to any region/sea area. The North Sea Commission has already indicated its intention to adopt the PISCES stakeholder engagement model for Northern North Sea whilst the Baltic Sea Regional Programme has also been engaged with PISCES.  LIFE 10 NAT/AT/016 Netzwerk Donau represents the largest LIFE project ever funded in Austria and has significant potential for transferability. The project aims to implement measures to improve the conservation status of water based habitats along the entirety of the Danube and its tributaries in Austria. By forming a part of the implementation of Austria’s National Water Management Plan and strategy for the Danube the project is not only a milestone for Austria, it is cited as an important guidepost along the path toward improving the Danube across Europe.  The project is intended to provide an example at the international level, with both the technical methodology and the strategic approach of developing a complete plan covering a large region from a large number of individual measures (including LIFE projects), intended as an example for other riparian countries of the Danube to follow. 

LIFE 08 ENV/GR/551 PURE is in the process of transforming an existing network of pipelines that are currently distributing treated wastewater for irrigation, with no control, no monitoring, no pricing and no management plan, into an upgraded system that provides high quality alternative water resources for irrigation, in a sustainable manner and in accordance with the principles of the WFD. A key element of this work is the production and dissemination of a prototype approach and management plan for a sustainable, environmentally significant, humanly safe, publicly accepted wastewater reuse and utilisation system which has the potential to be replicated across Southern Europe and other non‐EU semiarid regions globally.  

Through the restoration of the species current range, LIFE 05 NAT/DK/153 Houting has the potential to provide experience which could prove valuable for the reintroduction of the Houting in other parts of its natural distribution area, such as Germany and the Netherlands.   The outcome of LIFE 08 ENV/IT/413 INHABIT has the potential to serve as a basis for the implementation of River Basin Master Plans over larger areas of Italy and, possibly, the whole of Europe.   LIFE 06 ENV/D/461 FLOODSCAN (see below for further details) has the potential to transfer the use of its web‐mapping and Floodscan software to other regions and Member States, with the main precondition to its successful transfer being the availability of hydraulic and geographic data. The project increased the potential for transferability through cooperation projects and workshops at the national and international level (including Austria, Italy, Switzerland, Slovenia and Poland).   LIFE 09 ENV/UK/026 Hydro4LIFE has developed a series of manuals and training courses for independent auditors and the EU hydropower industry to help implement the role out of the Hydropower Sustainability Assessment Protocol across the EU. These tools are already proving valuable to the beneficiary in promoting the Protocol outside of the EU, with trial applications using the materials already having taken place in 

Page 61: LIFE Water Study

[Water Sector Report August 2012]  51 

Iceland, Norway, Malaysia and Australia. 

Finally, LIFE 08 ENV/E/099 AQUAVAL provides an excellent example of the ability of LIFE funding to be used to enable the transfer of existing best practice from one region of the EU to another. By collaborating with SUDS experts from the University of Abertay the project is drawing on best practice from the UK and demonstrating the use of various techniques to deal with surface run‐off water with the aim of extending the use of SUDS to regions where they are not currently practiced, starting at the provincial level (Valencia) 

and potentially moving the national (Spain) and southern European regional level.  

4.2.9. Standalone Successes   The Polish project LIFE 07 ENV/PL/605 Lake recult. in Gnieźno targeted lake recultivation in Gnieźno by deactivating phosphorus in bottom sediments using coagulants, thus protecting inland resources on surface waters in line with the WFD. Upon conclusion, the project had reached its objectives and the quality of water improved substantially, making it possible to use the lakes for recreational activities. The reconstruction of the degraded banks not only protected the water from infiltration of pollutants from storm water but also increased the landscape value of the lakes. Furthermore, the biotope quality improved and the ecology of the lakes revived thanks to the planting of macrophytes and the renewal of fish stocks, contributing to the reduction of blue‐green algae blooms and to a limited proportion of algae in the phytoplankton. The project activities managed to reduce phosphorus and chlorophyll contents significantly, and enhanced water transparency.  

  A second Polish project LIFE 08 ENV/PL/517 EH‐REK is dealing with managing urban water ecosystems. The project is still on‐going, so only limited results are available. The project introduces an innovative approach to the consolidation of knowledge about the functioning of urban water ecosystems; planning and decision‐making methods used in the management of urban water ecosystems; current eco‐hydrologic technologies; the implementation of a system for training; and dissemination of knowledge and cooperation based on joint actions of a multi‐stakeholder platform. The project area comprises the riverbed section of the Bzura River and the complex of reservoirs in Arturówek, which is one of the primary recreational sites for Łódź population of one million people. The project will provide a better understanding of the possibilities of applications of hydro‐ecological methods in sustainable water management for urban areas.  The project will also establish a network of piezometers for monitoring underground water quality and purchase the equipment needed for on‐site analysis and for demonstration and education activities.  

LIFE 07 ENV/PL/605 Lake recult. in Gnieźno

Macrophyte planting and renewal of fish stocks in Winiary and Jelonek Lakes 

Page 62: LIFE Water Study

[Water Sector Report August 2012]  52 

A Romanian project LIFE 09 ENV/RO/612 CLEANWATER is also on‐going, but has already achieved some useful results. It intends to evaluate the future trends of the quality of the water bodies, to measure their effectiveness and the development of other sources of nitrogen in the study area considering the climatic evolutions. The project intends to use a holistic approach for water management by integrating international competitive models and identified sources of pollution in a GIS environment. The project will develop an integrated GIS system that will be capable of correlating all information, and demonstrate how it can be used for the designation of nitrate vulnerable zones (NVZ). Mathematical modelling for surface water‐soil‐ groundwater will be used for a complex analysis of nitrate transfer between the two water bodies. The project is useful as it collects biological and chemical results within the projects’ monitoring network as part of a field campaign at Barlad river‐basin level. The project contributes to the Nitrates Directive under the water framework policy, offers support for designing the monitoring program of Romanian waters and provides a good understanding of farming activities as a source of nitrate pollution.   The technology developed by the LIFE 06 ENV/D/461 FLOODSCAN project significantly contributes to the implementation of the Floods Directive, mainly by optimising a cost effective method of processing data and the hydraulic modelling of rivers subject to the risk of flooding. Previous approaches have proved highly time consuming and expensive. However, the project developed a procedure for the automatic compression of laser‐scan data that reduced processing times by up to 98% whilst maintaining a high level of detail together with a cost‐effective method for the use of classified land‐cover data to produce flood hazard maps. The project also very successfully carried out a series of communication activities with the public in areas at risk of flood, improving the public’s knowledge of and resilience to floods at minimal cost.  LIFE 08 ENV/IT/413 INHABIT is working towards the integration of information on local hydromorphological features into practical measures to improve the reliability of implementation of River Basin Management Plans (RBMP) in southern Europe. The focus is on improving RBMPs covering a number of water body types which are representative of Italian water courses and lakes, through the introduction of innovative measures that account for hydromorphological and habitat information. The project is quantifying the natural variability in undisturbed conditions of selected hydromorphological, habitat and physico‐chemical features, which are known to have a significant effect on biological communities as well as factors that affect ecological status classification.  The outcome of the project will serve as a basis for the implementation of RBMPs over larger areas in Italy, by putting into practice the latest approaches and methods for the collection of WFD‐compliant data, classification of ecological status and technical implementation of management plans in the study catchments.  The LIFE 05 ENV/GR/245 ENVI‐Friendly project has been very effective in creating a successful collaboration of all levels of policy making – local, regional and national – all with the aim of contributing to the implementation of the WFD.  On the local level, the project has significantly reduced nitrates, nitrogen and phosphorus pollution in the water of pilot areas (through phytoremediation and river bank erosion controls), also by generating awareness among and synergy between local entities (with 8 municipalities involved as partners), including also residents, for a more sustainable use of water resources. On the other hand, the Prefecture of Laconia, the regional authority behind the activities – as the beneficiary of the project – showed high commitment to the successful completion of the project. Finally, the project has managed to involve in its activities, mainly with the aim of ensuring the sustainability of the results, the Central Water Agency of the Ministry of the Environment in Greece (the authority responsible for the implementation of the Water Framework Directive) that has shown sincere interest in the project with the desire to transfer project results to other Greek river basins. At the EU level, the project has contributed to the implementation of the WFD as the Evrotas River Basin is highly likely to achieve its environmental objectives by 2015. 

Page 63: LIFE Water Study

[Water Sector Report August 2012]  53 

 

4.3.    Areas in which LIFE water projects have failed to meet their policy objectives (Weaknesses) 

 The weaknesses identified with the water sector projects analysed broadly fall into two crosscutting categories: weaknesses that are specific to the water sector and those that are more generic and may be applicable to projects in other sectors. Within these broad categories five common themes shown in Box 3 were identified and are discussed below. It is important to note that any weaknesses identified are not criticisms of the projects but are intended as objective assessments of factors that have impacted on the delivery of policy objectives.   

4.3.1. Scale  

A number of projects were identified that focus on addressing problems or demonstrating approaches at the local or regional level.  Whilst this is not a weakness in itself, many of the projects were found to suffer from the lack of a regional or national level institution within their partnerships or wider stakeholder groups, creating a significant barrier to the translation of project results into wider policy feedback. While the need to address problems such as the treatment of pollution resides at the local level, only through the collaboration between local and regional or national levels can meaningful and durable results be achieved in the future.  Equally, if the aim of a project is to help develop policy or to act as a case study for future policy‐making, then it is advisable for the project to be in close contact with European policy‐makers and ensure that the policy‐makers actually use their obtained results.  As a consequence, many LIFE projects only demonstrate the advantages of the technology, management systems or models on a local scale, and while they aspire to be transferable or replicable on a larger scale only very few can actually demonstrate that the project outcome is sufficiently robust to allow scaling‐up to the regional or national level.  For example the project LIFE 06 ENV/DK/229 TREASURE, only demonstrated that the project could operate on a local scale and the fact that there was no national representation in the project partnership could be one reason for the lack of apparent uptake at the end of the project. 

 The LIFE08 ENV/E/099 AQUAVAL project was only demonstrated at the local level and, given that the concept of SUDS is relatively new to southern European countries, the positive results of adopting SUDS is hard to demonstrate at the local level.  Not least because the local and regional legislation does not enforce the incorporation of these strategies in urban planning projects and urban planners and designers do not know these techniques and they are not included in the design of the standards. Similarly, the LIFE06 ENV/NL/167 WET project successfully demonstrated the technology for removal of priority hazardous substances from waste water at a local scale but at the end of the project there was no evidence of a wider uptake of project results/technology.  However, the same can be said of many of the technology based LIFE ENV projects because the project proponents are generally from the private sector and need further assistance with the commercialisation or endorsement of a product before it can be more widely accepted. 

1. Scale 

2. Varying Costs 

3. Weather and technical problems 

4. Technical limitations 

5. Human factors 

Box 3: Weaknesses of the LIFE projects 

LIFE06 ENV/NL/167 WET

Projects can often be very successful at the local scale but experience difficulty in scaling‐up to new markets 

Page 64: LIFE Water Study

[Water Sector Report August 2012]  54 

   

Despite some excellent dissemination at the national level some dissemination in Cyprus, the Greek project LIFE 08 ENV/GR/551 PURE, achieved limited international dissemination either in Southern Europe or non‐EU semi‐arid regions which were key elements of the original proposal.   Other projects which only appear to act at the local level are shown in Table 4‐1 below. 

Table 4‐1: Scaling Issues with LIFE projects 

LIFE 05 ENV/DK/145 Odense PRB – AgriPoM 

LIFE 08 ENV/IT/390 ECOMAWARU LIFE 06 ENV IT 235 Kolisoon LIFE 06 ENV/F/133 ArtWet LIFE08 ENV/IT/406 REWETLAND 

 4.3.2. Varying costs 

 Some technologies developed and demonstrated by LIFE projects have proved to involve high capital costs that may act as barriers to their wider uptake and commercialisation. Other technologies demonstrate variability in cost performance on a site‐by‐site basis.  The surface water status monitoring equipment developed by LIFE06 ENV/IT/235 Kolisoon involved high capital costs for equipment. The device was only developed to the prototype stage and would require significant investment to fully commercialise. The use of mathematical modelling and remote sensing techniques by LIFE 07 ENV/IT/475 TRUST to help adapt the groundwater resources of the Veneto and Friuli Plain to the adverse impacts of future climate change also represents a relatively technically complex and high cost approach. The high costs of the LIFE 10 ENV/D/158 HWC ‐ Jenfelder Au  project to develop and install a waste water separation and renewable energy facility in 700 apartments could prove unviable in the future (the current cost is around 24,000€ per apartment).   In the case of LIFE 06 ENV/DK/229 TREASURE, whilst the complex, high‐cost surface water treatment solutions developed proved affordable for the local authorities and water companies with good financial resources in Denmark, the approach may not be economically feasible in other parts of Europe.  In another case (LIFE 06 ENV/F/133 ArtWet), whilst the low cost vegetated treatment systems designed to tackle agricultural non‐point source pollution by pesticides were relatively inexpensive to construct (average 10,000€), the cost of land on which to construct the artificial wetlands may cause a considerable issue. The location of the wetlands has to be carefully chosen to meet hydrological requirements meaning that land may need to be purchased. If the land is high grade agricultural land, it could cost in the region of 100,000€/ha, making the solution prohibitively expensive.   The cost of the in‐situ technique developed by LIFE 05 ENV/B/517 INSIMEP is strongly site‐dependent when compared to the classical contaminated groundwater treatment technique of pump‐and‐treat (P&T). The cost depends on the availability of clean‐up infrastructure already on site. If pumping wells, a wastewater treatment plant or sludge dewatering facility are available then the investment necessary for the classical P&T approach strongly decreases, making the in‐situ process less competitive in comparison.  There are technologies that are more expensive in the short term due to higher installation costs, but over the longer term they become economically more favourable than conventional pump & treat technologies (for example the multibarrier technology demonstrated by LIFE 06 ENV/B/359 MULTIBARDEM). In general, it may be assumed that site characterization, design and contingency planning costs will be higher for a multibarrier approach than for P&T, whereas operational costs will be lower.  

Page 65: LIFE Water Study

[Water Sector Report August 2012]  55 

 In the case of LIFE 05 ENV/DK/145 Odense PRB – AgriPoM concerned farmers criticized the project results, such as the reduction rate of nitrogen and phosphorus losses from agriculture and they were in the view that a project that turned to an actual River Basin Management Plan could have targeted a much quicker reduction rate at negligible economic costs. 

 4.3.3. Weather and technical problems 

 In some cases the major difficulties encountered by the project were connected to weather conditions. LIFE07 ENV/PL/605 Lake recult. in Gnieźno was affected by the weather pattern in 2009 which showed significant variation from the usual conditions and resulted in some of the activities planned for the first half of the year being delayed due to adverse conditions. This case indicates that weather conditions should be taken into account for projects such as lake‐rehabilitation which include physical field works and biological manipulation. LIFE08 ENV/E/099 AQUAVAL has had to contend with the difficulties posed by increasing variability of local weather conditions, which make the specification of SUDS facilities very difficult. With the effects of climate change having an ever increasing influence on local climatic conditions, existing historical weather data is becoming less reliable. It may be that projects such as these need to build a weather factor into the design from the outset so as to be absolutely certain that the project can be delivered in a timely fashion.  In other cases projects had to request prolongations due to technical problems. LIFE 07 ENV/NL/576 PHARMAFILTER encountered problems setting up the solid waste grinder and related overflow. Although this did not directly affect the waste water disposal function of the unit, the technical issues caused an overall delay in the implementation of the project.   

4.3.4. Technical limitations  

There are some techniques whose application is limited by restrictive conditions. For example LIFE 05 ENV/B/517 INSIMEP encountered problems in applying its approach to various hydrogeologic conditions (including the presence of clay lenses, low permeable soil and the depth of groundwater) and (bio)geochemical factors (toxic conditions, level of groundwater contamination with heavy metals and mineral content of the aquifer). There are technologies, such as the multibarrier technique developed by LIFE 06 ENV/B/359 MULTIBARDEM that are tailor‐ made, and are dependent on the pollution present and the hydrogeological situation. Generally though, many LIFE projects encounter technical difficulties at some point or another during their lifetime and most manage to overcome the technical difficulties by the end of the project.  

4.3.5. Human factors  

For projects such as LIFE 09 ENV/RO/612 CLEANWATER that carry out wide and complex monitoring programmes hand‐monitoring is required at all sites and that takes a lot of effort and time. This also requires a strong collaboration with the water authorities. It could also be a problem that the concerned farmers do not want to cooperate and it represents a weakness of the method. In some cases such as LIFE 05 ENV/DK/145 Odense PRB – AgriPoM the role of the general public was modest during the project's duration and a simple link for the general public on the website was considered sufficient.   

4.4.    Continuing or new threats which make it difficult for LIFE water projects to implement policy (Threats) 

 A total of eight areas which pose continuing or newly emerging threats to the implementation of LIFE water projects were identified (see Box 4) and are discussed below.  

Page 66: LIFE Water Study

[Water Sector Report August 2012]  56 

4.4.1. Sustainability 

 In the case of LIFE07 ENV/PL/605 Lake recult. in Gnieźno the project’s sustainability may be threatened by breakdown of infrastructure or illegal discharge of sewage into the project area.  Repeated deterioration of water quality would require cleaning up of the areas that had already been rehabilitated under the project.  There is a possibility that funds would not be available for such a cleanup. In the longer term repeated pollution events will lead to inhibition of self‐purification processes established by the project and, as a consequence, to a further decrease of water quality.   Long term sustainability can be an issue for some projects and generally the critical factors limiting sustainability relate to continued funding and institutional stability, however it is very difficult to get concrete evidence to assess actual sustainability on a project by project basis without the benefit of an ex‐post mission to the project.  Arguably, if a project is sustainable then it is possible that the website will still be active and this is one means of assessing sustainability – although it is also true to say that the absence of a well maintained website does not mean that the project has been unsustainable.  Thus sustainability can often only be inferred from the information available.  

4.4.2. Transferability  

As discussed in section 4.3, there are cases where technologies such as those developed by LIFE 05 ENV/B/517 INSIMEP and LIFE 06 ENV/B/359 MULTIBARDEM are limited by restrictive conditions. The biggest threat to the uptake of these technologies is that a thorough evaluation of each site on a case‐by‐case basis is needed to determine the suitability and the potential effectiveness of the approach. A further key point is that additional funding is often required to make even an exceptional product ‘sellable’ in an open and highly competitive market situation as was highlighted in the final report of the LIFE 06 ENV/DK/229 TREASURE project. The LIFE06 ENV/IT/235 Kolisoon project made particular reference to other detection methods and automated equipment for determining faecal coliform levels in waste water were already penetrating the market place by the end of the project.  As a basis for large‐scale implementation, project LIFE 06 ENV/D/461 FLOODSCAN intended to compile the numerous working documents into a technical handbook providing instructions to third parties regarding the processing of basic data as well as the modelling of flood hazard maps. This process was started during the project period, but could not be finalised due to delays. The beneficiary sought additional internal funding to complete this but if funding could not be found then this would pose a significant threat to transferability of the methodology developed in the longer term.  Project LIFE08 ENV/IT/413 INHABIT noted that for wide scale application of the RBMP approach pioneered 

1. Sustainability  

2. Transferability 

3. Data access and reference information 

4. Unknown long term results 

5. Wider administrative and economic threats 

6. Difficulties in obtaining access, rights and permissions 

7. Lack of close collaboration and consensus with stakeholders 

8. Insufficient harmonisation and different interpretation of policy  

Box 4: Threats to the implementation of water policy 

Page 67: LIFE Water Study

[Water Sector Report August 2012]  57 

by the project it would require buy‐in from regional authorities and other institutions that could not necessarily be guaranteed by the end of the project.  It is perhaps premature to expect that very new projects such as LIFE10 ENV/ES/521 AQUATIK can identify potential threats to non‐delivery or sustainability of project outcomes.  However, it is already recognised that the stakeholders identified so far are all based in Spain/Catalonia (and all three beneficiaries are based in Spain too). The project has planned to engage widely in Europe but should this fail then the project may remain localised and will not be able to transfer the knowledge gained in monitoring priority hazardous substances in waste water to other regions or countries.  

4.4.3. Data access and reference information  Another typical threat identified for projects dealing with water‐related issues is the need to have access to sufficient levels of accurate data with all related factors and parameters (relating to pressures and impacts on the water quality and to water quantity). Often the need to collect and put together such ample and updated datasets implies the additional need to homogenise it – a process which typically is quite time‐consuming. This was identified as being a threat to the uptake of the methods developed by LIFE 07 ENV/IT/475 TRUST, LIFE08 ENV/IT/413 INHABIT and LIFE08 ENV/IT/406 REWETLAND.    Projects can also have difficulty establishing reference conditions for water bodies so that suitable guidelines, standards or programmes of measures can be identified.  Project LIFE 05 ENV/DK/145 Odense PRB – AgriPoM, found this to be the case especially for lakes, as the project showed that parameter reference values could have been established locally as far back as the Middle Ages. This could be due to the early impact of society or to natural conditions. In certain cases it is therefore recommended to establish site‐specific criteria for good surface water status rather than type‐specific criteria.   

4.4.4. Unknown long‐ term results  

In many cases the long term application and results of technologies developed is not yet known. For example the application of a new method for ground water pollution prevention technique developed by LIFE 06 ENV/B/359 MULTIBARDEM is likely to be slow in the near future due to the current uncertainty regarding long term performance of the approach. Authorities will therefore probably require more stringent monitoring and contingency planning than for conventional techniques.  

4.4.5. Wider administrative and economic threats  

A number of projects were identified that have suffered from, or are vulnerable to, the on‐going economic difficulties that are being experienced across Europe. In Greece, the “Kallikratis” administrative reform has led to delays in the announcement of the tenders for essential activities of the LIFE 08 ENV/GR/551 PURE project and has increased bureaucracy, especially with respect to the approval of expenses and hiring project personnel. The reforms also pose a threat to the replication of the project’s approach in other Municipal Enterprises for Water & Wastewater in Greece, whilst the wider economic issues may increase the already strong opposition from end users to pay a specific price (or any price) for the treated wastewater that is produced by the project. This may threaten the long‐term economic viability of the upgraded water distribution system. A lack of financial resources in local authorities could also prove to be an issue for the maintenance of demonstration sites and the replicability of Sustainable Urban Drainage Systems that have been developed as part of LIFE08 ENV/E/099 AQUAVAL, whilst a considerable limiting factor for the uptake of the protocol developed to manage the quantitative status of groundwater by LIFE06 ENV/IT/255 A.S.A.P is the lack of investment available for the renovation of distribution network pipelines.  A relatively new project LIFE09 ENV/FR/593 WateRtoM is attempting to compile the latest research project which may assist in the implementation of the water directives into a system that will allow the research outputs to be used by public bodies and private institutions more rapidly and effectively than in the past.  At 

Page 68: LIFE Water Study

[Water Sector Report August 2012]  58 

the mid‐term stage the beneficiary had already noted that the global downturn in the economy could mean that prospective users want to invest only in approved, perfectly working solutions and devices and that very often they have limited confidence in innovative solutions.  

4.4.6. Difficulties in obtaining access, rights and permissions  

The decommissioning of a hydropower plant to improve the connectivity of a water body as part of LIFE05 NAT/DK/153 Houting was not able to be completed due to the project being unable to purchase property and water extraction rights through a voluntary negotiation process.  The LIFE08 ENV/IT/406 REWETLAND project established that a series of on‐site structural interventions within a National Park would be needed and these require special authorisations.  Inevitably such authorisations are lengthy procedures and this in turn may lead to significant delays in project delivery. In one case, LIFE 07 ENV/B/038 WALPHY there was a conflict with one landowner who actually wrote to the Commission complaining of the restoration measures being undertaken by the project: thankfully this is a very unusual occurrence.  On a different note the relatively new LIFE10 ENV/D/158 HWC ‐ Jenfelder Au a very large and ambitious project which is attempting to introduce an integrated wastewater and energy generation system on a new housing estate may encounter difficulties in obtaining planning permission for solar and ground heat energy supplies which may threaten the delivery of the project within the timescale outlined in the proposal. 

 4.4.7. Lack of close collaboration and consensus with stakeholders 

 The need for close collaboration between stakeholders to achieve the successful realisation of the technology or approach being developed by a project and the threat of either a lack of collaboration or consensus between stakeholders was identified in a number of projects. For example, an important aspect for the implementation of LIFE07 ENV/B/038 WALPHY is the continuous contact with provincial authorities, as the Provinces are responsible for the management of some categories of rivers and also for the granting of compulsory authorisations. A lack of collaboration with the provincial authorities may threaten the project’s ability to carry out its actions as planned.  Despite repeated attempts, LIFE09/ENV/UK/026 Hydro4LIFE has so far been unable to secure the active participation of an EU based regulatory body in trialling the use of the Hydropower Sustainability Assessment Protocol. Engaging with regulatory bodies may help to reduce the barriers to hydropower development posed by some local interpretations of the WFD by demonstrating the Protocol’s suitability as a comprehensive assessment of the overall sustainability of hydropower developments. The acceptance of the Protocol by a regulatory body may also encourage more hydropower operators and developers to trial the Protocol, hence helping to achieve the projects overall objectives.  LIFE 07 ENV/IT/475 TRUST could face the threat of difficulties in reaching consensus amongst its many stakeholders for the acceptance of artificial aquifer recharge, with many competing economic activities that use water and land resources necessary for the project’s success (excavation sites, flood protection, etc).  The continued success of LIFE07 INF/UK/032 RESTORE relies heavily on the maintenance of national and European stakeholder networks for sustainable river restoration programmes and on ensuring that the difference between the science and research led networks and the practitioner network approach led by RESTORE continues to be recognised and links between the networks are maintained. This is made more difficult by the fact that the European Centre for River Restoration has a rotating secretariat (i.e. UK, NL, IT etc) meaning that its management is not secured, together with potential communications issues faced by the project such as language barriers, inconsistent messages and competing events.  Finally, LIFE07 ENV/UK/943 PISCES has found balancing national representation within the Celtic Sea Region difficult, with the main stakeholders initially coming from the UK but other countries better represented only towards the end of project. Engaging with the fishing community (especially industrial fishermen) has also 

Page 69: LIFE Water Study

[Water Sector Report August 2012]  59 

proved exceptionally difficult, with the resulting lack of input from a major stakeholder group threatening to undermine the effectiveness of the guidelines that the project has produced. This project, which dealt with various stakeholder groups as a main objective, noted that stakeholder fatigue was also an issue with so many initiatives being launched to assist member states in the implementation of the MSFD – keeping these stakeholder groups interested within and beyond the project would present a major challenge.  Collaboration is not only important between stakeholders, there are also implications for project teams which may need to remain associated after the project has finalised otherwise sustainability and transferability may not be achieved.  Project LIFE06 ENV/IT/235 Kolisoon notes that it is vital for the project partners to maintain their collaboration if the product is to be brought to full commercialisation.  

4.4.8. Insufficient harmonisation and different interpretations of policy  

In some cases it was discovered that the insufficient harmonisation of national implementation of various directives threatened the application of approaches developed by LIFE projects across different Member States. LIFE 07 ENV/UK/943 PISCES highlighted the fact that the implementation of the Marine Strategy Framework Directive is at different stages in different countries with the UK well ahead of France, Ireland and Spain (for example Spain is focussing on data collection). The method of implementation is also different in different countries – Spain (and probably France) will adopt a regional approach implemented through Regional Councils rather than a national approach which could lead to differences in interpretation. The LIFE 06 ENV/F/133 ArtWet project demonstrated that a harmonisation of European legislation would be required to make the setting up of constructed wetlands easier, as different Member States have different planning and financing requirements and also different interpretations of the relevant directives. LIFE 07 ENV/L/540 M3 highlighted similar issues with the insufficient harmonisation of national implementation with the approach of the WFD. In a slightly different vein the LIFE06 ENV/IT/235 Kolisoon project noted that there was no uniformity across member states for standards and methods of testing for coliforms in waste water and that was a significant threat to the ability to roll out the monitoring equipment to different member states in the future.  

4.5.  LIFE projects contributing to the development of new water related policies and legislation (Opportunities) 

One of the key strengths of the LIFE programme is its ability to test the application of EU environmental legislation. For the programme to realise its full potential in this respect, it could be important for individual projects have a mechanism to feedback lessons into the continual development of new policies and legislation. The analysis identified a number of cases where water sector projects are developing new approaches not yet covered by existing EU legislation, contributing to the revision of water legislation, and providing input for specific water related legislation. However, the main strengths of water sector projects lie in contributing to the further development of water management related norms and standards, and assessing and disseminating environmental legislation.   Project opportunities were examined in relation to the policy areas outlined in Box 5 and while it is possible to find good examples in each policy area the assessment shows that there are some opportunities within the LIFE programme to contribute more fully in some parts of the policy cycle.  However, the question remains as to whether the LIFE programme is able to exploit these opportunities as the projects themselves are generally undertaken on a local scale and most policy initiatives are undertaken at the national level. 

Page 70: LIFE Water Study

[Water Sector Report August 2012]  60 

4.5.1. Projects proposing new legislation 

Among the LIFE projects assessed in detail for this study, few projects specifically aimed at the development of new legislation.  LIFE10 ENV/IT/394 WARBO is targeting the regulation of the Artificial Recharge (AR) of groundwater aquifers in relation to water conservation and scarcity.  AR techniques have already been applied to coastal saltwater aquifers to combat salt intrusion, but AR is not regulated at the EU level, and national water directives limit its application to saltwater aquifers.  AR pilot projects are ready to start once final formal and organisational regulation of the issue is in place. If not regulated, large‐scale use of Artificial Recharge would entail risks both for the quality (pollution, accidental mixing of freshwater coming from different water bodies) and the quantity of freshwater (e.g. changes in the dynamic behaviour of the aquifer). To guarantee the correct application of recharge techniques, legislation should define: where and how to abstract surface water resources; the chemical and physical characteristics of recharge water with respect to the chemical activity and the hydrogeological structure of the aquifer; recharge methods; environmental impact; and set‐up and design of the monitoring network. The project is at the beginning of a process to develop new regulations for aquifer recharge that could be adopted throughout Europe.  

 4.5.2. Projects working on complementary sub‐legislation to already existing texts 

Several LIFE projects set out to develop protocols which will complement existing legislation one typical example is the UK project LIFE09/ENV/UK/026 Hydro4LIFE which is testing and promoting the application of the International Hydropower Association’s Hydropower Sustainability Assessment Protocol in the EU. The Protocol is an enhanced sustainability assessment tool which is being used to measure and guide performance in the hydropower sector. The Protocol assesses the four main stages of hydropower development: Early Stage, Preparation, Implementation and Operation. Assessments rely on objective evidence to create a sustainability profile against some 20 topics covering all aspects of sustainability. By demonstrating and promoting the application of the Protocol in the EU, the project aims to prove the Protocol’s suitability to become a standard methodology for the assessment of hydropower sustainability performance in the EU and globally. The beneficiary also intends to demonstrate the Protocol’s ability to capture assessments that are of use in implementing the WFD.  On the same theme the 2011 award winning project LIFE 06 ENV/D/485 Moveable HEPP has had a significant influence on local policy makers/regulators’ perceptions of hydropower and has proved that, with careful implementation, the ecological benefits (WFD) and the economic operation of hydropower plants (RED) are not contradictory and the requirements of both directives can be met.  Many projects also develop guidelines that are most valuable in the interpretation and implementation of directives. An outstanding example of such an approach is LIFE 07 ENV/UK/943 PISCES where the project team has developed a set of guidelines for implementing the ecosystem based approach to spatial area 

Box 5: Opportunities for LIFE projects to influence policy  

1. Projects proposing new legislation 2. Projects working on complementary sub‐legislation 3. Projects developing new approaches not yet covered by EU legislation 4. Projects providing input for specific water management related legislation 5. Projects contributing to the revision of water legislation 6. Projects contributing to further development of water norms and standards 7. Projects assessing and dissemination environmental legislation 

Page 71: LIFE Water Study

[Water Sector Report August 2012]  61 

management as called for by the MSFD. Once accepted (late 2012) these guidelines could become the blueprint for implementation of this part of the MSFD and the team are currently working with the Marine Strategy Groups (MSGs) set up in all member states to deliver the strategy. 

 The Spanish project LIFE08 ENV/E/099 AQUAVAL is attempting to use knowledge and experience gained in northern Europe in utilising Sustainable Urban Drainage Systems (SUDS) by incorporating their use in urban planning requirements for new developments in southern Europe in an effort to combat water scarcity. 

4.5.3. Projects developing new approaches not yet covered by existing EU legislation  

The Romanian project LIFE09 ENV/RO/612 CLEANWATER contributes to the development of a modern Romanian water management system by elaboration of a completely integrated system as the basis for the Barlad River Basin District Management Plan according to EU legislation (especially Water Framework Directive) and by gaining the knowledge and experience to be used later in management of other river basins of Romania. The Cleanwater team intends to assist the replication of the developed Open‐GIS system at whole country level, like a support for the implementation of Nitrates Directive and it will contribute to a national approach methodology for delineation of vulnerable zones to the nitrogen pollution, at river basin level.   Currently, the information obtained so far by the project is used for the WISE20 reporting, thus the analysis results obtained will improve the Romanian reporting for the WFD. The project discovered through its monitoring programme that there are different factors to be taken into consideration for monitoring nitrogen pollution in Eastern and Western countries that use different agricultural methods.  

  

20 Water Information System for Europe (WISE) 

LIFE 07 ENV/UK/943 PISCES 

Developing an ecosystem based approach to deliver the Marine Strategy Framework Directive.  This involves consultation with all the interested parties using the Celtic Sea. 

 

 

Page 72: LIFE Water Study

[Water Sector Report August 2012]  62 

4.5.4. Projects providing input for specific water management related legislation  Current techniques for the treatment of municipal wastewater are not designed to remove the priority substances mentioned in the WFD, which are to be met in 2015.  A national screening of effluent of Waste Water Treatment Plants (WWTPs) in the Netherlands has shown that WWTP‐effluent forms a significant emission source of priority substances into surface waters. To achieve the discharge limits for these substances before 2015, additional treatment steps are required.  The objectives of the successful Dutch project LIFE06 ENV/NL/167 WET were therefore to prepare the development of these measures by demonstrating mostly the technical feasibility of the removal of dissolved organic compounds using coagulants in WWTP‐effluent. The project established an installation of a water treatment facility in Leiden that can achieve the WFD values for nitrate and phosphate even with the single filter set‐up, which would lead to considerably lower costs than the set‐up with separate filters for N and P removal. The use of Advanced Oxidation Processes resulted in a reduction of medical remnants and pesticides by at least more than 70 % and in a disinfection level up to the hygienic limits set for in the Bathing Water Directive. The project demonstrated that heavy metals can be removed and additional removal of organic micro‐pollutants and suspended solids can be achieved using the same combination of techniques. As investments in additional treatment steps were necessary, the project provided insight in all measures that are necessary to achieve these standards. The study that the project prepared has yielded a lot of new information and experience with regard to the further removal of nitrogen, phosphorus and other relevant contaminants using subsequent treatment techniques. Most of the research results can be translated directly to other wastewater treatment plants in the Netherlands and other European countries.  Another Dutch project LIFE07 ENV/NL/576 PHARMAFILTER also provides innovative methods to treat hospital waste water. The project contributes directly to a number of actions specified in the WFD: the reduction of water pollution as a result of urban waste water treatment and the improvement of surface water quality by providing a cost effective measure for waste water treatment. In addition, the project contributes to the 6th Environmental Action Plan: the protection of natural systems; reduction of carbon footprint; and higher level of the living environment. The PHARMAFILTER concept aims at processing solid organic waste and waste water in a hospital environment in an innovative integral manner and will lead to the recycling of components and production of energy. The results can in principle be replicated by any hospital. Pharmafilter has been patented as concept and working method. This project aims to demonstrate a new concept that: addresses successfully a serious environmental problem: contamination of surface water by endocrine disruptors, personal care products and medical remnants; offers a cost effective alternative at the source, thus creating a win‐win situation for environment and hospital; is attractive to the direct involved staff, since it offers significant advantages in terms of better working conditions and a significant decrease of risk of contagion. The process that the project is demonstrating can be applied to both existing buildings as in new to build buildings for public health care purposes. The costs prepared by the project show an up to a 90% kitchen waste cost savings and up to 50% savings in hospitals. 

 4.5.5. Project contributing to the revision of water legislation 

 Although LIFE06 ENV/IT/235 Kolisoon was mainly aimed at developing a prototype device for the analysis of E‐Coli in wastewater effluent and demonstrate its functionality and applicability, it also took into consideration the limits set by and the role of the WFD. The results of the project are relevant for the WFD and provide an interesting input into the discussion on if and how the faecal contamination of discharged effluents shall be controlled in relation to the implementation of the WFD and also the revision of the Water Bathing Directive. 

Page 73: LIFE Water Study

[Water Sector Report August 2012]  63 

 4.5.6. Projects contributing to further develop water management related norms and standards 

 The Luxembourg project LIFE07 ENV/L/540 M3 is working on examining regional monitoring programme of measures and has identified the shortcomings of the WFD Common Implementation Strategy. The project aims to provide demonstration monitoring programmes, modelling case studies and scenario testing to assist water managers and practitioners in applying the WFD and helping towards achieving the difficult goal set forth by the Directive. The project is still on‐going but has already highlighted that economic costs of meeting the objectives of the WFD are likely to be very high and may even be unattainable in the time‐frame available. In order to ensure management actions are most effective it is of key importance that water managers have a structured approach to gaining an understanding of what the key pressures and impacts on their water bodies are and that their monitoring of emissions (inputs) and emission situations (exposure conditions within the water body) adequately characterises these. Beyond this, the project specifies that managers need a strategy to assess the effectiveness of their programmes of measures, and the Programme of Measures (POM) themselves need to be realistic and achievable and have a time‐frame for implementation against which to test any improvement in condition. The monitoring needs to be set within an adaptive management framework so that the programme receives on‐going re‐evaluation to ensure that the monitoring and PoMs are meeting the needs for the water body ecosystem. The project points out that the WFD strategy documents remain vague on most quantitative aspects of evaluating pressures and adapting monitoring networks to provide a sound database for Programme of Measures (POM) definition. In their view the main reason for the lack of clarity in linking different steps are the large knowledge gaps in the relationship between morphological, ecological and chemical drivers leading to the endpoint metrics of good ecological status (including the appropriateness of those metrics).   It is important and very useful for the future implementation of the WFD that the project identifies a number of deficits related to water monitoring programmes in the examined two regions21 and these are indicated in Box 6.  The Polish project LIFE07 ENV/PL/605 Lake recult. in Gnieźno helped to fulfil the requirements of the WFD, more specifically to protect inland resources of surface water with the postulated strategic objective of reaching "good ecological condition of water". Currently the quality of water in the Gniezno's lakes can be considered as in a good ecological condition as a result of the project. The applied method of lake rehabilitation ‐inactivation of phosphorus in bottom sediment‐ is a new method of lake protection. It helps to avoid sediment storage and odours emission problems which are common effects of lake dredging. All recultivation procedures are performed from the water surface, posing no risk for the environment or biological life. The method does not require an additional area around the lake surface and is an ideal method for municipal lakes. It can be used in most cities in Europe, where lake eutrophication is the main problem of their degradation and the method can be particularly recommended for shallow lakes. The method is relatively cheap and the project in Gnieźno showed that the positive results can be obtained even in the case of lakes in bad condition. The project results will be used in protecting water not only in lakes but also through the drainage 

21 http://www.life‐m3.eu/fileadmin/M3‐life/downloads/guidelines/Monitoring_Data_Assessment.pdf

Box 6: Deficiencies in current water monitoring programmes 

1. Link between pressures and monitoring concepts  2. Pressures related to chemical pollution   3. Dynamics of pressure indicator occurrence  4. Suitability for load calculation and model validation  5. Link between chemical and ecological monitoring

Page 74: LIFE Water Study

[Water Sector Report August 2012]  64 

basin of the Odra river with its outflow to Baltic Sea. Besides its environmental component, the project has a strong socio‐economic component since it supports the recreational use of the lakes.22   In the Polish project LIFE08 ENV/PL/000517 EHREK the beneficiary is currently establishing a monitoring system to assess the effectiveness of re‐cultivation activity of urban water ecosystems. The monitoring activity includes:  

physical and chemical analysis (for waters every two weeks, and possibly additionally after heavy rainfall, bottom sediments twice a year); 

biological analysis (phytoplankton and zooplankton every two weeks if the weather is warm and once a month if its colder, fish twice a year at least), 

toxicological analysis (blue‐green algae toxins and dioxins once a month at least, more often when blue‐green algae are blooming). 

 The results of the above monitoring will be used to construct and calibrate a mathematical model for decision‐ makers. The study of the project will implement a systemic approach that will analyse threats and opportunities faced by the reservoir catchment area; harmonise ecologic biotechnologies and technological innovations; and will apply the principles of ecohydrology as an interdisciplinary science. The project is still on‐going; further results will be expected in the upcoming years.  LIFE10 NAT/AT/016 Netzwerk Donau aims to implement measures to improve the conservation status of water based habitats along the entire length of the Danube and its tributaries in Austria. By forming a part of the implementation of Austria’s National Water Management Plan and strategy for the Danube the project is not only a milestone for Austria, it is an important milestone along the path toward improving the Danube across Europe.  The project is intended to provide an example at the international level, with both the technical method of the project as well as the strategic approach of developing a complete plan covering a large region from a large number of individual measures (including LIFE projects), is intended as an example for other countries bordering the Danube to follow and has the potential to become a standard approach for sub‐basin or basin wide activities. 

 4.5.7. Projects assessing and disseminating environmental legislation 

 The pilot project for river basin management planning in the Odense River Basin completed by project LIFE05 ENV/DK/000145 Odense PRB – AgriPoM addressed Articles 11 and 13 of the Water Framework Direc‐tive. The project prepared programmes of measures and river basin management plans aimed at the achieving the environmental objectives specified in Article 4 of the WFD. The  project demonstrated how the planning process required by the WFD can be carried out from initial establishment of (provisional) environmental objectives to the calculation of how the environmental objectives can be achieved most cost‐effectively for the water cycle as a whole, i.e. watercourses, lakes, mires, groundwater and coastal waters. The project represents a successful example of the local cooperation and problem‐solving in river basin management and is now integrated in the future institutional structure to implement the WFD. The technical part, defining the "good status" of the water body and the development of a set of measures to reach it might have systemised the beneficiary approach to the WFD implementation.  The results of the project LIFE05 ENV/B/517 INSIMEP carry policy and legislative implications and contribute to the objectives of the WFD by aiming to achieve "good" surface water and groundwater status by 2015; to the Groundwater Directive by preventing and controlling pollution through appropriate measures; and to the Integrated Pollution and Prevention Control Directive by preventing the further spread of groundwater 

22 Winiary lake is used by the inhabitants of Gniezno as swimming place and it is very popular area for the local citizens during the summer weekends. The 

Jelonek lake and park in its vicinity is the place of rest during the week and weekends. The results of the project not only enhance this function, but also reduce the need to travel to other weekend recreation destinations.

Page 75: LIFE Water Study

[Water Sector Report August 2012]  65 

contamination. The project did not directly affect policy, but provided a demonstration of technology that may help to achieve WFD / Groundwater Directive objectives which can be further disseminated.  Multibarrier technology is a system for groundwater remediation. It is an in situ system, in which a filtrating trench is made perpendicular to the groundwater flow. This trench is filled with a coarse material of variable composition depending on the character of the pollution, and induced to treat the pollutants in the passing groundwater. The multibarrier technology is one of the options that exist to assist with meeting the requirements of the WFD, i.e. to improve the water (groundwater & surface water) quality in river basins all over Europe. A Belgian project LIFE06 ENV/B/359 MULTIBARDEM demonstrated the multibarrier technology in Belgium and Austria and its results can be replicated for treating leachate anywhere as the concept can be worked out for different pollution compositions and different geological situation. Cost estimations revealed a decreased cost for electricity of three to four times for a multibarrier system in comparison with a pump and treat approach for treatment of leachate containing groundwater. In the project it was demonstrated by an exercise that a multibarrier becomes cost‐efficient after approximately eight years of operation in Belgium and after seven years in Austria.  LIFE07 ENV/UK/943 PISCES is successfully generating interest and understanding of the concepts of ecosystem based approaches to reversing damage to the marine environment by working closely with target stakeholders from a number of Member States in the Celtic Sea region. The project is working with a group of committed stakeholders to produce guidelines for implementing the ecosystems approach which are transferable to any region/sea area. Through forming strong links with other Regional/Local programmes (e.g. Baltic Seas Regional Programme, EC FP7 ‐ Making the European Fisheries Ecosystem Plan Operational (MEFEPO) and MESMA (marine Spatial Planning in the EU)) and key policy stakeholders including the European Coordinating Group for Marine Strategy (ECGMS) for all member states and relevant country Marine Strategy Groups (MSGs) responsible for implementing MSFD nationally, the project has ensured significant potential for the transferability and impact of the guidelines. Furthermore, by engaging with key policy stakeholders, the project has been able to identify and feedback some of the synergies and conflicts between the Marine Strategy Framework Directive and the Common Fisheries Policy, including the need to align the MSFD with the CFP because the MSFD will be regulated by CFP.  Applying sustainable river restoration serves both the Habitats Directive and the Water Framework Directive at several levels. LIFE 07 INF/UK/032 RESTORE is developing a network linking policy makers, river basin planners, practitioners and experts across Europe to share information and good practice on river restoration activities. As part of the development of the network, a review of EU policy drivers for river restoration was carried out. The review highlights the main legislative drivers (e.g. Habitats Directive, WFD, Floods Directive etc) and the constraints to river restoration (e.g. poor progress on WFD implementation in Mediterranean countries, funding issues, planning policy, agricultural use etc). One of the main constraints identified is the control over land use in riparian zones. The review also concluded that the scale of restoration activity has changed (from small scale to catchment) and new drivers have arisen (e.g. flood protection) but whilst there are new legislative drivers, there are also obstacles to implementation. The review highlighted a lack of planner and practitioner awareness of possibilities but that lessons can be transferred between Member States and there is a demand for tools and techniques. To complement the findings of the review a database of river restoration projects is being created by the project, providing further understanding of policy opportunities and constraints, the effectiveness of restoration methods, design issues and project costs and benefits.  For every application of the Hydropower Sustainability Assessment Protocol that LIFE09 ENV/UK/026 Hydro4LIFE conducts, the project plans to record the WFD designation and classifications at each site. Analysis of the data will compare the assessment of overall project sustainability (using the Protocol) with compliance with the WFD. If projects achieve a high sustainability assessment score using the Protocol, but fail to meet the WFD objectives set, it could indicate that the way in which the Directive is being applied in that region is to the detriment of social and economic sustainability. In this respect, the project will be able to highlight regulators that are setting requirements based on the ecological status of water bodies that 

Page 76: LIFE Water Study

[Water Sector Report August 2012]  66 

compromise broader sustainability goals, and recommend ways in which these goals can be balanced.  LIFE06 ENV/F/133 ArtWet successfully demonstrated the mitigation of agricultural nonpoint‐source pesticide pollution and phytoremediation using artificial wetland ecosystems. Through an assessment of the implementation of the WFD in three countries (Italy, Germany and France) the project showed that a harmonisation of the European legislation would be needed to make the establishment of constructed wetlands easier.  LIFE 06 ENV/D/461 FLOODSCAN has provided instruments to water management authorities which can be used for communication with the public in areas at flood risk and only require minor adjustments to the local situation. 

4.6. Preparatory Projects  

The so‐ called Preparatory Projects were designed to help policy makers trying out different policy ideas in practice and to have case studies for certain issues and trends. The preparatory projects under the LIFE programme, are “…projects which are preparatory to the development of new Community environmental actions and instruments, and/or the updating of environmental legislation and policies”.23  Only four preparatory projects have been carried out to date, three of them already completed reaching very good results and helping the policy‐makers, while one is still on‐going. Only one pilot project developed and tested verification protocols in three technology areas: waste water treatment, soil remediation and energy. The UK project LIFE06 PREP/UK/002 TRITECH ETV (which ended in August 2009) was useful as in 2002, the EU adopted the Environmental Technology Action Plan (ETAP). A key aspect of ETAP is the development of improved testing, performance verification and standardisation of environmental technologies through defined processes. The TRITECH‐ETV project has set up and run a pilot scheme for the verification of environmental technologies, including waste water treatment. 

4.7.   Factors for success and failure 

 It is not easy to determine what makes a project particularly successful, as projects vary significantly and what works for one project might lead to difficulties in the case of another. There is rarely one factor that leads to overall success and the results of our analysis suggest that the most successful projects have addressed risks to the project at an early stage and have managed to overcome them.  It is true to say that developing sound networks and consulting with all relevant stakeholders, be they in the private sector (e.g. farmers) or in public bodies (e.g. the regulators) is a critical factor and the most successful projects – in terms of policy intervention ‐ are ones which engage with the appropriate national bodies who are in a position to adopt new practices or make changes to regulations. Establishing long lasting institutional arrangements, that can be in place after the LFIE project has closed also provides a much better platform for policy intervention. These strong institutional links appear to be most important for projects developing some kind of software, data processing or modelling products that require continuous support for effective implementation. For technology based projects, most of which deal with some form of water treatment, the most critical aspects for success appear to be future financing and the ability of the project team to make the significant step from prototype or pilot to full commercialisation.  In the current economic climate of reduced public spending across all sectors and a general reluctance by investors to invest in untried technology, the threats to wide‐scale application technology based projects is increasing.  A summary of the success factors and threats to water sector projects is presented in Table 4‐2.  In general the water projects were typically small scale projects that did not really affect national programmes, but despite this fact, we have found some good examples of national, transboundary and international cooperation. In our view the projects should be much more proactive to disseminate their results in European level and should make the EU policy makers aware of the results achieved.  

23 Guidelines 2005‐2006 for ‘LIFE‐Environment’ preparatory projects (2004/C 287/02)

Page 77: LIFE Water Study

[Water Sector Report August 2012]  67 

Table 4‐2: Factors for Success and Operational Threats of LIFE ENV/INF/NAT Projects in the Water Sector 

 

Thematic Focus of Project  Success Factors  Threats 

Water Framework Directive  Very good partnership, including most relevant local municipalities, research institutes and universities and good synergy with private consultancies to facilitate good project management 

High commitment of regional authority for the successful completion of project 

Creation of monitoring network 

Creation of a series of guidelines and action plans for implementing a more sustainable approach for water management 

The creation of comprehensive new  databases on water use and management (including GIS mapping) 

Regularly sharing information with regional stakeholders (technical committees, web‐GIS, Wiki) 

To have a strong platform for EU‐wide (and global) stakeholder engagement and proactive in exploring links between the WFD issues 

Unless solutions are rapidly transferred to market place interest in further development/use is lost 

Interpretation of WFD at national level is having direct consequences on approval of new projects and allocation of concessions and permissions for hydropower development under Renewables Directive 

Inability to secure the active participation of an EU based regulatory body can jeopardise wider project application 

Reluctance from people inside the scientific community to share their results outside their community 

A lot of projects concentrated their research on solving local problems – results not directly transferable 

Downturn in economies mean that prospective users want to invest only in approved working solutions – often limited acceptance of innovative solutions 

Marine Strategy Framework Directive 

Strong links with relevant country Marine Strategy Groups (MSGs) responsible for implementing MSFD nationally 

Identification of, and engagement with, key policy stakeholders 

Working with committed stakeholders to produce guidelines for implementation of the ecosystems based approach to marine management 

Engaging with fishing community has proved exceptionally difficult – lack of input from major groups could undermine efforts in delivery 

MSFD implementation interpreted differently in different countries 

Implementation timetables different in different countries so some more advanced than others – timing of interventions can be difficult 

Public awareness concerning issues and requirements of MSFD low 

IPPC and Floods Directives  Making the software readily available on the market (i.e. Floodscan methodology) 

 

Page 78: LIFE Water Study

[Water Sector Report August 2012]  68 

Thematic Focus of Project  Success Factors  Threats 

Cooperation  between  water  management  and  land surveying authorities  

Better  flood  risk  communication  which  enables information of the public areas at risk 

POLLUTION CONTROL UWWT Nitrates Discharge of pollution Groundwater 

Be active in raising awareness in the local target groups (farmers, tourists, local communities) through a range of interactive means 

Innovative technical solutions have widescale implications for implementation of directives 

Possible new regulations/legislation concerning artificial recharge of aquifers may result from project activities 

Different countries have different planning and financing requirements and also different interpretation of the directives 

Projects with no institutional partners or national policy makers run the risk of uncertain status at the end of the project 

Some technologies only prototype and no evidence provided that technology can be easily reproduced – especially true of products that are intended for ‘farm scale’ implementation 

Harmonisation of European legislation in some areas would be needed to make results more transferable (e.g. establishment of constructed wetlands) 

Local scale demonstrations with no national representation in partnership make replication difficult 

AQUATIC ORGANISMS Supporting Fish Shellfish 

Well developed techniques for improving water bodies to support fish species 

Wide range of management approaches that are readily transferable and can be replicated in a range of water bodies 

Stakeholder consultation critical for effective implementation 

Many projects contributing to WFD objectives have value added in improving water quality for fish species 

Conflict resolution between WFD and RED interpretation in many countries – concrete solutions found whereby countries can resolve issues which are mainly related to fish species  

 

Lack of projects of any kind in relation to shellfish directive 

Poor water quality outside Natura 2000 site (for NAT projects) can have significant impact on efficacy of project outcomes 

Difficulties in purchasing property and water extraction rights through a voluntary negotiation processes 

Page 79: LIFE Water Study

[Water Sector Report August 2012]  69 

Thematic Focus of Project  Success Factors  Threats 

HUMAN HEALTH Drinking water Bathing water 

Rapid assessment techniques developed with value added environmental benefits 

On‐line systems to give early warning of health hazards 

Fully automated systems reduce human error in analysis 

Successful development of innovative technology to remove contamination of surface water by endocrine disruptors, personal care products and medical remnants 

New technology is subject to mechanical malfunctions/requires maintenance 

Technology solutions not officially recognised 

Prototypes require significant investment to fully commercialise 

No institutional partners to translate results into policy feedback 

Technology can be costly – reduces likelihood of wider uptake in current economic climate 

   

Page 80: LIFE Water Study

[Water Sector Report August 2012]  70 

4.7.1. Key findings concerning the general programme   

The focus of projects financed by the LIFE programme corresponds to the priorities of the 6th EAP, with an emphasis on natural resources and waste, water, strategic approaches and, more recently, climate change.  Water related projects represent 21.6% of the funded LIFE projects.24 

LIFE projects provide opportunities for the development and testing of ideas for policy development and implementation, which provide valuable insights into what, and what is not, feasible. 

LIFE projects cover the broad scope of the policy cycle, and have successfully contributed to environmental policies in the different phases of this cycle, i.e. monitoring, scoping, policy development, policy implementation and policy evaluation or review. 

The LIFE programme has effectively and consistently contributed to environmental legislation and policy.  Projects are overwhelmingly successful (with more than 80 % of projects reaching all or nearly all of their objectives) and the LIFE programme is generally well aligned with relevant legislation and/or policy. 

The effectiveness of LIFE projects in providing input for the development of EU‐level policy could be further improved, however. 

An important benefit of the LIFE programme is that the demonstration projects have been important test cases for new technologies and methods.  

Another important benefit of the LIFE programme is that it brings together the relevant stakeholders around a specific issue. Although these stakeholders often already know each other, conducting a project cooperatively often brings about a lasting improvement in understanding and cooperation between organisations. This in turn generates benefits, for instance in ensuring a smoother and more coordinated implementation of policies that are not to be underestimated.

4.7.2. Policy complementarily 

The examined projects demonstrate that their objectives correspond with the LIFE + themes and 

with the 6th Environmental Action Plan. There are many good examples of projects helping local actors in implementing EU environmental requirements, e.g. the WFD. Therefore the examined water projects were most effective in implementing EU water policies and demonstrating new technologies on small scale. 

On the other hand, the effect of the projects on policy‐making was less successful as there was little evidence of feed‐back from projects to EU policy and that could be due to the fact that successful LIFE projects are not always promoted at the right level within the appropriate sector of the DG.  

The examined projects were generally effective and reached their objectives, but it must be noted that the direct environmental results and impacts were generally restricted to the project site/area and that the projects respond to local needs falling within broad scope of the 6th EAP, in the examined cases most specifically within the WFD. 

Wider impacts were found only in some projects and mostly in cases where policy making was an objective (preparatory projects) or where strong EU link was established for the policy makers. 

Generally LIFE covers a broad project portfolio; however, most projects were attached to the WFD issues and some of the gaps in the portfolio have been highlighted in this study.  

 It was also a weakness that in many cases the demonstration potential was not fully released or exploited. 

24 Overview of environment projects funded by the LIFE programme 1996 – 2008, GHK study 2010

Page 81: LIFE Water Study

[Water Sector Report August 2012]  71 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

LIFE projects can contribute to EU policy at different stages in the policy cycle.  While some projects have successfully contributed to environmental policy at the national or EU level, most water sector projects act at the local level.   The water projects examined for this study covered a broad range of topics in terms of types of water issues addressed and solutions proposed.  Undoubtedly, those projects aiming to contribute to legislation did so in all stages of the development and implementation process. However, the number of projects aiming at contributing directly to new policy is limited and this is thought to be attributable to the length of time it takes to develop and complete a LIFE project. On the other hand, a considerable number of projects develop or demonstrate concrete water utilisation, remediation and prevention practices, which show the range of economically feasible and environmentally sound options which could contribute to setting the standards for future policies.   The role that LIFE projects can play in each phase of the policy cycle can be generally detailed as follows: 

Scoping: some projects were already working on cost effective programme of measures before 

quantitative targets became obligatory in EU legislation. In cases such as LIFE05 ENV/DK/145 Odense PRB – AgriPoM the project demonstrated the development of a cost‐effective programme of measures to reduce levels of nitrogen and phosphorus originating from agricultural activities prior the deadline.  

Policy development: few projects are directly linked to the development of new environmental policies. A specific type of projects (preparatory projects) is dedicated to this purpose and there is only one for the water sector (see section 4.6). However, one project that clearly could have a role in 

defining new policy is LIFE10 ENV/IT/394 WARBO; a project which could define new policy in the field of artificial recharge of aquifers.   

Policy implementation: numerous LIFE projects are dedicated to policy implementation, for instance by demonstrating how (future) EU policy targets can  be achieved (e.g. LIFE07 ENV/NL/576 PHARMAFILTER provides innovative methods to treat hospital waste water for drinking water), by addressing implementation of EU policy at the national level ( e.g. LIFE09 ENV/RO/612 CLEANWATER which helps develop a modern Romanian water management system) or by demonstrating technologies (e.g. LIFE06 ENV/B/359 MULTIBARDEM that demonstrated the multibarrier technology in Belgium and Austria). This is arguably the area where LIFE projects excel and make the largest contribution to EU policy. 

Policy evaluation / review: although, due to the demonstration nature of the LIFE programme, this element is less prominently represented in the project portfolio, there are good examples of LIFE water projects contributing to policy review (e.g. LIFE07 ENV/L/540 M3 which identified shortcomings in the WFD Common Implementation Strategy).  Similarly there are several projects which are dealing with the implementation issues surrounding the WFD and the RED (see section 4.2.7).  These projects are making a valuable contribution to resolving the difficulties that Member States perceive they face in trying to implement both directives and they could well contribute to policy reform in the future. 

Generally speaking, LIFE projects are successful: according to the ex‐post study carried out for the LIFE III programme, “the project‐level effectiveness of the LIFE Environment projects is assessed as high as more than 80 % have reached all or nearly all of their objectives.”  But how well do the projects actually serve the policymaker? External evaluators tend to value the practical experimentation which LIFE projects contribute to policymaking, and they acknowledge that projects are 

Page 82: LIFE Water Study

[Water Sector Report August 2012]  72 

relevant to EU policy. According to the LIFE + mid‐term evaluation25, LIFE projects “provide opportunities for the development and testing of ideas for policy development and implementation which, based on real conditions and actions on the ground, provide feedback and insight on what is feasible or less feasible, identifying good practices where possible.”   While the approach is valid and priorities appropriate, potential project contributions can be limited by the long project cycle, which may not suit the needs of the policymaking and legislative cycles: projects can take four or five years to yield results, by which time policy priorities may well have moved on.  One possible limitation is that the emphasis of the projects selected may not match the immediate priorities of the policymakers. This is inevitable considering the LIFE programme’s ‘open programming’ approach, accepting applications in any relevant field of EU environmental policy.  However, open programming can also lead to benefits as potentially all aspects of water policy can be addressed, rather than placing emphasis on selective areas.  In this way it is possible to make breakthroughs in less well understood policy areas, a good example of which is the  LIFE10 ENV/IT/394 WARBO which may make an important contribution to how the Commission deals with artificial recharge of aquifers, an area where policy is currently lacking.  It should be noted that even if a project does not initially set out to influence policy reform, innovative approaches to environmental problems could later be taken to account in policy development.  The authors of this report understand that studies are often conducted for DG ENV during scoping and policy development and that LIFE funded projects (among others) are analysed.  However, this contribution is difficult to quantify and concrete supporting evidence is lacking.  If a project does inadvertently lead to policy reform it is likely to be after the project results have been published.  At the present time there is no mechanism to record these successes other than through the ‘ex‐post’ project evaluations which are conducted on a regular basis by the LIFE Unit.  There is a good argument that these ex‐post evaluations should be inter alia more targeted towards projects that have the potential to either influence policy reform at a later stage or where there is a high potential to transfer/replicate the results.   The gap analysis highlighted some areas where LIFE could be more active.  It is recommended that the LIFE programme encourages more applications in policy areas where there are currently few projects, specifically in assisting Member States to develop programmes of measures, with certain aspects of the Floods Directive, establishing EQSs’ and with the Shellfish Directive.  In addition, projects which aim to contribute to certain aspects of the WFD, and for that matter the MSFD, should be more precise in stating which area of the relevant directive the project is related to.  Beneficiaries should be asked to provide more detailed information on the policy direction, if necessary at the revision stage, as it is not really acceptable to simply state that the ‘project contributes to the implementation of the WFD’ a phrase that is often found in LIFE applications.  This will become more and more important as various water policies are repealed by the WFD in the near future.    

One of the outcomes of this study was the development of a matrix (see Annexes 2 and 3) which attempt to link all the LIFE water related projects to specific areas of policy.  The development of this tool was a critical element in determining the effectiveness of the individual projects in relation to their stated policy areas.  Some of the problems encountered in populating this matrix i.e. policy areas were not fully described in the documentation or how successful the project had been in contributing to the specified policy area, could be improved by better reporting requirements in both the application and the final reporting stages of the LIFE projects.  Nevertheless, the value of the matrix as a means of selecting projects which contribute to specific policy areas and therefore as an easy reference tool to answer questions that the policy units may wish to raise, was highlighted in the feedback comments from DG ENV in that they intend to use the matrices to 

25 http://ec.europa.eu/environment/life/about/documents/com2010_516_final.pdf

Page 83: LIFE Water Study

[Water Sector Report August 2012]  73 

feed into the WISE RTD reporting.  It should be noted that some of the information is already available via the FP7 STEPWISE programme which has already accessed all LIFE projects to the WISE portal 

(http://www.wise‐rtd.info/en).  Nevertheless, it may be that the tools developed under this study provide a different level of information that is useful to the Water Unit and it is recommended that these matrices are updated to include information about projects as they close and about new projects that emerge through the new rounds of LIFE funding. 

In conclusion, LIFE projects excel at policy implementation but have less influence in other areas of the policy cycle. While LIFE projects do respond to changing legislation (i.e. response to the call for development of integrated RBMPs under the WFD) the manner of delivery (i.e. local/regional, small scale, innovative and highly technical projects), has not changed a great deal over the years. However, the move to larger, integrated projects being developed under the new LIFE instrument which will become effective in 2014, acknowledges this issue of scale and should lead to more effective reproduction of results across wider geographical units.     

Page 84: LIFE Water Study

[Water Sector Report August 2012]  Annex 1 

           

Annex 1  

Initial Project Assessment  

        

Page 85: LIFE Water Study

Project acronym Project title Funding contract codestart

date

end

datee-mail coordinator

name

coordinatorWebsite entered LIFE database website Data Info collected Comments

Aquatic Warbler

project

Conserving Acrocephalus

paludicola in Poland and

Germany

LIFE-NATLIFE05

NAT/PL/0001011/2/2005  31/05/2010  [email protected] Izabela FLOR

http://www.otop.org.pl/ ;

http://www.wodniczka.pl/

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=292

6

10/02/2011

ArdmouperlRestoration of pearl mussel

populations in the ArdennesLIFE-NAT

LIFE05

NAT/L/0001161/9/2005  31/08/2011 

secretariat.commun@lu

xnatur.lu

Frantz-Charles

Mullerhttp://www.margaritifera.eu/

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=293

4

16/02/2011

BALTCOASTRehabilitation of the Baltic

coastal lagoon habitat complexLIFE-NAT

LIFE05

NAT/D/00015201/05/2005  31/12/2011 

project@life-

baltcoast.eu;

[email protected]

Britta KÜPER www.life-baltcoast.eu

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=299

8

16/02/2011

Baltic MPAs Marine protected areas in the

Eastern Baltic SeaLIFE-NAT

LIFE05

NAT/LV/00010001/08/2005  31/07/2009  [email protected]

Heidrun

FAMMLER

http://lifempa.balticseaportal.n

et/

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=292

7

16/02/2011

Biomares

Restoration and Management

of Biodiversity in the Marine

Park Site Arrábida-Espichel

LIFE-NATLIFE06

NAT/P/00019201/01/2007  01/01/2011  [email protected] Karim ERZINI

http://www.ccmar.ualg.pt/biom

ares/

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=316

4

16/02/2011

BIOMURAConservation of biodiversity of

the Mura river in Slovenia LIFE-NAT

LIFE06

NAT/SI/00006631/10/2006  31/10/2011  [email protected]

Mitja STAREC;

Lidija

GLOBEVNIK

http://www.biomura.si/ang/def

ault.aspx

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=315

3

16/02/2011

BLUEREEF

Rebuilding of Marine

Cavernous Boulder Reefs in

Kattegat

LIFE-NATLIFE06

NAT/DK/00015901/08/2006  01/04/2012 

[email protected];

[email protected]

Henrik

CHRISTENSE

N; Olaf

CHRISTIANI

www.bluereef.dk

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=310

9

22/02/2011

Cerknisko Jezero Intermittent Cerknica Lake LIFE-NATLIFE06

NAT/SI/00006901/01/2007  31/12/2009 

tanja.vasilevska@notra

njski-park-si

Tanja

VASILEVSKA

http://life.notranjski-

park.si/eng/

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=315

4

22/02/2011

CILENTO IN RETE

Management of the network of

pSCIs and SPAs in the Cilento

National Park

LIFE-NATLIFE06

NAT/IT/00005301/01/2007  30/12/2010  [email protected]

Giuseppe

TARALLO;

Angelo DE

VITA

www.lifecilentoinrete.eu

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=321

8

22/02/2011website not in

english

Co.Me.Bi.S.

Urgent conservation measures

for biodiversity of Central

Mediterranean Sea

LIFE-NATLIFE06

NAT/IT/00005001/10/2006 30/09/2009 

[email protected]

o.it

Raniero DE

FILIPPIShttp://www.lifecomebis.eu/

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=316

22/02/2011

Cuxhavener

Küstenheiden

Large Herbivores for

Maintenance and Conservation

of Coastal Heaths

LIFE-NATLIFE05

NAT/D/00005101/10/2005 30/09/2009

[email protected]

ersachsen.deRenate THOLE

http://www.life-

kuestenheiden.niedersachse

n.de

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=294

16/01/2012

Dommeldal

Transboundery habitat

restoration in the valley of the

Dommel

LIFE-NATLIFE05

NAT/B/00009117/01/2005  31/12/2009  Tel:+32 015 424921

Joost

DEWYSPELAE

RE

http://www.natuurpunt.be/nl/n

atuurbehoud/life-natura-/life-

dommeldal_742.aspx

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=292

22/02/2011

Website

Page 86: LIFE Water Study

Fortore 2005Urgent conservation actions for

Fortore River pSCILIFE-NAT

LIFE05

NAT/IT/00002601/10/2005  30/03/2010  [email protected]

Claudio LA

ROSAwww.lifefortore.eu

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=290

7

07/03/2011

GREENDANUBE

Conservation and integrated

management of Danube islands

Romania

LIFE-NATLIFE06

NAT/RO/00017701/09/2006  31/08/2010  [email protected]

Viorica

ENACHE

http://www.ostroaveledunarii.r

o/

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=311

07/03/2011

HABI.COASTProtection of coastal habitats

in pSCI Torre GuacetoLIFE-NAT

LIFE05

NAT/IT/00005001/01/2006 31/12/2008

segreteria@riservadito

rreguaceto.it

Alessandro

CICCOLELLA

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=290

16/01/2012 No website

Houting

Urgent actions for the

endangered Houting

"Coregonus oxyrhunchus"

LIFE-NATLIFE05

NAT/DK/00015301/02/2005  31/07/2009  [email protected]

Hans Ole

HANSENhttp://www.snaebel.dk/

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=294

07/03/2011

Kokemäenjoki-LIFE

From Ancient to the Present

Estuary, Kokemäenjoki

Wetland Chain

LIFE-NAT

LIFE06

NAT/FIN/00012

9

01/08/2006  31/07/2011 

Arto.Ahokumpu@metsa

.fi; tapio.aalto@ely-

keskus.fi

Arto

AHOKUMPU;

Tapio AALTO

http://www.ymparisto.fi/defaul

t.asp?node=21245&lan=en

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=315

1

16/03/2011

LIFE - Gesäuse 

Conservation strategies for

woodlands and rivers in the

Gesäuse Mountains

LIFE-NATLIFE05

NAT/A/00007801/08/2005  01/08/2010 

daniel.kreiner@national

park.co.atDaniel Kreiner www.nationalpark.co.at

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=292

3

16/03/2011

Life Grote NeteRestoration of the lowland river

system 'Grote Nete'LIFE-NAT

LIFE05

NAT/B/00009017/01/2005  31/12/2009 

tom.debeelde@natuurp

unt.be

Tom DE

BEELDE

http://www.natuurpunt.be/nl/n

atuurbehoud/life-natura-/life-

grote-nete_752.aspx

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=291

8

16/03/2011

LIFE Obere Drau II Life in Upper Drau River LIFE-NATLIFE06

NAT/A/00012701/09/2006  31/08/2011 

[email protected]

v.at

Norbert

SEREINIGwww.life-drau.at

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=314

9

16/03/2011

LIFE-Projekt Maifisch

The re-introduction of allis shad

(Alosa alosa) in the Rhine

System

LIFE-NATLIFE06

NAT/D/00000501/01/2007 31/12/2010

[email protected]

w.de

Heiner

KLINGERhttp://www.alosa-alosa.eu

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=312

1

16/01/2012 animals

Lippe-Aue

Optimisation of the pSCI "Lippe

flood plain between Hamm and

Hangfort"

LIFE-NATLIFE05

NAT/D/00005708/01/2005  28/02/2010 

schmidtformann@stadt.

hamm.de

Oliver Schmidt-

Formann

www.life-lippeaue.de;

http://www.hamm.de/lifepluslip

peaue.html

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=295

1

16/03/2011

Loutre BeLu 2005-

2006

Restoration of European otter

habitats (Be & Lu)LIFE-NAT

LIFE05

NAT/B/00008501/10/2005  30/09/2010 

donatien@parcnaturel.

be

Donatien

Liessewww.loutres.be

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=291

9

16/03/2011

Lower Prut Floodplain

Ecological restoration of the

Lower Prut Floodplain Natural

Park

LIFE-NATLIFE05

NAT/RO/00015501/11/2005 30/10/2009  [email protected] Fica BOLDEA www.luncaprut.ro

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=295

3

16/03/2011

Marais de Rochefort

Preservation and restoration of

the Rochefort marshes

biological functions

LIFE-NATLIFE06

NAT/F/00014701/10/2006 31/12/2010  [email protected] Thierry MICOL

http://www.maraisderochefort

.lpo.fr

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=313

9

16/03/2011

MOFI

Monk seal & fisheries:

Mitigating the conflict in Greek

seas

LIFE-NATLIFE05

NAT/GR/00008301/07/2005 30/06/2009 [email protected]

Spyros

KOTOMATAShttp://mofi.mom.gr

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=293

6

16/01/2012

NELEAP

Protection of Emys orbicularis

and amphibians in the north

European lowlands

LIFE-NATLIFE05

NAT/LT/00009408/01/2005 31/12/2009 [email protected]

Nerijus

ZABLECKIShttp://www.glis.lv

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=294

2

16/01/2012

Page 87: LIFE Water Study

STREAM

River Avon cSAC:

demonstrating strategic

restoration and management

LIFE-NATLIFE05

NAT/UK/00014301/08/2005  30/09/2009 

jenny.wheeldon@englis

h-nature.org.uk

Jenny

WHEELDONhttp://www.streamlife.org.uk/

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=293

9

18/03/2011

Schwäbisches

DonautalSwabian Danube valley LIFE-NAT

LIFE06

NAT/D/00000601/10/2006  31/03/2011 

[email protected].

at

Norbert

KNOPF

http://www.donautal-life-

natur.de/

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=311

2

22/02/2011

Verbrakking

Westzaan

Restoration of brackish

ecosystems in Westzaan

polder

LIFE-NATLIFE06

NAT/NL/00007601/09/2006  31/08/2010 

k.romeijnders@staatsb

osbeheer.nl

Kees

ROMEIJNDER

S

http://www.staatsbosbeheer.n

l/Actueel/Dossiers/LIFE%20N

ature/LIFE%20Polder%20W

estzaan/Project%20Verbrakki

ng%20polder%20Westzaan.a

spx

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=312

6

18/03/2011

VlietmondingConnecting 3 pSCI around the

Hoeksche Waard for Root VoleLIFE-NAT

LIFE06

NAT/NL/00007923/02/2006  23/12/2008 

mvonk@commissiehw.

nlMellany VONK www.vlietproject.nl

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=312

18/03/2011

Wetland succession 

Wetlands: challenges and

innovation in succession

management

LIFE-NATLIFE06

NAT/NL/00007401/08/2006  31/12/2010 

a.stoker@natuurmonu

menten.nlT.J. Wams

http://www.natuurmonumente

n.nl/natmm-

internet/natuurherstel_in_ned

erland/de_wieden/home.htm

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=312

4

18/03/2011

Wetlands Butterflies

Conservation and upgrading of

habitats for rare butterflies of

wet, semi-natural meadows

LIFE-NATLIFE06

NAT/PL/00010001/08/2006 31/03/2010 [email protected] Michał MIAZGA

http://www.rec.org.pl/life/engli

sh_version/

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=321

9

18/03/2011

WETREST Restoration of Wetlands at

Zahorie Lowland LIFE-NAT

LIFE05

NAT/SK/00011201/02/2005  31/12/2008  [email protected] Jaromír ŠIBL www.broz.sk/

http://ec.europa.eu/environ

ment/life/project/Projects/in

dex.cfm?fuseaction=searc

h.dspPage&n_proj_id=293

2

18/03/2011

SUM 34

Page 88: LIFE Water Study

Project

acronymProject title Funding contract code

start

date

end

date

e-mail

coordinator

name

coordinatorWebsite entered LIFE database website Data Info collected Comments

ARIONSystems for Coastal DolphinConservation in the LigurianSea

LIFE-NATLIFE09NAT/IT/000190

01/10/2010 30/09/[email protected]

tMauro TAIUTI

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3851

16/01/2012 animals

CETACEOSMADEIRA II

Identifying critical marineareas for bottlenose dolphinand surveillance of thecetaceans' conservationstatus in Madeira archipelago

LIFE-NATLIFE07NAT/P/000646

01/06/2009 30/06/2013luisfreitas@museudabaleia.

orgLuis FREITAS

http://www.cetaceos-madeira.com

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3344

16/01/2012

ConShagAudMIBAGR

Concrete ConservationActions for the MediterraneanShag and Audouin's gull inGreece including theinventory of relevant marineIBAs

LIFE-NATLIFE07NAT/GR/000285

01/01/2009 31/12/2012jakobfric@orni

thologiki.grJakob FRIC

http://www.ornithologiki.gr/page_in.php?tID=2569&sID=172

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3372

16/01/2012 animals

CUBOMED

Development anddemonstration of eradicationand control methods for aninvasive species: Carybdeamarsupialis (Cubozoa),Mediterranean

LIFE-NATLIFE08NAT/E/000064

01/01/2010 31/12/2014cesar.bordeho

[email protected]

CesarBORDEHORE

FONTANET

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3530

16/01/2012

DENOFLIT

Inventory of marine speciesand habitats for developmentof NATURA 2000 network inthe offshore waters ofLithuania

LIFE-NATLIFE09NAT/LT/000234

01/10/2010 31/03/2015darius@corpi.

ku.ltDarius

DAUNYS

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3787

16/01/2012 animals

Elbauen beiVockerode

Improvement and Long-TermSafeguarding of the Natura2000 Site “Dessau-WörlitzElbe Floodplain”

LIFE-NATLIFE08NAT/D/000013

01/01/2010 31/12/2018gutzweiler@w

wf.deKarl

Gutzweiler-

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3519

21/02/2011

Ems-Dynamik+Habitate

Near-natural river and floodplain development of theRiver Ems at Einen – riverdynamics and habitatdiversity

LIFE-NATLIFE08NAT/D/000008

01/01/2010 31/12/2014 [email protected]

FranzReinhard

http://www.ems-life-nrw.de/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3516

21/02/2011

FINMARINETInventories and planning forthe marine Natura 2000network in Finland

LIFE-NATLIFE07NAT/FIN/000151

01/01/2009 31/12/[email protected]

PasiLAIHONEN

www.ymparisto.fi/finmarinet

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3329

16/01/2012

Healthy Heath

Propagation and developmentof dry, moist and wet heath inthe Dwingelderveld SPA andpSCI

LIFE-NATLIFE08NAT/NL/000192

01/01/2010 01/01/2016p.pasman@dr

enthe.nlPeter

PASMAN

http://www.nationaalpark-

dwingelderveld.nl

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3562

15/02/2011

HORTOBAGYSODIC LAKES

Restoration of sodic lake sub-type of the Pannonic saltsteppe and marsh habitat inthe Hortobágy

LIFE-NATLIFE07NAT/H/000324

01/01/2009 30/04/2013hortobagy.te@

chello.huZoltan ECSEDI

www.hortobagyte.hu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3366

23/02/2011

Website

Page 89: LIFE Water Study

INDEMARESInventory and designation ofmarine Natura 2000 areas inthe Spanish sea

LIFE-NATLIFE07NAT/E/000732

01/01/2009 31/12/2013

indemares@fundacion-

biodiversidad.es;

dpena@fundacion-

biodiversidad.

David PEÑAhttp://www.indemares.es

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3370

16/01/2012

ISAC 08Irfon Special Area ofConservation Project

LIFE-NATLIFE08NAT/UK/000201

01/01/2010 15/09/2013stephen@wyeuskfoundation.

org

StephenMARSH-SMITH

-

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3538

23/02/2011

Keiljungfer

Optimization of watercoursesin Middle Franconia for theGreen club-tailed Dragonfly(Ophi-ogomphus cecilia)

LIFE-NATLIFE08NAT/D/000002

01/01/2010 31/12/2013a-v-

[email protected]

Andreas VONLINDEINER

-

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3523

23/02/2011

Life Ilhéus doPorto Sant

Halt the loss of EuropeanBiodiversity through therecovery of habitats andspecies of the islets of PortoSanto and surroundingmarine area.

LIFE-NATLIFE09NAT/PT/000041

01/09/2010 31/08/2014diliamenezes.

[email protected]

DiliaMENEZES

http://www.pnm.pt/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3802

16/01/2012

Life PosidoniaAndalucia

Conservation of Posidoniaoceanica meadows inAndalusian MediterraneanSea

LIFE-NATLIFE09NAT/ES/000534

01/01/2011 31/12/2013

elena.diaz@juntadeandaluia.

es;dgdsia.cma@juntadeandaluc

ia.es

Elena DÍAZALMELA

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3829

16/01/2012

Life Projekt"Lippeaue"

Improvement of theconnection between the riverand the floodplain within thepSCI "Lippe floodplainbetween Hangfort andHamm"

LIFE-NATLIFE08NAT/D/000010

01/03/2010 28/02/[email protected]

m.de

OliverSCHMIDT-FORMANN

www.hamm.de/en/lifeplus-projekt.html

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3522

23/02/2011

MARGALULLA

Recovery of populations ofMargaritifera margaritiferaand Galemys pyrenaicus innthe Ulla river basin (Galicia).

LIFE-NATLIFE09NAT/ES/000514

01/09/2010 31/08/2015

[email protected];

biodiversidade2.cma@xunta.

es

JesúsSANTAMARIN

AFERNÁNDEZ

-

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3844

25/02/2011

MARMONI

Innovative approaches formarine biodiversity monitoringand assessment ofconservation status of naturevalues in the Baltic Sea

LIFE-NATLIFE09NAT/LV/000238

01/10/2010 31/03/2015heidrun.famml

[email protected]

FAMMLER

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3822

16/01/2012

MarProConservation of MarineProtected Species inMainland Portugal

LIFE-NATLIFE09NAT/PT/000038

01/01/2011 31/12/2015catarina.eira@

ua.ptCatarina EIRA

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3842

16/01/2012

MurerlebenMur experience - Alpine rivermanagement Upper Mur

LIFE-NATLIFE08/NAT/A/000614

01/02/2010 01/02/[email protected]

RudolfHORNICH

www.murerleben.at/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=

25/02/2011

NebenrinneBislich

Vahnum - Restoration of aside channel of the riverRhine near Wesel, LowerGerman Rhine

LIFE-NATLIFE08NAT/D/000007

01/01/2010 31/12/2015info@NABU-

Naturschutzstation.de

KlausMARKGRAF-

MAUÉ

http://www.life-rhein-bislich.de/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3521

25/02/2011

P.A.R.C.Petromyzon And RiverContinuity

LIFE-NATLIFE07/NAT/IT/000413

12/01/2009 31/12/2011direttore@parc

omagra.itPatrizio

Scarpelliniwww.lifeparc.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3342

25/02/2011

POSEIDONEUrgent conservation actionsof *Posidonia beds ofNorthern Latium

LIFE-NATLIFE09NAT/IT/000176

01/12/2010 30/09/[email protected]

Paolo LUPINO

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3808

16/01/2012

Page 90: LIFE Water Study

REFLOWRe-establishing a naturalwater flow level in the riversystem "Mølleåen"

LIFE-NATLIFE07NAT/DK/000100

01/01/2009 30/06/2011 [email protected] DAHL-NIELSEN

http://www.skovognatur.dk/Naturprojekter/Projekter/Hovedstaden/Molleasystem

et/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3352

01/03/2011

RenaturyzacjaRestoration of hydrologicalsystem in the Middle basin ofBiebrza Valley Phase I.

LIFE-NATLIFE09NAT/PL/000258

01/09/2010 30/12/2016 [email protected]

SIŁAKOWSKIhttp://www.renaturyzacja.biebrza.org.pl/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3862

01/03/2011

Rheinauen beiRastatt

Rhine wetlands near Rastatt LIFE-NATLIFE09NAT/DE/000004

01/01/2011 31/12/[email protected]

DanielRADDATZ

http://www.rheinauen-rastatt.de/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=

01/03/2011

The DutchCrane Resort

Improvement of hydrologicalconditions in peat bog areaFochteloërveen

LIFE-NATLIFE08/NAT/NL/000193

01/01/2010 31/12/2014f.vanrossum@natuurmonum

enten.nl

Fen VANROSSUM

-

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3563

04/03/2011

Vindel RiverLIFE

Restoration of tributaries ofthe Vindel river combinedwith monitoring andevaluation of ecologicalresponses of species and

LIFE-NATLIFE08/NAT/S/000266

01/01/2010 31/12/[email protected]

mu.se

JohannaGARDESTRÖ

M

http://vindelriverlife.se/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3567

04/03/2011

WETLIFERestoring Hydrology inAmalvas and ŽuvintasWetlands

LIFE-NATLIFE07/NAT/LT/000530

01/01/2009 31/03/2012a.stoskus@gpf

.ltArgaudasSTOŠKUS

http://www.wetlife.gpf.lt/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3334

04/03/2011

WETMANConservation andmanagement of freshwaterwetlands in Slovenia

LIFE-NATLIFE09NAT/SI/000374

01/02/2011 01/02/2015nika.debeljak

@zrsvn.si

NikaDEBELJAKŠABEC

http://www.wetman.si/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3832

04/03/2011

ZTAR Zwin Tidal Area Restoration LIFE-NATLIFE09NAT/BE/000413

01/01/2011 31/12/[email protected]

eEvy DEWULF

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3867

16/01/2012

Δ-LAGOON

Restauración y gestión delhábitat en dos lagunascosteras del Delta del Ebro:Alfacada y Tancada

LIFE-NATLIFE09NAT/ES/000520

01/09/2010 31/12/2014carles.ibanez

@irta.catCarles IBAÑEZ -

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3845

04/03/2011

Page 91: LIFE Water Study

Project

acronymProject title Funding contract code

start

date

end

date

e-mail

coordinator

name

coordinatorWebsite entered LIFE database website Data Info collected Comments

ECOTONE

Management of riparian habitats

towards the conservation of

endangered invertebrates

LIFE-NATLIFE10

NAT/PT/00007301/01/2012 01/01/2016

fcnatureza@que

rcus.pt

José Paulo

MARTINS

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4036

12/01/2012

Emmericher

Ward

River and floodplain improvement

- Emmericher Ward within the EU

Bird Area Unterer Niederrhein

LIFE-NATLIFE10

NAT/DE/00001001/01/2012 31/12/2017

Klaus.markgraf

@nabu-

naturschutzstati

on.de

Klaus

MARKGRAF-

MAUÉ

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4086

12/01/2012

HUMEDALES

DE LA

MANCHA

Restoration of salt flats around

27 endorheic wetland areas in La

Mancha

LIFE-NATLIFE10

NAT/ES/00056301/10/2011 30/09/2014

director@altogu

adiana.es

Enrique Jesús

CALLEJA

HURTADO

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4056

12/01/2012

HYDROPLAN

Restoring the hydrological

regime of the Kemeri National

Park

LIFE-NATLIFE10

NAT/LV/00016001/09/2011 31/08/2016

ilze.kuze@daba.

gov.lvIlze KUZE

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4073

12/01/2012

LIFE Continuité

écologique

LIFE ecological continuity,

management of catchment area

and associated patrimonial fauna

LIFE-NATLIFE10

NAT/FR/00019201/09/2011 01/09/2015

nicolas.galmiche

@parcdumorvan

.org

Nicolas

GALMICHE

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4044

12/01/2012

LIFE+ LavantHabitats network for endangered

small fish speciesLIFE-NAT

LIFE10

NAT/AT/00001701/10/2011 31/12/2015

siegfried.juri@kt

n.gv.atSiegfried JURI

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4037

12/01/2012

Ljubljanica

connects

Restoration of the Ljubljanica

River corridor and improvement

of the river’s flow regime

LIFE-NAT LIFE10 NAT/SI/000142 01/01/2012 31/12/[email protected]

ni-lj.siMitja BRILLY

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4062

12/01/2012

MAESTRALE

Actions for the recovery and the

conservation of dune and back

dune habitats in the Molise

Region

LIFE-NAT LIFE10 NAT/IT/000262 19/09/2011 30/06/2017fusco.sara@gm

ail.comSara Fusco

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4096

12/01/2012

MALTA

SEABIRD

PROJECT

Creating an inventory of Marine

IBAs for Puffinus Yelkouan,

Calonectris diomedea and

Hydrobates pelagicus in Malta

LIFE-NATLIFE10

NAT/MT/00009001/09/2011 30/06/2016

paul.debono@bi

rdlifemalta.orgPaul DEBONO

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4055

12/01/2012

Netzwerk Donau Danube Network LIFE-NATLIFE10

NAT/AT/00001601/09/2011 31/12/2017

Herfried.harreite

[email protected]

Herfried

HARREITER

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4039

12/01/2012

OROKLINI

Restoration and Management of

Oroklini Lake SPA (CY6000010)

in Cyprus

LIFE-NATLIFE10

NAT/CY/00071601/01/2012 31/12/2014

Lemesos.thira@

cytanet.com.cy

Nikolaos

Kassinis

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4068

12/01/2012

Rur und Kall Rur and Kall – fluvial habitats LIFE-NATLIFE10

NAT/DE/00000801/01/2012 31/12/2016

info@biostation-

dueren.de

Heidrun

DÜSSEL-

SIEBERT

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4084

12/01/2012

SHARKLIFE

Urgent actions for the

conservation of cartilaginous fish

in Italy

LIFE-NAT LIFE10 NAT/IT/000271 01/10/2011 31/12/2014 [email protected]

VEDOVATO

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4078

12/01/2012

Website

Page 92: LIFE Water Study

SIMARINE-

NATURA

Preparatory inventory and

activities for the designation of

marine IBA and SPA site for

Phalacrocorax aristotelis

desmarestii in Slovenia

LIFE-NAT LIFE10 NAT/SI/000141 01/09/2011 28/02/2015ursa.koce@dop

ps.siUrša KOCE

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4061

12/01/2012

SUBLIMO

Biodiversity Survey of Fish Post-

Larvae in the Western

Mediterranean Sea

LIFE-NATLIFE10

NAT/FR/00020001/12/2011 01/04/2015

lenfant@univ-

perp.fr

Philippe

LENFANT

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4075

12/01/2012

Untere March-

Auen

Restoration of the Lower Morava

floodplainsLIFE-NAT

LIFE10

NAT/AT/00001501/10/2011 31/10/2017

franz.steiner@vi

a-donau.orgFranz STEINER

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4070

12/01/2012

Page 93: LIFE Water Study

Project

acronymProject title Funding contract code

start

date

end

date

e-mail

coordinator

name

coordinatorWebsite entered LIFE database website Data Info collected Comments

Thalassa

Thalassa Campaign: Learn, Act,

Protect/Awareness, Educational

and Participation Campaign for

Marine Mammals in Greece

LIFE-INF LIFE09/INF/GR/320 01/09/2010 31/12/2013v.savvidou@mo

m.gr

Valia

SAVVIDOU

http://www.thalassa-

project.gr

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=3775

12/01/2012Already on list

(MAYBE)

PROM.SUS.FIS.

PR.PRESPA

Halt the decline of fish

biodiversity, in the Prespa basin,

by promoting sustainable fishery

practices in compliance with EU

policy

LIFE-INF LIFE09/INF/GR/319 01/10/2010 31/03/2013 [email protected]

VLASSI

http://www.spp.gr/life_p

respafish/index.php?o

ption=com_content&vi

ew=article&id=2&Itemi

d=3&lang=en

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=3774

12/01/2012 fish biodiversity

Saimaan

lohikalojen

Promoting sustainable salmon

fishing practices on Lake SaimaaLIFE-INF LIFE10/INF/FI/52 01/10/2011 31/03/2014

kirjaamo.pohjois-

karjala@ely-

keskus.fi

Veli-Matti

KAIJOMAA

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4033

12/01/2012 Already on list

Investing in

Water

Achieving Reduction in Water

Consumption by Business in

Malta

LIFE-INF LIFE10 INF/MT/000091 01/10/2011 31/03/2014 [email protected]

t

Joe Tanti http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4026

08/10/2011 Already on list

SHOWW SHOWW - puShing aHead with

field implementatiOn of best fitting

Wastewater treatment and

management solutions

LIFE-INF LIFE10 INF/IT/000282 01/09/2011 28/08/2014 Riccardo.Gori@

dicea.unifi.it

Riccardo GORI http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4032

08/10/2011 Already on list

InfoNitrates Information and communications

campaign for the proper use and

management of nitrates in

agriculture and livestock breeding

LIFE-INF LIFE10 INF/MT/000092 01/09/2011 31/12/2013 mario.j.spiteri@

gov.mt

Mario SPITERI http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4027

08/10/2011 Already on list

AQUAVIVA Live Water - from Biodiversity to

the Tap

LIFE-INF LIFE10 INF/SI/000135 01/09/2011 31/08/2014 [email protected]

i

Marjana

HÖNIGSFELD

ADAMIČ

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=4030

08/10/2011 Already on list

FISH SCALE Food Information and Safeguard

of Habitat a Sustainable

Consumption Approach in Local

Environment

LIFE-INF LIFE09 INF/IT/000076 01/10/2010 30/09/2013 bvalettini@acqu

ariodigenova.it

Bruna

VALETTINI

www.fishscale.eu/ http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=3880

16/09/2011 Was a MAYBE

INFOIL Promoting sustainable production

and consumption patterns: the

example of olive oil

LIFE-INF LIFE08 INF/GR/000581 01/01/2010 31/12/2012 [email protected]

.gr

Georgios

PAPADAKIS

http://www.infoil.tuc.gr http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=3510

15/09/2011 Was a MAYBE

Olèico+ European awareness raising

campaign for an environmentally

sustainable olive mill waste

management

LIFE-INF LIFE07 INF/IT/000438 01/01/2009 31/12/2011 [email protected]

t

Francesca

SANTORI

http://www.lifeoleicoplu

s.it/

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=3320

14/09/2011 Was a MAYBE

RESTORE Rivers: Engaging, Supporting and

Transferring knOwledge for

Restoration in Europe

LIFE-INF LIFE09 INF/UK/000032 01/09/2010 30/09/2013 [email protected] WIM ZEEMAN http://www.environment-

agency.gov.uk/aboutus

/wfo/128855.aspx

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=3780

16/09/2011 Already on list

WATACLIC Water against climate change.

Sustainable water management

in urban areas

LIFE-INF LIFE08 INF/IT/000308 01/01/2010 31/12/2012 giulio.conte@am

bienteitalia.it

Giulio CONTE http://www.wataclic.eu/ http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=3499

16/09/2011 Already on list

WATLIFE Enhancement of Public

Awareness of the Importance of

Water for Life, its Protection and

Sustainable Use in Accordance

with the Water Framework

LIFE-INF LIFE08 INF/SK/000243 01/01/2010 31/12/2013 [email protected] Director General

of Water

Research

Institute

Ing. Juraj Brtko,

http://www.vuvh.sk/inde

x.php/sk_SK/projekt-

life/zakladne-

informacie-o-projekte

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=3503

16/09/2011 Already on list

RENEW Regional Environmental

Networks for Energy & Water

LIFE-INF LIFE07 INF/UK/000932 01/01/2009 31/12/2011 [email protected]

.uk

Jo KAYE http://www.energysavin

gtrust.org.uk/corporate

/Corporate-and-media-

site/Key-

initiatives/New-

http://ec.europa.eu/environm

ent/life/project/Projects/index.

cfm?fuseaction=search.dspP

age&n_proj_id=3312

12/01/2012

Website

Page 94: LIFE Water Study

LIFE III NAT projects 34

LIFE + NAT projects 32

LIFE2010 NAT projects 16

LIFE INF projects 14

TOTAL 96

TOTAL Numbers

Page 95: LIFE Water Study

YES Maybe Keywords

Project acronym Project title Funding contract code

start date

end date e-mail coordinator

name coordinator Website entered LIFE database website

Data Info collected

Yes maintenance (technical)‚ integrated management‚

drinking water‚ water supply

A.S.A.P. Actions for systemic aquifer protection: implementation and demonstration of a Protocol to scale down groundwater vulnerability to pollution due to

LIFE-ENV LIFE06 ENV/IT/000255 02/10/2006 01/10/2009 [email protected] Oberdan CEI http://www.klink.it/gate/asap

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3061

15/03/2011

Yes agricultural method, environmental impact of

agriculture, water resources management

AGWAPLAN Integrated Protection of Surface and Groundwater in Agricultural Regions

LIFE-ENV LIFE05 ENV/DK/000155 01/11/2005 01/03/2009 [email protected] Irene Asta WIBORG

http://www.agwaplan.dk/agwaplan.htm

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2822

21/03/2011

Yes pest control‚ agricultural pollution‚ water quality‚

ArtWET Mitigation of agricultural nonpoint-source pesticide pollution and phytoremediation in artificial wetland ecosystems

LIFE-ENV LIFE06 ENV/F/000133 01/10/2006 30/09/2009 [email protected] Caroline GREGOIRE

http://www.artwet.fr/artwet/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3099

15/03/2011

Yes agricultural method, environmental impact of

agriculture, pollution t l t t l

AWARE Reducing pesticide-related water pollution by improving crop protection practices: The use of embedded ICT*technologies

LIFE-ENV LIFE05 ENV/F/000058 01/12/2005 28/02/2009 [email protected]

Bernadette RUELLE

http://www.lifeaware.org/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=286

15/03/2011

Yes water reuse, textile industry

BATTLE Best Available Technique for water reuse in TextiLE SMEs

LIFE-ENV LIFE05 ENV/IT/000846 01/12/2005 30/11/2008 [email protected]

Maurizio CASARCI

http://www.life-battle.bologna.enea.it/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2872

20/09/2011

Maybe industrial waste, organic waste, fishing industry

BE-FAIR Benign and environmentally friendly fish processing practices to provide added value and innovative solutions for a responsible and sustainable management of fisheries.

LIFE-ENV LIFE05 ENV/E/000267 15/11/2005 15/11/2008 [email protected] Antonio Álvarez Alonso

http://www.befairproject.com/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2876

20/09/2011

Yes agricultural method, groundwater, pest

control, environmental impact of agriculture,

horticulture

CEPE Reduction of pest control impact of horticulture on ground and surface water through a system of constant crop monitoring, early diagnoses, prevention and early treatment

LIFE-ENV LIFE05 ENV/NL/000021 01/10/2005 31/12/2007 [email protected] Rob MEIJER http://www.cepe-life.nl/NL/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2866

23/03/2011

Yes water resources management‚

environmental impact of agriculture‚ integrated

management

CONCERT'EAU Collaborative Technological Plateform for implementation for WDF within agricultural context

LIFE-ENV LIFE06 ENV/F/000132 01/10/2006 30/09/2009 [email protected] Jean RIVENC http://concerteau.ecobag.org

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3100

23/03/2011

Yes pollution control‚ water resources management

COPEAU Network for water quality monitoring LIFE-TCY LIFE06 TCY/TN/000275 01/01/2007 30/06/2010 [email protected] Noura LAROUSSI

http://www.aquapole.ulg.ac.be/index.php?pg=52&nr=25

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3178

23/03/2011

Yes pollutant analysis‚ clean technology‚ waste water

treatment‚ water monitoring‚ municipal

waste

CROWATER Stenghtening of public-private partnership in order to improve wastewater management in Croatia

LIFE-TCY LIFE05 TCY/CRO/000108

01/02/2006 01/02/2009 [email protected] Siniša ŠIRAC http://www.life.voda.hr/life2/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2961

23/03/2011

Yes risk assessment‚ environmental impact of tourism‚ coastal area‚

environmental management

DESTINATIONS Development of Strategies for Sustainable Tourism Investments in the Mediterranean Nations

LIFE-TCY LIFE06 TCY/INT/000250 01/02/2007 01/12/2009 [email protected] Ivica Trumbic http://www.project-destinations.org/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3171

30/03/2011

Yes environmental impact of agriculture, manure

Ecodiptera Implementation of a management model for the ecologically sustainable treatment of pig manure in the Region of Los Serranos, Valencia-Spain

LIFE-ENV LIFE05 ENV/E/000302 01/12/2005 30/11/2008 [email protected] Emilio SANCHIS MOLL

http://www.ecodiptera.info/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2897

20/09/2011

Of interest? General project information Website

Page 96: LIFE Water Study

Yes energy saving‚ emission reduction‚ coating‚

marine environment‚ environmental impact of transport‚ shipbuilding

ECOTEC-STC Demonstration of a 100% non-toxic hull protection and anti-fouling system contribution to zero emissions to the aquatic environment and saving 3-8 % heavy fuels

LIFE-ENV LIFE06 ENV/B/000362 01/06/2006 01/12/2009 [email protected] Kristof ADAM http://www.hydrex.be/life_index.htm

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3087

20/09/2011

Maybe urban area, social participation,

contaminated area, EC regulation on eco-

management and audit, harbour, restoration

measure

Elefsina 2020 Collaborative Environmental Regeneration of Port-Cities: Elefsina Bay 2020

LIFE-ENV LIFE05 ENV/GR/000242 01/10/2005 30/09/2009 [email protected] Panagiotis MANAKOS

http://www.life-ole.gr/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2836

20/09/2011

Yes protected area, rural area, mountainous area, coastal area, agricultural pollution, diffuse pollution

EnviFriendly Environmental Friendly Technologies for Rural Development

LIFE-ENV LIFE05 ENV/GR/000245 01/12/2005 31/05/2009 [email protected]

Dimitros LIAKAKOS

http://www.envifriendly.tuc.gr

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2835

23/03/2011

Yes urban area, harbour, water treatment, rain

water, pollutant elimination

ESTRUS ENhanced and SUstainable TReatment for URban Stormwater

LIFE-ENV LIFE05 ENV/IT/000894 01/10/2005 30/09/2008 [email protected] Vittoria SIVERO http://www.estrus.it/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2885

23/03/2011

Maybe waste reduction, environmental

management, animal husbandry, rural area,

agricultural waste

ES-WAMAR Environmentally-friendly management of swime waste based on innovative thechnology: a demonstration project set in Aragón (Spain)

LIFE-ENV LIFE06 ENV/E/000044 01/10/2006 31/03/2011 [email protected] Arturo DAUDÉN IBAÑEZ

http://www.life-eswamar.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3070

20/09/2011

Yes agricultural method‚ fertiliser‚ pollution control irrigation

FERTIGREEN Sustainable management of water reducing environmental impact using new fertirrigation methods

LIFE-ENV LIFE05 ENV/E/000289 01/08/2005 01/08/2008 [email protected] Nathalie CHAVRIER

http://www.fertigreen.net/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseacti

h d P & j id 289

23/03/2011

Yes risk management‚ water resources management‚

flood‚ rain water‚

FLAFLOM Flash Floods in Egypt :protection and management

LIFE-TCY LIFE06 TCY/ET/000232 01/01/2007 31/12/2009 [email protected] Sameh SAKR http://www.flaflom.org/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3169

14/04/2011

Yes Flood‚ public awareness campaign‚ modelling‚ remote sensing‚ risk

management

FLOODSCAN LArge scale adjustment of new technology for fast, precise and cost-efficient hydraulic 2d-modelling of flood (hazard) areas by combining laser scanning with remote sensing data

LIFE-ENV LIFE06 ENV/D/000461 01/07/2006 31/12/2009 [email protected] Dieter RIEGER http://www.wzw.tum.de/floodscan/index.php

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3080

14/04/2011

Yes industrial waste water,pollutant elimination

FORMOSE The demonstration of the environmental benefits of a new chemical process (Formose), capable of 100% reduction of formaldehyde from industrial effluent waste streams

LIFE-ENV LIFE05 ENV/UK/000126 17/01/2005 31/03/2007 [email protected] Stephen Burge http://www.formose.co.uk/Pages/VisitProject.aspx

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2832

20/09/2011

Yes decision making support, water saving, irrigation,

information system

gEa Excellence in irrigation water management LIFE-ENV LIFE05 ENV/E/000313 01/09/2005 28/02/2007 [email protected]

Daniel CAMIRUAGA

http://www.life-gea.org/index_en.html

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2891

14/04/2011

Yes pollution control‚ quarry‚ industrial waste‚ public-

private partnership‚ technology transfer‚

industrial waste water

HAGAR Environmental action for the sustainability of natural resources through recycling of water and sludge frm marble production

LIFE-TCY LIFE05 TCY/GA/000115 09/01/2006 30/07/2008 [email protected]

Tawfik ARAFEH http://www.lifehebron.com/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2964

20/09/2011

Yes water quality improvement

IBISS Italian-Egyptian Capacity Building in the Integrated Water Supply and Sanitation

LIFE-TCY LIFE06 TCY/ET/000226 01/01/2007 31/12/2008 [email protected] Eng. Mamdouh RASLAN

http://www.ibisslife.com.eg/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3168

20/09/2011

Yes management plan‚ river management‚ river‚ landscape protection

IBM Central Posavina - Wading toward Integrated Basin Management

LIFE-TCY LIFE05 TCY/CRO/000111

09/01/2005 31/08/2008 [email protected] Goran GUGIĆ http://www.life.pp-lonjsko-pohttp://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2962

23/03/2011

Yes heavy metal, industrial pollution, groundwater, metal products industry,

decontamination

INSIMEP In Situ Metal Precipitation for remediation of groundwater contaminated with non ferrous metals

LIFE-ENV LIFE05 ENV/B/000517 19/09/2005 18/06/2009 [email protected]

Koen GOMMERS

http://wwwa.vito.be/insimep/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2857

20/09/2011

Page 97: LIFE Water Study

Yes pollutant monitoring‚ environmental impact of

agriculture‚ river management

ISONITRATE Improved management of nitrate pollution in water using isotopic monitoring

LIFE-ENV LIFE06 ENV/F/000158 01/11/2006 31/01/2010 [email protected] David WIDORY http://isonitrate.brgm.fr/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3107

23/03/2011

Yes waste water treatment IWPM Integrated Wastewater Purification Management

LIFE-ENV LIFE06 ENV/D/000478 01/10/2006 31/10/2011 [email protected] Helmut WILKER http://www.eu-life-iwpm.de/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3073

20/09/2011

Yes waste water treatment‚ water monitoring‚ water

quality‚

Kolisoon A new automated method for the analysis of Escherichia coli in wastewater effluent

LIFE-ENV LIFE06 ENV/IT/000235 01/12/2006 30/09/2009 [email protected] Francesca SANTORI

http://www.lifekolisoon.it http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3082

21/09/2011

Yes waste recycling‚ sewage sludge‚ residual waste

LOTECOTEC Efficient recycling and disposal of sewage sludge with innovative thermo-catalytic low temperature conversion technique

LIFE-ENV LIFE06 ENV/D/000458 01/11/2006 30/04/2010 [email protected]

Joachim STODOLKA

http://www.lotecotec.eu/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3077

21/09/2011

Yes water quality improvement‚ waste

water treatment‚ coastal area‚ bathing water

MARECLEAN Risk based reduction of microbial pollution discharge to coastal waters

LIFE-ENV LIFE06 ENV/F/000136 01/10/2006 30/12/2009 [email protected]

Clément NALIN http://www.smbcg-mareclean.eu

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3104

23/03/2011

Yes sewage sludge‚ organic waste‚ compost‚ sludge

treatment

MOROCOMP Design and Application of an Innovative Composting Unit for the Effective Treatment of Sludge and other Biodegradable Organic Waste in Morocco

LIFE-TCY LIFE05 TCY/MA/000141 01/02/2006 01/08/2008 [email protected]; [email protected]

Mohamed KOUAM

http://www.uest.gr/Morocomp/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2970

23/03/2011

Yes river‚ biodiversity‚ energy supply‚

environmental impact of energy‚ renewable

energy

Moveable HEPP Demonstration Plant in the Kinzig River: Moveable Hydroelectric Power Plant for Ecological River Improvements and Fish Migration Reestablishment

LIFE-ENV LIFE06 ENV/D/000485 01/10/2006 30/06/2011 [email protected]

Georg SCHMID http://www.moveable-hepp.com/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3075

23/03/2011

Yes Flood protection‚ monitoring‚ nature

conservation

MR Mo ToWFO Managed Realignment Moving Towards Water Framework Objectives

LIFE-ENV LIFE06 ENV/UK/000401 01/10/2006 31/12/2009 [email protected]

Philip Winn http://www.environment-agency.gov.uk/homeandleisure/floods/123710.aspx

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3068

17/05/2011

Yes Alternative technology‚ pollution prevention‚

landfill leachate‚ groundwater

MULTIBARDEM Demonstration of a MULTIBARRIER as a sustainable approach for the prevention of groundwater contamination by leaking landfills and multipollutant contaminated sites : a cheap alternative to landfill reinstallation and/or leachate treatment

LIFE-ENV LIFE06 ENV/B/000359 01/11/2006 30/08/2010 [email protected] Leen BASTIAENS

http://www.multibarrier.vito.be/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3086

23/03/2011

Yes environmental law‚ clean technology‚ water reuse

NAORA Wastewater treatment and reuse for irrigation: demonstration, management and administrative capacity building for sustainable water use and environmental protection

LIFE-TCY LIFE06 TCY/MA/000256 02/01/2007 31/12/2010 [email protected] Ahmed NEJMEDDINE

NONE http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3174

23/03/2011

Yes research project, agricultural pollution,

diffuse pollution, water quality improvement, restoration measure

NITRABAR Remediation of agricultural diffuse nitrate polluted waters though the implementation of a permeable reactive barrier

LIFE-ENV LIFE05 ENV/UK/000137 01/12/2005 31/09/2009 [email protected]

Simon JACKMAN

Non active http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2838

23/03/2011

Yes agricultural pollution, water pollution, river

management

Odense PRB - AgriPoM

Odense Pilot River Basin - Agricultural Programme of Measures

LIFE-ENV LIFE05 ENV/DK/000145 15/01/2005 30/06/2007 [email protected] Harley Bundgaard Madsen

http://www.odenseprb.fyns-amt.dk/wm125969

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2820

23/03/2011

Yes industrial waste, waste reduction, edible fat,

waste oil"

OLIVEWASTE Processing plant for the integral treatment and valorisation of the wasted generated during the olive oil production process

LIFE-ENV LIFE05 ENV/E/000292 30/11/2005 30/03/2009 [email protected] José Ramón PERÁN GONZÁLEZ

http://life-olivewaste.cartif.com/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2900

23/03/2011

Yes water resources management‚ integrated management‚ modelling

OpenMI-LIFE Bringing the OpenMI-Life LIFE-ENV LIFE06 ENV/UK/000409 01/10/2006 31/01/2010 [email protected] C. Isabella TINDALL

http://www.openmi-life.org/; http://public.deltares.nl/display/OPENMI/Home; http://www.openmi.org/reloaded/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3058

15/03/2011

Page 98: LIFE Water Study

Yes waste water treatment PERBIOF A new technology for treating municipal and/or industrial wastewater with low environmental impact

LIFE-ENV LIFE05 ENV/IT/000868 15/11/2005 14/11/2008 [email protected]

Claudio DI IACONI

http://www.perbiof-europe.com/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2878

21/09/2011

Maybe touristic zone PRE-THERM Preservation of Thermal Water Resources and Sustainable Exploitation for Therapeutic Tourism

LIFE-TCY LIFE06 TCY/TR/000284 01/01/2007 30/06/2009 [email protected] Ibrahim Vural http://www.karahayit.bel.tr/haberler.asp

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3181

20/09/2011

Yes waste water treatment, waste reduction,

industrial waste water

PROMOTHE MBR

Process water recycling with a thermophile membrane bio reactor installation for treatement of hightemperature waste water, containing recalcitrant cod -varying in load, concentration and composition-with almost zero waste (sludge) production.

LIFE-ENV LIFE05 ENV/UK/000121 18/01/2005 31/05/2008 [email protected]

Alastair MACGREGOR

http://www.mbr-glasgow.com/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2829

21/09/2011

Yes clean technology, plastic PVClean Optimising process Water Handling in S-PVC Production - PVClean

LIFE-ENV LIFE06 ENV/D/000470 01/12/2005 31/12/2008 [email protected]

Jörg HESSBERG

http://www.vinnolit.de/vinnolit.nsf/id/DE_LIFE_III__PVClean

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3085

21/09/2011

Yes river, environmental awareness, quality of life,

restoration measure, urban development,

integrated management, green space

QUERCUS Maintaining quality urban environments for river corridors users and stakeholders

LIFE-ENV LIFE05 ENV/UK/000127 01/04/2005 30/03/2009 [email protected]

Paul CHAPMAN http://www.quercus-project.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2978

23/03/2011

Yes leather industry, industrial waste water, pollutant elimination

RIWAC Project for recovery and reuse of industrial waters and trivalent chromium generated by tannery waste processing

LIFE-ENV LIFE05 ENV/IT/000812 01/10/2005 30/09/2008 [email protected] Massimo Neresini

http://www.sicit2000.it/life05/en/index.htm

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2853

21/09/2011

Yes landscape protection‚ nature conservation

SAVA RIVER BASIN

Protection of Biodiversity of the Sava River Basin Floodplains

LIFE-TCY LIFE06 TCY/INT/000246 01/01/2007 31/12/2009 [email protected] Tamas MARGHESCU

http://www.savariver.com/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3170

15/03/2011

Yes use of waste as energy source‚ waste water treatment‚ sewage

sludge

SLUDGE2ENERGY

Waste prevention through sewage sludge reuse for efficient energy generation at waste water treatment sites

LIFE-ENV LIFE06 ENV/D/000460 01/10/2006 30/09/2011 [email protected] Robert FREYGANG

http://www.sludge2energy.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3079

21/09/2011

Maybe n.a SMAS Capacity building for an early assessment system of drought in three countries of the south shore of the Mediterranean sea: Algeria, Morocco and Tunisia

LIFE-TCY LIFE05 TCY/TN/000150 01/03/2006 30/09/2009 [email protected] Mourad BRIKI http://prog.oss.org.tn/smas/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2972

20/09/2011

Yes waste water treatment, waste reduction, sewage

sludge

SOUND SLUDGE

Upgrading of wastewater treatment plants with ultrasound treatment for reducing the production of sludge

LIFE-ENV LIFE05 ENV/F/000067 01/10/2005 31/12/2008 [email protected]

Sandrine BOIRON

http://extranet.groupeirhenvironnement.com/soundsludge/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2854

21/09/2011

Maybe Pollution prevention‚ harbour‚ hazardous

substance

STABLE Controlled Treatment of TBT-Contaminated Dredged Sediments for the Beneficial Use in Infrastructure Applications Case: Aurajoki - Turku

LIFE-ENV LIFE06 ENV/FIN/000195 01/04/2006 31/03/2009 [email protected]

Jarmo YLETYINEN

http://projektit.ramboll.fi/life/stable/index.asp

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3102

21/09/2011

Yes decision making support, water quality improvement, groundwater

SUMANAS Sustainable management and treatment of arsenic bearing groundwater in Southern Hungary

LIFE-ENV LIFE05 ENV/H/000418 15/11/2005 14/11/2008 [email protected] Laszlo RÉTI http://www.korkovizig.hu/life/en-index.php?nyelv=en

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2861

23/03/2011

Yes management plan‚ ecotourism‚ river‚

drinking water‚ social participation‚ nature

conservation

SUSTAINABLE JORDAN R

The Sources of the Jordan River, Humans and Nature

LIFE-TCY LIFE05 TCY/IL/000130 01/11/2005 01/11/2008 [email protected] Moshe Shalit http://www.galil-elion.org.il/info/machlakot/tashtiyot/sviva/life/welcome.htm

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2966

15/03/2011

Yes agroindustry, environmental training,

industrial pollution, water pollution

TOPPS Train the operators to prevent pollution from point sources

LIFE-ENV LIFE05 ENV/B/000510 01/11/2005 31/10/2008 [email protected] Stuart RUTHERFORD

http://www.topps-life.org/web/page.asp

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2855

21/09/2011

Page 99: LIFE Water Study

Yes international river basin‚ water resources management‚

environmental training‚ local authority

TRANS-BOUNDARY WATER/PRO-AQUIFER

Protecting trans-boundary groundwater sources from pollution: research, training and guidelines for Israeli and Palestinian municipalities

LIFE-TCY LIFE06 TCY/IL/000240 01/01/2007 01/01/2009 [email protected] Gidon BROMBERG

Not active http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3172

15/03/2011

Yes water treatment‚ urban area‚ rain water‚

pollutant elimination‚

TREASURE Treatment and re-use of urban stormwater runoff by innovative technologies for removal of pollutants

LIFE-ENV LIFE06 ENV/DK/000229 01/10/2006 01/10/2009 [email protected] Kenn LANGE http://www.life-treasure.com

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3103

18/09/2011

Maybe vegetable oil‚ environmental

awareness‚ emission reduction‚ rural area‚

biofuel

VOICE Vegetable oil initiative for a cleaner environment

LIFE-ENV LIFE06 ENV/IT/000257 01/10/2006 31/12/2009 [email protected] David CHIARAMONTI

http://crear.bluefactor.it/index.php?module=CMpro&func=viewpage&pageid=14&expsubid=2; http://crear.unifi.it/imes/forum/index.php?c=11

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3063

21/09/2011

Yes agricultural pollution, social participation, water resources management,

diffuse pollution

WAgriCo Water Resources Management in Cooperation with Argriculture. Compilation and Implementation of Integrative Programmes of Measures According to the WFD to Reduce Diffuse Pollution from Agriculture

LIFE-ENV LIFE05 ENV/D/000182 01/10/2005 30/09/2008 [email protected]

Astrid KRÜGER (1) http://www.nlwkn.niedersachsen.de/live/live.php?navigation_id=8247&article_id=45185&_psmand=26; (2) http://www.wagrico.org/site/WAgriCo/wagricoorguk/content/home

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2882

23/03/2011

Yes water quality improvement‚ waste

water treatment‚ municipal waste

WET Wastewater & Effluent Treatmen LIFE-ENV LIFE06 ENV/NL/000167 01/12/2005 30/06/2009 [email protected] Jeffrey DEN ELZEN

http://www.rijnland.net/wet-project

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3090

24/02/2011

Maybe atmospheric pollution‚ emission reduction‚

energy supply‚ navigation

ZEM/SHIPS Zero.Emission.Ships LIFE-ENV LIFE06 ENV/D/000465 01/11/2006 30/04/2010 [email protected]

Anke STOLPER http://www.zemships.eu/en/index.php

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3081

21/09/2011

Yes industrial waste, waste treatment, coating, metal

products industry

ZERO PLUS Integral liquid residuals management model for surface tratment industries through

LIFE-ENV LIFE05 ENV/E/000256 01/12/2005 31/07/2009 [email protected] Manuel Sánchez De La Asunción

http://www.zeroplus.eu/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2874

21/09/2011

Page 100: LIFE Water Study

YES Maybe Keywords

Project acronym Project title Funding contract code

start date

end date e-mail coordinator name coordinator Website entered LIFE database website

Data Info collected

Maybe marine ecosystem‚ Waste management‚ industrial waste‚

solid waste‚ harbour

3R-FISH Integral management model of recovery and recycling of the proper solid waste from the fishing and port activities

LIFE-ENV LIFE07 ENV/E/000814

01/01/2009 01/01/2012 [email protected] Julio Taboada Pérez http://www.3rfish.org http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3287

14/09/2011

Yes water shortage‚ agricultural method‚ water saving

Adapt2Change Adapt agricultural production to climate change and limited water supply

LIFE-ENV LIFE09 ENV/GR/000296

01/09/2010 31/08/2014 [email protected] Dr Alex Papachatzis http://www.adapt2change.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3674

16/09/2011

Yes water resources management‚ monitoring system‚ remote

sensing

AG_UAS Sustainable water management at regional scale through Airborne Remote Sensing based on Unmanned Aerial Systems (UAS)

LIFE-ENV LIFE09 ENV/ES/000456

01/10/2010 30/09/2013 [email protected] Teofilo VITORIA http://www.lifeaguas.es/en/proyecto-aguas

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3649

15/03/2011

Yes Diffuse pollution, animal husbandry‚ environmental impact of agriculture‚ river‚ water quality improvement‚

groundwater

AQUA Achieving good water QUality status in intensive Animal production areas

LIFE-ENV LIFE09 ENV/IT/000208

01/10/2010 31/03/2014 [email protected] Marco LIGABUE http://aqua.crpa.it/nqcontent.cfm?a_id=9599&tt=t_law_market_www

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3645

16/09/2011

Yes water resources management‚ water saving‚ public-private partnership‚ agroindustry

AQUA Adoption of Quality water Use in Agro-industry sector

LIFE-ENV LIFE09 ENV/IT/000075

01/01/2011 30/06/2013 [email protected] Donatella FERRI http://www.life-aqua.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3753

16/09/2011

Yes river‚ integrated management AQUA-PLANN PROJECT

Gestion Integrada de los Recursos Hidricos y su Aplicacion en el Planeamiento Local del L.I.C. Abegondo - CECEBRE

LIFE-ENV LIFE07 ENV/E/000826

01/01/2009 30/06/2012 [email protected]

Carlos AMEIJENDA http://www.aqua-plann.eu

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3289

14/09/2011

Yes river‚ waste water treatment‚ urban area‚ rain water

AQUAVAL Sustainable Urban Water Management Plans, promoting SUDS and considering Climate Change, in the Province of Valencia

LIFE-ENV LIFE08 ENV/E/000099

01/01/2010 30/06/2013 [email protected]

Eduardo BALAGUER PALLÁS

http://www.aquavalproject.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3448

15/09/2011

Yes Diffuse pollution, restoration measure‚ volatile organic

compound‚ metal products industry‚ industrial pollution‚

contaminated area

BACad Using full scale bioaugmentation for cost-efficient remediation of a large CAH groundwater contamination

LIFE-ENV LIFE07 ENV/B/000022

01/01/2009 31/12/2013 [email protected]

Chris BLOCK http://www.bioaugmentatie.be/web/bioaugmentatietpl1.asp?customer=17&ut=L&hma

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3302

13/09/2011

Yes waste water treatment‚ marine pollution‚ industrial waste water

BaltActHaz Baltic actions for reduction of pollution of the Baltic Sea from priority hazardous substances

LIFE-ENV LIFE07 ENV/EE/000122

01/01/2009 31/12/2011 [email protected] Kitty Kislenko http://www.baltacthaz.bef.ee/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3285

13/09/2011

Yes clean technology‚ waste water treatment‚ biofuel

BIOCELL Energy self-sustaining and environmental footprint reduction on wastewater treatment plants via fuel cells

LIFE-ENV LIFE07 ENV/E/000847

01/01/2009 31/12/2011 [email protected]

Rosa Maria PIERAS http://www.life-biocell.eu

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3279

13/09/2011

Maybe urban area‚ waste use‚ public-private partnership‚ waste oil‚

biofuel

BIOFUELS-2G Demonstration of a Sustainable & Effective 2nd Generation Biofuels Application in an Urban Environment

LIFE-ENV LIFE08 ENV/GR/000569

01/01/2010 31/12/2012 [email protected] Spyros VOUTETAKIS http://www.biofuels2g.gr/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3465

15/09/2011

Maybe sport facility‚ Waste management‚ environmentally

friendly product‚ navigation‚ life-cycle management

BOATCYCLE Management, recycling and recovery of wastes of recreational boat scrapping

LIFE-ENV LIFE08 ENV/E/000158

01/01/2010 01/07/2012 [email protected] Ciro AVOLIO http://www.life-boatcycle.com/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3455

15/09/2011

Yes river‚ soil degradation‚ risk management

CATERMASS Climate Change Adaptation Tools for Environmental Risk Mitigation of Acid Sulphate Soils

LIFE-ENV LIFE08 ENV/FIN/000609

01/01/2010 31/12/2013 Kari-Matti VUORIFax: +358 20 4902985

http://www.catermass.fi/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3474

15/09/2011

Of interest? General project information Website

Page 101: LIFE Water Study

Yes river‚ decision making support‚ monitoring system‚ pollution

control

CLEANWATER Integrated system for protect and analyse the status and trends of water threatened by nitrogen pollution

LIFE-ENV LIFE09 ENV/RO/000612

15/10/2010 01/03/2014 [email protected]; [email protected]

Maria Cristina TRIFU http://www.lifecleanwater.ro/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3639

16/09/2011

Yes Coastal area, contamined soil‚ integrated management‚

harbour‚ hazardous substance

COAST-BEST CO-ordinated Approach for Sediment Treatment and BEneficial reuse in Small harbours neTworks

LIFE-ENV LIFE08 ENV/IT/000426

01/01/2010 31/12/2012 [email protected]

Alessandra Polettini http://www.coast-best.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3434

15/09/2011

Yes Waste management‚ environmental awareness‚

urban area‚ municipal waste‚ i t l l

COR Campaña Objetivo Residuos (Waste Objective Campaign)

LIFE-INF LIFE08 INF/E/000187

01/01/2010 31/12/2012 [email protected] Anna GONZALEZ BATLLE

http://www.emacorlife.cat/es/proyecto-life-cor/life-.html

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3512

14/09/2011

Maybe alternative technology‚ agricultural waste‚

slaughterhouse‚ fertiliser‚ waste use

Cowtoplant Bio-treatement of cow wastes to produce bio-stimulants for plants

LIFE-ENV LIFE07 ENV/E/000788

20/01/2009 20/01/2012 [email protected]

Maria ENGRACIA CARRIÓN

http://www.cowtoplant.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3303

14/09/2011

Yes pollutant elimination‚ restoration measure‚ agricultural method‚

environmental impact of agriculture‚ water quality

CREAMAgua Creation and restoration of aquatic ecosystems for improvement of water quality and biodiversity in agricultural basins

LIFE-ENV LIFE09 ENV/ES/000431

01/01/2011 31/12/2014 [email protected]

Francisca GALLEGO OLIVA

http://www.creamagua.com/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3661

16/09/2011

Maybe waste use‚ building material‚ sewage sludge

EcoBrick Manufacturing Sand-Limestone Bricks, Recycling Energy and Organics from Sewage Sludge

LIFE-ENV LIFE08 ENV/D/000029

01/01/2010 30/06/2013 [email protected] Karl-Ulrich RUDOLPH NONE FOUND

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3447

15/09/2011

Yes waste water treatment‚ modelling‚ rural area

ECOMAWARU Eco-sustainable managmenet of water and wastewater in rural communities

LIFE-ENV LIFE08 ENV/IT/000390

01/03/2010 28/02/2013 [email protected]

Michela MARCONE www.ecomawaru.it http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3402

15/09/2011

Maybe agricultural waste‚ fertiliser‚ use of waste as energy source‚

emission reduction‚ organic waste‚ greenhouse gas‚

ECOREGA Green (environmentally friendly) management of cattle farm waste and its repercussion on the GHG emissions

LIFE-ENV LIFE09 ENV/ES/000459

01/01/2011 31/12/2012 [email protected]

Paula CONTE http://life.unionsagrarias.org/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3691

16/09/2011

Yes Marine ecosystem‚ environmental awareness‚ food

production‚ certification‚ coastal management

ECOSMA Ecological Certification of Products from Sustainable Marine Aquaculture

LIFE-ENV LIFE07 ENV/D/000229

01/01/2009 31/12/2011 [email protected]

Stefan REHM http://www.ecosma.de

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3299

14/09/2011

Yes river‚ urban area‚ environmental training‚

management plan‚ water resources management‚

EH-REK Ecohydrologic rehabilitation of recreational reservoirs "Arturówek" in Łódź as a model approach to rehabilitation of urban reservoirs

LIFE-ENV LIFE08 ENV/PL/000517

01/01/2010 31/12/2014 [email protected] Prof. dr hab. Maciej Zalewski

http://www.arturowek.pl/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3497#AD

15/09/2011

Yes diffuse pollution‚ recreational area‚ restoration measure‚

environmental impact of agriculture‚ eutrophication‚

monitoring‚ river‚ water quality

EKOROB ECOtones for Reducing Diffusion Pollution

LIFE-ENV LIFE08 ENV/PL/000519

01/01/2010 31/12/2014 [email protected]

Wojciech FRATCZAK http://www.ekorob.pl/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3496

15/09/2011

Yes water shortage‚ river‚ water quality improvement‚

groundwater

ENSAT Enhancement of Soil Aquifer Treatment to Improve the Quality of Recharge Water in the Llobregat River Delta Aquifer

LIFE-ENV LIFE08 ENV/E/000117

01/01/2010 31/12/2011 [email protected] CETaqua, Technology Center

www.life-ensat.eu/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3429

15/09/2011

Yes marine ecosystem‚ integrated management‚ monitoring system‚ water monitoring‚

nature conservation‚ information network

EnvEurope Environmental quality and pressures assessment across Europe: the LTER network as an integrated and shared system for ecosystem monitoring

LIFE-ENV LIFE08 ENV/IT/000399

01/01/2010 31/12/2013 [email protected]

Alessandra PUGNETTI

http://www.enveurope.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3445

15/09/2011

Yes Fishing industry, integrated management‚ waste recycling‚

survey

FAROS Integral networking of fishing actors to organize a responsible optimal and sustainable exploitation of marine resources

LIFE-ENV LIFE08 ENV/E/000119

15/01/2010 14/01/2013 [email protected] Antonio ÁLVAREZ ALONSO

http://www.farosproject.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3431

15/09/2011

Maybe fishing industry‚ marine ecosystem‚ biodiversity‚

consumption pattern‚ environmental training‚ nature

conservation

FISH SCALE Food Information and Safeguard of Habitat a Sustainable Consumption Approach in Local Environment

LIFE-INF LIFE09 INF/IT/000076

01/10/2010 30/09/2013 [email protected]

Bruna VALETTINI www.fishscale.eu/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3880

16/09/2011

Yes eutrophication‚ river‚ modelling‚ monitoring system‚

management plan‚

GISBLOOM Participatory monitoring, forecasting, control and socio-economic impacts of eutrophication and algal blooms in river basins districts

LIFE-ENV LIFE09 ENV/FI/000569

01/10/2010 30/09/2013 [email protected]

Senior Research Scientist Olli Malve

www.environment.fi/syke/gisbloom

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3719

16/09/2011

Yes clean technology‚ water saving‚ energy saving‚ industrial

process‚

GREEN TESTING Make your Non Destructive Testing greener by new eco-friendly practices and technologies

LIFE-ENV LIFE09 ENV/FR/000600

01/01/2011 31/12/2013 [email protected] Eric CRESCENZO

NONE FOUND

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3724

16/09/2011

Page 102: LIFE Water Study

Yes Flood protection, urban area‚ modelling‚ rain water

GreenClimeAdapt Green tools for urban climate adaptation

LIFE-ENV LIFE07 ENV/S/000908

01/01/2009 31/12/2013 [email protected] Sam Ekstrand http://www.malmo.se/greenclimeadapt

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3263

14/09/2011

Yes waste water treatment‚ energy saving

GREENLYSIS Hydrogen and oxygen production via electrolysis powered by renewable energies to reduce environmental

LIFE-ENV LIFE08 ENV/E/000118

01/01/2010 31/12/2012 [email protected] Enric LARROTCHA http://www.life-greenlysis.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=searh d P & j id 3416

15/09/2011

Yes Flood protection, water resources management‚ urban

planning‚ modelling‚ risk t

HydroClimateStrategyRiga

Integrated Strategy for Riga City to Adapt to the Hydrological Processes Intensified by Climate Change Ph

LIFE-ENV LIFE08 ENV/LV/000451

01/02/2010 30/11/2012 [email protected]

Renārs GRINBERGSNONE FOUND

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3413

15/09/2011

Yes water shortage‚ agricultural method‚ remote sensing‚ water

t

HydroSense Innovative precision technologies for optimised irrigation and integrated

t i t li it d

LIFE-ENV LIFE08 ENV/GR/000570

01/01/2010 31/12/2012 [email protected] Stamatis STAMATIADIS

http://www.hydrosense.org/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=sear

15/09/2011

Maybe pest control‚ public health‚ integrated management‚ coastal area‚ monitoring

system

IMCM Control of noxious or vector mosquitoes: implementation of integrated management consistent with sustainable development

LIFE-ENV LIFE08 ENV/F/000488

01/01/2010 30/06/2013 [email protected]

Christophe LAGNEAU

http://www.lifeplusmoustique.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3424

16/09/2011

Yes decontamination‚ water pollution‚ water quality

improvement‚ monitoring system drinking water

INCOME Improved management of contaminated aquifers by integration of source tracking, monitoring tools and decision strategies

LIFE-ENV LIFE07 ENV/SLO/000725

01/01/2009 30/06/2012 [email protected] Brigita JAMNIK http://www.life-income.si/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3267

14/09/2011

Maybe vegetable oil‚ consumption pattern‚ edible fat‚

INFOIL Promoting sustainable production and consumption patterns: the example of olive oil

LIFE-INF LIFE08 INF/GR/000581

01/01/2010 31/12/2012 [email protected] Georgios PAPADAKIS

http://www.infoil.tuc.gr

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3510

15/09/2011

Yes river‚ water monitoring‚ management plan‚ water resources management‚

INHABIT Local hydro-morphology, habitat and RBMPs: new measures to improve ecological quality in South European rivers and lakes

LIFE-ENV LIFE08 ENV/IT/000413

01/04/2010 31/03/2013 [email protected]; [email protected]

Andrea BUFFAGNI www.life-inhabit.it http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3415

15/09/2011

Yes use of waste as energy source‚ waste water treatment‚

municipal waste‚ organic waste‚ sewage sludge

INTER-WASTE Demonstration of an integrated waste-to-energy system for energy generation from biodegradable organic waste and wastewater

LIFE-ENV LIFE08 ENV/CY/000457

01/01/2010 30/09/2012 [email protected]

Dr. Ioannis Papadopoulos

http://www.interwaste.org/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3480

15/09/2011

Yes sewage treatment system ITEST Increased total efficiency in sewage treatment

LIFE-ENV LIFE08 ENV/S/000272

01/01/2010 31/12/2012 [email protected]

Eva HjälmeredNONE FOUND

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n proj id=3470

15/09/2011

Yes restoration measure‚ water shortage‚ eutrophication‚

Lake recult. in Gniezno

Recultivation of Jelonek and Winiary lakes in Gniezno by inactivation of phosphorus in bottom sediments

LIFE-ENV LIFE07 ENV/PL/000605

01/02/2009 30/11/2010 [email protected]

Piotr WIŚNIEWSKI http://gniezno.eu/strona32wqf435ge/index.php?option=com_con

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3260

14/09/2011

Yes mine‚ abandoned industrial site‚ restoration measure‚ soil degradation‚ site rehabilitation‚

wetland

LOS TOLLOS Project for the comprehensive restoration of the endorheic basin of Los Tollos (El Cuervo and Jerez de la Frontera, Sevilla and Cadiz respectively).

LIFE-ENV LIFE09 ENV/ES/000472

20/09/2010 31/12/2014 [email protected]

Esperanza PEREA ACOSTA

http://www.lifetollos.org/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3684

16/09/2011

Yes contamined soil‚ decontamination‚ groundwater‚

hazardous substance

LVM-BIOcells Using hydrogeobiocells (HGBcells) for the in-situ biological treatment of CAH contaminated groundwater in areas

LIFE-ENV LIFE08 ENV/B/000046

01/01/2010 31/12/2014 [email protected]

Jules HOUTMEYERS http://www.lvm-biocells.be/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n proj id=3407

15/09/2011

Yes water resources management M3 Application of integrative modelling and monitoring approaches for river basin management evaluation

LIFE-ENV LIFE07 ENV/L/000540

01/01/2009 31/12/2012 [email protected] Tom GALLÉ www.life-m3.eu http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3304

14/09/2011

Yes Diffuse pollution, management plan‚ urban area‚

environmental assessment‚

MAGPlan Management plan to prevent threats from point sources on the good chemical status of groundwater in

LIFE-ENV LIFE08 ENV/D/000021

01/01/2010 31/12/2014 [email protected]

Hermann Josef KIRCHHOLTES

http://www.sauberes-grundwasser-stuttgart.de/projekt.ht

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3423

16/09/2011

Yes heavy metal‚ marine pollution‚ pollutant elimination

Mare Purum Mare Purum - Prevention of Marine Fouling on Commercial Shipping and Leisure Boats with a Non Toxic Method

LIFE-ENV LIFE09 ENV/SE/000351

01/09/2010 28/02/2014 [email protected]

Gunilla ÖSTBERG

NONE FOUND

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3711

16/09/2011

Maybe greenhouse gas‚ maritime transport‚ environmental

assessment

MARITIMECO2 Impact assessment for the adoption of CO2 emission trading for maritime transport

LIFE-ENV LIFE08 ENV/CY/000461

20/01/2010 20/07/2012 [email protected]

Sergios SERGHIOU http://www.maritimeco2.com/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3482

16/09/2011

Yes agricultural waste‚ water treatment‚ municipal waste‚

organic waste

METABIORESOR Integrated Pilot Plant for complete energy recovery of different municipal and livestock waste materials and by-products

LIFE-ENV LIFE08 ENV/E/000113

01/01/2010 31/12/2013 [email protected]

Juan Bautista LOBERA LÖSSEL

http://www.metabioresor.eu/proceso-metabioresor.php

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3459

16/09/2011

Yes river‚ urban area MY FAVOURITE RIVER

Sustainable use of and identification with the River Neckar in co-operative governance (national, municipal and regional level)

LIFE-ENV LIFE09 ENV/DE/000011

01/11/2010 31/12/2014 [email protected]

Walter BRAUN

NONE FOUND

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3768

16/09/2011

Yes water treatment‚ domestic waste‚ organic waste‚ compost

N.O.WA.S.T.E New Organic Waste Sustainable Treatment Engine: Implementation and Promotion of a System for the

LIFE-ENV LIFE09 ENV/IT/000070

01/09/2010 31/12/2013 [email protected]

Giuseppe LO BIANCO

www.lifenowaste.it http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3748

16/09/2011

Page 103: LIFE Water Study

Yes pest control‚ contamined soil‚ pollutant elimination‚

groundwater‚ hazardous substance

NorthPestClean Demonstration of alkaline hydrolysis as a new technology for remediation of pesticide contaminated soil and groundwater

LIFE-ENV LIFE09 ENV/DK/000368

01/09/2010 31/12/2013 [email protected]

Morten BONDGAARD

http://www.northpestclean.dk/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3701

16/09/2011

Yes alternative technology‚ flood protection‚ vegetable oil‚ Waste

management‚ environmental awareness‚ industrial waste‚

Olèico+ European awareness raising campaign for an environmentally sustainable olive mill waste management

LIFE-INF LIFE07 INF/IT/000438

01/01/2009 31/12/2011 [email protected] Francesca SANTORI http://www.lifeoleicoplus.it/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3320

14/09/2011

Yes fertiliser‚ waste recycling‚ coastal area

P.R.I.M.E. Posidonia Residues Integrated Management for Eco-sustainability

LIFE-ENV LIFE09 ENV/IT/000061

01/09/2010 01/09/2013 [email protected] Donato SUSCA http://www.lifeprime.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search dspPage&n proj id=3694

16/09/2011

Yes decision making support‚ water saving‚ environmental

performance‚ water supply

PALM Pump And Leakage Management LIFE-ENV LIFE09 ENV/IT/000136

01/09/2010 31/08/2013 [email protected]

Alessandro BETTIN http://www.leakagemanagement.eu

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3738

16/09/2011

Yes waste water treatment‚ waste treatment‚ hospital waste‚ organic waste hazardous

PHARMAFILTER An innovative waste and waste water management concept for hospitals

LIFE-ENV LIFE07 ENV/NL/000576

01/01/2009 30/06/2011 [email protected]

Eduardo van den Berg

http://www.pharmafilter.nl

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=sear

14/09/2011

Maybe marine ecosystem‚ biodiversity PISCES Partnerships Involving Stakeholders in the Celtic sea Eco-System

LIFE-ENV LIFE07 ENV/UK/000943

01/07/2009 30/06/2012 [email protected] Janet Miller http://projectpisces.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=searh d P & j id 3281

14/09/2011

Yes water shortage‚ energy saving‚ water resources management‚

irrigation

POWER Project for Optimisation of Water and Emissions Reduction

LIFE-ENV LIFE08 ENV/E/000114

01/01/2010 31/12/2012 [email protected] Nieves ZubalezNONE FOUND

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3428

16/09/2011

Maybe vegetable oil‚ soil degradation‚ industrial waste‚ edible fat‚

pollution prevention‚ environmental impact

assessment

PROSODOL Stategies to improve and protect soil quality from the disposal of olive mills' wastes in the Mediterranean region

LIFE-ENV LIFE07 ENV/GR/000280

01/01/2009 31/12/2012 [email protected]; [email protected]; [email protected]

Maria DOULA http://www.prosodol.gr/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3297

14/09/2011

Yes waste water treatment‚ water reuse‚ environmental

performance‚ management plan

PURE From Treated Wastewater to Alternative Water Resources in Semi-Arid Regions

LIFE-ENV LIFE08 ENV/GR/000551

01/01/2010 30/06/2013 [email protected] Dimitris YIAKOUMAKIS

http://www.pure-hersonissos.gr/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3439

16/09/2011

Maybe waste reduction‚ waste oil‚ navigation‚ shipbuilding

Pure Energy Separator

Innovative Centrifugal Separator Technology for Energy Recovery and Oily Waste Volume Reduction

LIFE-ENV LIFE09 ENV/SE/000352

01/09/2010 30/06/2013 [email protected]

Tomas OLDEBÄCK

NONE FOUND

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3713

16/09/2011

Yes waste water treatment‚ textile industry‚ industrial waste water‚

alternative technology‚ comparison

PURIFAST Advanced Purification Of Industrial And Mixed Wastewater By Combined Membrane Filtration And Sonochemical Technologies

LIFE-ENV LIFE07 ENV/IT/000439

01/01/2009 31/12/2011 [email protected]

Enrico VENTURINI http://purifast.tecnotex.it/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3284

14/09/2011

Yes waste water treatment‚ urban area‚ organic waste‚ sewage

sludge

PYROBIO New process for the heat treatment and the energy valorisation of the sludge coming from wastewater treatment plant.

LIFE-ENV LIFE08 ENV/F/000489

01/01/2010 31/10/2011 [email protected]

Pascal Colignon http://www.pyrobio.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3494

24/02/2011

Maybe waste treatment‚ maritime transport‚ hazardous waste‚

shipbuilding

Recyship Proyecto piloto de desmantelamiento y descontaminación de barcos fuera de uso

LIFE-ENV LIFE07 ENV/E/000787

01/01/2009 31/12/2012 [email protected]

Miguel Ángel García Molina

http://www.recyship.com/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3241

14/09/2011

Yes clean technology‚ paper industry

RESALTTECH Concentrated saline rejection treatment: Environmental Technology using a non profitable solid waste as energy source

LIFE-ENV LIFE08 ENV/E/000133

01/01/2010 31/12/2012 [email protected] Joan Carles CASTELL

http://www.resalttech.com/en/contact/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3453

16/09/2011

Yes restoration measure‚ information network‚ river

RESTORE Rivers: Engaging, Supporting and Transferring knOwledge for Restoration in Europe

LIFE-INF LIFE09 INF/UK/000032

01/09/2010 30/09/2013 [email protected] WIM ZEEMAN http://www.environment-agency.gov.uk/aboutus/wfo/128855 aspx

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3780

16/09/2011

Maybe vegetable oil‚ clean technology‚ waste use‚ edible fat‚ industrial

waste water

RE-WASTE Recovery, recycling, resource. Valorisation of olive mill effluents by recovering high added value bio-products.

LIFE-ENV LIFE07 ENV/IT/000421

01/01/2009 31/12/2011 [email protected]

Antonio CATURANO http://www.re-wasteproject.it

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3247

14/09/2011

Yes waste water treatment‚ integrated management‚

wetland‚ water resources management

REWETLAND Widespread introduction of constructed wetlands for a wastewater treatment of Agro Pontino

LIFE-ENV LIFE08 ENV/IT/000406

01/01/2010 30/06/2013 [email protected]; [email protected]

Nicoletta VALLE http://www.rewetland.eu/life/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3457

16/09/2011

Maybe organic farming‚ vegetable oil‚ agricultural method‚ EC

regulation on eco-management and audit‚ environmental

assessment

SAGE10 Establishment of Impact Assessment Procedure as a tool for the sustainability of agroecosystem: the case of mediterranean olives

LIFE-ENV LIFE09 ENV/GR/000302

01/10/2010 31/03/2014 [email protected]

Christina EMMANOUIL

www.sage10.gr http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3681

16/09/2011

Page 104: LIFE Water Study

Yes environmental impact of agriculture‚ river‚ modelling‚ industrial area‚ groundwater

SALT Sustainable management of the Esino river basin to prevent saline intrusion in the coastal aquifer in consideration of climate change

LIFE-ENV LIFE07 ENV/IT/000497

01/01/2009 30/12/2011 [email protected]

Valerio SPINACI http://www.lifesalt.it/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3273

14/09/2011

Maybe waste recycling‚ environmental management‚ raw material

consumption‚ harbour‚ hazardous waste

SEDI.PORT.SIL Recovery of dredged SEDIments of the PORT of Ravenna and SILicon extraction

LIFE-ENV LIFE09 ENV/IT/000158

01/09/2010 31/08/2012 [email protected]

Elisa ULAZZI http://www.lifesediportsil.eu

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3682

16/09/2011

Yes water resources management‚ modelling‚ drinking water

SEMEAU Application of the Water Framework Directive through the implementation of an expert system providing a total modelling of a water mass

LIFE-ENV LIFE07 ENV/F/000173

01/01/2009 31/12/2012 [email protected]

Patrick LACHASSAGNE

http://www.life-semeau.eu/en/node/81

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3274

14/09/2011

Maybe use of waste as energy source‚ urban area‚ energy supply‚ sewage sludge‚ alternative

technology

SEWEEX Sewage energy exchange LIFE-ENV LIFE09 ENV/NL/000427

01/09/2010 01/09/2015 [email protected]

Ilja Jansen http://www.arnhem.nl/content.jsp?objectid=arnhemintern:123597

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3707

16/09/2011

Yes use of waste as energy source‚ sewage sludge

Sludge's Wealth Ennobling of sludge for energy use and industrial

LIFE-ENV LIFE09 ENV/IT/000186

01/10/2010 30/09/2013 [email protected]

Danilo MARANGONI http://www.coomi.it/eng/life.html

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3699

16/09/2011

Yes river‚ soil degradation‚ environmental training

Soil Sustainability(So.S)

Soil Sustainable Management in a Mediterranean River basin based on the European Soil Thematic Strategy

LIFE-ENV LIFE07 ENV/GR/000278

01/01/2009 30/06/2012 [email protected]

Socratis FAMELLOS http://www.lifesos.eu/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3305

14/09/2011

Yes waste water treatment‚ water supply‚ island‚ renewable

energy‚

SOL-BRINE Development of an advanced innovative energy autonomous system for the treatment of brine from seawater desalination plants

LIFE-ENV LIFE09 ENV/GR/000299

01/10/2010 31/03/2013 [email protected]

Simeon ORFANOS http://uest.ntua.gr/solbrine/?lang=en

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3679

16/09/2011

Maybe energy saving‚ urban area‚ sludge treatment

Sus Treat Use of immanent energy for sludge treatment - a central step towards self-sustaining sewage flow management

LIFE-ENV LIFE08 ENV/D/000026

01/01/2010 31/12/2014 [email protected]

Thomas Kesselheim http://www.sustreat.eu

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3437

16/09/2011

Yes industrial pollution‚ pollution control‚ risk management‚ environmental law‚ water treatment‚ textile industry

TEXLEGIO Legionellosis: risk reduction to public health from environmental sources using biotechnology in the textile sector

LIFE-ENV LIFE07 ENV/E/000794

01/04/2009 01/01/2012 [email protected] Rosa López http://lifelegionela.aitex.es/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3244

14/09/2011

Maybe endangered species‚ environmental education‚

marine ecosystem‚ biodiversity‚ nature conservation

Thalassa Thalassa Campaign: Learn, Act, Protect/Awareness, Educational and Participation Campaign for Marine Mammals in Greece

LIFE-INF LIFE09 INF/GR/000320

01/09/2010 31/12/2013 [email protected] Spyros KOTOMATAS http://www.thalassa-project.gr/homepage.asp?ITMID=2&LANG=EN

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3775

16/09/2011

Yes desertification‚ restoration measure‚ soil degradation

The Green Deserts

The Green Deserts: new planting techniques for tree cultivation in desertified environments to face Climate Change

LIFE-ENV LIFE09 ENV/ES/000447

01/09/2010 31/08/2015 [email protected]

Sven KALLEN http://thegreendeserts.com/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3654

16/09/2011

Yes river TRUST Tool for regional - scale assessment of groundwater storage improvement in adaptation to climate change

LIFE-ENV LIFE07 ENV/IT/000475

01/01/2009 31/12/2011 [email protected] Francesco BARUFFI http://www.lifetrust.it/cms/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3252

14/09/2011

Yes alternative technology‚ water treatment‚ reverse osmosis

UFTEC Substitution of conventional treatment of raw river water by ultrafiltration membrane technology

LIFE-ENV LIFE09 ENV/ES/000467

01/01/2011 31/12/2013 [email protected] CETaqua, Centro Tecnológico

http://www.life-uftec.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3686

16/09/2011

Maybe vegetable oil‚ use of waste as energy source‚ waste

treatment‚ biomass energy

VALUVOIL Demonstration of zero waste cycle by the complete valorization of residues from refining of used vegetable oils

LIFE-ENV LIFE09 ENV/ES/000451

01/09/2010 28/02/2013 [email protected] Óscar LEÓN http://valuvoil.com/?lang=en

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n proj id=3652

16/09/2011

Yes waste water treatment‚ emission reduction‚ volatile

organic compound‚ industrial waste water‚ end-of-pipe

technology odour nuisance

VOCless waste water

Abatement of VOC load from waste water treatment in mechanical pulping

LIFE-ENV LIFE09 ENV/FI/000568

01/10/2010 30/09/2013 [email protected]@meehanite.org

Markku Tapola http://voclesspulping.com/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3668

16/09/2011

Maybe risk assessment‚ contamined soil‚ decontamination‚

groundwater

VOPAK-EXPERO3

Using ISCO with perozone for the remediation of a cocktail of organic contaminants at an EX-rated industrial site in operation

LIFE-ENV LIFE09 ENV/BE/000407

01/09/2010 31/08/2015 [email protected]

Sven Van Assche http://www.vopak-expero3.be/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3751

16/09/2011

Yes water quality improvement‚ restoration measure‚ river

management

WALPHY Design of a decision tool for hydromorphological restoration of water bodies in Walloon Region

LIFE-ENV LIFE07 ENV/B/000038

01/01/2009 31/12/2013 [email protected]

Francis LAMBOT http://www.walphy.be http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3242

14/09/2011

Page 105: LIFE Water Study

Maybe Waste management‚ contamined soil‚ industrial

waste‚ groundwater‚ pollution control

Waste Joint Management

Development and operation of an integrated model for managing Industrial Waste in the Zona Franca Industrial Estate, Barcelona

LIFE-ENV LIFE08 ENV/E/000132

02/01/2010 31/12/2012 [email protected]

Rosa RODRIGO SANZ

NONE FOUND

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3488

16/09/2011

Yes financial instrument‚ water resources management‚

environmental awareness‚ water saving‚ energy saving‚

WATACLIC Water against climate change. Sustainable water management in urban areas

LIFE-INF LIFE08 INF/IT/000308

01/01/2010 31/12/2012 [email protected]

Giulio CONTE http://www.wataclic.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3499

16/09/2011

Yes water resources management‚ water quality improvement‚ environmental assessment

WATER Strengthening the scientific foundation of water quality programs

LIFE-ENV LIFE08 ENV/CY/000460

01/02/2010 31/07/2013 [email protected]

Athina Papanastasiou http://www.life-water.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3481

16/09/2011

Yes river‚ modelling‚ forecast‚ water resources management

WATER CHANGE Medium and long term water resources modelling as a tool for planning and global change adaptation. Application to the Llobregat Basin

LIFE-ENV LIFE07 ENV/E/000845

01/01/2009 31/12/2011 [email protected] CETaqua, Technology Center

http://www.life-waterchange.eu

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3276

14/09/2011

Yes environmental law‚ water resources management‚

survey‚ technology transfer

WaterRtoM Water Research to Market - to speed-up the transfer of water related research outputs to better implement the Water directives

LIFE-ENV LIFE09 ENV/FR/000593

01/09/2010 31/08/2013 [email protected] Natacha JACQUIN http://water-rtom.org/Home

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3700

16/09/2011

Yes preventive measure‚ water resources management‚

environmental awareness‚ consumption pattern

WATLIFE Enhancement of Public Awareness of the Importance of Water for Life, its Protection and Sustainable Use in Accordance with the Water Framework Directive

LIFE-INF LIFE08 INF/SK/000243

01/01/2010 31/12/2013 [email protected] Director General of Water Research Institute Ing. Juraj Brtko, CSc.

http://www.vuvh.sk/index.php/sk_SK/projekt-life/zakladne-informacie-o-projekte

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3503

16/09/2011

Yes preventive measure‚ aquatic ecosystem‚ coastal area

WEBAP Wave Energized Baltic Aeration Pump

LIFE-ENV LIFE08 ENV/S/000271

01/01/2010 31/12/2012 [email protected]

Christian Baresel www.webap.ivl.se http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3469

16/09/2011

Yes Decision making support, diffuse pollution, environmental assessment, water monitoring

WEISS The Water Emissions Inventory, a planning Support System aimed at reducing the pollution of water bodies

LIFE-ENV LIFE08 ENV/B/000042

01/01/2010 31/12/2012 [email protected] Greet VOS http://weiss.vmm.be/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n proj id=3404

16/09/2011

Yes waste water treatment‚ environmental management‚ environmental performance‚

industrial waste water‚

WINEC Advanced systems for the enhancement of the environmental performance of WINEries in Cyprus

LIFE-ENV LIFE08 ENV/CY/000455

01/02/2010 31/10/2012 [email protected] Dr. Despo Kassinos http://www.eng.ucy.ac.cy/winec/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3479

16/09/2011

Yes water resources management‚ urban area‚ drinking water

WIZ WaterIZe spatial planning: encompass future drinkwater management conditions to adapt to climate change

LIFE-ENV LIFE09 ENV/IT/000056

01/09//2010 30/08/2013 [email protected]

Oberdan CEI http://www.wiz-life.eu/ http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3692

16/09/2011

Yes waste water treatment‚ energy saving‚ environmental

performance‚

WW4ENVIRONMENT

Integrated approach to energy and climate changes changing

LIFE-ENV LIFE08 ENV/P/000237

01/01/2010 31/12/2012 [email protected]

Ramiro NEVES http://ww4environment.eu/

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3467

16/09/2011

Page 106: LIFE Water Study

YES MaybeProject acronym Project title Funding contract code start date end date e-mail coordinator name coordinator Website LIFE database website

Data Info collected

Yes AQUAENVEC Assessment and improvement of the urban water cycle eco-efficiency using LCA and LCC

LIFE-ENV LIFE10 ENV/ES/000520

01/01/2012 31/12/2014 [email protected]

Anna Massagué http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3968

08/10/2011

Yes AQUATIK Development and validation of advanced monitoring system for control of organic priority pollutants in treated wastewater effluents

LIFE-ENV LIFE10 ENV/ES/000521

01/09/2011 31/12/2014 [email protected]

Susana González Blanco

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=4012

08/10/2011

Yes AQUAVIVA Live Water - from Biodiversity to the Tap

LIFE-INF LIFE10 INF/SI/000135

01/09/2011 31/08/2014 [email protected] Marjana HÖNIGSFELD ADAMIČ

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=4030

08/10/2011

Yes AQUOR Implementation of a water saving and artificial recharging participated strategy for the quantitative groundwater layer rebalance of the upper Vicenza's plain

LIFE-ENV LIFE10 ENV/IT/000380

01/09/2011 01/09/2013 [email protected]

Teresa MURARO http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3994

08/10/2011

Yes Biorewit New soil improvement products for reducing the pollution of soils and waters and revitalizing the soil system

LIFE-ENV LIFE10 ENV/PL/000661

01/01/2012 31/12/2014 [email protected] Stanislaw KANISZEWSKI

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3918

08/10/2011

Yes CHARM Chromium in asopos groundwater system: remediation technologies and measures

LIFE-ENV LIFE10 ENV/GR/000601

01/09/2011 31/08/2015 [email protected]

Daniel Mamais ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3951

08/10/2011

Maybe Crops for better soil

Profitable organic farming techniques based on traditional crops: contrasting soil degradation in the Mediterranean

LIFE-ENV LIFE10 ENV/ES/000471

15/10/2011 14/10/2016 [email protected]

Mariano SAZ ACHUELO

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3921

08/10/2011

Maybe CYPADAPT Development of a national strategy for adaptation to climate change adverse impacts in Cyprus

LIFE-ENV LIFE10 ENV/CY/000723

01/09/2011 31/03/2014 [email protected]

Theodoulos MESIMERIS

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3942

08/10/2011

Maybe DEMETER Duurzaam En geïntegreerd bodembeheer om MilieuEffecten TE Reduceren (Sustainable and integrated soil management to reduce environmental effects)

LIFE-ENV LIFE10 ENV/BE/000699

01/01/2012 30/03/2016 [email protected]

Patrick VERSTEGEN http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3984

08/10/2011

Maybe ECO Courts Ecological courtyards united for resources saving through smart technologies and life style

LIFE-ENV LIFE10 ENV/IT/000401

01/10/2011 30/11/2014 [email protected]

Daniela Luise http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=4017

08/10/2011

Maybe ELINA Integrated green life-cycle management of waste oils and petroleum residues

LIFE-ENV LIFE10 ENV/GR/000606

01/09/2011 31/08/2014 [email protected]

Nikolaos Rempakos http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=4010

08/10/2011

General project information WebsiteOf interest?

Page 107: LIFE Water Study

Yes EUTROMED Técnica demostrativa de prevención de la eutrofización provocada por nitrógeno agrícola en las aguas superficiales en clima mediterráneo

LIFE-ENV LIFE10 ENV/ES/000511

01/09/2011 01/03/2015 [email protected] Myriam Prieto Labra http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3946

08/10/2011

Maybe Geohealth The impact of geological environment on health status of residents of the Slovak Republic

LIFE-ENV LIFE10 ENV/SK/000086

01/09/2011 31/08/2015 http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3982

08/10/2011

Maybe GREEN SITE Green Site : supercritical fluid technologies for river and sea dredge sediment remediation

LIFE-ENV LIFE10 ENV/IT/000343

01/10/2011 30/09/2013 [email protected] Guerrino Cravin http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3972

08/10/2011

Yes HWC Jenfelder Au - Hamburg Water Cycle - Jenfelder Au

LIFE-ENV LIFE10 ENV/DE/000158

01/09/2011 31/08/2016 [email protected]

Kim AUGUSTIN http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3987

08/10/2011

Yes InfoNitrates Information and communications campaign for the proper use and management of nitrates in agriculture and livestock breeding

LIFE-INF LIFE10 INF/MT/000092

01/09/2011 31/12/2013 [email protected]

Mario SPITERI http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=4027

08/10/2011

Yes Investing in Water

Achieving Reduction in Water Consumption by Business in Malta

LIFE-INF LIFE10 INF/MT/000091

01/10/2011 31/03/2014 [email protected] Joe Tanti http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=4026

08/10/2011

Maybe LCA4PORTS European Ports Life Cycle Assessment (LCA)

LIFE-ENV LIFE10 ENV/IT/000369

01/11/2011 01/11/2015 [email protected], [email protected]

Gianluca IEVOLELLA http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3934

08/10/2011

Yes NITRATES Repercussion of Agricultural Activities in Nitrate Contamination of Continental Water

LIFE-ENV LIFE10 ENV/ES/000478

01/09/2011 31/08/2014 http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3995

08/10/2011

Yes OMZET Waste water treatment as energy and mineral recovery utility

LIFE-ENV LIFE10 ENV/NL/000028

01/09/2011 31/12/2016 [email protected]

Henry VAN VELDHUIZEN

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=4007

08/10/2011

Maybe PURA4IPM Pesticides Use Reduction in Agriculture: demonstration of an innovative Integrated Pest Management technology

LIFE-ENV LIFE10 ENV/IT/000324

01/09/2011 28/02/2015 [email protected] Francesco DREI http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3960

08/10/2011

Yes Saimaan lohikalojen

Saimaan lohikalojen kestävän kalastuksen edistäminen

LIFE-INF LIFE10 INF/FI/000052

01/10/2011 30/06/2014 [email protected]

Veli-Matti KAIJOMAA http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=4033

08/10/2011

Yes SHOWW SHOWW - puShing aHead with field implementatiOn of best fitting Wastewater treatment and management solutions

LIFE-INF LIFE10 INF/IT/000282

01/09/2011 28/08/2014 [email protected]

Riccardo GORI http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=4032

08/10/2011

Yes UNIZEO Urea-based nitrogenous fertilizers coated with zeolite : reducing drastically pullution due to nitrogen

LIFE-ENV LIFE10 ENV/IT/000347

01/09/2011 31/03/2015 [email protected]

Giorgio BOZZOLA http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3969

08/10/2011

Page 108: LIFE Water Study

Maybe URWASTECH Innovative Urban Waste Treatment: A Sustainable Approach Using Hydrodynamic and Biological Technologies

LIFE-ENV LIFE10 ENV/ES/000530

01/10/2011 01/04/2014 [email protected]

Dirk SASETA http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3956

08/10/2011

Yes WARBO Water re-born - artificial recharge: innovative technologies for the sustainable management of water resources

LIFE-ENV LIFE10 ENV/IT/000394

01/01/2012 30/06/2014 [email protected] Daniel NIETO YABAR

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=4004

08/10/2011

Yes WASTEREUSE

Best practices for agricultural wastes treatment and reuse in the Mediterranean countries

LIFE-ENV LIFE10 ENV/GR/000594

01/09/2011 31/08/2015 [email protected] Konstantinos Komnitsas

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3943

08/10/2011

Yes WW-SIP From Urban Wastewater Treatment Plant to Self Sustainable Integrated Platform for Wastewater Refinement

LIFE-ENV LIFE10 ENV/IT/000308

01/01/2012 31/12/2015 [email protected] Francesca SANTORI http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3949

08/10/2011

Yes ZeoLIFE Water Pollution Reduction and Water Saving Using a Natural Zeolite Cycle

LIFE-ENV LIFE10 ENV/IT/000321

01/09/2011 28/02/2015 [email protected] Massimo COLTORTI http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3957

08/10/2011

Page 109: LIFE Water Study

YES Maybe Project acronym Project title Funding contract code start date end date e-mail coordinator name coordinator Website LIFE database website Data Info collected

Yes BaltInfoHaz Baltic Info Campaign on Hazardous Substances

LIFE-INF LIFE 10/INF/EE/108 01/10/2011 31/03/2015 [email protected] Ms Kitty Kislenko Not yet established http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=4034

14/12/2011

maybe COM-U Communicating environmental action to children and youth

LIFE-INF LIFE 07/INF/S/901 01/01/2009 31/12/2011

[email protected]

Ingela Berggren

http://www.hsr.se

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3310

14/12/2011

yes Eco-animation Eco-Animation: a cutting edge cartoon to raise awareness on climate change and sustainable use of natural resources among European children

LIFE-INF LIFE 07/INF/UK/950 01/01/2009 31/03/2011

[email protected]

Mr. Luigi Petito

http://www.animate-eu.com/eco and http://www.myfriendboo.com/watch.html

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3313

14/12/2011

yes Renew Regional Environmental Networks for Energy and Water

LIFE-INF LIFE 07/INF/UK/932 01/01/2009 31/12/2011 [email protected] Ms Frances Galvanoni

www.energysavingtrust.org.uk/Life-water-and-energy-project

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3312

14/12/2011

maybe Hydro4LIFE Hydropower Sustainability Assessment Protocol: EU Assessments, Monitoring, Capacity Development and Outreach

LIFE-ENV LIFE 09/ENV/UK/026 01/09/2010 01/09/2013 [email protected] Mr Cameron Ironside

http://www.hydrosustainability.org/Hydro4Life.aspx

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3665

14/12/2011

maybe SEAweb Scotland's Environmental Web

LIFE-ENV LIFE 10/ENV/UK/182 01/09/2011 31/08/2014 [email protected] Mr Martin Marsden

Not yet established

http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3990

14/12/2011

Of interest? General project information Website

Page 110: LIFE Water Study

Yes MaybeNew additions

LIFEIII projects 53 8 61 0 61

LIFE+ (07-09) projects 73 23 96 4 100

LIFE10 projects 19 10 29 2 31

TOTAL 186 192

Page 111: LIFE Water Study

[Water Sector Report August 2012]  Annex 2 

           

Annex 2  

Project Assessment Matrix  

Page 112: LIFE Water Study

Year Life Code

othe

r

Tot

al C

ost

EU

Cos

t

Lynne Yael Zsuzsa

ENV and INF PROJECTS P S P S P S P S P S P S P S P S P S P S P S P S P S

5LIFE05 ENV/DK/000155 AGWAPLAN 1 1 1,617,795 791,820

5 LIFE05 ENV/F/000058 AWARE 1 1 1,070,021 440,1275 LIFE05 ENV/IT/000846 BATTLE 1 1 2,672,885 965,902

5LIFE05 ENV/E/000267 BE-Fair

1 2,170,746 909,248 deals with wasteMSFD? (deals indirectlty with marine pollution) It states future link with MFD

5LIFE05 ENV/E/000302 Ecodiptera

1 1 1,439,054 719,527

5

LIFE05 ENV/GR/000242 Elefsina 2020

1 1,654,796 827,398

Targets EU thematic strategy on urban environments

5LIFE05 ENV/GR/000245 EnviFriendly 1 1 2,151,531 1,075,765

5LIFE05 ENV/IT/000894 ESTRUS

1 1,478,711 739,355

5LIFE05 ENV/E/000289 FERTIGREEN 1 1 587,622 287,317

5

LIFE05 ENV/UK/000126 FORMOSE

1 1,393,561 181,022

5

LIFE05 ENV/E/000313 gEa

1 642,119 192,6355 LIFE05 ENV/B/000517 INSIMEP 1 1 1 1 2,256,913 667,509

5LIFE05 ENV/UK/000137 NITRABAR 1 1,067,414 518,670

5LIFE05 ENV/DK/000145 Odense PRB - AgriPoM 1 1 1 488,117 210,841

5LIFE05 ENV/E/000292 OLIVEWASTE 1 4,566,361 2,065,585

5LIFE05 ENV/IT/000868 PERBIOF

1 1 637,270 318,635

5LIFE05 ENV/UK/000121 PROMOTHE MBR 1 1 1 2,883,870 406,965

5LIFE05 ENV/UK/000127 QUERCUS 1 9,712,865 1,324,045

5

LIFE05 ENV/IT/000812 RIWAC

1 6,236,754 1,044,000

No directive stated - recycling wastes from waste water

Agree, no directive stated, project deals with reuse of industrial water

5LIFE05 ENV/F/000067 SOUND SLUDGE 1 1,308,578 687,626

5LIFE05 ENV/H/000418 SUMANAS

1 1,752,743 715,008This was my project, water cleaning technology,directive 80/68

5 LIFE05 ENV/B/000510 TOPPS 1 2,666,941 1,259,105

5LIFE05 ENV/D/000182 WAgriCo

1 1 1 5,278,610 2,639,305

5LIFE05 ENV/E/000256 ZERO PLUS 1 1 2,276,386 1,136,759

6 LIFE06 ENV/IT/000255 A.S.A.P 1 1 1,993,946 862,7516 LIFE06 ENV/F/000133 ArtWet 1 1 4,555,702 1,916,993

6LIFE06 ENV/F/000132 CONCERT 'EAU 1 1 1 2,801,600 1,394,367

6

LIFE06 ENV/B/000362 ECOTEC-STC

1 4,528,294 1,067,789

No Directives targeted - reduces pollution by TBT to marine waters MSFD? MFSD is mentioned

6LIFE06 ENV/E/000044 ES-WAMAR 1 6,951,426 2,624,455

6LIFE06 ENV/D/000461 FLOODSCAN 1 1 2 1,947,803 959,775

FLOODS Directive and INSPIRE

6LIFE06 ENV/F/000158 ISONITRATE 1 1 1 753,774 376,887

6 LIFE06 ENV/D/000478 IWPM 1 12,429,217 1,899,029

6LIFE06 ENV/IT/000235 Kolisoon

1 1 570.043 285,021

6

LIFE06 ENV/D/000458 LOTECOTEC

1 2,994,160 850,473

6LIFE06 ENV/F/000136 MARECLEAN 1 1 1 1 1,597,451 783,429

6

LIFE06 ENV/D/000485 Moveable HEPP

1 1 7,858,296 1,695,375

6LIFE06 ENV/UK/000401 MR Mo ToWFO 1 433,385 0

6LIFE06 ENV/B/000359 MULTIBARDEM 1 1 1,400,640 416,700

2006

/113

/EC

sh

ellfi

sh

2000

/60/

EC

W

FD

2008

/56/

EC

M

SF

D

96/6

1/E

C

and

2010

/75/

EU

IP

PC

91/2

71/E

EC

ur

ban

was

te

wat

er

91/6

76/E

EC

ni

trat

es fr

om

agric

ultu

re

76/4

64/E

EC

; 80

/68/

EE

C;

06/1

1/E

C

disc

harg

e of

po

llutio

n

2006

/7/E

C

bath

ing

wat

er

2007

/60/

EC

flo

od r

isks

2008

/105

/EC

W

QS

Frameworks Pollution Control Aquatic Organisms Human Health & Infrastructure

2006

/118

/EC

gr

ound

wat

er

2006

/44

fres

h w

ater

s to

sup

port

fis

h

98/8

3/E

C

drin

king

w

ater

Page 113: LIFE Water Study

6LIFE06 ENV/UK/000409 OpenMI-LIFE 1 1 3,705,712 1,849,991

6LIFE06 ENV/D/000460 SLUDGE2ENERGY 1 4,206,682 504,600

6LIFE06 ENV/FIN/000195 STABLE

1 5,516,150 940,399

6LIFE06 ENV/DK/000229 TREASURE 1 1 4,763,782 1,960,257

6 LIFE06 ENV/NL/000167 WET 1 1 1 2,632,603 1,176,240

7

LIFE07 ENV/E/000814 3R-FISH

1 1 1,447,990 595,620not specifically stated - principally waste project

Indeed. Maybe MSFD as deals also with marine pollution It mentions Directive 2006/66 batteries

7LIFE07 ENV/E/000826 AQUA-PLANN PROJECT 1 988,564 333,304 WFD, local planning strategies

7

LIFE07 ENV/B/000022 BACad

1 1 1,495,041 633,819

not specifically stated - reducing pollution in groundwater

7LIFE07 ENV/EE/000122 BaltActHaz 1 1 1 1 1,691,598 851,816

7

LIFE 07/INF/UK/750 Ecoanimation

1 388,641 183,443

7LIFE07 ENV/D/000229 ECOSMA

1 828,144 414,072also harmonisation with Baltic MECP

project focusing on water quality: Marine Strategy Directive, 2006/113, shellfish

7

LIFE07 ENV/S/000908 GreenClimeAdapt

1 1 3,166,264 1,582,932 climat change project

But it's also about managing increased amounts of rain, hence dealing with floods

It indeed focuses on climate change but also tries to achieve good ecological status under WFD, local stakeholder particoipation and flooding modelling

7

LIFE07 ENV/SLO/000725 INCOME

1 1 1,804,915 834,860

not specifically mentioned but covers drinking water and aquifers

7LIFE07 ENV/PL/000605 Lake recult. in Gniezno 1 1 431,861 215,930

WFD also, it was a good project, improving water quality

7

LIFE07 ENV/L/000540 M3

1 2,054,739 1,238,990

7

LIFE07 ENV/NL/000576 PHARMAFILTER

1 1 2,423,889 1,092,945

not specifically mentioned but deals with clinical watertreatment

7LIFE07 ENV/UK/000943 PISCES

1 2,045,506 1,022,753

7

LIFE07 ENV/IT/000439 PURIFAST

1 2,234,335 1,106,917not specifically stated but deals with WWT water purification

7

LIFE 07/INF/UK/932 RENEW

1 1,941,702 970,850water scarcity, droughts and climate

7

LIFE07 ENV/IT/000421 RE-WASTE

1 1,546,500 773,250deals with recycling and waste reduction

Wastewater as well, not only waste.

It concerns olive production and waste water treatmentand concerns UWWT. However, it seems that mostly concentrate on biogas, not on water.

7 LIFE07 ENV/IT/000497 SALT 1 1,447,112 795,434

7LIFE07 ENV/F/000173 SEMEAU

1 1 1,341,400 670,700

7

LIFE07 ENV/GR/000278 Soil Sustainability(So.S)

1 1,572,745 771,872

addresses soil directive but may have water application

soil strategy, includes the Soil Directve, but does not really details with water , more on soil management issues

7

LIFE07 ENV/E/000794 TEXLEGIO

1 1,031,836 506,168Not stated deal with legionella??

It is a bacteria in drinking water, but the project will apply the new method in a

The project proposal does not mention any water directives, it focuses on reducing legionella in the textileindustry , and it monitors water. Mainly it is a water

7LIFE07 ENV/IT/000475 TRUST

1 1 1 1 1,838,380 898,380also water scarcity and droughts

7

LIFE07 ENV/B/000038 WALPHY

1 1 2,861,641 919,161

7

LIFE07 ENV/E/000845 WATER CHANGE

1 1,238,280 616,020

not stated but is water resource management project

8LIFE08 ENV/E/000099 AQUAVAL

1 1,562,532 773,916 WFD, water treatement plans, also linked to Floods

8

LIFE08 ENV/FIN/000609 CATERMASS

1 1 2,860,775 1,408,521also habitats and EG EQS priotity substances

8LIFE08 ENV/IT/000426 COAST-BEST 1 1 1,730,501 812,465

not specifically stated - reuse of dredging spoil

This is my project. Agree with selection of legilsaiton

8LIFE08 ENV/IT/000390 ECOMAWARU 1 960,122 942,372

8

LIFE08 ENV/PL/000517 EH-REK

1 1 1,421,597 665,788 to rehabilitate reservoirs, WFD and water quality

8

LIFE08 ENV/PL/000519 EKOROB

1 1 1 1,330,249 665,149

not specifally stated - denitrification in drinking water reservoir

Mentions the WFD, cost effective ecohidrology actions to reduce diffuse pollution and achieve good status of water

Page 114: LIFE Water Study

8

LIFE08 ENV/E/000117 ENSAT

1 1,240,358 597,372not specifally stated - addresses water scarcity

8LIFE08 ENV/IT/000399 EnvEurope 1 1 6,067,876 3,003,938

not specifically stated - information systems

8

LIFE08 ENV/E/000118 GREENLYSIS 1 1,594,833 797,416

not specifically mentioned but included WWTP

8

LIFE08 ENV/LV/000451 HydroClimateStrategyRiga

1 662,240 658,540not specifically mentioned but covers flooding

8LIFE08 ENV/GR/000570 HydroSense 1 1 1,756,563 851,156

8LIFE08 ENV/IT/000413 INHABIT

1 2,264,341 1,118,493

8

LIFE08 ENV/CY/000457 INTER-WASTE

1 1,471,838 735,330Not specifically stated but about WWTP

8

LIFE08 ENV/S/000272 ITEST

1 1,226,800 613,400

8LIFE08 ENV/D/000021 MAGPlan

1 1 3,459,350 1,722,625Project deals wirh integral grounwater risk management , WFD and GWT directives

8

LIFE08 ENV/E/000114 POWER

1 1,431.15 655,725not specifically stated but about reducing water use

8

LIFE08 ENV/GR/000551 PURE

1 1 2,404,277 1,039,638

8LIFE08 ENV/F/000489 PYROBIO

1 1,697,573 846,007

8

LIFE08 ENV/E/000133 RESALTTECH

1 2,028,302 993,614

not stated - deals with clean technologies with some water cleanup

8

LIFE08 ENV/IT/000406 REWETLAND

1 1 3,706,632 1,450,566not stated - reed bed filtration system

This is my project. Encourage participatory decision making in line with the WFD as well and deal with farmers to reduce nitrates pollution.

8

LIFE08 ENV/E/000132 Waste Joint Management

1 555,879 277,940deals with remediation but does mention grondwater

8

LIFE08 INF/IT/000308 WATACLIC

1 767,545 383,786

not stated but deals with water resource management

8

LIFE08 ENV/CY/000460 WATER

1 1 1 909,228 447,418 also mentions Natura

8LIFE08 INF/SK/000243 WATLIFE

1 1,056,895 527,272 This is a dissemination project, dealing with WFD

8

LIFE08 ENV/S/000271 WEBAP

1 1,178,605 562,553not stated - aeration systems for coastal waters

8 LIFE08 ENV/B/000042 WEISS 1 984,428 468,517

8LIFE08 ENV/CY/000455 WINEC

1 1 1,371,357 682,954

8

LIFE08 ENV/P/000237 WW4ENVIRONMENT

1 784,442 382,221not stated focusses on Climate change

9

LIFE09 ENV/GR/000296 Adapt2Change

1 2,576,548 1,288,274

not specifically stated - reducing water use in agriculture

9

LIFE09 ENV/ES/000456 AG_UAS

1 2,384,688 1,192,344

9

LIFE09 ENV/IT/000208 AQUA

1 1 1 2,634,689 1,310,901

not specifically stated reducing nitrates from agriculture Also groundwater pollution

In the proposal it focuses mostly on the Nitrates Directive

9

LIFE09 ENV/IT/000075 AQUA

1 807,720 403,860Could be good example of regional and local WFD actions

9LIFE09 ENV/RO/000612 CLEANWATER 1 1 1 698,319 300,622

not specifically stated water trends and nitrates Nitrates mostly, groundwater and vulnerable zones.

9LIFE09 ENV/ES/000431 CREAMAgua 1 1 1,884,304 898,677

Page 115: LIFE Water Study

9

LIFE09 ENV/FI/000569 GISBLOOM

1 1 1 3,060,856 1,503,638

9

LIFE09 ENV/ES/000447 The Green Deserts

1 2,074,518 1,007,997may have relevance to water scarcity in WDF

9

LIFE 09/ENV/UK/026 Hydro4LIFE

1 1 1,283,637 641,818examines clash between WFD and renewables

9

LIFE09 ENV/ES/000472 LOS TOLLOS

1 7,947,463 3,123,236

Not specifically stated but about restoring good quality water

9

LIFE09 ENV/SE/000351 Mare Purum

1 1 1,800,673 886,211

not specifically stated deals with alternative to TBT

The proposal mentions WFD, MSFD, Bathing water. It deals with measurment of marine fouling,aims toxic pain reduction.

9

LIFE09 ENV/DE/000011 MY FAVOURITE RIVER

1 5,841,093 2,199,505

not specifically mentioned but deals with river management

9

LIFE09 ENV/IT/000136 PALM

1 1,589,690 784,595

not specifically mentioned but deals with wter losses from reticulation systems Agreed, no directive is mentioned specifically

9LIFE09 INF/UK/000032 RESTORE 1 1 1,794,567 872,753

also deals with Habitats directive

9

LIFE09 ENV/IT/000158 SEDI.PORT.SIL

1 1,924,557 931,192 waste management of dredged sediments

Same topic as the project Coast Best above - MSFD

9

LIFE09 ENV/GR/000299 SOL-BRINE

1 1,209,689 604,844not specific - treatment of brine from desal plants

9

LIFE09 INF/GR/000320 Thalassa

1 1,343,248 667,124

Not stated deals with conservatio of marine mammals - targets Habitats Directive

9

LIFE09 ENV/ES/000467 UFTEC

1 1 2,156,157 1,050,789not stated but deals wth water treatment

9LIFE09 ENV/FI/000568 VOCless waste water 1 1 1,840,026 915,013

not stated but deals wth water treatment

9

LIFE09 ENV/BE/000407 VOPAK-EXPERO3

1 1,341,968 654,734deals with remediation but does mention grondwater

9

LIFE09 ENV/FR/000593 WaterRtoM

1 1 799,594 399,979

9

LIFE09 ENV/IT/000056 WIZ

1 1 1,896,540 942,370not stated focusses on Climate change

9LIFE 09/ENV/UK/026 Hydro4 Life

1 1,282,637 641,818

10LIFE10 ENV/ES/000520 AQUAENVEC 1 1,594,413 789,456 not stated

Urban waste water : to asess all environmentalimpacts of the life cycle of urban waste water

10LIFE10 ENV/ES/000521 AQUATIK 1 1 1 1 1,564,259 775,879 not stated WFD, priority pollutants, waste water

10LIFE10 INF/SI/000135 AQUAVIVA

1 1 548,141 235,314also mentions Habitat and biodiversity

10

LIFE10 ENV/IT/000380 AQUOR

1 1 1,814,548 693,348

10LIFE 10 INF/EE/108 BaltInfoHaz

1 1 1,683,396 834,573dels with hazardous watse in marine

10LIFE10 ENV/PL/000661 Biorewit

1 1 1 1,836,195 926,597 not stated mostly soil and landfill

10LIFE10 ENV/GR/000601 CHARM

1 1 2,708,267 1,337,679

10

LIFE10 ENV/CY/000723 CYPADAPT 1 1,358,847 678,423

may have relevance to water scarcity in WDF

10LIFE10 ENV/BE/000699 DEMETER 1 1,907,092 952,353 deals with soild directive

It is also about reduction of nutrients from agri.

10

LIFE10 ENV/ES/000511 EUTROMED

1 1,504,486 750,742 need to check Nitrates directiveNitrates Directive, sustainable method to reduce nitrogen level

10

LIFE10 ENV/SK/000086 Geohealth

1 418,112 207,273 need to check

Not stated, but through geology - linked to groundwater

10LIFE10 ENV/IT/000343 GREEN SITE 1 1 1,377,428 684,298 need to check

Doesn't seem very relevant. About decontamination.

Agree, no directive is mentioned, sediment decontamination

10LIFE10 ENV/DE/000158 HWC

1 1 16,746,974 3,446,821 need to checkUrban wastewater disposal + energy production

10LIFE10 INF/MT/000092 InfoNitrates 1 2.212.475 689,339

10LIFE10 INF/MT/000091 Investing in Water 1 336,329 166,542

Page 116: LIFE Water Study

10

LIFE10 ENV/IT/000369 LCA4PORTS

1 1,091,650 485,300

not stated deals with Directive 2010/31/EU ossible WFD?

Some aspects dealing with wastewater quality and recovery, but seems more generally linked to ports management

Agree, mostly deals with ports management and focuses on Directive on energy sufficiency 2010/31

10LIFE10 ENV/ES/000478 NITRATES 1 2,420,765 1,147,132

10LIFE10 ENV/NL/000028 OMZET

1 14,447,825 1,552,512not stated deals with WWTP

10LIFE10 INF/FI/000052 Saimaan lohikalojen 1 367,170 180,635

not stated but deals with salmon conservation

10LIFE10 INF/IT/000282 SHOWW

1 1,432,211 716,105not stated deals with WWT - interesting!

10LIFE10 ENV/IT/000347 UNIZEO

1 2,450,166 1,218,518

10LIFE10 ENV/ES/000530 URWASTECH 1 1,666,009 756,174

10LIFE10 ENV/IT/000394 WARBO

1 2,000,785 860,887not stated focusses on artificial recharge

10LIFE10 ENV/GR/000594 WASTEREUSE 1 1 1,384,799 679,399 not stated need to check

Deals with agricultural waste, waste nutritians and agriculture

10LIFE10 ENV/IT/000308 WW-SIP

1 1 3,915,770 1,927,274

10LIFE10 ENV/IT/000321 ZeoLIFE

1 1 2,150,839 1,044,513 could be others checkNitrates directive and groundwater pollution Nitrates directive and also groundwater

NATURE PROJECTS

5LIFE05 NAT/L/000101 Ardmouperl 1 2,303,363 1,132,031 pearl mussel

5LIFE05 NAT/D/000152 BALTCOAST 1 5,685,005 3,403,203

5LIFE05 NAT/LV/000100 Baltic MPAs 1 3,111,316 1,554,508

not stated but meets objectives

5LIFE05 NAT/IT/000026 Fortore 2005 1 1,590,000 715,500 improving status

5LIFE05 NAT/DK/000153 Houting 1 1 13,385,913 8,031,548

claims to decommission 2 hydropower stations

5LIFE05 NAT/B/000090 Life Grote Nete 1 1 3,120,974 1,560,470

5LIFE05 NAT/D/000057 Lippe-Aue 1 1 5,514,594 2,757,297

5LIFE05 NAT/B/000085 Loutre BeLu 2005-2006 1 3,891,664 1,945,832

5LIFE05 NAT/UK/000143 STREAM 1 1 1,449,430 579,772

6LIFE06 NAT/P/000192 Biomares 1 2,364,438 1,182,219 restoration of MPA

6LIFE06 NAT/SI/000066 BIOMURA 1 1,975,519 969,385

6LIFE06 NAT/IT/000050 Co.Me.Bi.S. 1 1,100,000 525,000 restoration of MPA

6LIFE06 NAT/FIN/000129 Kokemäenjoki-LIFE 1 1 1 3,408,558 1,704,279

6LIFE06 NAT/A/000127 LIFE Obere Drau II 1 3,768,262 1,531,305 improving status

6LIFE06 NAT/D/000005 LIFE-Projekt Maifisch 1 1 956,348 478,174

7LIFE07 NAT/P/000646 CETACEOSMADEIRA II 1 795,074 397,537 dolphin conservation

7LIFE07 NAT/GR/000285 ConShagAudMIBAGR 1 2,357,922 1,768,422 IBA in marine

7LIFE07 NAT/FIN/000151 FINMARINET 1 3,408,950 1,704,315 resource mapping for MPA

7LIFE07 NAT/E/000732 INDEMARES 1 1 15,405,727 7,702,863

resource mapping for MPA also OSPAR

7LIFE07 NAT/IRL/000342 IShannonSACLAEO 1 1 1,740,818 869,830

7 LIFE07/NAT/IT/000413 PARC 1 1,511,286 755,500

7LIFE07 NAT/DK/000100 REFLOW 1 4,669,642 2,334,821 good ecological status

8LIFE08 NAT/D/000013 Elbauen bei Vockerode 1 1 2,184,912 1,094,456 flood protection

8LIFE08 NAT/D/000008 Ems-Dynamik+Habitate 1 2,843,346 1,421,673 restoration for fish

8 LIFE08 NAT/UK/000201 ISAC 1 1 1,626,458 813,229addresses a number of directves though not stated

8LIFE08 NAT/D/000010 Life Projekt "Lippeaue" 1 6,011,951 3,005,975 floodplain management

8LIFE08/NAT/A/000614 Murerleben 1 2,784,131 1,392,065

8LIFE08 NAT/D/000007 Nebenrinne Bislich 1 2,897,526 1,448,763

Page 117: LIFE Water Study

8LIFE08/NAT/S/000266 Vindel River LIFE 1 1 2,675,513 1,337,757

9 LIFE09 NAT/IT/000190 ARION 1 1,733,378 866,689 MPA dolphin conservation

9LIFE09 NAT/LT/000234 DENOFLIT 1 1,569,699 784,849 mapping resources

9LIFE09 NAT/ES/000534 Life Posidonia Andalucia 1 3,562,125 2,474,902 Marine protected areas

9LIFE09 NAT/ES/000514 MARGAL ULLA 1 3,666,981 1,821,604

Pearl mussel/good WQ status

9LIFE09 NAT/LV/000238 MARMONI 1 5,888,801 2,944,400

ecosystem approach assessments spatial planning

9LIFE09 NAT/PT/000038 MarPro 1 2,773,032 1,385,516

MPA and SCI implementation

9LIFE09 INF/GR/000319 PROM.SUS.FIS.PR.PRESPA 1 752,085 355,992 sustainable fisheries

9LIFE09 NAT/IT/000176 POSEIDONE 1 1,900,000 542,787

restoration seagrass and prevention of illegal trawling

9LIFE09 NAT/DE/000004 Rheinauen bei Rastatt 1 9,933,256 4,698,716

10LIFE10 NAT/PT/000073 ECOTONE 628,588 449,371

10LIFE10 NAT/DE/000010 Emmericher Ward 1 3,278,135 1,538,877

10LIFE10 NAT/FR/000192 LIFE Continuité écologique 1 3,344,533 1,598,617

10LIFE10 NAT/AT/000017 LIFE+ Lavant 1 3,600,100 1,541,408

10LIFE10 NAT/SI/000142 Ljubljanica connects 1 1 1,188,015 584,382

10LIFE10 NAT/MT/000090 MALTA SEABIRD PROJECT 1 873,964 436,982

meeting marine SPA requirements

10LIFE10 NAT/AT/000016 Netzwerk Donau 1 1 14,509,424 4,379,712

could expore conflict between WFD and renewable energy like HYDRO4LIFE

10LIFE10 NAT/DE/000008 Rur und Kall 1 3,976,076 1,423,108

10LIFE10 NAT/IT/000271 SHARKLIFE 1 1,337,640 668,820

10LIFE10 NAT/FR/000200 SUBLIMO 1 1,947,590 964,252

10LIFE10 NAT/AT/000015 Untere March-Auen 1 3,491,774 1,745,887 improving statusTotal all projects 76 38 12 18 8 3 22 7 19 6 5 15 9 6 10 8 1 0 1 7 3 1 6 3 1 1 9Total ENV/INF projects 68 22 6 7 8 2 22 7 19 6 5 15 9 6 1 1 1 0 1 7 3 1 6 1 1 1 7Total NAT project 8 16 6 11 0 1 0 0 0 0 0 0 0 0 9 7 0 0 0 0 0 0 0 2 0 0 2

Total Nature Projects 46

Total Env and Inf projects 150

Page 118: LIFE Water Study

oth

er

Lynne Yael ZsuzsaLIFE III P S P S P S P S P S P S P S P S P S P S P S P S P S P SLIFE06 TCY/INT/000250 DESTINATIONS

stated - strategic tourism project not really water

g gpoint was the coastal zones, but this is a marginal issue.

LIFE06 TCY/TN/000275 COPEAU 1

TCY - no directives stated

LIFE05 TCY/CRO/000108 CROWATER 1 1LIFE06 TCY/ET/000232 FLAFLOM 1

TCY - no directives stated

LIFE05 TCY/GA/000115 HAGAR 1

TCY - no directives stated

LIFE06 TCY/ET/000226 IBISS

1TCY - no directives stated

LIFE05 TCY/CRO/000111 IBM

1TCY - no directives stated

LIFE05 TCY/MA/000141 MOROCOMP 1

TCY - no directives stated

LIFE06 TCY/MA/000256 NAORA

TCY - no directives stated - reuse of irrigation water

treatment. Maybe WFD - as a general framework, seeing that the project aimed at changing

LIFE06 TCY/TR/000284 PRE-THERM

1

TCY - no directives stated - conservation of water resources

LIFE06 TCY/INT/000246 SAVA RIVER BASIN

1

TCY - no directives stated more habitats directive

I'd add also the WFD (seeing the idea to elaborate IBRM)

LIFE05 TCY/TN/000150 SMAS

No directive stated - conservation of water resources

LIFE05 TCY/IL/000130 SUSTAINABLE JORDAN R

1 1 1 1

TCY - no directives stated - tenuous link to drinking water

This was my project. Very similar in its ideas to WFD, but also relates to nitrates pollution, and

LIFE06 TCY/IL/000240 TRANS-BOUNDARY WATER/PRO-AQUIFER

1 1

TCY - no directives stated - links to urban waste water and groundwater

This was my project. Relates to groundwater management as well as to urban

20

07

/60

/EC

flo

od r

isks

20

08

/10

5/E

C W

QS

20

06

/11

8/E

C

gro

un

dw

ate

r2

00

6/4

4

fres

h w

ate

rs

to s

up

po

rt

fish

20

06

/11

3/E

C s

hellf

ish

20

08

/75

/EC

bo

ttom

fis

hin

g g

ears

98/

83/

EC

dr

inki

ng

wat

er

20

06

/7/E

C

ba

thin

g

wat

er

Frameworks Pollution Control Aquatic Organisms Human Health & Infrastructure

20

00

/60

/EC

W

FD

20

08

/56

/EC

M

SF

D

96

/61

/EC

a

nd

2

01

0/7

5/E

U

IPP

C9

1/2

71

/EE

C

urb

an

wa

ste

w

ater

91

/67

6/E

EC

ni

trat

es f

rom

ag

ricul

ture

76

/46

4/E

EC

; 8

0/6

8/E

EC

; 0

6/1

1/E

C

dis

cha

rge

of

Page 119: LIFE Water Study

othe

r

Lynne Yael ZsuzsaLIFE III P S P S P S P S P S P S P S P S P S P S P S P S P S P S

LIFE06 ENV/IT/000257 VOICE

rejected deals with Biofuel Directive Agree Also agree to reject

LIFE06 ENV/D/000465 ZEM/SHIPS

rejected deals with air emissions Agree Agree, air and odour

LIFE07 ENV/E/000847 BIOCELL

1this is energy reduction project with WWTP on the side Maybe we can exclude it then. OK, agree

LIFE08 ENV/GR/000569 BIOFUELS-2G rejected deals with waste Agree AgreeLIFE08 ENV/E/000158 BOATCYCLE rejected deals with waste Agree AgreeLIFE08 INF/E/000187 COR rejected deals with waste Agree AgreeLIFE07 ENV/E/000788 Cowtoplant rejected deals with waste Agree AgreeLIFE09 ENV/ES/000459 ECOREGA rejected deals with waste Agree AgreeLIFE08 ENV/E/000119 FAROS

rejected deal with waste and discards not in MSFD Agree

LIFE09 INF/IT/000076 FISH SCALE

rejected deal with waste and discards not in MSFD Agree

LIFE09 ENV/FR/000600 GREEN TESTING not really water more waste but

does mention IPPC Don't know as well

2005/32, but mentions IPPC, Climate Change and EMAS as well, agree that it is not much into

LIFE08 ENV/F/000488 IMCM rejected - about mosquito control Agree

LIFE08 INF/GR/000581 INFOIL rejected - deals with waste Agree AgreeLIFE08 ENV/B/000046 LVM-BIOcells rejected deals with soild

bioremediation Agree AgreeLIFE08 ENV/CY/000461 MARITIMECO2

rejected deals with CO2 emission trading in shipping Agree

LIFE08 ENV/E/000113 METABIORESOR rejected deals with waste and

alternative energy AgreeLIFE09 ENV/IT/000070 N.O.WA.S.T.E rejected - deals with waste AgreeLIFE09 ENV/DK/000368 NorthPestClean

rejected deals with soil remediation Agree

LIFE07 INF/IT/000438 Olèico+

no details but looks like waste project Agree

LIFE07 ENV/GR/000280 PROSODOL rejected deals with soil

directive Agree AgreeLIFE09 ENV/SE/000352 Pure Energy Separator rejected deals with waste oil

directive Agree AgreeLIFE07 ENV/E/000787 Recyship rejected deals with recycling

ships Agree Agree

2007

/60/

EC

flo

od r

isks

2008

/105

/EC

W

QS

2006

/118

/EC

gr

ound

wat

er

2006

/44

fres

h w

ater

s to

sup

port

2006

/113

/EC

sh

ellfi

sh

2008

/75/

EC

bo

ttom

fis

hing

gea

rs

98/8

3/E

C

drin

king

w

ater

2006

/7/E

C

bath

ing

wat

er

Frameworks Pollution Control Aquatic Organisms Human Health & Infrastructure

2000

/60/

EC

W

FD

2008

/56/

EC

M

SF

D

96/6

1/E

C

and

2010

/75/

EU

91/2

71/E

EC

ur

ban

was

te

wat

er

91/6

76/E

EC

ni

trat

es fr

om

agric

ultu

re

76/4

64/E

EC

; 80

/68/

EE

C;

06/1

1/E

C

Page 120: LIFE Water Study

LIFE09 ENV/GR/000302 SAGE10

rejected deals with EIA of olive production Agree

LIFE09 ENV/NL/000427 SEWEEX rejected deals with transfer of

heat energy from sewage Agree AgreeLIFE09 ENV/IT/000186 Sludge's Wealth rejected deals with sewage

sludge Agree AgreeLIFE08 ENV/D/000026 Sus Treat

rejected deals with sustainable energy Agree

LIFE09 ENV/ES/000447 The Green Deserts

reinstated - may have relevance to water scarcity in WDF

LIFE09 ENV/ES/000451 VALUVOIL

rejected - deals with waste Agree AgreeLIFE10 ENV/ES/000471 Crops for better soil rejected - deals wth soil AgreeLIFE10 ENV/CY/000723 CYPADAPT

reinstated - may have relevance to water scarcity in WDF Agree

LIFE10 ENV/GR/000606 ELINA rejected - waste oils AgreeLIFE10 ENV/IT/000343 GREEN SITE

1 1 need to checkDoesn't seem very relevant. About decontamination.

Agree, no directive is mentioned, sediment decontamination

LIFE10 ENV/IT/000369 LCA4PORTS

1not stated deals with Directive 2010/31/EU ossible WFD?

Some aspects dealing with wastewater quality and recovery, but seems more generally linked to ports management

Agree, mostly deals with ports management and focuses on Directive on energy sufficiency 2010/31

LIFE10 ENV/IT/000324 PURA4IPM rejected deals with pest control Agree

Page 121: LIFE Water Study

[Water Sector Report August 2012]  Annex 3 

           

Annex 3  

WFD Assessment Matrix  

Page 122: LIFE Water Study

Year Life Code Pro

gra

mm

e o

f m

ea

sure

s

comments Ob

ject

ive

s m

et

Pro

ject

sco

re o

vera

ll %

ag

e

Pro

ject

sco

re

(re

leva

nce

to p

olic

y a

rea

) o

ut o

f 6

ENV and INF PROJECTS P S P S P S P S P S P S P S P S P S P S P S p S P S

5

LIFE05 ENV/DK/000155 AGWAPLAN

1 1 1 1 1 deals witth nitrates in agriculture

yes except guidelines was not possible due todelays of the final inter-calibrations of the environmental objectives in the WFD in different watercourses. 85 6

5

LIFE05 ENV/F/000058 AWARE

1 1 1 1 deals with reduction of pesticides yes 85 6

5

LIFE05 ENV/GR/000245 EnviFriendly

1 1 1 1 1 1 1 1 1

this project could be a useful case study - especially integrated management and social aspects - also has phytoremediation and 10 methods for reducing pollution yes 85 6

5LIFE05 ENV/E/000289 FERTIGREEN 1 1

deals with pollutants from greenhouses only marginallassociated with WDF

yes but not as successful as predicted and moreresearch necessary 63 3

5

LIFE05 ENV/UK/000126 FORMOSE

1 1 1waste water clean up of formaldehyde before discharge to rivers yes technically but dissemination was poor 54 2

5

LIFE05 ENV/E/000313 gEa

1 1sustainable water use through computerised irrigation system yes 59 4

5

LIFE05 ENV/B/000517 INSIMEP

1 1 1 1 1 1

The project is expected to contribute to the objectives of: thWater Framework Directive (by aiming to achieve "good" surface water and groundwater status by 2015), the Groundwater Directive (by preventing and controlling pollution through appropriate measures) and the Integrated Pollution and Prevention Control Directive (by preventing the further spread of groundwater contamination). yes 85 5

5LIFE05 ENV/DK/000145 Odense PRB - AgriPoM 1 1 1 Planning at river basin level - might be a good case study yes 79 5

5LIFE05 ENV/E/000292 OLIVEWASTE 1 1 mainly deals with waste from olive industry yes 69 5

5LIFE05 ENV/IT/000868 PERBIOF

1 1 waste water biological treatment replacement yes 95 6

5LIFE05 ENV/UK/000121 PROMOTHE MBR 1 1 waste water treatment using membrane technology yes except dissemination was poor 59 4

5LIFE05 ENV/UK/000127 QUERCUS 1 1 1 1 1 improving urban rivers through stakeholder involvement yes 77 5

5LIFE05 ENV/B/000510 TOPPS

1 1 1 1targets agriculture sector through reducing pollution of wateby plant protection products yes 87 5

5

LIFE05 ENV/D/000182 WAgriCo

1 1 1 1

ammendment of agricultural assistance programmes tsupport the implementation of the Water Framework Directive yes 77 6

5LIFE05 ENV/E/000256 ZERO PLUS 1 1 1 model for managing metal wastes in water yes 85 5

6

LIFE06 ENV/IT/000255 A.S.A.P

1 1 1 1 1protocol for reducing ground water abstraction and economic model re tarrifs - could be a good case study

yes - After LIFe plan has activities planned for 4 years following closure 82 6

6

LIFE06 ENV/F/000133 ArtWet

1 1 1

using phytoremediation to reducenon point source pollutionfrom agriculture - technology has been successfully transferred in 2011 - different approach could be good case study yes and transfer ongoing 95 6

6LIFE06 ENV/F/000132 CONCERT 'EAU 1 1 1

collaborative protocol for reducing nitrates in water fromagriculture no - some objectives not met 62 5

6

LIFE06 ENV/D/000461 FLOODSCAN

1 1 1also targets Flood and INSPIRE directives - flood management through mapping - could be good case study largely - transfer potential large 82 6

6

LIFE06 ENV/F/000158 ISONITRATE

1 1 1 1innovative monitoring method could be interesting to know why not disseminated as widely as expected??

partially - method not demonstrated to the policy makers 51 4

6LIFE06 ENV/D/000478 IWPM

1 1 1manly linking waste water treatment plants to improvefficiency

not yet finished - prolongation granted - 80%finished

6LIFE06 ENV/IT/000235 Kolisoon

1 1 1 1 method for assessing E coli in waste water in situ yes - not sure if applications transerred 85 6

6

LIFE06 ENV/F/000136 MARECLEAN

1 1 1also 76/160 Bathing Water Directive - contribution to WFD in improvement of surfce water quality from diffuse sources

partially - method demonstrated but did not reach all reduction targets 54 5

6

LIFE06 ENV/D/000485 Moveable HEPP

1 1 1

project specificaly designed to address conflict between WFD and Renewables Directive - link with Hydro4LIFE and Netzwerk Doneau as big case study yes - evaluated as major success 97 5

6LIFE06 ENV/UK/000401 MR Mo ToWFO 1 1 1 addressing water quality through managed realignment no - no objectives met 15 2

6LIFE06 ENV/B/000359 MULTIBARDEM 1 1 1 1 multibarrier approach to preventing groundwater pollution yes 79 5

Planning Process DataCharacterisation of river bsins

Su

rfac

e w

ate

rs

Monitoring

Gro

un

dw

ate

r

Eco

logi

cal s

taus

of

surf

ace

wa

ters

Ch

em

ica

l sta

tus

of

surf

ace

wa

ters

Assessment of Status

Da

tab

ase

GIS

m

ap

pin

g/m

od

elli

ng

Ch

em

ica

l sta

tus

of

gro

un

dw

ate

r

Qu

an

tita

tive

sta

tus

of

gro

un

dw

ate

r

Sta

keh

old

er

part

icip

atio

n

Inte

gra

ted

riv

er

ba

sin

a

pp

roa

ch

20

00

/60

/EC

WF

D

Typ

olo

gy,

de

line

atio

n

of w

ate

r b

od

ies

Eco

nom

ic a

naly

sis

Pre

ssur

es

and

impa

c tan

alys

is

Page 123: LIFE Water Study

6

LIFE06 ENV/UK/000409 OpenMI-LIFE

1 1 1

Implementation of a computer modelling system in aintegrated management approach to Water Framework Directives.

yes - project continuing to attract attention after closure 95 6

6LIFE06 ENV/DK/000229 TREASURE 1 1 1 treatment of polluted surface water at low cost Yes - project continues to progress after closure 92 6

6LIFE06 ENV/NL/000167 WET

1 1 1removal of priority hazardous substances cited in WFDfrom WWTP yes - further use of technology foreseen at close 87 6

7LIFE07 ENV/E/000826 AQUA-PLANN PROJECT 1 1 1 WFD, local planning strategies still open - closes 06/2012

7LIFE07 ENV/EE/000122 BaltActHaz 1 1 1 1

Addresses 3 directives plus new HELCOM Baltic SeaAction Plan. still open - closes 06/2012

7LIFE 07/INF/UK/750 Ecoanimation 1 1

series of cartoons focussing on water conservation andaimed at children very successful and likely to be on-going 64 5

7

LIFE07 ENV/S/000908 GreenClimeAdapt

1 1 1 1

Focuses on climate change but also tries to achieve gooecological status under WFD, local stakeholder particoipation and flooding modelling still open - dues to close 10/2013

7LIFE07 ENV/PL/000605 Lake recult. in Gniezno 1 1

WFD also, it was a good project, improving water qualityyes - water quality objectives met 92 6

7

LIFE07 ENV/L/000540 M3

1 1 1 1 1

Insufficient harmonisation of national implementation witthe approach of the WFD causes some problems, and the experience and outputs of the M³ project might be of interest for the working groups on the WFD still open - due to close 12/2012

7LIFE 07/INF/UK/932 RENEW

1 1 deals with reduction in water and energy use waiting final report closed 12/2011

7LIFE07 ENV/IT/000497 SALT

1 1 1 1primarily climate change but also WFD through resourceefficiency and reduction in ground water use waiting final report closed 12/2011

7LIFE07 ENV/F/000173 SEMEAU

1 1 1 1 1 1essentially a modelling project to develop a tool to assiswater quality management in hilly areas still open - due to close 12/2012

7LIFE07 ENV/GR/000278 Soil Sustainability(So.S) 1 1 1 1 1

Mainly targets soil directive but also aims to improve watequality at the river basin level waiting final report closed 12/2011

7

LIFE07 ENV/IT/000475 TRUST

1 1 1 1 1 1

Trust links with Water Framework Directive, FloodsDirective and the European Policy on Water Scarcity and Drought - may be a good case study waiting final report closed 12/2011

7

LIFE07 ENV/B/000038 WALPHY

1 1 1 1

also targets Flood directive - deals with hydromorphologicaassessment of water bodies for implementing infrastructure improvements still open - due to close 12/2013

7

LIFE07 ENV/E/000845 WATER CHANGE

1 1 1 1Targets Climate change but also WFD through resource efficiency still open - due to close 12/2012

8

LIFE08 ENV/E/000099 AQUAVAL

1 1 1 1

WFD, water treatement plans, also linked to Floods (alstargets Floods Directive) - promotes the use of SUDS - urban polution arising from stor water runoff still open - due to close 06/2013

8

LIFE08 ENV/FIN/000609 CATERMASS

1 1 1

Water Framework (2000/60/EC), Flood (2007/60/EC), Habitat (92/43/EEC) and EQS (priority substances) directives - mainly to do with mapping and risk classification of acid soils still open - due to close 12/2012

8

LIFE08 ENV/IT/000390 ECOMAWARU

1 1 1 1 1

improvement of water quality from waste treatment plantthrough phytoremediation (algae) in open and closed systems still open -due to close 02/2013

8

LIFE08 ENV/PL/000517 EH-REK

1 1 1 1

to rehabilitate reservoirs, WFD and water quality use of eco-hydrology in planning the interventions - some major infrastructure - could be interesting case study still open - due to close 12/2014

8

LIFE08 ENV/PL/000519 EKOROB

1 1 1

Mentions the WFD, cost effective ecohydrology actions (using vegetation as a means of removing pollutants) to reduce diffuse pollution and achieve good status of water still open - due to close 12/2014

8

LIFE08 ENV/E/000117 ENSAT

1 1 1 1 1 1

Targets pollution clean up of groundwater and possibly managed aquifer recharge to address water scarcity through model development still open due to close 03/2012

8

LIFE08 ENV/IT/000399 EnvEurope 1 1

Environmental Information System for Europe (SEIS) - project mentions ecological indicators of ecosystem quality still open - due to close 12/2012

8

LIFE08 ENV/GR/000570 HydroSense

1 1 1 1 1

Use of GIS technology to address resource efficiency inwater and energy use in irrigation and reduce ferilizer and pesticide use still open - due to close 12/2012

8

LIFE08 ENV/IT/000413 INHABIT

1 1 1 1 1 1River Basin Management Plan Project - seeks to include hydro-morphology to support Biological Function in RBMPs still open - due to close 03/2013

8

LIFE08 ENV/CY/000457 INTER-WASTE

1 1 1

Minly Urban Waste water - addresses waste annd sustainable energy - improved water quality a secondary objective still open - due to close 09/2012

8

LIFE08 ENV/D/000021 MAGPlan

1 1 1 1

Ris management for pollution of groundwater. Compilation of EU-wide applicable recommendations for action for ground water risk management in urban areas linked to the activities of the WFD Common Implementation Strategy (CIS) - Working Group C activities to develop further guidance for implementation of the GWD still open - due to close 12/2014

8

LIFE08 ENV/E/000114 POWER

1 1

Project to reduce energy consumption associated withirrigation and reduce water consumption (by 60%) through use of models. Resource efficiency and renewables still open - due to close 12/2012

8

LIFE08 ENV/GR/000551 PURE

1 1

To transform an existing network of pipelines that are currently distributing treated wastewater for irrigation, with no control, no monitoring, no pricing and no management plan, into an upgraded system that provides high quality alternative water resources for irrigation, in a sustainable manner and in accordance with the principles of the Water Framework Directive (WFD still open - due to close 06/2013

Page 124: LIFE Water Study

8

LIFE08 ENV/IT/000406 REWETLAND

1 1 1 1

Encourage participatory decision making in line with the WFD as well and deal with farmers to reduce nitrates pollution - also uses constructed wetland approach still open - due to close 06/2013

8

LIFE08 INF/IT/000308 WATACLIC

1 1 1 1

not stated but deals with resource efficiency - redution inwater use in Urban areas using communication and fiscal tools still open - due to close 12/2012

8

LIFE08 ENV/CY/000460 WATER

1 1 1Preservation of good water quality status and reducing water use. Developing indicators for water quality in lakes. still open - due to close 07/2013

8LIFE08 INF/SK/000243 WATLIFE 1 1 1 1

This is a dissemination project, dealing with WFD changing attitudes to conserve water and reduce pollution still open - due to close 12/2013

8

LIFE08 ENV/B/000042 WEISS

1 1 1

Water Emissions Inventory Planning Support System(WEISS) to support competent authorities across Europe with the implementation of the Water Framework Directive (WFD) still open - due to close 12/2012

8LIFE08 ENV/CY/000455 WINEC

1 1 1Reducing pollution from wineries - mainly deals with piloWWTP stilll open - due to close 10/2012

9LIFE09 ENV/GR/000296 Adapt2Change 1 1

Reducing water use in greenhouses in response to climatechange still open - due to close 08/2014

9

LIFE09 ENV/ES/000456 AG_UAS

1 1

To develop a cost-effective, spatial tool for more efficient, sustainable, water monitoring and management, in line with WFD requirements using remote sensing approach - highly innovative and maybe worth y case study still open - due to close 09/2013

9

LIFE09 ENV/IT/000208 AQUA

1 1 1 1 1 1reducing nitrates from livestock production - also groundwater pollution -plans to operate at river basin scale stillopen - due to close 03/2014

9

LIFE09 ENV/IT/000075 AQUA

1 1 1 1

Could be good example of regional and local WFD actions - operating in the agro industry to reduce water use and pollution still open - due to close 06/2013

9LIFE09 ENV/RO/000612 CLEANWATER 1 1 1 1 1 Nitrates mostly, groundwater and vulnerable zones. still open - due to close 02/2014

9

LIFE09 ENV/ES/000431 CREAMAgua

1 1 1 1

To introduce ‘natural’ ecosystem structures of wetlands andriverbank forests to reduce inorganic nutrients in farming communities on regional scale still open - due to close 12/2014

9

LIFE09 ENV/FI/000569 GISBLOOM

1 1 1 1

Introduce, demonstrate and evaluate an array of technical and methodological innovations to improve cost efficiency oimplementation of WFD and river basin management still open - due to close 09/2013

9

LIFE09 ENV/ES/000447 The Green Deserts

1 1 limited relevance to WDF in conservation of water still open - due to close 08/2015

9

LIFE 09/ENV/UK/026 Hydro4LIFE

1 1 examines clash between WFD and renewables still open - due to close 09/2013

9

LIFE09 ENV/ES/000472 LOS TOLLOS

1 1 1Restoring good quality water through a series of measures connected with soil and hydrology still open - due to close 12/2014

9

LIFE09 ENV/SE/000351 Mare Purum

1 1 1

The proposal mentions WFD, MSFD, Bathing water. It deals with measurment of marine fouling,aims toxic paint (TBT) reduction. still open - due to close 12/2014

The proposal mentions WFD,

9LIFE09 ENV/DE/000011 MY FAVOURITE RIVER 1 1 1

Deals with river management using a variety of techniqueto establish good ecological status still open - due to close 08/2014

9

LIFE09 ENV/IT/000136 PALM

1 1 1Deals with wter losses from reticulation systems (resource efficiency) and assocaited costs still open - due to close 08/2013 Agreed, no directive is mentioned specifically

9

LIFE09 INF/UK/000032 RESTORE

1 1 1 1

Building a newtork of river restoration projects - providinforum for exchange of knowledge and best practice - also deals with Habitats directive still open - due to close 09/2013

9

LIFE09 ENV/ES/000467 UFTEC

1 1 1ultra filtration pre-treatment water technology to reduce pollution and water use still open - due to close 08/2013

9

LIFE09 ENV/FR/000593 WaterRtoM

1 1 1 1 1 1 1 1 1 1 1 1 1

Promoting results of research to get faster feedback to inform Water policy implementation - could be a good one for case study - technically could target all areas still open - due to close 08/2013

9

LIFE09 ENV/IT/000056 WIZ

1 1Involving stakeholders in drinking water management. Also targets climate change directive but not sure how! still open - due to close 08/2013

10LIFE10 ENV/ES/000521 AQUATIK 1 1 1 new monitoring technology for 7 of WFD priority pollutants still open - due to close 02/2015

10

LIFE10 INF/SI/000135 AQUAVIVA

1 1 1 1 1improving water quality in rivers through increasing pubic awareness - also mentions Habitat and biodiversity still open - due to close 08/2014

10

LIFE10 ENV/IT/000380 AQUOR

1 1 1 1 1 1

Protection of groundwater resources through stakeholder efforts - reduction in water use - establishment of GIS tool - also targets Groundwater Directive still open - due to close 09/2014

10

LIFE10 ENV/GR/000601 CHARM

1 1 1 1Mainly cites the Groundwater Directive - programme of measures to address chromium pollution in groundwater still open - due to close 08/2015

10

LIFE10 ENV/CY/000723 CYPADAPT

1 1National programme to prepare adaptation to climate change - may have relevance to water scarcity in WDF still open - due to close 03/2014

Page 125: LIFE Water Study

10

LIFE10 ENV/IT/000401 ECO Courts

1 1Mainlly resource efficiency in all sectors - aim to reduce water use by 30% Still open - due to close ??

10

LIFE10 ENV/DE/000158 HWC

1 1

Urban wastewater disposal and reduced water use through vacuum extraction and reuse of grey water + energy production - mainly resource efficiency still open - due to close 08/2016

10LIFE10 INF/MT/000091 Investing in Water 1 1 1 Sustainable water use in the business sector still open - due to close 03/2014

10

LIFE10 ENV/IT/000369 LCA4PORTS

1 1 1Mainly targets Directive 2010/31/EU - some aspects dealing with wastewater quality and recovery still open - due to close 11/2015

10

LIFE10 ENV/IT/000394 WARBO

1 1 1

Targetting the regulation of Artificial Recharge of groundwater aquifers (a practice which is currently unregulates) in relation to water conservation and scarcity still open - due to close ??

10

LIFE10 ENV/GR/000594 WASTEREUSE

1 1 1 1Deals with agricultural waste, waste nutritians and agriculture and reducing water use in the sector still open - due to close 08/2015

10LIFE10 ENV/IT/000308 WW-SIP

1 1 1Prototype Urban WWTP - to reduce water use and improvewater quality still open - due to close 12/2015

69 21 2 2 2 5 35 24 8 2 5 2 5 2 30 7 10 4 6 1 13 7 30 12 20 3 2

NATURE PROJECTS

5LIFE05 NAT/PL/000101 Ardmouperl 1 1 1 pearl mussel

5LIFE05 NAT/IT/000026 Fortore 2005 1 1 1 improving status

5LIFE05 NAT/DK/000153 Houting 1 1 1 claims to decommission 2 hydropower stations

5LIFE05 NAT/B/000090 Life Grote Nete 1 1

5LIFE05 NAT/D/000057 Lippe-Aue 1 1

5LIFE05 NAT/B/000085 Loutre BeLu 2005-2006 1 1

5LIFE05 NAT/UK/000143 STREAM 1 1 1

6LIFE06 NAT/SI/000066 BIOMURA 1 1

6LIFE06 NAT/FIN/000129 Kokemäenjoki-LIFE 1 1 1

6LIFE06 NAT/A/000127 LIFE Obere Drau II 1 1 1 improving status

6LIFE06 NAT/D/000005 LIFE-Projekt Maifisch 1 1

7LIFE07 NAT/IRL/000342 IShannonSACLAEO 1 1

7LIFE07 NAT/DK/000100 REFLOW 1 1 good ecological status

8LIFE08 NAT/D/000013 Elbauen bei Vockerode 1 1 flood protection

8 LIFE08 NAT/UK/000201 ISAC 1 1 addresses a number of directves though not stated

8LIFE08 NAT/D/000010 Life Projekt "Lippeaue" 1 1 floodplain management

8LIFE08/NAT/S/000266 Vindel River LIFE 1 1

9LIFE09 NAT/ES/000514 MARGAL ULLA 1 1 Pearl mussel/good WQ status

9LIFE09 NAT/DE/000004 Rheinauen bei Rastatt 1 1

10LIFE10 NAT/SI/000142 Ljubljanica connects 1 1

10LIFE10 NAT/AT/000016 Netzwerk Donau 1 1

could expore conflict between WFD and renewable energlike HYDRO4LIFE connect to large case study

10LIFE10 NAT/DE/000008 Rur und Kall 1 1

10LIFE10 NAT/AT/000015 Untere March-Auen 1 1 improving status

TTotal ENV/INF projects 69 21 2 2 2 5 35 24 8 2 5 2 5 2 30 7 10 4 6 1 13 7 30 12 20 3 2Total NAT project 7 16 0 0 0 0 0 0 0 0 0 0 21 0 1 0 0 0 0 0 5 0 1 1 0 0 0Total projects 76 37 2 2 2 5 35 24 8 2 5 2 26 2 31 7 10 4 6 1 18 7 31 13 20 3 2Total Nature Projects 23

Total Env and Inf projects 124

Page 126: LIFE Water Study

Typology Economic Impact anaMonitoring Monitoring Ecological Chemical SChemical SQuantity of StakeholdeIntegrated Data projecProgramme of MeasuresENV 4 6 59 10 7 7 37 14 7 20 42 23 2NAT 0 0 0 0 0 21 1 0 0 5 2 0 0

Total Proje 4 6 59 10 7 28 38 14 7 25 44 23 2

0

10

20

30

40

50

60

70

Number of Projects

NAT

ENV

Page 127: LIFE Water Study

[Water Sector Report August 2012]  Annex 4 

           

Annex 4  

SWOT Analyses  

Page 128: LIFE Water Study

LIFE 05 ENV/B/517 INSIMEP

Policies targeted: WFD (quality of surface waters); Groundwater Directive; IPPC Directive.

Strengths Weaknesses

Demonstrated an alternative remediation approach: to precipitatemetals in situ by acceleration of biogeochemical processes that mayoccur naturally, and to irreversibly fix them in the soil in a form that isstable under naturally occurring groundwater conditions.

Demonstration was carried out on 3 sites in Belgium where groundwaterwas heavily contaminated as a result of 100 years of industrial activity.

The strengths of the project were the different hydrogeologicalconditions at the three test sites, the combination of two differentmetals at each sites and the thorough use of modelling to explain theresults and to design a full-scale remediation.

The technique is more sustainable than pump and treat:- No above-ground waste is being produced.- Less electricity consumed, reducing the carbon footprint.- There is no discharge to surface water, which is important for both

the fact that no priority (hazardous) substances (like Cd) are beingdischarged, and that a hydraulic load to surface waters is avoided.

- A biodegradable carbon source is being used instead of hazardouschemicals, used to treat groundwater aboveground.

- Lower remaining concentrations of metals will be reached at a fastertime horizon

- Resources will be used more efficiently, as the injection rate can bemodulated based on the remaining contamination.

Results of the project carry policy and legislative implications andcontribute to the objectives of: WFD by aiming to achieve "good"surface water and groundwater status by 2015; the GroundwaterDirective by preventing and controlling pollution through appropriatemeasures; and the IPPC Directive by preventing the further spread ofgroundwater contamination. The project also contributes to the 6th EAPby increasing awareness that human health is affected by environmentalproblems related to water pollution and chemical contamination.

The project did not directly affect policy, but provided a demonstrationof technology that may help to achieve WFD / groundwater directiveobjectives.

The limitations of the ISBP technique are the restrictive conditionswhich are mainly hydrogeological (the presence of clay lenses or lowpermeable soil, the depth of the groundwater) or (bio) geochemicalorigin toxic conditions, level of groundwater contamination with heavymetals and mineral content of the aquifer).

The experience with an undefined groundwater flow direction and a lowpermeability due to clay lenses shows that application of ISBP is difficultin those circumstances.

The cost of applying INSIMEP is strongly site-dependent, i.e., comparedto the classical technique of pump-and-treat (P&T). The cost depends onthe availability of clean-up infrastructure already on site. If pumpingwells are available, a wastewater treatment plant or sludge dewatering,the investment necessary for the classical P&T approach stronglydecreases.

The economical evaluation showed that overall, ISBP is cheaper thanpump and treat. Capital Expenses (CAPEX) related to ISBP however aremore expensive than classical pump & treat. For smaller sites, thisdifference becomes less. Due to the lower Operational Expenses (OPEX),ISBP is cheaper as from a term of 10 years for big sites, with CAPEXtaken fully on the account in the first year. After this break-even point,the operational cost for ISBP is 40% lower than for pump and treat. Forsmaller sites, ISBP is cheaper after a shorter time (taking the parametersof site 1 into account for the design).

Page 129: LIFE Water Study

Opportunities Threats

The advantages of the ISBP technique are its economic soundness in thelong-term rather than classic remedial technology, its low operationalmaintenance, its positive impact on the environment as well as itsrelatively easy implementation in terms of infrastructure works.

ISBP for immobilization of metals can be applied by metal or otherindustry with similar contamination. The economic importance of themetal industry is clear: in Europe, Eurometaux (non-ferrous metalsfederation) contributes 1,1% of the gross domestic product (GDP) andemploys (directly and indirectly) 1.2 million people.

Replication is possible, depending on nature of pollution: the projecthas started preparatory actions to use the in-situ method todecontaminate another site at UMICORE, the Zolder site. Furthermore,it is envisioned that the in-situ method will be used on other UMICOREsites as well.

As a threat for application of ISBP, the biggest is that thoroughevaluation of each site on a case-by-case basis is needed.

There are technical and economical limiting factors for application ofISBP:- The presence of clay lenses or low permeable soil;- The absence of redox conditions allowing the sulphate reduction ;- The level of groundwater contamination with heavy metals;- The depth of the groundwater;- The presence of adjacent protected natural area, to which sulphate

or organic carbon plumes could migrate (linked with improperdesign of the in-situ remediation).

The presence of other contaminants than heavy metals, non-reduced/treated by ISBP;

The availability of the carbon source as well as the availability of non-impacted water to create the injection fluid.

Overall economics, based on the amount of carbon source which isneeded reach sulphate reducing conditions.

Page 130: LIFE Water Study

LIFE 05 ENV/DK/145 Odense PRB – AgriPoM

Policies targeted: Water Framework Directive (focusing on Articles 11 and 13, achieving the objectives specified in Article 4).

Strengths Weaknesses

The pilot project for river basin management planning in Odense RiverBasin has been carried out pursuant to Articles 11 and 13 of the WFD.The preparation of programmes of measures and river basinmanagement plans aimed at achievement of the environmentalobjectives specified in Article 4 of the WFD.

This WFD-related LIFE project focused on agricultural nutrient pressureand its impact on achieving the WFD objectives.

It demonstrated the development of a cost-effective programme ofmeasures to reduce levels of nitrogen and phosphorous originating fromagricultural activities in the Odense river basin.

It prepared a Pilot River Basin management plan, elaborated input forthe EU Strategic Steering Group, as well as demonstrated and madeavailable the project’s results to other environmental and ruraldevelopment authorities and stakeholders within the EU.

The project demonstrated how the planning process required by theWFD can be carried out from the initial establishment of (provisional)environmental objectives to the calculation of how the environmentalobjectives can be achieved most cost-effectively for the water cycle as awhole, i.e. watercourses, lakes, mires, groundwater and coastal waters.

It provided a very cost-effective programme of measures for achievingthe specified (example) environmental objectives for watercourses,lakes, wetlands, groundwater and coastal waters (Odense Fjord).

The project elaborated the different pressures on the river catchment,developed/compiled a list of cost-effective measures and made anestimate of the economic cost of these recurring measures; €12.7m p.a.

All the project's essential technical and environmental components havebeen adopted in the Water Management Plan; in this sense the project'simpact is clear and visible.

A considerable synergy effect (savings of DKK 21 million) is achieved byintegrated implementation of the WFD and Habitats Directive.

Could be too local, rather focuses on the Danish problems.

The project was neither supposed to involve the consultation of thegeneral public nor to have the governmental approval, but was to be anessential component of in the forthcoming river basin managementplan, which, at the later stage, has went through the abovementionedprocesses; ministerial approval in February 2010 and publicconsultations/hearing in October 2010 - March 2011.

The project could have been in closer contact with the Commission tosafeguard a bit more extensive utilisation of the results.

No account has been taken of how the final environmental objectivesare to be established and to what extent the derogation provisions ofthe Water Framework Directive are to be utilized since such decisionsrelate to the environmental objectives and the resultant economicconsequences.

The role of the general public was modest during the project's duration;the website made the link to the general public. This was by purposesince it was well known, that the actual River Basin Management Planmust be put in public hearing.

The reduction rate of nitrogen and phosphorus losses from agriculturewas criticised by the farmers; the project that turned to an actual RiverBasin Management Plan, could have targeted a much quicker reductionrate at negligible economic costs.

Page 131: LIFE Water Study

Opportunities Threats

The results were (successfully) consolidated in the actual Odense RiverBasin Management Plan.

The project represents a successful example of the local cooperationand problem-solving in river basin management and is now integrated inthe future institutional structure to implement the WFD.

The technical part, defining the "good status" of the water body and thedevelopment of a set of measures to reach it might have systemised thebeneficiary approach to the WFD implementation. There might beopportunity "sell" the overall approach.

The fact that Denmark has been behind the EU stipulated time schedulein developing the River Basin Management Plans, and thus in delay inutilising the results of this LIFE project might reduce the opportunitiesthe sell the methodology beyond Denmark and indeed there is not muchindication that the results were used beyond Denmark.

There is some uncertainty regarding the establishment of referenceconditions, especially for lakes, it having been shown that parametervalues could be elevated locally even in for example the Middle Ages.This could be due to the early impact of society or to natural conditions.In certain cases it is therefore recommended to establish site-specificcriteria for good surface water status rather than type-specific criteria.

For technical and economic reasons the majority of the culverted water-courses are not encompassed by the programme of measures for thisplan period. The same applies to reclaimed lakes and marine waters.Based on qualitative considerations it is assessed that achievement of“good surface water status” in these water bodies during the presentplan period would entail disproportionately high costs. The water bodiesin question will thus remain as heavily modified water bodies during thepresent plan period and decisions on environmental objectives andassociated measures will be postponed until the next plan period.

Page 132: LIFE Water Study

LIFE 05 ENV/GR/245 ENVI-Friendly

Policies targeted: WFD and Nitrates Directive

Strengths Weaknesses

Reducing significantly nitrates, nitrogen and phosphorus pollution in thewater of pilot areas (through phytoremediation and river bank erosioncontrols).

Generating awareness among and synergy between local entities for amore sustainable use of water resources.

Very good partnership (13 members), including most relevant localmunicipalities, research institutes and university, and good synergy witha private consultancy company – to facilitate good projectmanagement).

High commitment of regional authority for the successful completion ofthe project.

Identification of, and dialoguing with, key local stakeholders for theelaboration of an integrated watershed management plan, with apreliminary identification of socio-economic reality.

Synergies between the WFD and the Nitrates Directive and contributionto the Waste Directive (agricultural waste).

Good collaboration with Greek National Authorities.

The creation of monitoring network of the natural attenuation andwater management.

Establishment of a Local Development Observatory to ensure resultseffectiveness and sustainability.

No weaknesses were identified by the MoT.

Opportunities Threats

Toolbox developed to be transferable to any region/area suffering fromdiffuse pollution originating from agricultural practices and from theemergence of the “temporary river” phenomenon.

Transferability of a participatory approach model which emphasises theinteraction with farmers and other stakeholders, and social aspects ofthe region aiming at the identification of the potential for changestowards sustainable management practices.

Lack of funding for future activities and the ongoing economic crisis inGreece

Farming communities not wholly engaged who see the reform of theCommon Agricultural Policy (CAFP) as their major interest.

Page 133: LIFE Water Study

Establishment of the Local Development Observatory, which gainedofficial status in the last months of the project implementation, toensure its sustainability.

A new project funded for the integrated management of the EvrotasRiver Basin (MIRAGE - FP7).

The Evrotas river basin was identified to take part in the EU Pilot RiverBasin (PRB)-Agriculture network.

The Central Water Agency of the Ministry of the Environment in Greece(the authority responsible for the implementation of the WFD) hasshown interest in transferring project results to other Greek river basins.

The water unit of the regional authorities has gained strength followingthe implementation of the project.

The project stirred interest also in other related themes in the region(e.g. fires, floods).

Page 134: LIFE Water Study

LIFE 05 NAT/DK/153 Houting

Policies targeted: Habitats Directive (Annex I habitat 3260-watercourses characterized by Ranunculion fluitanis and Callitrico –Batrachion communities andAnnex II priority species Coregonus oxyrhyncus (Houting). WFD is not specifically targeted, however the project substantially contributes to meeting targets.

Strengths Weaknesses

The project is on course to achieve its main objectives - removingphysical barriers in 4 river systems (ensuring access to app 117 km ofwater courses), re-establish natural hydrological regime over app 20 kmof a major river (Varde) and restoration of physically degraded watercourses – estimated some 25 km.

The project targeted the whole range of the priority species (Houting) inDenmark and the EU. Supplementary sites were restored during projectduration, through national and private funds.

It builds on the recommendations of National management plans forHouting and Salmon (2003).

The project is expected to lead to an improved condition in 4 DanishNatura 2000 sites housing in addition to Houting a number of otherAnnex II species.

The project will also provide a number of environmental benefits,including reduction of nutrient loads to the internationally importantcoastal area, the Wadden Sea and it will assist in meeting the objectivesof the EU Water Framework Directive by restoring the continuity andnatural water regime of 4 river systems.

Areas restored so far are of good quality and methodology has provedto be efficient

Engagement in international river restoration conferences.

Interventions were planned at a third hydropower site, but noagreement was reached with the owner and the action abandoned.

Opportunities Threats

The approach of targeting whole river systems/catchment areas isreproducible, as well as the techniques used and fine-tuned during theproject.

The project will provide experience which could prove valuable for thereintroduction of the Houting in other parts of its natural distributionarea, e.g. Germany and the Netherlands.

Difficulties in purchasing property and water extraction rights through avoluntary negotiation process.

Page 135: LIFE Water Study

LIFE 06 ENV/B/359 MULTIBARDEM

Policies targeted: WFD (quality of surface waters); Groundwater Directive is mentioned.

Strengths Weaknesses

The multibarrier technology is one of the options that exist to improvewater quality (groundwater & surface water) in river basins acrossEurope.

In many cases polluted groundwater contains a mixture of both organicand inorganic contaminants. The abatement of such pollutant mixturesis not possible with a simple barrier/zone based on removal of thepollutants by either physico-chemical or biological processes. However,such pollutant mixtures might be treated using a combination ofdifferent reactive barriers/zones. Such a combination is defined as aMultifunctional Permeable Barrier (multibarrier). A multibarrier is asustainable in-situ passive solution to contain and treat contaminatedgroundwater. It consists of a tailor-made combination of different typesof permeable reactive barriers and reactive zones in which pollutantremoval processes are active. The groundwater flows through thesystem during which the pollutants are degraded or immobilized. Assuch multibarriers prevent further spreading of the pollution to thedownstream area.

The project aimed at the demonstrating a multibarrier as a sustainablesolution for preventing mixed contaminants spreading in groundwater.

It demonstrated the multibarrier concepts at two different locationswith different geological situations (a Landfill site and an Industrial site).

For both locations hydrogeological and chemical data were collectedand reported, to determine the kind of problem pollutants.

In total 3 pilot tests were performed.

The direct environmental benefit of the multibarrier system is thecontainment of pollutants in the groundwater, hereby preventingfurther spreading of the contaminated groundwater.

Cost estimations revealed a decreased cost for electricity of 3 to 4 timesfor a multibarrier system in comparison with a pump and treat approachfor treatment of leachate containing groundwater.

A demonstration of technology took place that can contribute toremoving pollutants from leachate – there is a clear connection withpolicy but it does not affect policy directly.

At a short term, multibarriers are more expensive due to higherinstallation costs, but at the longer term they become economicallymore favourable than conventional pump & treat technologies.

In general, it may be assumed that site characterization, design andcontingency planning costs will be higher for a multibarrier than for P&T,whereas operational costs will be lower.

The MULTIBARRIER technology is tailor made, and is dependent on thepollution present and the hydrogeological situation.

Page 136: LIFE Water Study

Opportunities Threats

Multibarrier was demonstrated in Belgium and Austria and can bereplicated for treating leachate anywhere.

The multibarrier concepts can be worked out for different pollutioncompositions and different geological situation.

Highly innovative project with a high relevance for environmental issues/ policy areas - i.e. the implementation of the WFD.

Estimation of the long-term cost savings & business opportunitiesrelated with the multibarrier technology was part of the cost-benefitanalyses that were made. Extrapolation of the Belgian multibarrier caseto a full scale system was made and compared with a pump and treattechnology. For this hypothetical case, a multibarrier became cost-efficient after approximately 8 years of operation. A similar exercise wasmade for the Austrian multibarrier. Here the multibarrier became costefficient after 7 years of operation.

The multibarrier technology is expected to have a positive influence onhealth, by protecting groundwater from pollution.

The processes demonstrated in the multibarriers designed in this projectare innovative:

demonstration of classical biological nitrification/denitrificationunder in situ conditions (12°C)

the use of grape mark as slow release C-source in a barrier

the use of zeolites as an in-situ buffer with potential for auto-regeneration in place

use of cheap diffusive oxygen supply systems.

Construction costs depend highly on the type of multibarrier installed(reactive barriers vs reactive zones), and may be either higher or lowerthan for P&T.

However, much depends on the long term performance of multibarriersand potential need for replacement of reactive materials. This remainsas yet a major unknown.

Application of multibarriers will likely be slow in the near future, due tothe current uncertainty regarding long term performance. Authoritieswill therefore probably require more stringent monitoring andcontingency planning than for conventional techniques.

For successful realisation of multibarriers, a close collaboration isneeded between applied scientists, consultants and contractors.

Page 137: LIFE Water Study

LIFE 06 ENV/D/461 FLOODSCAN

Policies targeted: Floods Directive; Water Framework Directive; INSPIRE Directive.

Strengths Weaknesses

The project significantly contributes to the implementation of the FloodDirective, mainly by demonstrating the optimised and cost effective (upto 60 % savings) processing of data and hydraulic modelling of riverssubject to risk of flooding.

The project demonstrated clear added value with regards to thecooperation between water management and land surveyingauthorities.

Better flood risk communication enables information of the public inareas at risk about flood hazards and risks at minimal cost. This alsoleads to higher acceptance for flood protection measures as well asincreased willingness to take individual precautions.

The dissemination and communication activities were implemented well

Local scale demonstration – no national representation in partnership(although neighbouring federal state was engaged with and applicationacross Germany through LAWA (German Working Group on water issuesof the Federal States and the Federal Government was explored)

Not very diverse international engagement (nothing outside ofimmediate Alpine/German speaking neighbours and Poland)

Delays were experienced in the area of hydraulic modelling, which didnot diminish the overall project results, but lead to a slightly reducedlevel of reliability and validity of modelling

The method is generally applicable in areas and regions outside the Alps.It is yet to be examined whether it is suitable for the particularconditions in the Alps (supercritical flow, excessive bed load).

Opportunities Threats

Task 8 Action 1 applied cooperation projects at national andinternational level (Austria, Italy, Switzerland, Slovenia, Poland). Severalworkshops were held. Suggests that the approach can be transferred onnational and international scale, the main precondition being theavailability of hydraulic and geographic data.

The project provides instruments to water management authoritieswhich can be used for communication with the public in areas at floodrisk and only require minor adjustments to the local situation.

The experiences with laser scan data in the area of flood riskmanagement can be transferred to other sectors such as forestry. Alsowithin the sector of water management replicability is high.

The data thinning software is readily available on the market. FloodScanmethodology is available at no cost through project website.

The demonstration of the practicability of splitting frontend andbackend (of the web-mapping tool) means significant progress in theimplementation of the INSPIRE directive.

As a basis for large-scale implementation it was intended to compile thenumerous working documents into a technical handbook providinginstructions to third parties regarding the processing of basic data aswell as the modelling of flood hazard maps. This process was startedduring the project period, but could not be finalised due to delays. Thebeneficiary sought additional internal funding to complete this but iffunding was not found then this would pose a significant threat totransferability of the methodology developed.

Page 138: LIFE Water Study

LIFE 06 ENV/D/485 Moveable HEPP

Policies targeted: No policies specifically targeted. However project relates to Renewables Directive and Water Framework Directive.

Strengths Weaknesses

Committed beneficiary and partner - to solve competition and legalproblems, they founded a new company for the project.

Economic factors driving ecological improvements - the incentive of thebeneficiaries was to produce electricity and not to save the salmon. Butwithout saving the salmon they would have not been allowed toproduce electricity.

Multiple benefits across different policy areas - this new system showedthat the ecological aspects of the re-establishment of fish passability andbed load transport can be combined with economic aspects, animprovement of the efficiency of hydropower plants and improvementsin flood safety/control.

Meeting policy objectives on local/regional/EU/global scale –Technology guarantees the fish passability thus directly fulfilling thegoals of the “Rhine Action Programme“, “Salmon 2000“ and “Rhine2020”. Development of low carbon technology will help to meetRenewables Directive targets and the UNFCCC and the Kyoto Protocol.

Project design - (minor weakness) Prolongation for 9 months required,in order to allow for meaningful bio-monitoring after theimplementation of the power plants.

Dissemination – (minor weakness) project’s dissemination effortsseemed to be focussed in Germany – less evidence of EU widedissemination (although projects in Austria and Netherlandsdemonstrate awareness outside of Germany).

Opportunities Threats

Good potential for transferability - the approach is independent fromnational/regional aspects. It merely depends on the size and shape of ariver. There are 100s of small weirs in Europe that may be suitable forthis technology. So whilst large scale hydropower dams may no longerbe suitable (or viable under WFD), increased numbers of smallerhydropower plants requiring little river diversion could be realised.

Influence local policy makers/regulators perceptions of hydropower -Proves that ecological benefits (WFD) and the economic operation of ahydropower plant (RD) are not contradictory.

Promising market uptake - interest from potential buyers of thetechnology is high. Further plants are planned in The Netherlands (2 x800 kW), Austria (7 x 650 kW, 12 x 1,300 kW each) and Germany (600kW and 1,250 kW). Feasibility studies running for 80 plants in Africa.

Local policy makers/regulators perceptions of hydropower - Potentialfor the continued resistance of local regulatory authorities to facilitatingthe development of hydropower vs requirements of WFD.

Page 139: LIFE Water Study

LIFE 06 ENV/DK/229 TREASURE

Policies targeted: WFD (improving water quality in surface waters)

Strengths Weaknesses

Successfully demonstrated robust, efficient and simple technologies forremoval of pollutants from storm water runoff.

Different technologies for extended treatment of storm-water runofffrom small, medium sized and large catchments are demonstrated.

Treatment facilities were constructed as natural and recreationalelements on the form of semi-natural lakes that in a positive waycontributes to an improved urban environment.

The project demonstrates how storm-water in the future can be treatedand discharged to sensitive waters without causing ecological andrecreational deterioration.

A practical project implementing policy.

Local scale demonstration – no national representation in partnership.

Project scope quite narrow/limited and restricted to Denmark.

Expensive option – can only be afforded by water companies/localauthorities with good cash resources – works well for Denmark butelsewhere?

Requires extensive background investigations.

The very clear, concrete and well programmed technicalimplementation overshadowed the policy related thinking.

Opportunities Threats

1½-years of monitoring and verification under variable climateconditions make it possible to transfer the technology to a range ofEuropean climate conditions.

Two other projects in Denmark funded using results from project.

The technology can also be applied for related purposes such as treatingdrinking water polluted with for example arsenic or heavy metals ortreatment of phosphorous polluted surface waters.

Needs follow up (monitoring) which requires continued financingotherwise results might not be effective.

Transferability depends on ability (and desire) of project team to ‘sell’technology elsewhere.

Page 140: LIFE Water Study

LIFE 06 ENV/F/133 ArtWet

Policies targeted: WFD (improving surface water quality (chemical)); drinking waters and nitrates in agriculture also mentioned.

Strengths Weaknesses

Identified constraints in setting up artificial wetlands in current legalframework in 3 different countries (see also threats)

Delivered several (11) prototype constructed wetlands in 4 differentcountries (high demonstration value)

Effectively addressed some of the issues associated with non-pointsource pollution from agriculture and storm water run off

Very good technical guide produced allowing technical reproducibility(see also weakness)

Very good non-technical guide covering policy and cost implications

Relatively cheap to construct 10,000€ average (but see weaknesses)

Cost of land may be a considerable issue – location has to be carefullychosen to meet hydrological requirements – therefore land may need tobe purchased – if good agricultural land could be 100,000€/ha whichmakes the solution prohibitively expensive

No institutional partners or national policy makers – legal status ofnewly set up wetlands is uncertain – widescale implementation?

Technologies were only prototype and no evidence that the technologycan be easily reproduced by inexperienced team – especially as productintended for ‘farm scale’ implementation

Not clear how technology could be disseminated on a large scale postproject

Opportunities Threats

Technical guide can be readily transferred to other locations for smallscale implementation

Possible opportunities lie with the CAP to compensate farmers for lossof income (see weaknesses) – but not in all countries

Intended for use at the local (farm) scale – but would require a hugedissemination programme to make it more widely available

Different countries have different planning and financing requirements –also different interpretation of Directives

Artificial wetlands are not the be all and end all – must be combinedwith good land management as well otherwise results will not be aseffective

The ArtWet project showed that a harmonisation of the Europeanlegislation would be needed to make the setting up of constructedwetlands easier

Page 141: LIFE Water Study

LIFE 06 ENV IT 235 Kolisoon

Policies targeted: WFD (monitoring surface water); bathing waters and groundwater also mentioned.

Strengths Weaknesses

Rapid assessment of fecal pollution

Reduced consumption and use of disinfectants

Early warning of treatment process malfunctions

Early warning and prevention of health hazard

On line monitoring of bathing waters and re-used wastewater

No need for workforce - fully automated on-line (remote control ready)device

Low cost of analysis per sample 2-3€ per sample

High capital cost for equipment

Subject to mechanical malfunctions/requires maintenance

Indirect measurement

Not recognized officially, to be used for self-control activities

Requires calibration

Prototype only would need significant investment to fully commercialise(project had small budget)

No institutional partners to translate results into policy feedback

Opportunities Threats

Market replication of Kolisoon device possible (but see weaknesses)

Growth of the microbiological market

Possible feed into the revision of the Bathing Water Directive

Other detection methods/automated equipment may be hitting themarket place

Project partners need to maintain collaboration to bring tocommercialisation

No uniformity across countries for standards and methods of testing

Page 142: LIFE Water Study

LIFE 06 ENV/IT/255 A.S.A.P

Policies targeted: No specific policy area targeted but relates to WFD (mismanagement of water resources).

Strengths Weaknesses

Project achieved its objectives of reduced groundwater abstraction by10% (achieved 11%) and reduced system losses from leaks by 10%(achieved 15%). As a result, the negative drawdown trend of thepiezometric level was reversed with an average build-up of + 0.3m from2005 to 2008 and peaks ranging from 0.5m to 1m.

Energy consumption from pumping were reduced by 10%.

Financial resources for bulk reconstruction and/or rehabilitation ofwater networks are seldom available. More often annual allocationssuffice just for maintenance plus a limited quota for ongoingrehabilitation. The protocol translates even limited resources intoeffective action plans for efficient abstraction and leakage cut-down.

The ASAP Protocol raised remarkable interest among (local/regional)public administrators involved in the water management. It wasincluded in the White Paper "A Strategy for Water Supply in Tuscany".

The ASAP model has been replicated already: the water utility of theFiora Aqueduct (Toscana Region) has adopted the ASAP approach.

Local scale only with only regional impacts

Dissemination very Italy/Tuscany centric (some in Spain)

The protocol cannot be regarded as a solution to the original cause ofnetwork losses and consequent depletion of water resources: the agingof pipeline infrastructure (see threats)

Lots of mentions of improved water quality (reduced risk of pollutionfrom over abstraction) but no monitoring – project dealt only withavailability, not quality – could be argued as a weakness.

Opportunities Threats

Methodology outlined in protocol is readily transferable throughoutEurope (especially Mediterranean coastal areas).

One of the main challenges to be addressed in the coming years isineffective water pricing policies which generally do not reflect the levelof sensitivity of water resources. The way forward is putting in placewater tariffs based on a consistent economic assessment of water usesand water value, with adequate incentives to use water resourcesefficiently and an adequate contribution of the different water users tothe recovery of the costs of water services. The application of the ASAPprotocol may bring about relevant benefits (increasing the life ofinfrastructure, reduce maintenance costs of facilities, reducing meantime between failures, reducing mean time to restore).

Limiting factor for the uptake of the protocol elsewhere is the lack ofinvestment available for the renovation of network pipelines (despitethe benefits of the protocol (see strengths point 3).

Page 143: LIFE Water Study

LIFE 06 ENV/NL/167 WET

Policies targeted: WFD (quality of surface waters); waste water and bathing water also mentioned.

Strengths Weaknesses

Achieving the quality standards included in the WFD for WWTP effluentthat needs to be achieved by 2015. As investments in additionaltreatment steps were necessary, the project provided insight in allmeasures that are necessary to achieve these standards.

The technology proposed in the project (additional treatment steps forthe WWTP effluent) is very innovative - especially the AdvancedOxidation Processes that are tested in the second research phase - andwas not used in any municipal WWTP before.

Established an installation of a water treatment facility in Leiden thatcan achieve the WFD values for nitrate and phosphate even with thesingle filter set-up, which would lead to considerably lower costs thanthe set-up with separate filters for N and P removal.

The use of Advanced Oxidation Processes resulted in a reduction ofmedical remnants and pesticides by at least more than 70% and in adisinfection level up to the hygienic limits set for in the BW Directive.

The project demonstrated that heavy metals can be removed andadditional removal of organic micro-pollutants and suspended solids canbe achieved using the same combination of techniques.

The project demonstrated that the further systematic removal ofnitrogen (to below 2.2 mg N/l) and phosphorus (to below 0.15 mg P/l) isfeasible, including at higher filtration speeds (up to 20 m/h). It isimportant that the main treatment (which precedes sand filtration) alsoworks well. No clear distinction could be demonstrated between theremoval performances of the single and the two-filter concepts.

The study has shown that the combination of the two processes in asingle filtration step is quite possible. The single-filter concept can beused both in a continuous sand filter and in a double-layer fixed-bedfilter. As one would expect, the possibility of combining the twoprocesses in a single filtration step yields considerable cost savings(about 50%) compared with the two-filter concept.

Being performed at local scales at the time of the project period– butcould still be widened further.

Page 144: LIFE Water Study

Opportunities Threats

Results are replicated by other Water Boards in the Netherlands, at thetime of the FR, the technology demonstrated in the project had alreadybeen used by the beneficiary at two other WWTP's (Leiden Noord andAlphen Noord). Further use of the technology is foreseen at otherlocations of the beneficiary and by other water management bodies.

Highly innovative project with a high relevance for environmentalissues/policy areas - i.e. the implementation of the WFD.

The study that the project prepared has yielded a lot of new informationand experience with regard to the further removal of nitrogen,phosphorus and other relevant contaminants using subsequenttreatment techniques. Most of the research results can be translateddirectly to other wastewater treatment plants in the Netherlands andother European countries.

No apparent threats, WFD standards have to be met and this is a soundway of achieving this.

Page 145: LIFE Water Study

LIFE 06 NAT/P/192 Biomares

Policies targeted: Marine Strategy Framework Directive (Marine Protected Areas)

Strengths Weaknesses

Information gathered emphasised importance of the marine park.

Increased knowledge of the biotopes of the marine park and itsvulnerability.

First signs of the reserve effect.

Increased public involvement and awareness of the marine parkexistence.

National seagrass status conservation awareness

Lack of a professional Marine Park communication strategy.

Lack of social-economic impact evaluation.

Lack of information on the impact of the protection regulation onadjacent marine habitats/species.

Unable to compare all the factors prior to the creation of the marinepark.

Lack of oceanographic information and water quality at local scale.

Opportunities Threats

Lack of a professional Marine Park communication strategy.

Lack of social-economic impact evaluation.

Lack of information on the impact of the protection regulation onadjacent marine habitats/species.

Unable to compare all the factors prior to the creation of the marinepark.

Lack of oceanographic information and water quality at local scale.

Furtive/illegal fishing.

Lack of marine park surveillance.

Funding discontinuities for monitoring.

Changing of politics/ discontinuity of political support to MarineProtected Areas.

Natural catastrophes/increasing of extreme events (floods, warmerseawater etc.)

Page 146: LIFE Water Study

LIFE 07 ENV/B/038 WALPHY

Policies targeted: WFD; Floods Directive.

Strengths Weaknesses

The project directly responds to the WFD (Water Framework Directive)requirements by :- undertaking work to maintain or recover the good ecological status oftwo water bodies- proposing tools to expand the experience to other water bodies- giving a tool to evaluate preliminary the relevance and efficiency ofmanagement measures- being based uppermost on existing and available data and information

The project is part of a regional (Wallonia) plan to implement the WFD –it builds on work already carried out and ecological monitoring at therestored sites will continue after the LIFE project.

Project has benefits in terms of the Habitats Directive (improvingconditions for Atlantic salmon, sea trout, eels etc.)

As a result of the communication strategy most of the works wereimplemented in a positive context and all the necessary permits weregranted in the normal time frame without major modifications orrequests from stakeholders. In only 3 locations did stakeholderconsultation lead to the postponement of the works

The project does not implement actions towards farmers in relation tonitrogen and phosphorus release from farmland into surface waters(however this should be dealt with by a different department within theregional administration.

Regional beneficiaries – potentially little in the way of disseminationoutside of region.

Opportunities Threats

Demonstration of hydropower working alongside the WFD. Most of theowners of dams are not ready to accept the simple removal of the damsas they are thinking about the establishment of mini hydroelectricpower plants to produce green electricity (in the overall context of highenergy costs and climate change). In these cases the project hasconsidered/implemented alternatives to dam removal (bypass river or afish ladder).

An important aspect for the implementation of the project is thecontinuous contact with the provincial authorities: the Provinces areresponsible for the management of some categories of rivers and alsofor the granting of the compulsory authorisations.

Conflicts with land owners (one particular case where a land ownerwrote to the EC complaining about restoration measures)

Page 147: LIFE Water Study

LIFE 07 ENV/IT/475 TRUST

Policies targeted: WFD (quality and quantity of groundwater); Floods Directive and water scarcity also mentioned; data meets INSPIRE requirements.

Strengths Weaknesses

Climate change scenarios that supply the temporal series ofprecipitation, temperature and evapotranspiration for the 21st centurythat will affect the hydrological balance in the study area

Remote sensing techniques based on the elaboration of satellite imagesto determine the water deficit for irrigation of summer crops

Mathematical models of the hydrologic basins and groundwater in thestudy area to establish how the hydro-geology will evolve inconsideration of climate change and determine appropriate measures(including managed aquifer recharge) to ensure sustainability ofgroundwater resources.

High cost of delivery

Highly technical implementation involving GIS, modelling and remotesensing – technology transferred via workshops within the project butquestion how this might be delivered in sustainable way for technologytransfer

Web GIS on website currently closed to non-subscribers

Maintenance of national and European stakeholders network forsustainable management of groundwater

Opportunities Threats

The applicability of the TRUST methodology by other national andEuropean stakeholders to improve their groundwater management inconsideration of future climate change scenarios.

Sharing of information with regional stakeholders by means of theTechnical Committee that meets periodically and shares informationabout the project through the Web-GIS. This collaborative approach canbe exported to other realities;

Sharing of project results (e.g. through the web site). The project area isextremely complex from the hydro-geological and water managementperspectives as it gathers a wide variety of water uses (irrigation,hydropower generation, potable, industrial); therefore project resultswill find a wide application in many other situations.

Sharing of project data and lessons learnt. The project consortium iscommitted to inform about the project advancement, the datacollection and experiences which can be useful to other stakeholdersdealing with groundwater management. At a national scaleapproximately 70 organisations will be made aware of the results.

The primary constraint for the implementation of TRUST is theavailability of data.

Difficulty in reaching consensus amongst the many stakeholders for theacceptance of artificial aquifer recharge. Artificial aquifer recharge willhave to compete against other economic activities that use water andland resources (excavation sites, flood protection, etc).

The political agenda, rather than artificial aquifer recharge, may gaingreater support as adaptation measures. Not a project risk butpotentially a risk for wider application

Difficulties in collaborating with stakeholders.

Page 148: LIFE Water Study

LIFE 07 ENV/L/540 M3

Policies targeted: WFD (quality of surface waters).

Strengths Weaknesses

The project mainly works on monitoring and modelling of water qualityand reporting for the Water Framework Directive. Water quality modelsbased on real monitoring results are used for estimating the impact ofnew measures or additional loads on water quality of the water courses;the objective is to create a planning tool.

The most important legislation implication is the link to the WaterFramework Directive; the project works on monitoring, modelling andmanagement of water basins in the sense of the WFD.

The beneficiary identified some incoherence between national watermonitoring (substances monitored, priority substances) and therequirements of the WFD; the project team participates also to the WFDworking groups in order to address this issue.

The M3 project has analysed current monitoring efforts in the 3 partnerregions in the light of their pertinence towards pressure identificationand quantification in view of the evaluation of successful Programs ofMeasures (POM).

The main outcomes were that regulators and river basin managers arerather sticking to a threshold motivated monitoring than a monitoringaiming at improving process understanding and sourceallocation/quantification. The latter are however the prerequisite toinitiate successful POM. Monitoring campaigns are needed to confirmthe magnitude of a certain pressure, i.e. via the calculation of river loadsor the estimation of exposure.

The project is now focusing on the following aspects:- Ability to sample exposure (emission situation) in an integrated

way- Quantify ecosystem metrics (metabolism, transient storage)- Serve as water quality model validation dataset- Quantify loads of dynamic components- Circumvent problems related to limits of detection and spatial

Some weakness in the monitoring system of the water courses.

Insufficient harmonisation of national implementation with theapproach of the WFD causes some problems.

The project does not develop specific national or regional approaches; itrather builds on existing regional approaches and develops thesefurther.

Page 149: LIFE Water Study

representativeness

The technical capacity of the partner Erftverband is strength because ithas a very extensive and advanced monitoring and modellingprogramme and also a long-term database.

The project focuses on middle and small watercourses, which are muchmore sensitive to peak loads and other interferences than large ones.

Strength is the commitment; both the beneficiary and the partner assignsufficient qualified personnel and have the necessary scientificbackground to do their work competently.

Opportunities Threats

The M³ project assesses the applicability of different, standard andcustom tailored water emission and emission modelling systems indifferent water basins. Since water modelling is not very streamlinedthroughout Europe - some member states, regions or water boardsapplying their own modelling approach, others simply ignoring waterquality modelling -, the results of the project might be very interesting interms of transferability.

An opportunity is that the project provides enough data and evaluationregarding the inclusion of pharmaceutical substances as prioritysubstances in the WFD.

The M3 project will use existing tools and test them in the field withmonitoring data of variable density in catchments of different scale andpollutant load. The chosen river basins are subject to differentenvironmental pressures, are located in three different Member Stateswith differing programs of measures and are covered by distinctmonitoring programs. In this way, reliability of model predictions fordifferent program of measures will be demonstrated and it will beshown that the concept is applicable in different Member States andwithin different river basins.

No eminent threats are foreseen.

Page 150: LIFE Water Study

LIFE 07 ENV/NL/576 PHARMAFILTER

Policies targeted: WFD (quality of surface waters); waste water and bathing water also mentioned.

Strengths Weaknesses

The project contributes directly to a number of actions specified in theWFD: the reduction of water pollution as a result of urban waste watertreatment and the improvement of surface water quality by providing acost effective measure for waste water treatment.

In addition, the project contributes to the 6th environmental actionplan: the protection of natural systems; reduction of carbon footprint;and higher level of the living environment.

It provides very innovative new methods to treat hospital waste water.Independent qualified laboratory research has proved that Pharmafilterremoves medicines, germs, cytostatica, röntgen contrast liquids andhormone disturbing substances from the water. Pharmafilter IP usesdifferent purification steps to eradicate and clean the waste water ofmedicines.

The PHARMAFILTER concept aims at processing solid organic waste andwaste water in a hospital environment in an innovative integral mannerand will lead to the recycling of components and production of energy.

The Pharmafilter unit that was set up by the project (a mobile unitoutside of the hospital that treats hospital waste water and organicwaste) is since November 2010 processing all waste water (with humanfaeces) from building H in the hospital (that constitutes about half of theRdGG hospital). Furthermore since January 2011 the installation hasstarted to process some organic waste (bed pans, kitchen wastes, etc)from one of the grinders that has been connected to the Pharmafilterunit. A second grinder has been installed in March 2011 and another 18grinders were installed in the period up to September 2011.

The Pharmafilter is currently removing medicinal residues from thewaste water and is generating and using a substantial amount of its ownenergy (60 -70% of energy used by the Pharmafilter is currently beingdeveloped by the unit itself through the use of methane) – two keyobjectives of the project. The beneficiary showed the numerous steps

The operation of Pharmafilter is still to be fine-tuned; the project is on-going.

Page 151: LIFE Water Study

that the hospital waste must go through to be processed and treated bythe Pharmafilter. The end result is clean, purified water (includingdisinfection through ozone) – which at the final stage is apparently cleanenough to drink.

The organic material, including the bio-plastic products is digested andthe total mass is reduced by 90% in mass. The digestion processconverts the sol id mater into biogas. This biogas is used for heating upthe digesters and delivers power to the water purification plant.

Digestion process eliminates viruses and bacteria.

Digestion of the waste requires fewer trucks to transport the wasteaway. The remaining waste will be recycled or turned into a secondsource of energy. This in today terms diverts waste from landfill andmakes for the most efficient use of this waste by generating energy.

The costs prepared by the project show an up to a 90% kitchen wastecost savings and up to 50% savings in hospitals.

Opportunities Threats

The results can in principle be replicated by any hospital.

Highly innovative project with a high relevance for environmentalissues/policy areas - i.e. the implementation of the WFD.

Pharmafilter has been patented as concept and working method.

This project aims to demonstrate a new concept that:- Addresses successfully a serious environmental problem:

contamination of surface water by endocrine disruptors, personalcare products and medical remnants

- Offers an cost effective alternative at the source, thus creating awin-win situation for environment and hospital

- Is attractive to the direct involved staff, since it offers significantadvantages in terms of better working conditions and a significantdecrease of risk of contagion.

- Will proof to be economical attractive in the long term- Can be applied to both existing buildings as in new to build buildings

for public health care purposes.

The project had to ask for prolongation due to a technical problem ofsetting up the grinder and related overflow which caused delay inimplementation.

Attention is needed when staff place the bio-disposables in the grinder.

Page 152: LIFE Water Study

LIFE 07 ENV/PL/605 Lake recult. in Gnieźno

Policies targeted: Water Framework Directive (water quality)

Strengths Weaknesses

The improvement of water quality in the Jelonek and Winiary lakes.

Conducted activities have also contributed to the development ofmacrophytes in the lakes. As a result of conducted activitiesmacrophytes in the lake have been intensively developing in a naturalway and it improved water quality.

The biotope quality improvement and biocenosis in lakes environmentrevived thanks of the macrophytes plantation and reconstruction of fishstock. It reduced the blue-green algae blooming and limited share ofalgae in the phytoplankton. Thanks to strengthening of the self-regulation mechanism in the lakes it will influence on the furtherimprovement of their quality.

Inventory of the sources of contamination of the lakes and the level ofthe pollutant load discharged to them.

The project helped to fulfil the requirements of the Water FrameworkDirective. The Directive is aimed e.g. to protect inland resources ofsurface water with the postulated strategic objective of reaching "goodecological condition of water". Currently the quality of water in theGniezno's lakes can be considered as in a good ecological condition.

Besides its environmental component, the project has a strong socio-economic component since it support a recreational use of the lakes.Winiary Lake is used by the inhabitants of Gniezno as swimming placeand it is very popular area for the local citizens during the summerweekends. The Jelonek Lake and park in its vicinity is the place of restduring the week and weekends. The results of the project not onlyenhance this function, but also reduce the need to travel to otherweekend recreation destinations.

Permanent monitoring and active conservation measures:- Seasonal elimination of reeds from the area of inflow to the Jelonek

lake, which will take the biogenous stored in the reeds out in thelake;

Major difficulties for the project were connected to the weatherconditions. Weather pattern in 2009 was different than usual, whichmeant that some of the activities planned for the first half of the yearcould not be made in due (planned) time. This indicates that weatherconditions should be taken into account it the projects of this type(which include physical field works, biological manipulation).

Page 153: LIFE Water Study

- Control of the fish stock, control catch of the selected fish species,which will ensure a wide diversity of fish species;

- Controlled mowing of water plants from the sites around the lakesdevoted to recreation;

- Control of macrophytes and their plantation if needed;- Campaign to prevent feeding of aquatic birds.

Opportunities Threats

Implementation of the project will assist in protection of water not onlyin lakes but through the river also in Drainage Basin of Odra River withits outflow to Baltic Sea.

The applied method of lake rehabilitation - inactivation of phosphorus inbottom sediment is a new method of lake protection. It can be used inmost of the cities in Europe where lake eutrophication is the mainproblem of their degradation.

Rehabilitation of lakes by inactivation of phosphorus in bottomsediments represents ideal applicable method in case of municipal lakes.It helps to avoid sediment storage and odours emission which are veryoften during lake dredging. All recultivation procedures are performedfrom the water surface, posing no risk for the environment or biologicallife. The method does not require additional area around the lakesurface.

It is relatively cheap method and helps to reach progress in the shorttime. The project in Gniezno shown that the positive results can beobtained even in the case of lakes in very bed condition.

The method can be particularly recommended for shallow lakes.

Because the project reached most of the expected results and thequality of water improved substantially, it has high demonstration valueas an effective method of lake rehabilitation.

Breakdown failure or illegal discharge of sewage into Gnieźniejskiej Struga from which the pollution flows to the lakes. Repeat significantdeterioration of water quality could cause that it will not be funds forcleaning up the lakes. This will lead to inhibition of self-purificationprocesses and, in consequence, to further decrease of water condition.

If the water quality deteriorates, protection activities might not betaken.

Page 154: LIFE Water Study

LIFE 07 ENV/UK/943 PISCES

Policies targeted: Marine Strategy Framework Directive

Strengths Weaknesses

Generating interest and understanding of the concepts of ecosystembased approaches in a wide and diverse range of stakeholder groups

Working with committed stakeholders to produce guidelines forimplementing ecosystems approach

Strong links developed with European Coordinating Group for MarineStrategy (ECGMS) for all member states

Strong links with relevant country Marine Strategy Groups (MSGs)responsible for implementing MSFD nationally

Identification of, and engagement with, key policy stakeholders

Synergies (and conflicts) with DG ENV and DG MARES policies

Links made with other Regional/Local programmes e.g. Baltic SeasRegional Programme

Regular contact with EC FP7 - Making the European Fisheries EcosystemPlan Operational (MEFEPO) and MESMA (marine Spatial Planning in theEU). PISCES PM also on the Advisory Panel for the KnowSeas project.

Balancing national representation within the Celtic Sea Region has beendifficult – main stakeholders initially from UK but other countries betterrepresented towards end of project

Engaging with the fishing community has proved exceptionally difficult –lack of input from major group could undermine effectiveness ofguidelines

Opportunities Threats

Guidelines developed to be transferable to any region/sea area

North Sea Commission wants to adopt PISCES stakeholder model forNorthern North Sea (funded by INTERREG)

Two new projects identified for engagement Channel Arc MancheIntegrated Strategy (CAMIS) and Options for Delivering EcosystemsBased Marine Management (ODEMM).

Interest generated at MS level through the ECGMS

Need to align MSFD with CFP because MSFD will be regulated by CFP

Dissemination of guidelines through ECGMS and related policy groups –potential transferability significant – potential impact significant

Fishing communities not wholly engaged (especially industrialfishermen) who see the reform of the Common Fisheries Policy (CFP) astheir major interest.

Potential mismatch between the MSFD and the Integrated Marine Policy

MSFD implementation at different stages in different countries UK wellahead of France, Ireland and Spain - Spain focussing on data collection

MSFD implementation different in different countries – Spain (andprobably France) will adopt a regional approach – implemented throughRegional Councils rather than national approach – could lead todifferences in interpretation

Potential confusion amongst stakeholders with so many similar projects

Implementation of MSFD in other sea regions which do not include MScould be problematic for wider implementation

Page 155: LIFE Water Study

LIFE 08 ENV/E/099 AQUAVAL

Policies targeted: WFD; urban water pollution.

Strengths Weaknesses

The principle of dealing with surface water run-off at source has nowbeen taken to heart in the development and redevelopment of surfacerun-off systems in many parts of the globe, but there is lack ofexperience in Southern European countries. In this regard, AQUAVALaims to extend the use of SUDS to regions where they are not currentpractice, such as Spain, and in particular to the province of Valencia,with the collaboration of SUDS experts from the University of Abertay(Dundee, Scotland)

Climate change scenarios used to predict future capacity requirements(adaptation to climate change in line with EU policy).

The fact that Diputación Provincial de Valencia participates as a co-financer in the AQUAVAL project highlights its interest for the issue, andbrings in a public body very well positioned to disseminate AQUAVALprogress and results, and promote the wider use of SUDS within theregion (However, Diputación Provincial de Valencia has no influence onmaking SUDs a legal requirement (see weakness point 2)).

The positive results of these kind of strategies are difficult to show up atthis small pilot scale

Local and regional legislation does not enforce the incorporation ofthese strategies in urban planning projects (although see opportunitiespoint 2).

Difficulties in quantifying the savings generated by these strategies (inwaste water treatment plants a result of reduction of water flows orenvironmental benefits by reductions of waste water run offs)

Urban planners and designers do not know these techniques and theyare not included in the design of the standards.

Opportunities Threats

Potential benefits to the local area other than improved water quality(economic advantages of use of grey water, reduction in urban-heatisland affect (positive impacts for human health) and living roofssupporting biodiversity)

The incorporation of the use of SUDS in urban planning requirements fornew developments as a consequence of the results obtained from theproject.

The promotion of the use of these techniques and strategies betweenarchitects and engineers, ultimately responsible for its incorporation inurban designs.

SUDS can partially alleviate the low capacity of the existing sewagenetworks, which haven’t been properly adapted to recent urban growth.

Financing difficulties in local entities make these kind of projects (SUDSin general) something difficult to afford and could threaten the futuremaintenance of the pilot sites.

Great variability on local weather conditions, which make thespecification of these facilities very difficult. Climate change is makingexisting historical weather data useless in some cases of very extremeevents (they seem to be more frequent now)

The sewage networks have not been adapted to cope with high levels ofurban growth of recent years, which aggravate run off episodes, whichcreates an opportunity.

Page 156: LIFE Water Study

LIFE 08 ENV/GR/551 PURE

Policies targeted: Water Framework Directive; Urban Waste Water Treatment Directive

Strengths Weaknesses

The upgraded Waste Water Treatment Unit (WWTU) that will beconstructed by the project is not only a demonstration action for others,but a permanent investment, the continued use of which is securedafter LIFE.

Project has been very active in raising awareness of the local targetgroups (farmers, tourists, local communities) through a range ofinteractive means.

The WFD and UWWTD are clearly stated in the proposal but their link tothe project activities is not clearly articulated.

Despite excellent dissemination at a national level in Greece and somedissemination in Cyprus, little international dissemination (either inSouthern Europe or non-EU semi-arid regions as mentioned in theproposal).

Opportunities Threats

A new Joint Ministerial Decision on wastewater reuse, was issued inApril 2011 (MoT considers that this development is not due to theproject’s lobbying efforts, but is not certain). Nevertheless thebeneficiary has indicated that since the issue of the JMD there has beena growing interest of Municipal Enterprises for Water & Wastewateracross the country on the project. The beneficiary has been advised (inthe latest EC letter) to discuss the implications of this JMD and indicatehow the project will capitalise on this opportunity for the disseminationand demonstration of the project's methods and results to the relevantstakeholders. So the project does have the potential to be replicated ona wider scale in Greece (provided funds are available).

The administrative reform “Kallikratis” that came into effect in Greece asof 01/01/11 and as a result of which the Municipal Enterprise for Water& Wastewater of Chersonissos (MEWWC), was unified with theMunicipal Enterprise for Water & Wastewater of Malia (MEWWM). Theunification of the two enterprises is an opportunity in that the projecthas the potential of expanding to the former Municipality of Malia (butnot within the project duration).

Potential for replication outside of Greece in other Southern Europeanand non-EU semi-arid regions (if not the technology then certainly thepublic engagement and environmental monitoring approachdeveloped).

The administrative reform “Kallikratis” led to delays in theannouncement of the tenders for upgrading the WWTU and hasincreased bureaucracy especially with respect to the approval ofexpenses, while hiring of personnel is next to impossible.

An important threat to the project’s replication in other MunicipalEnterprises for Water & Wastewater in Greece in the future is thefinancial crisis.

Potential for strong opposition from end users to pay a specific price (orany price) for the wastewater. May threaten the long-term economicviability of the upgraded water distribution system, but also thepotential replication of the approach.

Page 157: LIFE Water Study

LIFE 08 ENV/IT/390 ECOMAWARU

Policies targeted: WFD (quality of surface waters); waste water also mentioned.

Strengths Weaknesses

Development of a water and wastewater management scheme adoptingphytodepuration with micro algae. Technique allows a significantimprovement in the quality of the final effluent that is eventually reusedfor irrigation purposes.

Implementation of two treatment plants at different scales. Urbancatchment area, designed to treat only a portion of the entirewastewater flow. Rural areas treating the entire wastewater flow.

Elaboration of a draft proposal regarding the use of phytodepurationtechnique with micro algae to be included in the Varese LigureMunicipal Building Code (to be submitted for approval to the MunicipalCouncil).

Handbook collecting the Best Practices in water and wastewater “green”management. In particular the handbook will contain the technicaldocumentation about design, installation, maintenance, managementand control procedures of the phytodepuration system using microalgae.

Very local scale – needs to be taken up by water authorities/companiesto make major difference

No cost benefit analysis envisaged – must be economically viable as wellas environmentally good solution to ensure take-up on wider scale

Permits required – could be an issue in some places

Opportunities Threats

The application of micro-phytodepuration systems could beadvantageous because they need smaller surfaces than the macrophyteprocesses and because they obtain a product with added value, themicroalgal biomass, which could be directly re-used in agriculture asnitrogenous fertiliser or, depending on the quality and quantity, used forproducing chemicals, animal feeds or bio-diesel.

The new technologies developed by the project are easy to manage andecologically friendly. They could be integrated in rural communities,with the aim to develop a standardised methodology for the globalwater management, applicable to other similar backgrounds.

Possible risk in the project implementation is the selection of microalgaespecies to be inoculated in the photobioreactor and in the pond. Theselection could be limited, because a microalgal death or acontamination of the culture by undesired species can occur.

Design constraints of specific field conditions encountered could beproblematic to wider scale replicability.

Page 158: LIFE Water Study

LIFE 08 ENV/IT/406 REWETLAND

Policies targeted: Water Framework Directive

Strengths Weaknesses

Generating synergy between local institutions and enhancing local decisionmaking for a more sustainable use of water resources.

Launching of a wide participatory approach to local environmental andwater-related decision making (in line with WFD requirements and withbiodiversity considerations), among all relevant stakeholders (schoolpupils, farmers, and urban residents).

The creation of wide databases on water use and management in the area,never collected and homogenised before (including also GIS mapping), inline with WFD requirements.

The creation of a series of guidelines and action plans for implementing amore sustainable approach for water management.

Dialoguing with local stakeholders to define an EnvironmentalRegeneration Programme for the area.

Applying a (SEA) of the Programme, in an attempt to change regionalpolicies which currently do not foresee such a process.

Very good local representation of most important relevant stakeholders inthe partnership (local authorities – both in urban and rural areas, a landreclamation authority, and a national park).

Synergy with a private consultancy company – good project management.

Lack of regional representation in the partnership to guarantee realregional policy impact and, in general, low profile synergies withregional/national/European decision making processes and legislationframeworks.

Engaging with the agricultural community and local farmers hasproved quite difficult as the only way to contact them is throughtrade associations or other third parties. General lack of interest ontheir behalf means low potential impact on agricultural practices.

Opportunities Threats

Guidelines and approach developed to be transferable to similar areas,which underwent serious hydro morphological changes and reclamationworks

Lazio Region could adopt the Strategic Environmental Assessmentapproach as a common practice for any local Action Plan.

Improving the already existing monitoring network with new monitoringstations and protocols, fine-tuned to the requirements of the WFD.

The four created pilot sites contribute to a decrease in the pollution ofwater in the area or to the launching of similar small-scale initiatives.

Farming communities not wholly engaged who see the reform of theCommon Agricultural Policy (CAFP) as their major interest.

Delays to the need to homogenise data collected from many types ofdata owners.

Project foresees a series of on-site structural interventions whichrequire long authorisation procedures - might lead to long delays.

Maintenance costs of the pilot sites or costs of the application of thenon-binding guidelines might be considered as too high by futurelocal policy makers.

Page 159: LIFE Water Study

LIFE 08 ENV/IT/413 INHABIT

Policies targeted: WFD (River Basin Management Plans, Programme of Measures also mentioned)

Strengths Weaknesses

Improvement of RBMPs covering a number of water body types, whichare representative of Italian water courses and lakes, through theintroduction of innovative measures that account forhydromorphological and habitat information;

Quantification of the natural variability in undisturbed conditions ofselected hydromorphological, habitat and physio-chemical features,which are known to have a significant effect on biological communities;

Quantification of factors that affect ecological status classification;

To put into practice the latest approaches and methods for thecollection of WFD-compliant data, classification of ecological status andtechnical implementation of management plans in the studycatchments;

To update existing management plans to include measures related tohydro-morphological and habitat condition.

Suggestions for improvement of RBMPs and Programmes of Measuresas far as uncertainty in classification issues is concerned

Depends on large amounts of accurate data being available

Data compiled into database – fields and specifications as part of theproject - not certain how this can be accessed post project

Some areas quite complex in terms of data requirements and how datais managed and interpreted

Modelling of results required – how could this be achieved for widerimplementation

Opportunities Threats

The outcome of the project will serve as a basis for the implementationof RBMPs over larger areas of Italy and, possibly, the whole of Europe

Wider application requires buy-in from regional authorities and otheragencies – not guaranteed

Page 160: LIFE Water Study

LIFE 08 ENV/PL/517 EH-REK

Policies targeted: Water Framework Directive (water quality, urban water ecosystems).

Strengths Weaknesses

The project area comprises the riverbed section of the Bzura River andthe complex of reservoirs in Arturówek, which is one of the primaryrecreational sites for Łódź population of one million people.

The project introduces an innovative approach to:- consolidation of knowledge about the functioning of urban water

ecosystems;- planning and decision-making methods as used in the management

of urban water ecosystems,- the developed and utilised eco-hydrologic technologies and their

synergy in order to accomplish goals prescribed in the EU Directivesand the

- implementation of a system for training, dissemination ofknowledge and cooperation based on joint actions of a multi-stakeholder platform.

The project will provide better knowledge about the possibilities ofapplying hydro-ecological methods to sustainable water management inurban areas.

Another aim of the project is to establish the network of piezometersneeded for underground water quality and to purchase equipmentneeded for on-site analysis and for demonstration and educationactivity.

The beneficiary is establishing a monitoring system to assesseffectiveness of re-cultivation activity. The monitoring activity includes:- physical and chemical analysis (for waters every two weeks, and

possibly additionally after heavy rainfall, bottom sediments twice ayear);

- biological analysis (phytoplankton and zooplankton every two weeksif the weather is warm and once a month if its colder, fish twice ayear at least),

- toxicological analysis (blue-green algae toxins and dioxins once a

The project is in an early phase, so it is not evident yet what the resultsare and why it will be unique.

It will be not possible to promote the proposed method if it will not beeffective in Lodz.

Page 161: LIFE Water Study

month at least, more often when blue-green algae are blooming).- The results of the monitoring will be used to construct and calibrate

the mathematical model.

The study of the project will implement a systemic approach that will:- analyse threats and opportunities faced by the reservoir catchment

area;- harmonise ecologic biotechnologies and technological innovations;- apply the principles of eco-hydrology as an interdisciplinary science.

Opportunities Threats

The eco-hydrology method presents an innovative approach. If it will beeffective in the project, it could be widely promoted in the EU.

The provided model system will also be used for training at three levels:- the city – for the Łódź platform of stakeholders representing the

water sector (the “Learning Alliance” group established under theEuropean project SWITCH),

- the country – for the personnel of Voivodeship Inspectorates forEnvironmental Protection and Regional Water Management Boards,municipalities, and investors, and

- International – as part of training delivered by the University of Łódź and other scientific and research institutions to UNESCO IHPtrainees.

- It will provide better knowledge about the possibilities of applyinghydro-ecological methods to sustainable water management inurban areas among the society and decision makers.

Not yet evident.

Page 162: LIFE Water Study

LIFE 09 ENV/FR/593 WateRtoM

Policies targeted: WFD (potentially all areas); Floods Directive.

Strengths Weaknesses

Gathering together innovative solutions that could help to implementthe water directives

Bringing solutions to the market place in 3-5 years instead of the 10years it takes to date

Have developed reasonable networks and interest among theAdministrators and SMEs to date

Reluctance from people inside the scientific community to share theirresults outside the scientific community

Mot of results from a research project are cited as publications – limiteddissemination

A lot of projects concentrated their research on solving local problems -and such a project produces results that are not directly transferable

Opportunities Threats

Contact the research promotion agencies to better analyse theirdissemination strategies potentially could lead to a better matchbetween research output and delivering water directives

The tools and strategy developed by the WateRtoM team seems, so far,easily transferable to other sector

The impact will gather the water research information in one place(website) to save time and energy to find the adequate innovationneeded.

Difficult to identify real outputs (that could assist implementation of theDirectives) from research outputs

Research does not always translate to marketable products – highlightsthe gap between research and practical application

Lack of available information in public domain concerning suitableprojects

Downturn in economies mean that prospective users want to invest onlyin approved, perfectly working solution and devices - their acceptance ofinnovative solution has very often limited confidence

Page 163: LIFE Water Study

LIFE 09 ENV/RO/612 CLEANWATER

Policies targeted: WFD (monitoring surface water); Nitrates Directive

Strengths Weaknesses

Cleanwater represents a real link with the WFD and Nitrates Directive

The project intends to evaluate the future trends of the quality of thewater bodies, to measure their effectiveness and the development ofother sources of nitrogen in the study area considering the climaticevolutions. The project intends to use a holistic approach for the watermanagement by integrating in the GIS environment the internationalcompetitive models and the identified sources of pollution.

The project will demonstrate in an inter-disciplinary frame, the meaningof an integrated GIS system that will be capable to inter-correlate allinformation, and how it can be used for the designation of nitratesvulnerable zones.

Mathematical modelling for surface water-soil- groundwater will beused for a proper analysis of nitrates transfer between the water bodies.

Biological and chemical results obtained in the framework of monitoringnetwork as well as the data completion using field campaign are theimportant factors in analysis of chemical and ecological status of waterat Barlad basin level.

Analysis of monitoring data, field campaigns, mass balance and dynamicmodelling represent important tools, included in the project, for theidentification and quantification of human activities impact.

Open –GIS system developed in the project offers the possibility foreconomic analyses of cost-recovery of water services and cost-effectiveness of measures to achieve the environmental objectives.

Mathematical models with GIS interface will be used for analyse thescenarios related to the effect of changes concerning the land use, waterusage and water abstraction, point and diffuse pollution.

The project offer support for: i) design the monitoring program ofRomanian waters, ii) a good understanding of farmer’s activities asnitrate pollution source , iii) design the program of measures for thevillages.

Requires hand-monitoring at all sites that takes a lot of effort and time

Needs strong collaboration with the water authorities.

Not all farmers want to cooperate.

Page 164: LIFE Water Study

Opportunities Threats

The project will contribute to a national approach methodology fordelineation of vulnerable zones to the nitrogen pollution, at river basinlevel.

The long – range objective of CLEANWATER Project is to contribute tothe development of a modern Romanian water management system byelaboration of a completely integrated system as basis for the BarladRiver Basin District Management Plan according to EU legislation(especially Water Framework Directive) and by gaining the knowledgeand experience to be used later in management of other river basins ofRomania.

The Cleanwater team intends to assist the replication of the developedOpen-GIS system at whole country level, like a support for theimplementation of Nitrates Directive.

Currently, the information obtained so far by the project is used for theWISE reporting, thus the analysis results obtained will improve theRomanian reporting for the WFD.

Too early to identify

Page 165: LIFE Water Study

LIFE 09 ENV/UK/026 Hydro4LIFE

Policies targeted: No areas directly targeted but project is related to WFD and Renewables Directive

Strengths Weaknesses

The beneficiary (International Hydropower Association) provides astrong platform for EU-wide (and global) stakeholder engagement andhas been proactive in exploring the links between the WFD (DG ENV),Renewables Directive (RD) (DG ENER) and hydropower development.

IHA has a close relationship with designated national authorities withinindividual EU member states, and is in close contact with many of theagencies responsible for regulating hydropower operations at EC level.Furthermore, its membership is made up of hydropower operators anddevelopers, and the IHA has broad membership reach within the EU. Theproject has so far obtained active participation from major EU-basedenergy generators (E.On and EDF).

Criticism of the Protocol itself – it is designed to only deal with individualhydropower developments on a site-by-site basis, it does not look atstrategic resource utilisation and environmental impacts at a river basinlevel.

Opportunities Threats

The project is keen to explore the possibility of the Protocol (or at leastits holistic approach to sustainability) feeding into regulators'assessments of river quality as part of the WFD and informing futurerevisions of the Directive. The beneficiary argues that the WFD’s focuson ecological status (an area that is likely to be adversely impacted byhydropower developments) ignores the positive environmental benefitsof hydropower that are realised under the scope of other Directives (i.eRED/reduced GHG emissions) and, indeed, other social and economicbenefits.

The application of the Protocol is highly transferable to any scale andtype of hydropower installation (within the EU or globally) but only on asite-by site basis (see weaknesses).

The Protocol could become a standard methodology for the assessmentof hydropower sustainability performance in the EU and globally (this isthe beneficiary’s ultimate goal).

The beneficiary initially saw the LIFE support received and theapplication of the Protocol in the EU as a means of endorsing the

The interpretation of the WFD at national level is having directconsequences on the approval of new projects and allocation ofconcessions and permissions for hydropower development in the EU.This is impacting the project’s ability to test the application of theProtocol on EU hydropower schemes in the concept, design and buildphases (applications have been limited to existing operationalinstallations). It may also be the reason for the fact that only 2 EU basedoperators have signed up to test the Protocol but uptake globally hasbeen far easier to obtain (incl Norway, Iceland, Australia, Canada, BrazilSE Asia).

Negative perceptions of the project’s investigation/assessment of theWFD - from discussions with various stakeholders, the beneficiary isaware that the WFD is generally well regarded within the EU. Thebeneficiary, as a hydropower industry representative, is thereforeconscious of not appearing to be too critical of the WFD (this is despitethe fact that the Protocol has been developed with a number ofGovernments and international NGO’s).

Page 166: LIFE Water Study

Protocol (as it perceives the EU to be at the forefront of global waterpolicy), and hence increasing its uptake within the EU and globally(however, so far in practice the uptake of the application of the Protocolhas been greater outside of the EU (see threats)).

Despite repeated attempts, the project has so far been unable to securethe active participation of an EU based regulatory body (ARH-Norte inPortugal showed interest but have yet to actively participate). Engagingwith regulatory bodies may help to reduce the barriers of the localinterpretation/application of the WFD.

Page 167: LIFE Water Study

LIFE 07 INF/UK/032 RESTORE

Policies targeted: WFD (ecological status of surface waters); Habitats Directive; Floods Directive

Strengths Weaknesses

Development of a network linking policy makers, river basin planners,practitioners and experts across Europe to share information and goodpractice on river restoration activities.

Creation of a database of river restoration projects, providingunderstanding of policy opportunities and constraints, the effectivenessof restoration methods, design issues and project costs/benefits;

To build up existing river restoration network capacity. Several riverrestoration networks are already established. Strong link to ECRR andwant to ‘morph’ project results into a rejuvenated ECRR

Based on earlier work: partnership was well known to each other

River restoration is high on the agenda in many countries

ECRR has a rotating secretariat (i.e. UK, NL, IT etc). Its management isnot secured.

Ensuring that the difference between the science and research lednetworks (e.g. Deltares funded by FP7) and the practitioner networkapproach led by RESTORE continues to be recognised and links betweenthe networks are maintained

Possibly too much of a cosy club

Has to get the final product right –or else the effort is wasted

Opportunities Threats

The production of communication plans at regional and European level;

Preparatory reviews of current policy, planning and project activity;

The development of a river restoration handbook to be published inprint and online form;

Close association with European Centre for River Restoration (ECRR)could ensure longevity of project after LIFE

To establish a project of sufficient weight to attract long term funding

To showcase a number of high profile case studies

Problems with technical delivery (expertise not available, incompletedata sets, evaluation too complex, lack of ICT facilities/knowledge etc)

Communications (lack of response by MTA, language barriers,inconsistent messages, poor turnout at events, etc)

Environmental (e.g. demand for energy generation outweighsenvironmental issues in rivers) *Link to Hydro4LIFe assessment

Maintenance of national and European stakeholders network forsustainable river restoration programmes

Page 168: LIFE Water Study

LIFE 10 ENV/DE/158 HWC - Jenfelder Au

Policies targeted: WFD (quality of surface waters); quantitative water management; Directives on reduction CO2, improvement of energy efficiency andrenewable energy.

Strengths Weaknesses

Demonstrate an integrated wastewater disposal and energy generationsystem;

Minimise the dilution of sewage with drinking water (flush) by the use ofvacuum toilets within an urban district;

Improve water quality, i.e. preventing rain and grey water from beingpolluted with black water;

Save energy by systematically treating and utilising separatedwastewater streams. This will be done by preventing energy consumingwastewater processing;

Demonstrate an innovative decentralised energy generation conceptbased on a biogas plant and a combined heat and power plant, incombination with solar and geothermal plants. The concept willdemonstrate the potential to minimise the use of non-renewable energysources and the potential for energy generation based on separation ofblack water;

Prepare for future phosphorus and nitrogen recovery and effectiveelimination of micro pollutants such as pharmaceuticals.

Cost of delivery – high capital cost of project (700 apartments – totalcost 16,746,974€ = 24,000€ per apartment)

Highly technical – may be difficult to replicate

Designed for apartment blocks – could it be transferred to other types ofhousing stock?

Project part f new build – does it have the potential for retrofit to olderbuildings

Opportunities Threats

Potentially transferable to other similar housing systems

Environmental and economic cost benefit analysis included – potentialviability of the scheme can be assessed

Obtaining planning permission for solar and ground heat energy supplies

Page 169: LIFE Water Study

LIFE 10 ENV/ES/521 AQUATIK

Policies targeted: –WFD and Environmental Quality Standards Directive (in particular monitoring of priority pollutant from Waste Water TreatmentFacilities). Also related to Environmental Liability Directive; European pollutant release and transfer register (PRTR); REACH; IPPC

Strengths Weaknesses

Coordinating beneficiary has 5 other LIFE funded waste water treatmentrelated projects (good past experience of LIFE).

7 Priority pollutants targeted (out of 33) – these 7 represent a goodrange and generally found across Europe

Conventional chemical monitoring is not likely to detect potentialimpacts and does not offer early warning systems of watercontamination and early changes on aquatic ecosystems. The limitationsof the conventional techniques (costly, labour-intensive, fails to detecttemporal concentrations...) can be overcome with innovative techniquesdeveloped under this project.

A methodology for monitoring the target compounds that takes intoaccount different situations in different European regions will beestablished. This should contribute to the implementation of WFD byproposing to Waste Water Treatment Plant Operators a technologicalsolution for monitoring their discharges to receiving water bodies.

Different project activities are planned to reach stakeholders, generalpublic and research community interest, both during the project andafter the project end. Widespread transfer of project outputs and know-how directly to stakeholders and industries related to the wastewatertreatment sector throughout Europe is planned.

Too early to identify

Opportunities Threats

The selected case study of the project is the Barcelona area, due to thehigh presence of priority pollutants, the high concentration of industrialarea, population and agriculture and the proximity to the projectpartners. However, the geographical scope is Europe and theapplicability and transferability will be studied during the AQUATIKproject.

Stakeholders – those identified so far are all based in Spain/Catalonia(and all three beneficiaries are based in Spain too). The project hasplanned to engage widely in Europe but should this fail then the projectmay remain localised.

The beneficiary has many ongoing LIFE projects – this may overstretchits capacity (both financial and personnel).

Page 170: LIFE Water Study

LIFE10 ENV/IT/394 WARBO

Policies targeted: WFD (quality and quantity of groundwater, also water scarcity mentioned).

Strengths Weaknesses

The WARBO project will facilitate the regulation of AR and to respond tothe need to safeguard, protect and enhance water and land ecosystems.The test phase will concentrate on sites with AR problems that hostecosystems of community interest where urgent measures are neededto combat water scarcity.

The project will develop specific experimental protocols that will definethe administrative procedures to be followed, and will specify how tomanage recharge activities. The protocols will concern direct(hydrogeological, geochemical & isotopic) and indirect (geophysical andremote sensing) methods, and will be applied to two main macro-areas.

Definition of the recharge method, development of a model to evaluatethe response of aquifers, and assess the WARBO methods in test areas;

Assessment of the impact of AR on: 1) degradation of organicsubstances due to the input of high quality water; 2) increase in thepiezometric level of the aquifer, which can thus resume its feedingfunctions instead of its draining-only functions without conveyingsurface water contaminated by human activities towards the aquifer ; 3)protection of the environmental characteristics of rivers and streams asa result of the recovery of the feeding functions of AR aquifers;

Reduction in subsidence caused by withdrawal of underground water;

Use of aquifers as water storage and transport systems as an alternativeto building dams and costly water-supply systems;

Transfer of knowledge with a view towards the acquisition of data andthe management of AR for geothermal purposes;

Development of reliable models for managing AR activities

Too early to identify.

Opportunities Threats

The applicability of the WARBO methodology by other MS

Development of new regulations for aquifer recharge that could beadopted throughout Europe

Too early to identify.

Page 171: LIFE Water Study

LIFE10 NAT/AT/016 Netzwerk Donau

Policies targeted: Habitats Directive (17 species); Birds Directive; WFD (incl. Austrian National Water Management Plan); Ramsar Convention.

Strengths Weaknesses

Private sector beneficiary running a €14.5m project to contribute to theimplementation of Austria’s National Water Management Plan/strategyfor the Danube.

Beneficiary has carried out 2 basic feasibility studies of the project at itsown expense prior to the project to ensure greater chance of success.

Beneficiary has previous experience of running LIFE projects.

The project is designed to be a complimentary component of a largerstrategy for the Austrian Danube and its tributaries.

Too early to identify.

Opportunities Threats

“The project is not only a milestone for Austria: it is an importantguidepost along the path toward improving the Danube in all ofEurope.” The project is intended to provide an example at theinternational level. The method practised in Austria, i.e. the technicalmethod of the project as well as the strategic approach of developing acomplete plan covering a large region from a large number of individualmeasures (including LIFE Nature projects), is intended as an example forother countries bordering on the Danube.

Measures to improve habitat in and to interlink Natura 2000 regions ofAustrian Danube

Over the long term, the ecological benefits realised in the AustrianDanube could be felt upstream and downstream beyond the borders ofAustria, in this way having positive radiating effects for neighbouringregions as well.

Too early to identify.