74

Linearni regresioni modeli u nansijama

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Linearni regresioni modeli u nansijama

Univerzitet u Ni²u

Prirodno - matemati£ki fakultet

Departman za matematiku

Linearni regresioni modeli unansijama

Master rad

Mentor:

dr Aleksandar Nasti¢

Student:

Aleksandra Cvetanovi¢

Ni², 2015.

nasta
Text Box
nasta
Text Box
Page 2: Linearni regresioni modeli u nansijama
Page 3: Linearni regresioni modeli u nansijama

Sadrºaj

1 Uvod 5

2 Osnovni pojmovi 72.1 Ocena maksimalne verodostojnosti . . . . . . . . . . . . . . . . . . . 72.2 Ocena najmanjih kvadrata . . . . . . . . . . . . . . . . . . . . . . . . 82.3 Intervalno ocenjivanje . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.4 Testovi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.5 Osobine nenegativno denitne matrice . . . . . . . . . . . . . . . . . 102.6 Analiza glavnih komponenata . . . . . . . . . . . . . . . . . . . . . . 102.7 Prinosi aktive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.8 Prinosi portfolija . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Linearna regresija sa jednom nezavisnom promenljivom 153.1 Statisti£ka veza izmeu dve promenljive . . . . . . . . . . . . . . . . . 153.2 Regresioni model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Normalni regresioni model . . . . . . . . . . . . . . . . . . . . 183.2.2 Zna£enje regresionih parametara . . . . . . . . . . . . . . . . . 18

3.3 Ocenjivanje regresione funkcije . . . . . . . . . . . . . . . . . . . . . . 183.3.1 Dobijanje potrebnih uzora£kih podataka . . . . . . . . . . . . 183.3.2 Ocene najmanjih kvadrata . . . . . . . . . . . . . . . . . . . . 203.3.3 Osobine ocena najmanjih kvadrata . . . . . . . . . . . . . . . 233.3.4 Ocena parametara metodom maksimalne

verodostojnosti . . . . . . . . . . . . . . . . . . . . . . . . . . 253.3.5 Ocenjena regresiona funkcija . . . . . . . . . . . . . . . . . . . 263.3.6 Reziduali . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.3.7 Osobine tovane regresione linije . . . . . . . . . . . . . . . . 28

3.4 Sume kvadrata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.5 Interval poverenja za β1 . . . . . . . . . . . . . . . . . . . . . . . . . 313.6 Testiranje parametra β1 . . . . . . . . . . . . . . . . . . . . . . . . . 333.7 Zajedni£ka ocena za β0 i β1 . . . . . . . . . . . . . . . . . . . . . . . 343.8 Prost regresioni model u obliku matrice . . . . . . . . . . . . . . . . . 37

3.8.1 Regresioni koecijenti . . . . . . . . . . . . . . . . . . . . . . . 383.8.2 Fitovane vrednosti i reziduali . . . . . . . . . . . . . . . . . . 413.8.3 Sume kvadrata . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.9 Dodatak: Kori²¢enje Microsoft Excel-a zaprostu linearnu regresiju . . . . . . . . . . . . . . . . . . . . . . . . . 43

3

Page 4: Linearni regresioni modeli u nansijama

SADRAJ 4

4 Vi²estruki regresioni modeli 454.1 Model prvog reda sa dve nezavisne promenljive . . . . . . . . . . . . 45

4.1.1 Zna£enje regresionih koecijenata . . . . . . . . . . . . . . . . 454.2 Model prvog reda sa vi²e od dve nezavisne

promenljive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.3 Op²ti linearni regresioni model . . . . . . . . . . . . . . . . . . . . . . 464.4 Op²ti linearni regresioni model u matri£nom

obliku . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.5 Regresioni koecijenti vi²estrukog regresionog modela . . . . . . . . . 484.6 Komentari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494.7 Op²te ocene najmanjih kvadrata . . . . . . . . . . . . . . . . . . . . . 504.8 Primer vi²estruke regresije sa dve nezavisne

promenljive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Osnovni investicioni modeli 555.1 Markoviceva portfolio teorija . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Ponderi portfolija . . . . . . . . . . . . . . . . . . . . . . . . . 555.1.2 Oblast realizacije i ekasna granica . . . . . . . . . . . . . . . 565.1.3 Izra£unavanja ekasnih portfolija . . . . . . . . . . . . . . . . 59

5.2 Model procenjivanja kapitalnih ulaganja . . . . . . . . . . . . . . . . 625.2.1 arpov koli£nik i linija trºi²ta kapitala . . . . . . . . . . . . . 635.2.2 Beta i trºi²na linija hartija od vrednosti . . . . . . . . . . . . 645.2.3 Implikacije ulaganja . . . . . . . . . . . . . . . . . . . . . . . 655.2.4 Ocenjivanje . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655.2.5 Empirijska istraºivanja CAPM-a . . . . . . . . . . . . . . . . . 66

5.3 Vi²efaktorski modeli . . . . . . . . . . . . . . . . . . . . . . . . . . . 685.3.1 Teorija arbitraºnog vrednovanja . . . . . . . . . . . . . . . . . 685.3.2 Analiza faktora . . . . . . . . . . . . . . . . . . . . . . . . . . 695.3.3 Pristup: Analiza glavnih komponenata . . . . . . . . . . . . . 715.3.4 Fama-Fren£ trofaktorski model . . . . . . . . . . . . . . . . . 72

Literatura 73

Biograja 75

Page 5: Linearni regresioni modeli u nansijama

Uvod 5

Glava 1

Uvod

Regresiona analiza je statisti£ki metod koji koristi vezu izmeu dve ili vi²e pro-menljivih veli£ina, tako da se jedna promenljiva moºe predvideti iz druge promen-ljive, ili drugih promenljivih. Pod vezom izmeu promenljivih smatra se da je re£ ostatisti£koj vezi.

Regresiona analiza podataka se toliko proºima u savremenom poslovanju da jelako sagledati £injenicu da je metodologija stara 130 godina. Nau£nici pripisujunastanak regresije antropologu Frensis Galtonu1. Galton je 1885. godine uveo opisregresije, prou£avanjem prirodne selekcije i nasleivanja. U regresionoj analizi je odinteresa jedna veli£ina: zavisna promenljiva. Ostale veli£ine se uzimaju za obja²nja-vaju¢e promenljive ili tzv. nezavisne promenljive. Cilj regresione analize je odrediti,pomo¢u promena obja²njavaju¢ih promenljivih, kako se menja zavisna promenljiva.

Regresija ima ²iroku primenu u mnogim naukama, a u ovom radu posmatra¢emonjenu primenu u nansijama, zato se nadalje bavimo samo linearnom regresijom saneslu£ajnim obja²njavaju¢im (nezavisnim) promenljivama. Rad je sastavljen od petcelina.

Osnovni pojmovi iz nansija, multivarijacione analize, verovatno¢e i statistike,koji se primenjuju u ovom radu su uvedeni u slede¢oj, drugoj glavi. Prikazani sumetodi ocenjivanja, zatim testovi, kao i prinosi aktive i portfolija. Navedene su nekeosobine nenegativno denitne matrice i opisana analiza glavnih komponenata.

U tre¢oj glavi se razmatra linearna regresija u slu£aju samo jedne obja²njavaju¢epromenljive, zato je poznata i kao prosta linearna regresija. Opisuje se statisti£kaveza izmeu dve promenljive, regresioni model i normalni regresioni model. Govorise o zna£enju regresionih parametara, a potom i o ocenjivanju. U praksi je zbogvelikog broja podataka lak²e raditi sa matricama, te je predstavljen prost regresionimodel u obliku matrice zajedno sa ocenjivanjem nepoznatih parametara. U dodatkuove glave obja²njeno je kori²¢enje Microsoft Excel-a za prostu linearnu regresiju.

1Francis Galton (1822-1911), engleski antropolog i polimat.

Page 6: Linearni regresioni modeli u nansijama

Uvod 6

Analiza vi²estruke regresije je jedna od naj£e²¢e kori²¢enih statisti£kih alata.etvrta glava, po£inje diskusijom o raznovrsnim vi²estrukim regresionim modelima,zatim je predstavljen op²ti statisti£ki rezultat za vi²estruku regresiju u matri£nomobliku. Po²to su rezultati dobijeni za prostu regresiju u obliku matrice sli£ni, navodese bez posebnih obrazlaganja za slu£aj vi²estruke regresije. Na kraju ove glave jepredstavljena op²ta ocena najmanjih kvadrata vi²estruke regresije u obliku matricei primer vi²estruke regresije pri posmatranju dveju nezavisnih promenljivih.

U petoj glavi je glavna tema: kvantitativne nansije i to teorija portfolija i in-vesticioni modeli koji se zasnivaju na linearnoj regresiji, za ²ta su Hari Markovic2

i Vilijem arp3 nagraeni Nobelovom nagradom u ekonomiji. Posebno se poklanjapaºnja CAPM-u i vi²efaktorskim modelima. Govori se i o statisti£kim problemimai opisuju razni statisti£ki pristupi.

Zahvaljujem se mentoru, dr Aleksandru Nasti¢u, na podr²ci i pomo¢i pri izradiovog rada.

2Harry Max Markowitz (1927- ), ameri£ki nansijski ekonomista.3William Sharpe (1934- ), ameri£ki ekonomista.

Page 7: Linearni regresioni modeli u nansijama

Osnovni pojmovi 7

Glava 2

Osnovni pojmovi

Populacija je skup elemenata £ija se zajedni£ka svojstva izu£avaju statisti£kimmetodima.

Obeleºje je zajedni£ko svojstvo elemenata posmatrane populacije.Uzorak je deo populacije na kome se ispituje posmatrano obeleºje.Uzorak sa ponavljanjem je uzorak u kojem isti element populacije moºe biti

izabran vi²e puta.Statistika je funkcija od uzorka i poznatih konstanti.Kvantil reda p, u oznaci Mp, 0 < p < 1, slu£ajne promenljive X £ija je funkcija

raspodele F , je bilo koje re²enje jedna£ine F (x) = p, 0 < p < 1, po x ∈ R, tj.re²enje sistema PX < x ≤ p ≤ PX ≤ x, 0 < p < 1, po x ∈ R.

Percentil ozna£ava red kvantila koji je izraºen u procentima, 100p%.Ocena θ parametra θ je nepristrasna ako je E(θ) = θ.Ocena θ parametra θ je ocena minimalne disperzije za θ, ako za bilo koju drugu

ocenu θ∗ je D(θ) ≤ D(θ∗).Ocena je najbolja ocena parametra θ ako je nepristrasna ocena za θ i ocena mi-

nimalne disperzije za θ.

Neka su A i B dva dogaaja. Tada vaºi:

P (A ∪B) = P (A) + P (B)− P (A ∩B), (2.1)

P (A) = 1− P (A), (2.2)

P (A ∪B) = P (A ∩B). (2.3)

2.1 Ocena maksimalne verodostojnosti

Metod maksimalne verodostojnosti je op²ti metod nalaºenja ocena. Pretposta-vimo da imamo uzora£ku populaciju £ija gustina raspodele f(y; θ) uklju£uje jedanparametar θ. Zajedni£ka gustina raspodele nezavisnih opservacija Y1, Y2, . . . , Yn je

gθ(y1, y2, . . . , yn) =n∏i=1

f(yi; θ).

Page 8: Linearni regresioni modeli u nansijama

Osnovni pojmovi 8

Ako zajedni£ku gustinu raspodele posmatramo kao funkciju od θ sa datim op-servacijama, onda se takva funkcija zove funkcija verodostojnosti i ozna£ava saL(θ) = gθ(y1, y2, . . . , yn), odnosno sa

L(θ) =n∏i=1

f(yi; θ),

kada su Y1, Y2, . . . , Yn nezavisne slu£ajne promenljive.

Maksimalizovanjem L(θ) po θ dobija se ocena maksimalne verodostojnosti za θ.

Po²to je funkcija log x rastu¢a za x > 0, £esto se umesto funkcije verodostojnostiL(θ) koristi log-verodostojnost l(θ) = log gθ(y1, y2, . . . , yn).

2.2 Ocena najmanjih kvadrata

Metod najmanjih kvadrata je drugi op²ti metod za nalaºenje ocena. Neka suopservacije oblika

Yi = fi(θ) + εi, i = 1, . . . , n

gde je fi(θ) poznata funkcija parametra θ, a εi su slu£ajne promenljive, za njih seuglavnom podrazumeva da je E(εi) = 0. Funkcija po θ je suma kvadrata

Q =n∑i=1

(Yi − fi(θ))2 .

Ocena najmanjih kvadrata se dobija minimalizovanjem Q po θ.

2.3 Intervalno ocenjivanje

Neka su slu£ajne uzora£ke opservacije Y1, Y2, . . . , Yn iz normalne populacije sao£ekivanjem µ i standardnom devijacijom σ. Interval poverenja za µ sa nivoompoverenja 1− α je

Y ± t(1−α2

;n−1)s(Y ), (2.4)

pri £emu je

Y =

∑ni=1 Yin

,

S =

√∑ni=1(Yi − Y )2

n− 1,

s(Y ) =S√n

iY − µs(Y )

: t(n−1). (2.5)

Page 9: Linearni regresioni modeli u nansijama

Osnovni pojmovi 9

2.4 Testovi

Jednostrani i dvostrani testovi populacionog o£ekivanja µ se zasnivaju na teststatistici

t∗ =Y − µ0

s(Y ).

U tabeli 2.1 su data pravila odlu£ivanja za sva tri mogu¢a slu£aja.

Hipoteze Pravilo odlu£ivanja

(a)

H0 : µ = µ0 ako je |t∗| ≤ t(1−α/2;n−1), prihvata se H0

Ha : µ 6= µ0 ako je |t∗| > t(1−α/2;n−1), prihvata se Ha

(b)

H0 : µ ≥ µ0 ako je t∗ ≥ t(α;n−1), prihvata se H0

Ha : µ < µ0 ako je t∗ > t(α;n−1), prihvata se Ha

(c)

H0 : µ ≤ µ0 ako je t∗ ≤ t(1−α;n−1), prihvata se H0

Ha : µ > µ0 ako je t∗ > t(1−α;n−1), prihvata se Ha

Tabela 2.1: Pravila odlu£ivanja za testiranje o£ekivanja µ normalne populacije.

Dvostrani interval poverenja (2.4) se moºe koristiti za testiranje:

H0 : µ = µ0

Ha : µ 6= µ0.

Ako je µ0 sadrºano u intervalu poverenja sa nivoom poverenja 1−α, onda nas dvo-strano pravilo odlu£ivanja u tabeli 2.1, sa pragom zna£ajnosti α dovodi do zaklju£kaH0, i obratno. Ako µ0 nije sadrºano u intervalu poverenja, pravilo odlu£ivanja nasdovodi do Ha, i obratno.

Za testiranje H0 : θ ∈ Θ0, gde je Θ0 q-dimenzionalni potprostor parametara,0 ≤ q < p, statistika koli£nika verodostojnosti je

Λ = 2

(ln(θ)− sup

θ∈Θ0

ln(θ)

), (2.6)

gde je ln(θ) funkcija log-verodostojnosti. Test statistika koli£nika verodostojnosti sanivoom poverenja α odbacuje H0 ako λ prevazilazi vrednost χ2

p−q;1−α.

Page 10: Linearni regresioni modeli u nansijama

Osnovni pojmovi 10

2.5 Osobine nenegativno denitne matrice

Matrica V dimenzije p× p je nenegativno denitna ako je simetri£na i a′Va ≥ 0za a ∈ Rp, a pozitivno denitna ako je simetri£na i a′Va > 0 za a 6= 0, a ∈ Rp.Prema tome, X′X je nenegativno denitna ako je za svako a ∈ Rp

a′X′Xa = (Xa)′Xa =n∑i=1

b2i ≥ 0, gde je [b1 · · · bn]′ = Xa.

tavi²e, X′X je pozitivno denitna ako je nesingularna.

Matrica Q dimenzije n× n je ortogonalna matrica ako je Q′ = Q−1.Za nenegativno denitnu matricu V, postoji ortogonalna matrica Q takva da

je V = QDQ′, gde je D dijagonalna matrica £iji su elementi sopstvene vrednostimatrice V. Reprezentacija V = QDQ′ se zove singularna dekompozicija za V, kojase moºe iskoristiti za izra£unavanje inverzne matrice za V, via V−1 = QD−1Q′.Primetimo da ako je D = diag(λ1, . . . , λn) sa λi > 0, za svako i, onda je D−1 =diag(1/λ1, . . . , 1/λn).

2.6 Analiza glavnih komponenata

Neka je V matrica dimenzije p × p. Kompleksan broj λ je sopstvena vrednostmatrice V ako postoji vektor a 6= 0 dimenzije p × 1, takav da je Va = λa. Takavvektor a se zove sopstveni vektor matrice V koji odgovara sopstvenoj vrednosti λ.

Moºemo Va = λa zapisati kao (V − λI)a = 0. Po²to je a 6= 0, sledi da je λre²enje jedna£ine det(V − λI) = 0. Kako je det(V − λI) polinom stepena p, toje p sopstvenih vrednosti. Ako je V simetri£na matrica, onda sve njene sopstvenevrednosti su realne, u nerastu¢em poretku λ1 ≥ · · · ≥ λp i

tr(V) = λ1 + · · ·+ λp, det(V) = λ1 · · ·λp. (2.7)

Ako je a sopstveni vektor za V koji odgovara sopstvenoj vrednosti λ, onda jetakav i ca za c 6= 0. tavi²e, mnoºenjem λa = Va sa a′ sledi

λ =a′Va

||a||2. (2.8)

Nadalje, razmatramo slu£aj kada je V kovarijaciona matrica slu£ajnog vektoraX = [X1 · · ·Xp]

′. Tada su njene sopstvene vrednosti realne nenegativne. Posma-trajmo linearnu kombinaciju a′X sa ||a|| = 1 koja ima najve¢u varijansu meu svimlinearnim kombinacijama. Za maksimalizaciju a′Va(= D(a′X)) po a sa ||a|| = 1,uve²¢emo Lagranºov1 £inilac λ da bismo dobili

∂ai(a′Va+ λ(1− a′a)) = 0, za i = 1, . . . , p. (2.9)

1Joseph-Louis Lagrange (1736-1813), italijansko-francuski matemati£ar i astronom.

Page 11: Linearni regresioni modeli u nansijama

Osnovni pojmovi 11

Mogu se p jedna£ina u (2.9) zapisati kao linearni sistem Va = λa. Po²to je a 6= 0,sledi da je λ sopstvena vrednost za V i a je odgovaraju¢i sopstveni vektor, a iz (2.8)je λ = a′Va.

Neka je λ1 = maxa:||a||=1 a′Va i a1 odgovaraju¢i sopstveni vektor sa ||a1|| = 1.

Sada posmatrajmo linearnu kombinaciju a′X koja maksimalizuje D(a′X) = a′Va uzavisnosti od a′1a = 0 i ||a|| = 1. Uvoenjem Lagranºovih £inioca λ i η, dobijamo

∂ai(a′Va+ λ(1− a′a) + ηa′1a) = 0, za i = 1, . . . , p.

Kao u (2.9), odavde sledi da je Lagranºov £inilac λ sopstvena vrednost za V saodgovaraju¢im sopstvenim vektorom a2 koji je ortogonalan sa a1. Nastavljaju¢ipostupak, dobijamo sopstvene vrednosti λ1 ≥ λ2 ≥ · · · ≥ λp zaV sa optimizacionomkarakteristikom

λk+1 = maxa:||a||=1,a′aj=0 za 1≤j≤k

a′Va. (2.10)

Maksimalno ak+1 u (2.10) je sopstveni vektor odgovaraju¢e sopstvene vrednosti λk+1.

a′iX se zove i-ta glavna komponenta slu£ajnog vektora X.

Osobine glavnih komponenata su

a) λi = D(a′iX),

b) Elementi sopstvenog vektora ai se zovu faktori optere¢enja. Po²to je a′iaj = 0 zai 6= j i ||ai|| = 1, [a1 · · · ap] je ortogonalna matrica i moºemo izvr²iti dekompozicijuidenti£ne matrice I

I = [a1 · · · ap][a1 · · · ap]′ = a1a′1 + · · ·+ apa

′p. (2.11)

Sumiranjem λiaia′i = Vaia

′i po i i dodavanjem (2.11), dobija se slede¢a dekompo-

zicija za VV = λ1a1a

′1 + · · ·+ λpapa

′p, (2.12)

c) Iz V = Cov(X), X = [X1 · · ·Xp]′, tr(V) =

∑pi=1D(Xi) i (2.7) sledi

λ1 + · · ·+ λp =

p∑i=1

D(Xi). (2.13)

Vaºan cilj analize glavnih komponenata je odrediti prvih nekoliko glavnih kom-ponenata koji mogu opisati ve¢inu sveobuhvatne varijanse

∑pi=1D(Xi). S obzirom

na (2.13) treba odrediti da li je∑ki=1 λi

tr(V)blizu 1 za neko malo k. (2.14)

Koriste¢i funkciju screeplot u R, moºe se proceniti (2.14).

Page 12: Linearni regresioni modeli u nansijama

Osnovni pojmovi 12

Reprezentacija za V u (2.12) se moºe zapisati sa

V = Qdiag(λ1, . . . , λp)Q′, (2.15)

gde je Q = [a1 · · · ap]. Matrica Q je ortogonalna, a (2.15) se zove singularnadekompozicija za V. Iz V

12V

12 = Qdiag(λ1, . . . , λp)Q

′ = V i (2.15) sledi da jeV

12 = Qdiag(

√λ1, . . . ,

√λp)Q

′ kvadratni koren za V.

Neka je X1, . . . ,Xn n nezavisnih opservacija iz populacije sa o£ekivanjem µ ikovarijacionom matricom V. O£ekivanje µ se moºe oceniti sa X =

∑ni=1 Xi/n, a

kovarijaciona matrica se moºe oceniti sa

V =

∑ni=1(Xi −X)(Xi −X)′

n− 1,

²to je uzora£ka kovarijaciona matrica.

Neka je Xk = [X1k · · ·Xnk]′, 1 ≤ k ≤ p, denisa¢emo:

Yj = a1jX1 + · · ·+ apjXp, 1 ≤ j ≤ p

gde je aj = [a1j · · · apj]′ sopstveni vektor koji odgovara j-toj najve¢oj sopstvenojvrednosti λj uzora£ke kovarijacione matrice V sa ||aj|| = 1. Iz ortogonalnosti ma-trice A = (aij)1≤i,j≤p sledi da se posmatrani podaci Xk mogu izraziti u terminimaglavnih komponenata Yj kao

Xk = ak1Y1 + · · ·+ akpYp.

Alternativa za Cov(X) je korelaciona matrica Corr(X), koja je takoe nenega-tivno denitna i sastoji se od korelacionih koecijenata Corr(Xi, Xj), 1 ≤ i, j ≤ p.Zapravo, Corr(X) = Cov(X1/σ1, . . . , Xp/σp), gde je σi standardna devijacija za Xi.Primena analize glavnih komponenata na korelacionu matricu umesto kovarijacionemoºe dati postojanije rezultate.

2.7 Prinosi aktive

Aktiva je investicioni instrument koji se moºe kupiti i prodati. Aktive koje ¢emospominjati su obveznice i akcije.

Obveznica je hartija od vrednosti kojom se obavezuje emitent (onaj koji je emi-tovao obveznicu) da ¢e licu na £ije ime glasi obveznica (ako je obveznica na ime) ilidonosiocu obveznice (ako je obveznica na donosioca) na datum dospe¢a isplatiti dugu potpunosti.

Akcija je hartija od vrednosti koja ozna£ava udeo u kapitalu kompanije.Hartije od vrednosti su dokumenti kojima se obavezuje isplata novca, kamate,

zarade ili dividende.Dividenda je deo dobiti akcionarskog dru²tva, koji akcionar dobija na osnovu

svoje akcije.

Page 13: Linearni regresioni modeli u nansijama

Osnovni pojmovi 13

Neka Pt ozna£ava cenu aktive u trenutku t. Pretpostavimo da aktiva ne obezbe-uje dividendu u periodu od t− 1 do t. Tada je jednoperiodni neto prinos aktive

Rt =Pt − Pt−1

Pt−1

.

Jednoperiodni bruto prinos aktive jePtPt−1

, ²to je 1 +Rt.

Bruto prinos za k perioda se deni²e sa

1 +Rt(k) =PtPt−k

=k−1∏j=0

(1 +Rt−j).

Neto prinos za k perioda je Rt(k). U praksi, za jedinicu vremena se uglavnomkoriste godine. Godi²nji bruto prinos na ime aktive sa periodom od k godina je(1 +Rt(k))1/k, a godi²nji neto prinos je (1 +Rt(k))1/k − 1.Neka je pt = logPt. Logaritamski prinos ili neprekidni sloºeni prinos aktive je

rt = log

(PtPt−1

)= pt − pt−1.

Ako vremenski korak ∆t teºi nuli, logaritamski prinos rt je aproksimativno jednakneto prinosu

rt = log

(PtPt−1

)= log(1 +Rt) ≈ Rt.

k-periodni logaritamski prinos je suma k jednoperiodnih logaritamskih prinosa, tj.

rt(k) = log

(PtPt−k

)=

k−1∑j=0

log(1 +Rt−j) =k−1∑j=0

rt−j.

Posmatrajmo sada slu£aj kada aktiva obezbeuje isplatu dividendi periodi£no.Neka je Dt dividenda koja se ispla¢uje u vremenskom periodu od t − 1 do t. Tadasu neto prinos, logaritamski prinos i k-periodni logaritamski prinos, respektivno

Rt =Pt +Dt

Pt−1

− 1, rt = log (Pt +Dt)− logPt−1

i

rt(k) = log

(k−1∏j=0

Pt−j +Dt−j

Pt−j−1

)=

k−1∑j=0

log

(Pt−j +Dt−j

Pt−j−1

).

Vi²ak prinosa predstavlja razliku rt − r∗t , gde je rt logaritamski prinos aktive, ar∗t logaritamski prinos bezrizi£ne aktive kao ²to je Treasury bill.

Page 14: Linearni regresioni modeli u nansijama

Osnovni pojmovi 14

2.8 Prinosi portfolija

Portfolio je vlasni²tvo nad kolekcijom aktiva. Posmatrajmo portfolio koji sesastoji od p razli£itih aktiva. Neka je ωi, ponder izraºen u procentima, vrednostportfolija koja je uloºena u aktivu i. Prema tome, vrednost aktive i je ωiPt za ukupnuvrednost portfolija Pt u trenutku t. Neka su Rit i rit neto prinos i logaritamski prinosaktive i u trenutku t, respektivno.Tada, ukupna vrednost portfolija u trenutku t je (1 +

∑pi=1wiRit)Pt−1, pa je neto

prinos Rt i logaritamski prinos rt portfolija, respektivno

Rt =

p∑i=1

wiRit, rt = log

(1 +

p∑i=1

wiRit

)≈

p∑i=1

wirit. (2.16)

Page 15: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 15

Glava 3

Linearna regresija sa jednom

nezavisnom promenljivom

3.1 Statisti£ka veza izmeu dve promenljive

Primer 1. Odreeni rezervni deo se proizvodi u kompaniji za proizvodnju automo-bila (nadalje kompanija, smatraju¢i da se zna koja je proizvodnja u pitanju) jednommese£no u promenljivim koli£inama u zavisnosti od potraºnje. U tabeli 3.1 dati supodaci o koli£ini proizvodnje rezervnih delova i broju radnih sati za 10 poslednjihproizvodnji pod sli£nim uslovima proizvodnje. Ti podaci su iscrtani gra£ki na slici3.1a). Broj radnih sati se uzima za zavisnu promenljivu Y , a koli£ina proizvodnjeje nezavisna promenljiva X. Na primer, za prvu proizvodnju rezultati su ucrtani saX = 30, Y = 73.

Serijska proizvodnja Koli£ina proizvodnje Broj radnih sati

i Xi Yi

1 30 73

2 20 50

3 60 128

4 80 170

5 40 87

6 50 108

7 60 135

8 30 69

9 70 148

10 60 132

Tabela 3.1: Podaci o koli£ini proizvodnje i broju radnih sati u kompaniji.

Page 16: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 16

Slika 3.1: Statisti£ka veza izmeu koli£ine proizvodnje i broja radnih sati.

Na slici 3.1a) se jasno vidi da postoji veza izmeu koli£ine proizvodnje i brojaradnih sati, u smislu da pove¢ana koli£ina proizvodnje stvara tendenciju pove¢anjabroja radnih sati. Ipak, veza nije savr²ena. Postoji rasturanje ta£aka, ²to sugeri²e daneki broj radnih sati nije ura£unat na proizvodnju. Na primer, dve proizvodnje (1 i 8)se sastoje od po 30 delova svaka, a zahtevaju razli£iti broj radnih sati. Zbog rasipanjata£aka u statisti£koj vezi, slika 3.1a) se zove dijagram rasturanja. Op²ti problemnalaºenja funkcije koja dobro aproksimira dobijeni skup podataka, u statisti£komºargonu se naziva "tovanje krive". Za odreivanje odgovaraju¢eg tipa zavisnosti,u praksi se koristi upravo dijagram rasturanja. Statisti£kom terminologijom, svakata£ka na dijagramu rasturanja predstavlja opservaciju ili uzorak.

Na slici 3.1b) je iscrtana prava koja opisuje statisti£ku vezu broja radnih sati ikoli£ine proizvodnje. Ona ukazuje na tendenciju kojom broj radnih sati varira sapromenama u koli£ini proizvodnje. Primetimo da ve¢ina ta£aka ne pada direktno napravu statisti£ke veze. Ovo rasipanje ta£aka oko prave predstavlja neki broj radnihsati koji nije povezan sa koli£inom proizvodnje i obi£no se pripisuje slu£ajnosti.

Page 17: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 17

3.2 Regresioni model

Linearni regresioni model koji ima samo jednu nezavisnu promenljivu je oblika

Yi = β0 + β1Xi + εi, (3.1)

gde je:• Yi vrednost zavisne promenljive u i-tom uzorku,• β0 i β1 su parametri,• Xi vrednost nezavisne promenljive u i-tom uzorku,• εi slu£ajna gre²ka sa o£ekivanjem E(εi) = 0 i disperzijom D(εi) = σ2; εi i εjsu nekorelirane tako da je kovarijansa Cov(εi, εj) = 0 za svako i, j; i 6= j,i = 1, . . . , n.

Za model (3.1) se kaºe da je prost, linearan u odnosu na parametre i linearanu odnosu na nezavisnu promenljivu. Kaºemo da je prost jer ima samo jednu ne-zavisnu promenljivu, linearan u odnosu na parametre jer se nijedan parametar nepojavljuje kao eksponent ili pomnoºen ili podeljen nekim drugim parametrom i li-nearan u odnosu na nezavisnu promenljivu jer se ova promenljiva pojavljuje samosa prvim stepenom. Model koji je linearan u odnosu na parametre i nezavisnupromenljivu se zove model prvog reda.

Za model (3.1), moºe se pokazati da je Yi slu£ajna promenljiva sa o£ekivanjem

E(Yi) = β0 + β1Xi, (3.2)

disperzijomD(Yi) = σ2 (3.3)

i bilo koje dve opservacije Yi i Yj su nekorelirane.Prema tome, regresiona funkcija za model (3.1) je:

E(Y ) = β0 + β1X,

gde se regresiona funkcija odnosi na o£ekivanje za Y , pri bilo kom zadatom X.

Primer 2. Regresioni model za kompaniju u primeru 1 je Yi = 9, 5 + 2, 1Xi + εi, aregresiona funkcija je E(Y ) = 9, 5 + 2, 1X.Ako je u i-tom uzorku koli£ina proizvodnje Xi = 45 rezervnih delova koji su proiz-vedeni u toj seriji i broj radnih sati Yi = 108, onda je gre²ka εi = 4 jer imamo da jeE(Yi) = 9, 5 + 2, 1 · 45 = 104 i Yi = 108 = 104 + 4.

Page 18: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 18

3.2.1 Normalni regresioni model

Model normalne regresije je oblika

Yi = β0 + β1Xi + εi, (3.4)

gde je:• Yi posmatrana zavisna promenljiva u i-tom uzorku,• Xi nezavisna promenljiva u i-tom uzorku,• β0 i β1 su parametri,• εi su nezavisne slu£ajne promenljive sa N (0, σ2), i = 1, . . . , n.

Iz postavke modela (3.4) sledi da su Yi nezavisne normalne slu£ajne promenljivesa o£ekivanjem E(Yi) = β0 + β1Xi i disperzijom σ2.

3.2.2 Zna£enje regresionih parametara

Parametri β0 i β1 u regresionom modelu (3.1) se zovu regresioni koecijenti. β1

je koecijent pravca (nagib) regresione linije. On ukazuje na promene u o£ekiva-noj vrednosti Y pri jedini£nom pove¢anju vrednosti X. Parametar β0 je odse£akregresione linije.

Primer 3. Na slici 3.2 je prikazana regresiona funkcija E(Y ) = 9, 5 + 2, 1X izprimera o kompaniji.Nagib β1 = 2, 1 ukazuje da ako se koli£ina proizvodnje pove¢a za jedan rezervni deo,onda dolazi do pove¢anja o£ekivanja Y za 2, 1 radna sata, dok odse£ak β0 = 9, 5ukazuje na vrednost regresione funkcije kada je X = 0.

3.3 Ocenjivanje regresione funkcije

3.3.1 Dobijanje potrebnih uzora£kih podataka

Uglavnom u modelu (3.1) nisu poznate vrednosti regresionih parametara β0 i β1

i potrebno ih je oceniti na osnovu uzora£kih podataka. Ti uzora£ki podaci mogu sedobiti eksperimentalnim ili neeksperimentalnim putem. Obrazloºi¢emo oba.

Ponekad je mogu¢e sprovesti kontolisani eksperiment kako bi se dobili podaci zaocenjivanje parametara. Posmatrajmo, na primer, osiguravaju¢u rmu koja ºeli daispita vezu izmeu produktivnosti sluºbenika na poslu i duºine rekreativnog treni-ranja nekog sporta. Pet nasumi£no odabranih sluºbenika je treniralo dve nedelje,pet tri nedelje, pet £etiri nedelje i pet pet nedelja, pri tome je posmatrana njihovaproduktivnost na poslu. Ovi podaci o duºini treniranja X i produktivnosti Y sueksperimentalni podaci.

esto nije prakti£no ili izvodljivo sprovesti kontrolisane eksperimente, i u tomslu£aju neeksperimentalni podaci, takoe nazvani opservacionim podacima, koristese pri ocenjivanju. U primeru 1 smo se oslonili na neeksperimentalne podatke, jerkoli£inu proizvodnje diktira potraºnja za proizvodom, te nije pod kontrolom kom-panije.

Page 19: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 19

Slika 3.2: Zna£enje linearnih regresionih parametara.

Page 20: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 20

Dobijeni podaci, bilo eksperimentalni ili neeksperimentalni, unose se u tabelu kao²to je tabela 3.1 za primer o kompaniji. Primetimo da je opservacija za prvi uzorak(X1, Y1), za drugi (X2, Y2), uop²teno za i-ti uzorak (Xi, Yi), gde je i = 1, 2, . . . , n.

3.3.2 Ocene najmanjih kvadrata

Za nalaºenje dobrih ocena regresionih parametara β0 i β1, primeni¢emo metodnajmanjih kvadrata. Za svaku opservaciju (Xi, Yi), metodom najmanjih kvadratase razmatra odstupanje za Yi od njegove o£ekivane vrednosti

Yi − (β0 + β1Xi).

Naro£ito, metod najmanjih kvadrata zahteva razmatranje sume n-kvadratnih od-stupanja, u oznaci Q,

Q =n∑i=1

(Yi − β0 − β1Xi)2.

Cilj metode najmanjih kvadrata je na¢i ocene β0 i β1 za β0 i β1, respektivno, pri£emu je Q minimalno. Na taj na£in ¢e ocene biti dobre.

Primer 4. Na slici 3.3a) je prikazan dijagram rasturanja za uzora£ke podatke iztabele 3.1. Na slici 3.3b) je grak tovane regresione linije kori²¢enjem proizvoljnihocena β0 = 30 i β1 = 0.Na slici 3.3b) su prikazana i odstupanja Yi−30−0·Xi. Vidimo da svakom odstupanjuodgovara vertikalno rastojanje izmeu Yi i tovanoj regresionoj liniji. Jasno, t jelo². Prema tome odstupanja su velika, pa su takva i kvadratna odstupanja. Sumakvadratnih odstupanja je

Q = (50− 30)2 + (69− 30)2 + . . .+ (170− 30)2 = 77, 66.

Slika 3.3c) prikazuje odstupanja Yi − β0 − β1Xi za ocene β0 = 15, β1 = 1, 5. Ovdeje t bolji (ali ne i dobar), odstupanja su mnogo manja, pa je i suma kvadrataodstupanja smanjena na Q = 4, 91. Tako da boljem tu regresione linije odgovaramanja suma Q.

Moºe se pokazati da su vrednosti β0 i β1 koje minimalizuju Q date slede¢imjedna£inama

n∑i=1

Yi = nβ0 + β1

n∑i=1

Xi

n∑i=1

XiYi = β0

n∑i=1

Xi + β1

n∑i=1

X2i .

(3.5)

Re²avanjem sistema jedna£ina dobijaju se ocene najmanjih kvadrata:

Page 21: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 21

Slika 3.3: Primer odstupanja od razli£itih tovanih regresionih linija.

Page 22: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 22

β1 =

∑ni=1XiYi −

(∑n

i=1Xi)(∑n

i=1 Yi)

n∑ni=1 X

2i −

(∑n

i=1 Xi)2

n

=

∑ni=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2, (3.6)

β0 =1

n(n∑i=1

Yi − β1

n∑i=1

Xi) = Y − β1X, (3.7)

za β1 i β0, respektivno.

Xi Yi XiYi X2i Y 2

i

30 73 2.190 900 5.329

20 50 1.000 400 2.500

60 128 7.680 3.600 16.384

80 170 13.600 6.400 28.900

40 87 3.480 1.600 7.569

50 108 5.400 2.500 11.664

60 135 8.100 3.600 18.225

30 69 2.070 900 4.761

70 148 10.360 4.900 21.904

60 132 7.920 3.600 17.424

Ukupno 500 1.100 61.800 28.400 134.660

Tabela 3.2: Podaci o koli£ini proizvodnje i broju radnih sati u kompaniji.

Primer 5. Koristimo podatke iz tabele 3.2 i grak na slici 3.3a) za primer o kom-paniji. U tabeli 3.2 su dati rezultati potrebni za izra£unavanje β0 i β1. Kori²¢enjem(3.6) i (3.7) dobija se

β1 =

∑ni=1XiYi −

(∑n

i=1 Xi)(∑n

i=1 Yi)

n∑ni=1X

2i −

(∑n

i=1Xi)2

n

=61.800− 500 · 1.100

10

28.400− 5002

10

= 2,

β0 =1

n(n∑i=1

Yi − β1

n∑i=1

Xi) =1

10(1.100− 2 · 500) = 10.

Dakle, ocenjujemo da se o£ekivani broj radnih sati pove¢a za 2 sata ako se pove¢akoli£ina proizvodnje za jedan rezervni deo.

Page 23: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 23

3.3.3 Osobine ocena najmanjih kvadrata

Teorema 1. Ocene β0 i β1 date sa (3.7) i (3.6) su linearne kombinacije opservacijaYi.

Dokaz. Prema (3.6) je

β1 =

∑ni=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2.

Kako je

n∑i=1

(Xi −X)(Yi − Y ) =n∑i=1

(Xi −X)Yi −n∑i=1

(Xi −X)Y =n∑i=1

(Xi −X)Y ,

zbog∑n

i=1(Xi −X) = 0, pa je

β1 =

∑ni=1(Xi −X)Yi∑ni=1(Xi −X)2

.

To moºemo zapisati sa

β1 =n∑i=1

kiYi, (3.8)

gde je

ki =Xi −X∑n

i=1(Xi −X)2.

Primetimo da su ki poznate konstante, jer su Xi poznate konstante. Dakle, β1

je linearna kombinacija opservacija Yi. Iz (3.8) i (3.7) sledi da je i β0 linearnakombinacija opservacija Yi.

Konstanta ki ima slede¢e osobine:

n∑i=1

ki = 0, (3.9)

n∑i=1

kiXi = 1,

n∑i=1

k2i =

1∑ni=1(Xi −X)2

. (3.10)

Primedba 1. Na osnovu (3.8) i (3.9) vidimo da miksovanjem vrednosti opservacijazavisno promenljive Yi dobijamo koecijent pravca regresione linije, i to tako ²to jeukupni efekat koecijenata miksovanja ki jednak 0.

Page 24: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 24

Teorema 2 (Gaus1-Markova2). Pod uslovima modela (3.1) ocene najmanjih kva-drata β0 i β1 denisane sa (3.6) i (3.7) su nepristrasne ocene sa najmanjom disper-zijom u odnosu na sve ostale nepristrasne linearne ocene.

Dokaz. Nepristrasnost ocene β1 je o£igledna.Neka je β proizvoljna nepristrasna linearna ocena. Dakle, ona je oblika

β =n∑i=1

ciYi

i vaºi da je

E(β) = E(n∑i=1

ciYi) =n∑i=1

ciE(Yi) = β1.

Primenom (3.2) je

E(β) =n∑i=1

ci(β0 + β1Xi) = β0

n∑i=1

ci + β1

n∑i=1

ciXi = β1,

gde vidimo, da bi vaºila nepristrasnost za β, ci treba da ispunjavaju uslove

n∑i=1

ci = 0,n∑i=1

ciXi = 1.

Disperzija za β je

D(β) =n∑i=1

c2iD(Yi) = σ2

n∑i=1

c2i .

Stavimo da je ci = ki + di, gde su ki konstante najmanjih kvadrata iz (3.8) i diproizvoljne konstante. Tada je

D(β) = σ2

n∑i=1

c2i = σ2

n∑i=1

(ki + di)2 = σ2(

n∑i=1

k2i +

n∑i=1

d2i + 2

n∑i=1

kidi).

Znamo da je σ2∑n

i=1 k2i = D(β1). A,

∑ni=1 kidi = 0 sledi iz osobina konstanti ki i

ci. Sada je

D(β) = D(β1) + σ2

n∑i=1

d2i ,

pa je minimalna disperzija za β kada je∑n

i=1 d2i = 0, ²to se postiºe samo kada je

svako di = 0, te je ci ≡ ki.Za β0 se pokazuje analogno.Dakle, β0 i β1 su nepristrasne ocene sa najmanjom disperzijom u odnosu na sve

ostale nepristrasne linearne ocene.1Johann Carl Friedrich Gauss (1777-1855), nema£ki matemati£ar.2Andrey Andreyevich Markov (1856-1922), ruski matemati£ar.

Page 25: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 25

Teorema 3. Ocene β0 i β1 modela (3.4) imaju raspodelu

β0 = N(β0,

σ2∑n

i=1X2i

n∑n

i=1(Xi −X)2

)

β1 = N(β1,

σ2∑ni=1(Xi −X)2

).

Dokaz. E(β1) = β1 je o£igledno. Dokaza¢emo da je D(β1) =σ2∑n

i=1(Xi −X)2.

Iz (3.8), (3.10), £injenice da su Yi nezavisne slu£ajne promenljive sa disperzijomσ2 i ki su konstante, sledi da je

D(β1) = D

(n∑i=1

kiYi

)=

n∑i=1

k2iD(Yi) =

n∑i=1

k2i σ

2 = σ2 1∑ni=1(Xi −X)2

.

Dokaz za β0 je sli£an kao za β1.

Ocenimo disperziju za β1 zamenom parametra σ2 nepristrasnom ocenom za σ2

zvanom MSE (videti 3.14),

s2(β1) =MSE∑n

i=1(Xi −X)2=

MSE∑ni=1 X

2i −

(∑n

i=1 Xi)2

n

.

Ocena za D(β0) je

s2(β0) = MSE

∑ni=1X

2i

n∑n

i=1(Xi −X)2= MSE

[1

n+

X2∑n

i=1(Xi −X)2

].

3.3.4 Ocena parametara metodom maksimalneverodostojnosti

Funkcija verodostojnosti modela normalne regresije (3.4), datog opservacijamaY1, Y2, . . . , Yn je

L(β0, β1, σ2) =

n∏i=1

1

(2πσ2)1/2exp

[− 1

2σ2(yi − β0 − β1xi)

2

]

=1

(2πσ2)n/2exp

[− 1

2σ2

n∑i=1

(yi − β0 − β1xi)2

].

Vrednosti za β0, β1 i σ2 koje maksimalizuju ovu funkciju verodostojnosti su ocenemaksimalne verodostojnosti, date u slede¢oj tabeli.Prema tome, u modelu normalne regresije (3.4) su ocene maksimalne verodostojnostiza β0, β1 iste kao i ocene dobijene metodom najmanjih kvadrata.

Page 26: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 26

Parametar Ocena maksimalne verodostojnosti

β0 β0 isto kao (3.7)

β1 β1 isto kao (3.6)

σ2 σ2 =

∑ni=1(Yi − Yi)2

n

3.3.5 Ocenjena regresiona funkcija

Neka su poznate ocene β0 i β1 parametara regresione funkcije

E(Y ) = β0 + β1X,

tada ocenjujemo regresionu funkciju sa

Y = β0 + β1X, (3.11)

gde je Y ocena regresione funkcije.

Ako posmatramo opservacije, onda se Yi u

Yi = β0 + β1Xi, i = 1, . . . , n

zove tovana vrednost za i-tu opservaciju.

Primer 6. U primeru o kompaniji smo imali da je ocena regresionih koecijenataβ0 = 10, β1 = 2. Prema (3.11) je onda ocenjena regresiona funkcija Y = 10 + 2X.

Dakle, za proizvodnju X = 55 rezervnih delova, o£ekivani broj radnih sati jeY = 10 + 2 ·55 = 120. Naravno, radno vreme potrebno za proizvodnju 55 proizvoda¢e verovatno biti iznad ili ispod o£ekivanih 120 sati, zbog varijabilnosti u sistemukoja je predstavljena gre²kom u modelu.

3.3.6 Reziduali

i-ti rezidual, u oznaci ei, je razlika posmatrane vrednosti Yi i odgovaraju¢e to-vane vrednosti Yi,

ei = Yi − Yi = Yi − β0 − β1Xi.

Na slici 3.4 prikazano je 10 reziduala za primer o kompaniji. Reziduali su pri-kazani vertikalnom linijom izmeu posmatrane i tovane vrednosti na ocenjenojregresionoj liniji. Reziduali su izra£unati u tabeli 3.3.

Treba uvideti razliku izmeu gre²ke εi = Yi−E(Yi) i reziduala ei = Yi−Yi. Gre²kaεi se odnosi na vertikalno odstupanje Yi od nepoznate populacione regresione linije,pa je ona nepoznata. S druge strane, rezidual je posmatrano vertikalno odstupanjeYi od tovane regresione linije.

Page 27: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 27

Slika 3.4: Regresiona linija i reziduali.

Page 28: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 28

3.3.7 Osobine tovane regresione linije

Regresiona linija tovana metodom najmanjih kvadrata ima slede¢e osobine:

1. Suma reziduala je nula. (Videti tabelu 3.3.)2. Suma posmatranih vrednosti Yi jednaka je sumi tovanih vrednosti Yi.3. Suma ponderisanih reziduala je nula, gde je rezidual u i-tom uzorku ponderisan

pomo¢u nezavisne promenljive u i-tom uzorku.4. Suma ponderisanih reziduala je nula, gde je rezidual u i-tom uzorku ponderisan

pomo¢u tovane vrednosti zavisne promenljive u i-tom uzorku.5. Regresiona linija uvek prolazi kroz ta£ku (X,Y ). (Videti sliku 3.4.)

3.4 Sume kvadrata

Vratimo se opet na primer o kompaniji. Na slici 3.5a) prikazan je broj radnihsati potrebnih za 10 serijskih proizvodnji na osnovu podataka iz tabele 3.3. Vidimoda postoje varijacije u broju radnih sati, ²to je slu£aj sa gotovo svim statisti£kimpodacima. Kada bi sve opservacije Yi identi£ki bile jednake, Yi ≡ Y , ne bi bilostatisti£kih problema. Varijacija za Yi se konvencionalno meri terminom odstupanja

Yi − Y .

Ova odstupanja su prikazana na slici 3.5a).

Totalna suma kvadrata, u oznaci SSTO (eng. total sum of squares), je zbir

i Xi Yi Yi (Yi − Yi) = ei (Yi − Yi)2 = e2i

1 30 73 70 +3 9

2 20 50 50 0 0

3 60 128 130 −2 4

4 80 170 170 0 0

5 40 87 90 −3 9

6 50 108 110 −2 4

7 60 135 130 +5 25

8 30 69 70 −1 1

9 70 148 150 −2 4

10 60 132 130 +2 4

Ukupno 500 1.100 1.100 0 60

Tabela 3.3: Fitovane vrednosti, reziduali, kvadratni reziduali.

Page 29: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 29

Slika 3.5: Odstupanja.

Page 30: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 30

kvadrata odstupanja

SSTO =n∑i=1

(Yi − Y )2 =n∑i=1

Y 2i −

(∑n

i=1 Yi)2

n=

n∑i=1

Y 2i − nY

2.

Za SSTO = 0, sve opservacije su iste. to je ve¢e SSTO, to je ve¢a varijacija meuopservacijama.

Ako primenimo regresioni pristup, varijacija izraºava nepouzdanost podataka,opservacijama Y oko regresione linije

Yi − Yi. (3.12)

Ovo odstupanje je prikazano na slici 3.5b). Varijacija podataka se moºe izmeritisumom kvadrata odstupanja (3.12)

SSE =n∑i=1

(Yi − Yi)2.

SSE je gre²ka sume kvadrata (eng. error sum of squares). Drugi naziv za SSE jerezidualna suma kvadrata, jer odstupanja su reziduali ei = Yi − Yi, pa je

SSE =n∑i=1

(Yi − Yi)2 =n∑i=1

(Yi − β0 − β1Xi)2 =

n∑i=1

e2i . (3.13)

Iz (3.13) se moºe izvesti alternativna formula za SSE

SSE =n∑i=1

Y 2i − β0

n∑i=1

Yi − β1

n∑i=1

XiYi.

Ako je SSE = 0, sve opservacije su na tovanoj regresionoj liniji. Za ve¢e SSE,ve¢a je varijacija opservacija oko regresione linije.

Za primer o kompaniji je SSTO = 13.660 i SSE=60. Razlika ove dve sume jesuma kvadrata:

SSR =n∑i=1

(Yi − Y )2,

gde SSR ozna£ava regresionu sumu kvadrata (eng. regression sum of squares). Od-stupanja Yi − Y su prikazana na slici 3.5c). Svako odstupanje je razlika tovanevrednosti regresione linije i o£ekivane tovane vrednosti.Ako je regresiona linija horizontalna, time je Yi − Y ≡ 0, SSR = 0. Ina£e je SSRpozitivno. SSR se moºe smatrati merom varijabilnosti Y -a povezanih sa regresio-nom linijom. Za ve¢e SSR, ve¢i je efekat regresije u ra£unanju ukupne varijacije zaY opservacije. Konkretno, za na² primer je

SSR = SSTO − SSE = 13.660− 60 = 13.600,

Page 31: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 31

²to ukazuje da ve¢ina ukupne varijabilnosti u broju radnih sati ulazi u vezu izmeukoli£ine proizvodnje i broja radnih sati.

SSTO ima n − 1 stepen slobode. Oduzet je jedan stepen, jer je o£ekivanje Yupotrebljeno za ocenu o£ekivane populacije.

SSE ima n− 2 stepena slobode. Oduzeta su dva stepena, jer su parametri β0 iβ1 ocenjeni pri dobijanju tovane vrednosti Yi.

SSR ima jedan stepen slobode.Suma kvadrata podeljena svojim stepenom slobode zove se o£ekivani kvadrat.Regresioni o£ekivani kvadrat, u oznaci MSR (eng. regression mean square), je

MSR =SSR

1= SSR,

a gre²ka o£ekivanog kvadrata, u oznaci MSE (eng. mean square error), je

MSE =SSE

n− 2. (3.14)

Za primer o kompaniji je MSR = 13.600, MSE =60

8= 7, 5.

3.5 Interval poverenja za β1

Pri dokazivanju teoreme 5, koristi¢emo slede¢u teoremu:

Teorema 4. Za model (3.4) jeSSE

σ2∼ χ2

n−2 iSSE

σ2je nezavisina od β0 i β1.

Teorema 5. Standardizovana statistikaβ1 − β1

s(β1)posmatranog modela (3.4) ima Stu-

dentovu raspodelu sa n− 2 stepena slobode,

β1 − β1

s(β1)∼ tn−2.

Dokaz. Zapisa¢emoβ1 − β1

s(β1)u obliku

β1 − β1√D(β1)

s(β1)√D(β1)

.

Page 32: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 32

Kako je

s2(β1)

D(β1)=

MSE∑ni=1(Xi −X)2

σ2∑ni=1(Xi −X)2

=MSE

σ2=

SSE

n− 2σ2

=SSE

σ2(n− 2)

i prema Teoremi 4, imamo da je

s(β1)√D(β1)

√χ2n−2

n− 2,

a,β1 − β1√D(β1)

je standardizovana slu£ajna promenljiva.

Dakle,

β1 − β1√D(β1)

s(β1)√D(β1)

∼ tn−2,

tj.β1 − β1

s(β1)∼ tn−2.

Iz Teoreme 5 sledi

P

t(α2 ;n−2) ≤

β1 − β1

s(β1)≤ t(1−α

2;n−2)

= 1− α. (3.15)

Studentova raspodela je simetri£na, pa je

t(α2 ;n−2) = −t(1−α2

;n−2),

te je (3.15) sada

Pβ1 − t(1−α

2;n−2)s(β1) ≤ β1 ≤ β1 + t(1−α

2;n−2)s(β1)

= 1− α.

Zna£i, interval poverenja za β1 sa nivoom poverenja 1− α je

β1 ± t(1−α2

;n−2)s(β1). (3.16)

Page 33: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 33

Sli£no se dobija da je interval poverenja za β0 sa nivoom poverenja 1− α

β0 ± t(1−α2

;n−2)s(β0).

Primer 7. Vratimo se na primer o kompaniji. Ho¢emo da ocenimo β1 sa nivoompoverenja od 95%. Naimo, najpre, s(β1).

s2(β1) =MSE∑n

i=1(Xi −X)2=

7, 5

3.400= 0, 002206,

s(β1) = 0, 04697.

Za 95%-tni nivo poverenja je 1− α2

= 0, 975, a 10−2 = 8 stepena slobode. Iz (3.16)i dobijenih podataka je 1, 89 6 β1 6 2, 11.Prema tome, sa nivoom poverenja od 95%, ocenjujemo da se pove¢a o£ekivani brojradnih sati za vrednost koja je izmeu 1, 89 i 2, 1 pri svakom pove¢anju proizvodnjeza jedan rezervni deo.

3.6 Testiranje parametra β1

Dvosmerni test. Finansijski analiti£ar kompanije ºeli da ispita da li postojilinearna veza izmeu broja radnih sati i koli£ine proizvodnje, koriste¢i regresionimodel (3.4). Tada su hipoteze

H0 : β1 = 0

Ha : β1 6= 0.(3.17)

Testiranje hipoteza (3.17) se zasniva na test statistici

t∗ =β1

s(β1), (3.18)

te je pravilo odlu£ivanja

ako je |t∗| ≤ t(1−α2

;n−2), prihvata se H0

ako je |t∗| > t(1−α2

;n−2), prihvata se Ha.(3.19)

Za primer kompanije, kada je α = 0, 05, β1 = 2, s(β1) = 0, 04697 i n = 10 dobijase t(0,975;8) = 2, 306. Prema tome,

ako je |t∗| ≤ 2, 306, prihvata se H0

ako je |t∗| > 2, 306, prihvata se Ha.

Po²to je |t∗| =

∣∣∣∣ 2

0, 04697

∣∣∣∣ = 42, 58 > 2, 306 prihvata se hipoteza Ha, da je β1 6= 0,

tj. da postoji linearna veza izmeu broja radnih sati i koli£ine proizvodnje.

Page 34: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 34

Jednosmerni test. Ako analiti£ar ºeli da ispita da li je β1 pozitivno, za nivopoverenja od α = 0, 05, onda su hipoteze

H0 : β1 ≤ 0

Ha : β1 > 0,

a pravilo odlu£ivanja u odnosu na test statistiku (3.18) je

ako je t∗ ≤ t(1−α;n−2), prihvata se H0

ako je t∗ > t(1−α;n−2), prihvata se Ha.

Za primer sa kompanijom, kada je α = 0, 05 dobija se t(0,95;8) = 1, 86. Po²to jet∗ = 42, 58 > 1, 86 prihvata se hipoteza Ha, da je β1 pozitivno.

Ponekad je pogodno testirati da li je β1 jednako nekoj odreenoj nenula vrednostiβ10, koja moºe biti istorijska norma, vrednost komparabilnog procesa, ili inºenjeringspecikacije. Za takav test je odgovaraju¢a test statistika

t∗ =β1 − β10

s(β1). (3.20)

Pravilo odlu£ivanja koje se koristi za hipoteze

H0 : β1 = β10

Ha : β1 6= β10

je (3.19) ali sa test statistikom (3.20).Primetimo da se test statistika (3.20) svodi na test statistiku (3.18) kada test uklju-£uje H0 : β1 = β10 = 0.

Testiranje parametra β0 se vr²i analogno testiranju parametra β1.

3.7 Zajedni£ka ocena za β0 i β1

Za analizu podataka £esto je potrebna serija ocena za koju je analiti£ar uverenu ta£nost celog skupa ocena. Takva serija ocena se zove familija ocena. Postupakkojim se obezbeuje familija nivoa poverenja je pogodan ako dozvoljava analiti£aruda poveºe zasebne rezultate u integrisani skup zaklju£aka, sa sigurno²¢u da je ceoskup ocena ta£an. Bonferonijev3 metod za dobijanje zajedni£kog intervala poverenjasa odreenom familijom nivoa poverenja je takav da je svaki nivo poverenja prila-goen da bude ve¢i od 1− α tako da je familija nivoa poverenja 1− α. ObjasnimoBonferonijev metod kada je potrebno odrediti zajedni£ko ocenjivanje za β0 i β1.

3Carlo Emilio Bonferroni (1892-1960), italijanski matemati£ar.

Page 35: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 35

Krenimo od ve¢ poznatih intervala poverenja sa nivoom poverenja 1− α:

β0 ± t(1−α2

;n−2)s(β0)

β1 ± t(1−α2

;n−2)s(β1).

Razmotri¢emo koja je verovatno¢a da su oba intervala ta£na.Neka A1 ozna£ava dogaaj da prvi interval poverenja ne obuhvata β0 i A2 ozna£avadogaaj da prvi interval poverenja ne obuhvata β1. Prema (2.1), (2.2) i (2.3) je

1− P (A1 ∪ A2) = P (A1 ∪ A2) = P (A1 ∩ A2),

P (A1 ∩ A2) = 1− P (A1)− P (A2) + P (A1 ∩ A2).

Po²to je P (A1 ∩ A2) ≥ 0, dobijamo Bonferonijevu nejednakost

P (A1 ∩ A2) ≥ 1− P (A1)− P (A2),

²to je u na²em slu£aju

P (A1 ∩ A2) ≥ 1− α− α = 1− 2α. (3.21)

Prema tome, ako su β0 i β1 zasebno ocenjeni sa, recimo, 95%-nim intervalom povere-nja, Bonferonijeva nejednakost nam garantuje nivo familije poverenja od minimum90% da su oba intervala posmatrana na istom uzorku ta£na.

Primeni¢emo Bonferonijevu nejednakost za dobijanje nivoa familije poverenja odminimum 1−α za ocenjivanje β0 i β1. Ocenjujemo β0 i β1 zasebno, svaki sa nivoompoverenja 1 − α

2. Prema tome, intervali sa 1 − α familijom poverenja za β0 i β1,

£esto zvane oblast poverenja, su

β0 ±Bs(β0),

β1 ±Bs(β1),(3.22)

gde jeB = t(1−α

4;n−2).

U primeru za kompaniju traºimo 90%-ne intervale za β0 i β1.Dobijamo B = t(1− 0,1

4;8) = t(0,975;8) = 2, 306. Znamo da je

β0 = 10, s(β0) = 2, 50294,

β1 = 2, s(β1) = 0, 04697.

Pimenom (3.22) i dobijenih podataka, intervali poverenja su 10± 2, 306 · 2, 50294 i

Page 36: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 36

2± 2, 306 · 0, 04697, a zajedni£ki intervali poverenja

4, 2282 ≤ β0 ≤ 15, 7718,

1, 8917 ≤ β1 ≤ 2, 1083.

Dakle, procenjujemo da je β0 izmeu 4, 23 i 15, 77, a β1 izmeu 1, 89 i 2, 11. Fami-lija nivoa poverenja je najmanje 0, 90 da postupak vodi do ta£nih parova intervalnihocena.

Bonferonijeva nejednakost (3.21) se moºe lako pro²iriti za slu£aj sa g intervalapoverenja i nivoom familije poverenja 1− α

P

(g⋂i=1

Ai

)≥ 1− gα.

Prema tome, ako se traºi g intervalna ocena sa nivoom familije poverenja 1 − α,dovoljno je odrediti svaku intervalnu ocenu sa nivoom poveranja 1− α

g.

Page 37: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 37

3.8 Prost regresioni model u obliku matrice

Deni²imo opservacioni vektor Y, matricu X, vektor β i vektor ε sa

Y =

Y1

Y2

...

Yn

, X =

1 X1

1 X2

......

1 Xn

, β =

[β0

β1

], ε =

ε1

ε2

...

εn

.

Sada, model (3.4) moºemo zapisati u obliku matrice na slede¢i na£in

Y = Xβ + ε,

po²to je Y1

Y2

...

Yn

=

1 X1

1 X2

......

1 Xn

[β0

β1

]+

ε1

ε2

...

εn

=

β0 + β1X1 + ε1

β0 + β1X2 + ε2

...

β0 + β1Xn + εn

.

U (3.4) modelu smo podrazumevali da je E(εi) = 0, D(εi) = σ2 i da su εinezavisne normalne slu£ajne promenljive. Uslov E(εi) = 0 u matri£nom obliku je

E(ε) = 0,

jer

E

ε1

ε2

...

εn

=

E(ε1)

E(ε2)...

E(εn)

=

0

0...

0

.

Uslov da gre²ke imaju konstantnu disperziju i kovarijanse jednake nuli je u ma-tri£nom obliku predstavljen pomo¢u disperziono-kovarijacione matrice

D(ε) = σ2I,

jer

D(ε) = σ2

1 0 0 · · · 0

0 1 0 · · · 0...

...... . . . ...

0 0 0 · · · 1

=

σ2 0 0 · · · 0

0 σ2 0 · · · 0...

...... . . . ...

0 0 0 · · · σ2

.

Page 38: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 38

Dakle, model (3.4) u matri£nom obliku je

Y = Xβ + ε,

pri £emu je ε vektor nezavisnih normalnih slu£ajnih promenljivih sa E(ε) = 0 iD(ε) = σ2I.

3.8.1 Regresioni koecijenti

Sistem jedna£ina (3.5):

n∑i=1

Yi = nβ0 + β1

n∑i=1

Xi,

n∑i=1

XiYi = β0

n∑i=1

Xi + β1

n∑i=1

X2i ,

u matri£nom obliku jeX′Xβ = X′Y, (3.23)

gde je β vektor regresionih koecijenata

β =

[β0

β1

].

Da bismo to uvideli, koristi¢emo

X′X =

[1 1 · · · 1

X1 X2 · · · Xn

]1 X1

1 X2

......

1 Xn

=

[n

∑ni=1Xi∑n

i=1Xi

∑ni=1X

2i

](3.24)

i

X′Y =

[1 1 · · · 1

X1 X2 · · · Xn

]Y1

Y2

...

Yn

=

[ ∑ni=1 Yi∑n

i=1 XiYi

]. (3.25)

Tada je (3.23) [n

∑ni=1 Xi∑n

i=1Xi

∑ni=1X

2i

][β0

β1

]=

[ ∑ni=1 Yi∑n

i=1XiYi

],

tj. [nβ0 + β1

∑ni=1Xi

β0

∑ni=1Xi + β1

∑ni=1 X

2i

]=

[ ∑ni=1 Yi∑n

i=1XiYi

],

Page 39: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 39

a to su upravo jedna£ine u (3.5).

Reprezentacija (3.23) se moºe dobiti i metodom najmanjih kvadrata, pri £emuje u matri£nom obliku Q = (Y −Xβ)′(Y −Xβ).

Ocenjene regresione koecijente dobi¢emo matri£nommetodommnoºenjem (3.23)inverzom matrice X′X

(X′X)−1X′Xβ = (X′X)−1X′Y,

kako je (X′X)−1X′X = I i Iβ = β, onda je

β = (X′X)−1X′Y. (3.26)

Ocene β0 i β1 u β su iste kao i dobijene vrednosti u (3.6) i (3.7).

Primer 8. Odredimo ocenjene regresione koecijente za primer o kompaniji ma-tri£nom metodom.

Izra£unajmo, najpre, matricu iz (3.25) i inverz matrice iz (3.24), koriste¢i podatkeiz tabele 3.2.

(X′X)−1 =

∑n

i=1X2i

n∑n

i=1(Xi −X)2

−∑n

i=1Xi

n∑n

i=1(Xi −X)2

−∑n

i=1Xi

n∑n

i=1(Xi −X)2

n

n∑n

i=1(Xi −X)2

=

1

n∑n

i=1(Xi −X)2

[ ∑ni=1 X

2i −

∑ni=1 Xi

−∑n

i=1 Xi n

]

=1

34.000

[28.400 −500

−500 10

],

X′Y =

[ ∑ni=1 Yi∑n

i=1 XiYi

]=

[1.100

61.800

].

Dakle,

β =

[β0

β1

]= (X′X)−1X′Y =

1

34.000

[28.400 −500

−500 10

][1.100

61.800

]

=1

34.000

[340.000

68.000

]=

[10

2

].

Dobijeni rezultat je isti kao u primeru 5.

Page 40: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 40

Teorema 6. Disperziono-kovarijaciona matrica vektora β,

D(β) =

[D(β0) Cov(β0, β1)

Cov(β1, β0) D(β1)

]je

D(β) = σ2(X′X)−1. (3.27)

Dokaz. Krenimo od (3.26) i ozna£imo sa A matricu

A = (X′X)−1X′,

tada jeβ = AY.

Po²to je D(Y) = σ2I i iz (3.26) sledi

A′ = X(X′X)−1,

te jeD(β) = A[D(Y)]A′.

Dakle,D(β) = (X′X)−1X′σ2IX(X′X)−1

= σ2(X′X)−1X′X(X′X)−1

= σ2(X′X)−1I

= σ2(X′X)−1.

Koriste¢i

(X′X)−1 =

∑n

i=1X2i

n∑n

i=1(Xi −X)2

−X∑ni=1(Xi −X)2

−X∑ni=1(Xi −X)2

1∑ni=1(Xi −X)2

,moºemo (3.27) zapisati na slede¢i na£in

D(β) =

σ2∑n

i=1X2i

n∑n

i=1(Xi −X)2

−Xσ2∑ni=1(Xi −X)2

−Xσ2∑ni=1(Xi −X)2

σ2∑ni=1(Xi −X)2

. (3.28)

AkoMSE zameni σ2 u (3.28), dobijamo ocenjenu disperziono-kovarijacionu matricu

Page 41: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 41

za β,

s2(β) = MSE(X′X)−1 =

MSE

∑ni=1X

2i

n∑n

i=1(Xi −X)2

−XMSE∑ni=1(Xi −X)2

−XMSE∑ni=1(Xi −X)2

MSE∑ni=1(Xi −X)2

.

3.8.2 Fitovane vrednosti i reziduali

Ozna£imo vektor tovanih vrednosti Yi sa Y,

Y =

Y1

Y2

...

Yn

,

a vektor reziduala ei = Yi − Yi sa e,

e =

e1

e2

...

en

. (3.29)

U matri£nom obliku je onda e = Y − Y = Y −Xβ i Y = Xβ, jer jeY1

Y2

...

Yn

=

1 X1

1 X2

......

1 Xn

[β0

β1

]=

β0 + β1X1

β0 + β1X2

...

β0 + β1Xn

.

Vektor reziduala e, uveden sa (3.29), moºe se izraziti sa e = (I −H)Y , gde jeH = X(X ′X)−1X ′. Kvadratna matrica H se zove kapa matrica. Matrica I−H jesimetri£na i idempotentna.

Disperziono-kovarijaciona matrica reziduala je D(e) = σ2(I −H), a ocenjenadisperziono-kovarijaciona matrica reziduala s2(e) = MSE(I −H).

Page 42: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 42

3.8.3 Sume kvadrata

Naimo sume kvadrata u matri£nom obliku. Krenimo od SSTO. Iz (3.49) je

SSTO =n∑i=1

Y 2i − nY 2 =

n∑i=1

Y 2i −

(∑n

i=1 Yi)2

n,

po²to je

Y ′Y =[Y1 Y2 · · · Yn

]Y1

Y2

...

Yn

=[Y 2

1 + Y 22 + · · ·+ Y 2

n

]=

[n∑i=1

Y 2i

],

pa je u matri£nom zapisu

SSTO = Y ′Y − 1

nY ′11′Y , (3.30)

gde je

1 =

1

1...

1

.Kako je SSE =

∑ni=1 e

2i =

∑ni=1(Yi − Yi)2, to je u matri£nom obliku

SSE = e′e = (Y −Xβ)′(Y −Xβ). (3.31)

Moºe se pokazati da je (3.31) ekvivalentno sa

SSE = Y ′Y − β′X ′Y . (3.32)

Koriste¢i (3.30) i (3.32), dobija se

SSR = β′X ′Y − 1

nY ′11′Y . (3.33)

Suma kvadrata u kvadratnoj formi

Kvadratna forma je denisana sa Y ′AY =∑n

i=1

∑nj=1 aijYiYj gde je aij = aji.

A je simetri£na matrica dimenzije n× n i zove se matrica kvadratne forme.Sume kvadrata SSTO, SSR i SSE su kvadratne forme, jer se sume kvadrata

date sa (3.30), (3.33) i (3.32) svode na

SSTO = Y ′[I − 1

nJ

]Y ,

Page 43: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 43

SSR = Y ′[X(X ′X)−1X ′ − 1

nJ

]Y ,

SSE = Y ′ [I −X(X ′X)−1X ′]Y ,gde je

11′ = J ,

a matrice:I − 1

nJ ,

X(X ′X)−1X ′ − 1

nJ ,

I −X(X ′X)−1X ′,

su matrice kvadratne forme.

3.9 Dodatak: Kori²¢enje Microsoft Excel-a za

prostu linearnu regresiju

Otvoriti u Excel-u radni list sa podacima, potrebnim za analizu regresije. Oda-brati Tools → Data Analysis ako se radi u Excel-u 97-2003 (nadalje radimo uExcelu 97-2003, a u ostalim verzijama se sli£no radi). Zatim odabrati Regressionsa liste Data Analysis i pritisnuti OK. U dijalogu kao na slici 3.6 uneti opseg za Y uInput Y Range i uneti opseg za X u Input X Range. Ozna£iti Labels, ConfidenceLevel i uneti nivo poverenja, zatim pritisnuti OK.

Za predvianje zasebne vrednosti Y u Excel-u koristi se funkcija TREND(opseg

¢elija za Y, opseg ¢elija za X, vrednost za X).

Za analizu reziduala pratiti uptstvo u prvom pasusu do pritiska OK, s tim ²to jepre odabira OK potrebno u dijalogu regresije ozna£iti Residuals i Residual Plots.

Za crtanje dijagrama na osnovu unetih podataka, i¢i na Insert → Chart, oda-brati XY (Scatter), zatim odabrati prvi dijagram ponuen u Chart sub-type.Pritisnuti Next. U Data range uneti duºinu promenljivih i ozna£iti Columns. Pri-tisnuti Next. Uneti naziv dijagrama u Chart title, nazive osa u Value (X) axis

i Value (Y) axis, zatim pritisnuti Finish.

Liniju na dijagramu dobi¢emo na slede¢i na£in.Odabrati Chart → Add Trendline. U dijalogu kao na slici 3.7 na Type karticiodabrati Linear, a na kartici Options izabrati Automatic. Obeleºiti Display

equation on chart i Display R-squared value on chart, pritisnuti OK.

Page 44: Linearni regresioni modeli u nansijama

Linearna regresija sa jednom nezavisnom promenljivom 44

Slika 3.6: Dijalog regresije.

Slika 3.7: Add Trendline dijalog.

Page 45: Linearni regresioni modeli u nansijama

Vi²estruki regresioni modeli 45

Glava 4

Vi²estruki regresioni modeli

4.1 Model prvog reda sa dve nezavisne promenljive

Ako se posmatraju dve nezavisne promenljive X1 i X2, model

Yi = β0 + β1Xi1 + β2Xi2 + εi (4.1)

se zove model prvog reda sa dve nezavisne promenljive. Model prvog reda (4.1) jemodel sa linearnim parametrima i linearnim nezavisnim promenljivama. Yi ozna£avazavisnu promenljivu u i-tom uzorku, Xi1 i Xi2 su nezavisne promenljive u i-tomuzorku. Parametri modela su β0, β1 i β2, a gre²ka je εi.

Smatraju¢i da je E(εi) = 0, regresiona funkcija modela (4.1) je

E(Y ) = β0 + β1X1 + β2X2. (4.2)

Prosta linearna regresija ima regresionu funkciju E(Y ) = β0 + β1X koja je prava, aregresiona funkcija (4.2) je ravan. Regresiona funkcija u vi²estrukoj regresiji se zoveregresiona povr².

4.1.1 Zna£enje regresionih koecijenata

Parametar β0 je Y odse£ak regresione povr²i. Ako je u modelu X1 = 0 i X2 = 0,onda β0 pokazuje kolika je o£ekivana vrednost zavisne promenljive kada je X1 = 0,X2 = 0. Parametar β1 pokazuje promenu o£ekivane vrednosti zavisne promenljivepri jedini£nom pove¢anju X1 kada je X2 konstantno. Isto tako, β2 ukazuje na pro-menu u o£ekivanoj vrednosti pri jedini£noj promeni X2 kada je X1 konstantno.

Ako uticaj X1 na o£ekivanu vrednost zavisne promenljive ne zavisi od X2 i obr-nuto, da uticaj X2 na o£ekivanu vrednost zavisne promenljive ne zavisi od X1, ondase za takve dve nezavisne promenljive kaºe da imaju aditivne efekte ili da nisu in-teraktivne. Prema tome, model prvog reda (4.1) se odnosi na nezavisne promenljivekoje nisu interaktivne.

Parametri β1 i β2 se £esto zovu parcijalni regresioni koecijenti jer ozna£avajuparcijalni uticaj jedne nezavisne promenljive kada je druga konstantna.

Page 46: Linearni regresioni modeli u nansijama

Vi²estruki regresioni modeli 46

4.2 Model prvog reda sa vi²e od dve nezavisne

promenljive

Posmatrajmo slu£aj sa p− 1 nezavisnih promenljivih X1, X2, . . . , Xp−1. Model

Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βp−1Xi,p−1 + εi (4.3)

se zove model prvog reda sa p − 1 nezavisnih promenljivih. Model (4.3) se moºezapisati i ovako

Yi = β0 +

p−1∑k=1

βkXik + εi.

Za p− 1 = 1, model (4.3) se svodi na Yi = β0 + β1Xi1 + εi, ²to je prost linearniregresioni model.

Pretpostavimo da je E(εi) = 0, funkcija zavisne promenljive za model (4.3) je

E(Y ) = β0 + β1Xi1 + β2Xi2 + . . .+ βp−1Xi,p−1.

Ova funkcija zavisne promenljive je hiperravan (to je ravan u prostoru sa ve¢omdimenzijom od dva). U modelu prvog reda (4.3) vidimo da je zna£enje parametaraanalogno kao u slu£aju sa dve nezavisne promenljive i nezavisne promenljive nisuinteraktivne.

4.3 Op²ti linearni regresioni model

U op²tem slu£aju, promenljive X1, X2, . . . , Xp−1 u regresionom modelu ne morada budu razli£ite nezavisne promenljive. Zbog toga uvodimo op²ti linearni regresionimodel

Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βp−1Xi,p−1 + εi, (4.4)

gde su β0, β1, . . . , βp−1 parametri, a Xi1, Xi2, . . . , Xi,p−1 su poznate konstante, εi ne-zavisne slu£ajne promenljive sa raspodelom N (0, σ2), i = 1, 2, . . . , n.

Funkcija zavisne promenljive modela (4.4) kada je E(εi) = 0:

E(Y ) = β0 + β1X1 + β2X2 + . . .+ βp−1Xp−1. (4.5)

Prema tome, opservacije Yi su nezavisne slu£ajne promenljive sa normalnom raspo-delom, £ije je o£ekivanje E(Yi) dato sa (4.5) i konstantnom disperzijom σ2.

Kada X1, X2, . . . , Xp−1 predstavlja p−1 razli£itih nezavisnih promenljivih, op²tilinearni model (4.4) je model prvog reda u kome nema interaktivnih uticaja meunezavisnim promenljivama.

Page 47: Linearni regresioni modeli u nansijama

Vi²estruki regresioni modeli 47

4.4 Op²ti linearni regresioni model u matri£nom

obliku

Za izraºavanje op²teg linearnog regresionog modela (4.4) u matri£nom obliku,potrebno je denisati slede¢e matrice

Y =

Y1

Y2

...

Yn

, X =

1 X11 X12 · · · X1,p−1

1 X21 X22 · · · X2,p−1

......

... . . . ...

1 Xn1 Xn2 · · · Xn,p−1

,

β =

β1

β2

...

βp−1

, ε =

ε1

ε2

...

εn

.U matri£nom obliku, op²ti linearni regresioni model (4.4) je

Y = Xβ + ε, (4.6)

gde je:• Y vektor opservacija,• β vektor parametara,• X matrica konstanti,• ε vektor nezavisnih slu£ajnih promenljivih sa normalnom raspodelom, pri£emu je o£ekivanje E(ε) = 0 i disperziono-kovarijaciona matrica D(ε) = σ2I.

Stoga, slu£ajni vektorY ima o£ekivanje E(Y) = Xβ, a disperziono-kovarijacionamatrica za Y je D(Y) = σ2I.

Page 48: Linearni regresioni modeli u nansijama

Vi²estruki regresioni modeli 48

4.5 Regresioni koecijenti vi²estrukog regresionog

modela

Nave²¢emo osobine i primene regresionih koecijenata vi²estrukog linearnog re-gresionog modela bez detaljnijeg obrazloºenja, jer su njihova izvoenja analogna iz-voenjima osobina i primena koecijenata linerane regresije sa jednom nezavisnompromenljivom.

Ozna£i¢emo sa β vektor ocenjenih regresionih koecijenata

β =

β0

β1

β2

...

βp−1

.

Jedna£ina najmanjih kvadrata op²teg linearnog regresionog modela (4.6) je (X ′X)β =

X ′Y , a ocene najmanjih kvadrata su β = (X ′X)−1X ′Y .Ocene najmanjih kvadrata β su nepristrasne, E(β) = β.

Disperziono-kovarijaciona matrica

D(β) =

D(β0) Cov(β0, β1) · · · Cov(β0, βp−1)

Cov(β1, β0) D(β1) · · · Cov(β1, βp−1)...

... . . . ...

Cov(βp−1, β0) Cov(βp−1, β1) · · · D(βp−1)

je izraºena sa D(β) = σ2(X ′X)−1, a njena ocena

s2(β) =

s2(β0) s(β0, β1) · · · s(β0, βp−1)

s(β1, β0) s2(β1) · · · s(β1, βp−1)...

... . . . ...

s(βp−1, β0) s(βp−1, β1) · · · s2(βp−1)

je s2(β) = MSE(X ′X)−1.

Intervali poverenja za βk sa 1− α nivoom poverenja su

βk ± t(1−α2

;n−p)s(βk).

Page 49: Linearni regresioni modeli u nansijama

Vi²estruki regresioni modeli 49

Za testiranjeH0 : βk = 0

Ha : βk 6= 0,

koristi¢emo test statistiku

t∗ =βk

s(βk)

i praviloAko je |t∗| ≤ t(1−α

2;n−p), prihvata se H0

Inace se prihvata Ha.

Posmatramo Bonferonijev zajedni£ki intervali poverenja kada imamo g parame-tara. Ocenjeni zajedni£ki intervali poverenja sa familijom nivoa poverenja 1 − αsu

βk ±Bs(βk), (4.7)

gde jeB = t(1− α

2g;n−p). (4.8)

4.6 Komentari

Fitovane vrednosti, reziduali, sume kvadrata i o£ekivane sume kvadrata se mogupredstaviti isto kao u ve¢ diskutovanom delu o linearnoj regresiji sa jednom nezavi-snom promenljivom u matri£nom obliku.

Meutim, javlja se razlika u stepenima slobode za SSR i SSE, te se i o£eki-vane sume kvadrata razlikuju u odnosu na linearnu regresiju sa jednom nezavisnompromenljivom (videti tabelu 4.1).

SS Stepeni slobode MS

Regresija SSR = β′X ′Y − 1

nY ′11′Y p− 1 MSR =

SSR

p− 1

Gre²ka SSE = Y ′Y − β′X ′Y n− p MSE =SSE

n− p

Ukupno SSTO = Y ′Y − 1

nY ′11′Y n− 1

Tabela 4.1: SS i MS za model (4.6).

SSE ima n− p stepena slobode po²to treba oceniti p parametara u regresionojfunkciji za model (4.6). SSR ima p− 1 stepena slobode zbog broja X promenljivih,X1, X2, . . . , Xp−1.

Kori²¢enje MS Excel-a za analizu vi²estruke linearne regresije i analizu rezidualaje sli£no kao u delu 3.9.

Page 50: Linearni regresioni modeli u nansijama

Vi²estruki regresioni modeli 50

Za izra£unavanje t statistike moºe se primeniti funkcija u Excel-uTINV(nivo poverenja, stepen slobode), za dobijanje transponovane i inverznematrice TRANSPOSE(opseg ¢elija matrice) i MINVERSE(opseg ¢elija matrice),respektivno, dok se za mnoºenje matrica koristi funkcija MMULT(opseg ¢elija prve

matrice, opseg ¢elija druge matrice).

4.7 Op²te ocene najmanjih kvadrata

Pretpostavka da slu£ajne promenljive εi imaju istu disperziju σ2 moºe biti su-vi²e restriktivna u ekonometrijskim istraºivanjima. Na primer, ako Y predstavljaprot rme, a X meri veli£inu rme, onda je verovatno da se D(Y ) pove¢a sapove¢anjem X. Slu£ajne raspodele sa disperzijama koje nisu konstantne se zovuheteroskedasti£ne. Osim heteroskedasti£nosti, pretopstavka nekoreliranih εi moºebiti neodrºiva. Ovakva razmatranja vode do zamene pretpostavke Cov(Y) = σ2I sa

Cov(Y) = V, (4.9)

gde je V simetri£na i pozitivno denitna matrica.

Time se menja ocena najmanjih kvadrata β = (X′X)−1X′Y sa

βGLS = (X′V−1X)−1X′V−1Y, (4.10)

koja se zove op²ta ocena najmanjih kvadrata, ima osobinu nepristrasnosti i vaºi

Cov(βGLS) = (X′V−1X)−1, (4.11)

pod pretpostavkom (4.9).

Specijalno, za V = σ2I u (4.11) ocena se svodi na σ2(X′X)−1 u (3.27).

Za dokazivanje (4.10) i (4.11) koristi¢emo rezultate iz 2.6. Za simetri£nu i pozi-tivno denitnu matricu V postoji simetri£na i pozitivno denitna matrica P takvada je PP = V, tj. P = V1/2. Mnoºenjem regresionog modela Y = Xβ + ε sa P−1

dobija seP−1Y = P−1Xβ + u, (4.12)

gde u = P−1ε ima kovarijacionu matricu P−1Cov(ε)P−1 = P−1PPP−1 = I. Prematome, model (4.12) ima Cov(u) = I, za koji je ocena najmanjih kvadrata oblika[

(P−1X)′(P−1X)]−1

(P−1X)′P−1Y = (X′P−1P−1X)−1X′P−1P−1Y,

²to je istog oblika kao βGLS u (4.10) po²to je P−1P−1 = (PP)−1 = V−1. Stoga, kori-

ste¢i transformaciju (4.12), op²ta ocena najmanjih kvadrata se moºe transformisatiu ocenu najmanjih kvadrata, te op²ta ocena najmanjih kvadrata ima iste osobinekao ocena najmanjih kvadrata nakon zamene X sa P−1X. Dakle, (4.11) sledi iz(3.27) primenom ove transformacije.

Page 51: Linearni regresioni modeli u nansijama

Vi²estruki regresioni modeli 51

4.8 Primer vi²estruke regresije sa dve nezavisne

promenljive

Osiguravaju¢a kompanija ima 15 lijala u Srbiji. U tabeli 4.2 su dati podaci oprodaji polisa.

Fili-jala

Prodaja polisau lijali i

Ciljana populacija(u hiljadama)

Prihod po glavi stanovnika(u dinarima)

i Yi Xi1 Xi2

1 162 274 2.450

2 120 180 3.254

3 223 375 3.802

4 131 205 2.838

5 67 86 2.347

6 169 265 3.782

7 81 98 3.008

8 192 330 2.450

9 116 195 2.137

10 55 53 2.560

11 252 430 4.020

12 232 372 4.427

13 144 236 2.660

14 103 157 2.088

15 212 370 2.605

Tabela 4.2: Prodaja polisa.

Prodaju ozna£ava zavisna promenljiva Y , dok ciljanu populaciju i prihod po glavistanovnika ozna£avaju nezavisne promenljive X1 i X2, respektivno. Odgovaraju¢imodel za ovaj primer je model prvog reda

Yi = β0 + β1Xi1 + β2Xi2 + εi

sa gre²kom £ija je raspodela normalna.

Page 52: Linearni regresioni modeli u nansijama

Vi²estruki regresioni modeli 52

Matrice X i Y su

X =

1 274 2.450

1 180 3.254

1 375 3.802

1 205 2.838

1 86 2.347

1 265 3.782

1 98 3.008

1 330 2.450

1 195 2.137

1 53 2.560

1 430 4.020

1 372 4.427

1 236 2.660

1 157 2.088

1 370 2.605

, Y =

162

120

223

131

67

169

81

192

116

55

252

232

144

103

212

.

Dobi¢emo ocene najmanjih kvadrata β koriste¢i (4.5) i matrice X i Y .

β = (X ′X)−1X ′Y

=

1, 2463484 2, 1296642 · 10−4 −4, 1567125 · 10−4

2, 1296642 · 10−4 7, 7329030 · 10−6 −7, 0302518 · 10−7

−4, 1567125 · 10−4 −7, 0302518 · 10−7 1, 9771851 · 10−7

2.259

647.107

7.096.619

=

3, 4526127900

0, 4960049761

0, 0091990809

.Prema tome je

β0

β1

β2

=

3, 4526127900

0, 4960049761

0, 0091990809

,pa je ocenjena regresiona funkcija

Y = 3, 453 + 0, 496X1 + 0, 0092X2.

Dakle, o£ekuje se pove¢anje prodaje za 0, 496 polisa kada je ciljana populacija pove-¢ana za hiljadu stanovnika, u slu£aju da je prihod po glavi stanovnika nepromenjen.A, ako se prihod po glavi stanovnika pove¢a za jedan dinar, o£ekuje se pove¢anje

Page 53: Linearni regresioni modeli u nansijama

Vi²estruki regresioni modeli 53

prodaje za 0, 0092 polisa, pri konstantnoj populaciji.

Ocenimo β1 i β2 zajedno sa familijom nivoa poverenja 0, 90, koriste¢i Bonferoni-jeve intervale poverenja date u (4.7).Najpre, potrebno je oceniti disperziono-kovarijacionu matricu s2(β),

s2(β) = 4, 7403

×

1,2463484 2,1296642E - 4 -4,1567125E - 4

2,1296642E - 4 7,7329030E - 6 -7,0302518E - 7

-4,1567125E - 4 -7,0302518E - 7 1,9771851E - 7

=

5,9081 1,0095E - 3 -1,9704E - 3

1,0095E - 3 3,6656E - 5 -3,3326E - 6

-1,9704E - 3 -3,3326E - 6 9,3725E - 7

.Potrebna su nam dva elementa dobijene matrice,

s2(β1) = 0, 000036656 i s2(β2) = 0, 00000093725,

pa jes(β1) = 0, 006054 i s(β2) = 0, 0009681.

Ocenjujemo β1 i β2, zna£i da je g = 2. Zamenom dobijenih vrednosti i datogα = 0, 10 u (4.8) je

B = t(1− 0,102·2 ;12) = t(0,975;12) = 2, 179.

Dakle, dva istovremena intervala poverenja su

0, 4960− 2, 179 · 0, 006054 ≤ β1 ≤ 0, 4960 + 2, 179 · 0, 006054

i0, 009199− 2, 179 · 0, 0009681 ≤ β2 ≤ 0, 009199 + 2, 179 · 0, 0009681,

tj.0, 483 ≤ β1 ≤ 0, 509

i0, 0071 ≤ β2 ≤ 0, 0113.

Sa familijom nivoa poverenja 0, 90 zaklju£ujemo da β1 ima neku vrednost izmeu0, 483 i 0, 509, a β2 izmeu 0, 0071 i 0, 0113.

Primetimo da dobijeni istovremeni intervali poverenja navode da su i β1 i β2

pozitivni, ²to se poklapa sa teorijskim o£ekivanjima da bi trebalo do¢i do pove-¢anja prodaje polisa sa pove¢anjem bilo ciljane populacije, bilo prihoda po glavistanovnika.

Page 54: Linearni regresioni modeli u nansijama
Page 55: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 55

Glava 5

Osnovni investicioni modeli

5.1 Markoviceva portfolio teorija

Dobar portfolio je vi²e od duge liste dobrih akcija i obveznica. To je balansiranacelina, koja ²titi investitora i obezbeuje mogu¢nosti u skladu sa ²irokim spektromnepredvienih situacija.Hari Markovic

Po£etni kapital koji je potrebno uloºiti u investiciju je skoro uvek poznat, zarazliku od prinosa koji je neizvestan. Naravno, investitori preferiraju da takve ne-izvesnosti budu minimalne. Markovic je ispitivao neizvesnost prinosa analizom o£e-kivanja i varijacije. Dobijena teorija se zove Markoviceva portfolio teorija, a 1990.godine Markovic je nagraen Nobelovom nagradom u ekonomiji. Na ovoj teorijise zasniva model procenjivanja kapitalnih ulaganja, koji je uveo arp i dobio 1990.Nobelovu nagradu u ekonomiji.

5.1.1 Ponderi portfolija

Za portfolio od p aktiva sa ponderima ωi, prema (2.16) i za ksirani vremenskitrenutak t, prinos je r =

∑pi=1 ωiri, gde je ri prinos i-te aktive. O£ekivani prinos

portfolija µ i disperzija prinosa portfolija σ2 su

µ =

p∑i=1

ωiE(ri), σ2 =∑

1≤i,j≤p

ωiωjCov(ri, rj), (5.1)

pri £emu za ωi vaºip∑i=1

ωi = 1, (5.2)

0 ≤ ωi ≤ 1. (5.3)

Diversikacija je postupak za smanjenje rizika ulaganjem u razli£ite aktive. Re-cimo, lo²e je formirati portfolio koji se sastoji od jedne akcije. Takav portfolio jenediversikovan, jer sa padom akcije, investitor je na gubitku.Za meru rizika se uzima standardna devijacija prinosa rizi£ne aktive. Rizi£na aktiva

Page 56: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 56

je svaka aktiva koja sa sobom nosi neki stepen rizika. Takve su aktive koje pose-duju banke ili nansijske institucije i £ije vrednosti mogu uktuirati usled promenekamatne stope, rizika otplate, kredibiliteta itd.Diversikacijom se moºe disperzija prinosa portfolija smanjiti uklju£ivanjem do-datnih aktiva u portfolio. Primenimo diversikaciju na na² slu£aj, ako su ri nekore-lirani ili negativno korelirani i ωi zadovoljavaju (5.2) i (5.3), onda je

σ2 ≤p∑i=1

ω2iD(ri) ≤

p∑i=1

ωiD(ri).

Dakle, disperzija prinosa portfolija je manja od zbira pojedina£nih disperzija pri-nosa aktiva koje zajedno £ine portfolio. Po ovakvom principu posluju osiguravaju¢ekompanije, jer je manji rizik ukoliko imaju ve¢i broj osiguranika.

Specijalno, za ωi = 1ptj. jednako u£e²¢e aktiva u portfoliju i D(ri) = v odnosno

svi prinosi aktiva su istih disperzija, je σ2 ≤ v

p, a takav portfolio se zove jednako-

ponderisani portfolio.

Ponekad je mogu¢e da investitor proda aktivu koju ne poseduje, ²to zovemokratkom prodajom aktive. Kratka prodaja uklju£uje pozajmljivanje n aktiva od zaj-modavca (npr. brokerske rme) i prodaju tih aktiva kupcu za x0 dinara. Tada,investitor ima portfolio koji se sastoji od −n aktiva i od x0 dinara. n je pozitivno iozna£ava broj aktiva, ali u portfoliju posmatramo negativan broj −n, jer je investi-tor kratak za n aktiva, odnosno toliko aktiva duguje.Na kraju investitor za x1 dinara kupuje n aktiva, iste kakve je prvobitno pozajmioi vra¢a ih zajmodavcu.Ako je x0 > x1 investitor je ostvario zaradu, u suprotnom je na gubitku. Arbitraºapredstavlja kori²¢enje razlike u ceni posmatranog instrumenta na razli£itim trºi²timau cilju zarade bez sopstvenog ulaganja. Ako nema arbitraºe, onda je x0 = x1, a in-vestitor nije ni zaradio, ni izgubio.

Mnoge brokerske ku¢e ne dozvoljavaju kratku prodaju, zbog mogu¢eg velikogrizika.U slu£ajevima kada je omogu¢ena kratka prodaja, pretpostavka (5.3) se moºe zane-mariti, jer tada wi moºe biti negativan broj, naravno, ne manji od −1 po²to se radio ponderu.

5.1.2 Oblast realizacije i ekasna granica

Neka se portfolio sastoji od p = 2 rizi£nih aktiva, £iji prinosi imaju o£ekivanjaµ1, µ2, standardne devijacije σ1, σ2 i koecijent korelacije ρ. Neka je ω1 = α ponderprve aktive u portfoliju, a ω2 = 1 − α ponder druge aktive u portfoliju, gde je0 ≤ α ≤ 1.Tada je o£ekivani prinos portfolija

µ(α) = αµ1 + (1− α)µ2, (5.4)

Page 57: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 57

a njegova disperzija je

σ(α) = α2σ21 + 2ρα(1− α)σ1σ2 + (1− α)2σ2

2. (5.5)

Sa promenom vrednosti α u (5.4) i (5.5) menjaju se ponderi, te dobijamo skupta£aka oblika (σ(α), µ(α)) koje obrazuju krivu u ravni µ−σ (videti sliku 5.1). Ovakodenisana kriva se zove oblast realizacije, pri £emu ta£ka (σ(α), µ(α)) na grakupredstavlja portfolio sa o£ekivanjem µ(α) i standardnom devijacijom σ(α).

Slika 5.1: Grak o£ekivanja-standardne devijacije za dve aktive.

Pokaza¢emo da je oblast realizacije ograni£ena trouganom obla²¢u u ravni µ−σ.Funkcija σ je rastu¢a po ρ, gde je ρ ∈ [0, 1], pa naimo granice funkcije.Gornju granicu traºimo za ρ = 1,

σ(α; ρ = 1) =√

(1− α)2σ21 + 2α(1− α)σ1σ2 + α2σ2

2

=√

((1− α)σ1 + ασ2)2 = (1− α)σ1 + ασ2.

Na ovoj pravi se nalaze ta£ke P1 i P2. Kada je α = 1, u portfoliju je samo prvaaktiva i na graku je takav slu£aj predstavljen ta£kom P1, dok ta£ka P2 prikazujeportfolio kada je α = 0. Portfolija koja su predstavljenja ta£kama na ovoj pravoj suizloºena velikom riziku, jer su sastavljeni od aktiva koje se isto kre¢u na trºi²tu, pakada padne jedna aktiva pa²¢e i druga, a time i ceo portfolio.Kada je ρ = −1, dobija se donja granica:

σ(α; ρ = −1) =√

(1− α)2σ21 − 2α(1− α)σ1σ2 + α2σ2

2

=√

((1− α)σ1 − ασ2)2 = |(1− α)σ1 − ασ2|

=

ασ2 − (1− α)σ1, za α ≥ σ1

σ1+σ2

(1− α)σ1 − ασ2, za α < σ1σ1+σ2

. (5.6)

Page 58: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 58

Prave u (5.6) se seku u ta£ki A. Dakle, u ta£ki A je standardna devijacijaprinosa portfolija jednaka nuli, a takav slu£aj je pogodan za investitora. Ta£kena isprekidanoj liniji predstavljaju portfolije kada je dozvoljena kratka prodaja,u slu£aju da je ρ = −1, a ta£ka A upravo odgovara jednom takvom portfoliju.Nekorelirane aktive su aktive koje imaju suprotan smer kretanja, a to je kombinacijarizi£ne i bezrizi£ne aktive. Bezrizi£na aktiva je aktiva £ija je disperzija prinosajednaka nuli, takve su npr. obveznice.

Za p ≥ 3, oblast realizacije je dvodimenzionalna, konveksna ulevo. Na slici 5.2je tamnijom obla²¢u prikazana oblast realizacije kada je dozvoljena kratka prodaja,a svetlijom kada kratka prodaja nije dozvoljena.

Slika 5.2: Oblast realizacije za p ≥ 3 aktiva.

Leva granica realizacione oblasti se zove skup minimalne disperzije.Investitor preferira portfolio koji ima najve¢i o£ekivani prinos i najmanju disper-

ziju prinosa.Za zadatu vrednost standardne devijacije σ, investitor preferira portfolio sa naj-

ve¢im o£ekivanim prinosom, ²to se postiºe u ta£ki na gornjoj levoj granici realizaci-one oblasti koja se zove ekasna granica. Videti sliku 5.3.

Ako se portfolio sastoji samo od rizi£nih aktiva, onda je skup minimalne di-sperzije parabola, a gornji deo ove parabole je ekasna granica. Ako je u portfoliouklju£ena i bezrizi£na aktiva, onda je ekasna granica poluprava na tangenti para-bole, jer se sa bezrizi£nom aktivom moºe ostvariti porast po µ, bez promene σ.

Portfolio minimalne disperzije u oznaci MVP (eng. minimum-variance portfolio)je portfolio koji za zadatu vrednost o£ekivanog prinosa µ ima najmanju standardnudevijaciju prinosa σ. Ta£ka koja opisuje MVP se nalazi na ekasnoj granici.

Ekasan portfolio je portfolio koji nudi najve¢i o£ekivani prinos za zadati nivorizika ili najmanji rizik za zadatu vrednost o£ekivanog prinosa. Skup ta£aka kojepredstavljaju ekasne portfolije se nalaze na ekasnoj granici.

Page 59: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 59

Slika 5.3: Ekasna granica i ta£ka mininalne disperzije.

5.1.3 Izra£unavanja ekasnih portfolija

Preimo na matri£ni zapis. Neka je vektor prinosa p aktiva r = [r1 · · · rp]′,1 = [1 · · · 1]′, w = [ω1 · · ·ωp]′. Tada je o£ekivani prinos portfolija

µ =

µ1

...

µp

=

E(r1)...

E(rp)

, (5.7)

a disperzija prinosa portfolija sastavljenog od p aktiva je

σ2 = w′Σw, (5.8)

gde jeΣ = D(r) = Cov(r, r′) = (Cov(ri, rj))1≤i≤j≤p. (5.9)

Pokaza¢emo (5.8),

σ2 = D(w′r) = Cov(w′r, (w′r)′)

= Cov(w′r, r′w) = w′Cov(r, r′)w

= w′Σw.

- Posmatrajmo ekasan portfolio kada je dozvoljena kratka prodaja.Neka je µ∗ unapred zadata vrednost o£ekivanog prinosa portfolija koju investitornamerava da dostigne. Da bi investitor znao kako da sastavi portfolio koji ¢e ostva-riti planirani prinos, potrebno je na¢i weff vektor pondera posmatranog ekasnogportfolija. Ekasni portfolio po deniciji za zadato µ∗ treba da ima minimalnu

Page 60: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 60

disperziju, pa je

weff = argminw

w′Σw pri £emu je w′µ = µ∗, w′1 = 1. (5.10)

Lagranºijan ¢e biti

L =1

2w′Σw − λ(w′µ− µ∗)− γ(w′1− 1),

gde su λ i γ Lagranºovi £inioci.Diferenciranjem po w, λ i γ i izjedna£avanjem dobijenih izraza nulom, dobija se

∂L

∂w= Σw − λµ− γ1 = 0,

∂L

∂λ= w′µ− µ∗ = 0,

∂L

∂γ= w′1− 1 = 0,

pa jeΣw = λµ+ γ1, (5.11)

w′µ = µ∗, (5.12)

w′1 = 1. (5.13)

Iz (5.11) jew = Σ−1(λµ+ γ1). (5.14)

Naimo λ i γ.Transponovanjem (5.12) i (5.13), kada je Σ nesingularna, sledi

µ∗ = µ′w = µ′Σ−1(λµ+ γ1) = λµ′Σ−1µ+ γµ′Σ−11,

1 = 1′w = 1′Σ−1(λµ+ γ1) = λ1′Σ−1µ+ γ1′Σ−11,

ozna£imo sa

A = µ′Σ−11 = 1′Σ−1µ, B = µ′Σ−1µ, C = 1′Σ−11.

Sada je sistemµ∗ = λB + γA,

1 = λA+ γC,

£ije je re²enje

λ =Cµ∗ − A

D, γ =

B − Aµ∗D

, (5.15)

gde je D = BC − A2.

Page 61: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 61

Zamenom λ i γ u (5.14), ponder traºenog ekasnog portfolija je

weff = Σ−1Cµ∗ − AD

µ+Σ−1B − Aµ∗D

1

=BΣ−11− AΣ−1µ+ µ∗(CΣ

−1µ− AΣ−11)

D. (5.16)

Disperzija prinosa ekasnog portfolija za unapred zadatu ciljanu vrednost µ∗dobi¢emo iz (5.8), (5.14), (5.15), (5.12) i (5.13),

σ2eff = w′Σw = w′Σ(Σ−1(λµ+ γ1)) = λw′µ+ γw′1 =

B − 2µ∗A+ µ2∗C

D.

Za dva MVP-a sa o£ekivanim prinosima µp i µq, vektori pondera su dati sa (5.16)i µ∗ uzima vrednosti µp i µq, respektivno. Tada sledi da je kovarijansa prinosa rp irq data sa

Cov(rp, rq) =C

D

(µp −

A

C

)(µq −

A

C

)+

1

C.

- Posmatrajmo sada, ekasan portfolio kada nije dozvoljena kratka prodaja.Kada nije dozvoljena kratka prodaja, potrebno je uvesti ograni£enje ωi ≥ 0, za svakoi. Optimizacioni problem (5.10) je sada modikovan sa

weff = argminw

w′Σw pri £emu je w′µ = µ∗, w′1 = 1, w ≥ 0. (5.17)

Moºe se koristiti kvadratno programiranje za minimalizovanje kvadratne funkcijew′Σw iz (5.17) pod uslovima linearnih jednakosti i nenegativnosti. Kvadratno pro-gramiranje je optimizacioni problem tako da se minimalizuje ili maksimalizuje kva-dratna funkcija kona£nog broja odlu£uju¢ih promenljivih u zavisnosti od kona£nogbroja linearnih nejedna£ina i jedna£ina.Implementaciju moºemo izvr²iti u MATLAB-u, pozivom funkcije quadprog(H, f,

A, b, Aeq, beq, LB, UB), kojom se izvr²ava kvadratno programiranje za minima-lizaciju 1

2x′Hx+f ′x gde su H matrica dimenzije N ×N i f vektor dimenzije N ×1,

pri £emu su uslovi nejednakostiAx ≤ b, jednakostiAeqx ≤ beq i nejednakosti oblikaLBi ≤ xi ≤ UBi za i = 1, . . . , N .

Primer 9. U tabeli 5.1 su data o£ekivanja i kovarijanse mese£nih logaritamskih pri-nosa ²est akcija, ocenjenih na osnovu 63 mese£nih opservacija u periodu od avgusta2000 do oktobra 2005. Akcije obuhvataju ²est sektora u Dow 30: American Express(AXP), Citigroup Inc. (CITI), Exxon Mobil Corp. (XOM), General Motors (GM),Intel Corp. (INTEL), Pzer Inc. (PFE).

Page 62: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 62

AXP CITI XOM GM INTEL PFE

AXP (0, 033) 9, 01

CITI (0, 034) 5, 69 9, 64

XOM (0, 317) 2, 39 1, 89 5, 25

GM (−0, 338) 5, 97 4, 41 2, 40 20, 2

INTEL (−0, 701) 10, 1 12, 1 0, 59 12, 4 46

PFE (−0, 414) 1, 46 2, 34 9, 85 1, 86 1, 06 5, 33

Tabela 5.1: Ocenjeno o£ekivanje (u zagradama, pomnoºeno sa 102) i kovarijacionamatrica (pomnoºena sa 104) mese£nih logaritamskih prinosa.

5.2 Model procenjivanja kapitalnih ulaganja

Model procenjivanja kapitalnih ulaganja su razvili arp (1964) i Lintner1 (1965),zasniva se na Markovicevoj portfolio teoriji. Model ima primenu u ekonomiji i ob-ja²njava meusobnu povezanost prinosa na uloºeni kapital i rizika koji se ne moºeizbe¢i diversikacijom, podrazumevaju¢i da postoji bezrizi£na aktiva i da svi inve-stitori imaju homogena o£ekivanja i ekasne portfolije sa minimalnom disperziom.Pod homogenim o£ekivanjima se smatra isto o£ekivanje u pogledu prinosa i rizika.

Neka je na trºistu pored n rizi£nih aktiva i bezrizi£na aktiva sa prinosom rf(kamatnom stopom). Ako je dozvoljeno pozajmljivanje bezrizi£ne aktive sa kamat-nom stopom rf , oblast realizacije je beskona£na trougaona oblast. Ekasna granicaje poluprava na tangenti realizovane oblasti n rizi£nih aktiva. Neka je M po£etnata£ka poluprave. M je dodirna ta£ka tangente i realizovane oblasti. Videti sliku5.4. Ta£kaM se moºe smatrati trºi²nim portfoliom, gde je trºi²ni portfolio portfoliosastavljen od ponderisanih aktiva iz sveobuhvatnih investicija (²iroko rasprostranjentrºi²ni portfolio je S&P 500 indeks, koji se smatra vode¢im indeksom na trºi²tu uSAD-u).Sve ta£ke koje predstavljaju ekasne portfolije se nalaze na ekasnoj granici koja jedeo tangente, a tangenta je odreena ta£kama (0, rf ) iM . Prema tome, vaºi slede¢ateorema,

Teorema 7. Svaki ekasan portfolio se moºe konstruisati kao linearna kombinacijabezrizi£ne aktive i trºi²nog portfolija koji se sastoji od rizi£nih aktiva.

Naimo ponder ovakvog portfolija.Kada je dozvoljena kratka prodaja, MV P sa o£ekivanim prinosom µ∗ se dobijaoptimizacionim problemom

minw

w′Σw pri £emu jew′µ+ (1−w′1)rf = µ∗,

gde su µ i Σ denisani u (5.7) i (5.9).

1John Virgil Lintner (1916-1983), ameri£ki ekonomista.

Page 63: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 63

Slika 5.4: MV P rizi£nih aktiva i bezrizi£ne aktive. Na slici levo je dozvoljena kratkaprodaja. Na slici desno, kratka prodaja nije dozvoljena.

Lagranºijan je L = 12w′Σw+λ(µ∗−w′µ− (1−w′1)rf ), gde je Σ nesingularna.

Diferenciranjem L po w i λ dobija se

Σw − λ(µ− rf1) = 0, (5.18)

w′µ+ (1−w′1)rf = µ∗. (5.19)

Iz (5.18) jew = λΣ−1(µ− rf1), (5.20)

pa zamenom u (5.19) se dobija

λ(µ− rf1)′Σ−1(µ− 1rf ) = µ∗ − rf ,

sledi da je

λ =µ∗ − rf

(µ− rf1)′Σ−1(µ− rf1).

Dobijeno λ zamenimo u (5.20), pa je traºeni ponder

weff =µ∗ − rf

(µ− rf1)′Σ−1(µ− rf1)Σ−1(µ− rf1).

5.2.1 arpov koli£nik i linija trºi²ta kapitala

arpov koli£nik portfolija sa o£ekivanim prinosom µ i disperzijom σ2 je(µ − rf )/σ, ²to je o£ekivani vi²ak prinosa u jedinici rizika. Ve¢i arpov koli£nik,ukazuje da je investicija bolja.

Prava na slici 5.4, odreena ta£kama (0, rf ) i M se zove linija trºi²ta kapitala iliCML (eng. capital market line). Primetimo da je ova prava odreena jedna£inom

µ = rf +µM − rfσM

σ, (5.21)

£iji je koecijent pravca k =µM − rfσM

.

Page 64: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 64

5.2.2 Beta i trºi²na linija hartija od vrednosti

Beta, u oznaci βi, rizi£ne aktive i sa prinosom ri se deni²e sa

βi =Cov(ri, rM)

σ2M

. (5.22)

Riziko premija predstavlja minimalni iznos novca kojim o£ekivani prinos rizi£neaktive mora nadma²iti poznati o£ekivani prinos bezrizi£ne aktive,

µi − rf .

Kada bi riziko premija neke rizi£ne aktive bila jednaka 0, nijedan investitor ne biulagao u takvu aktivu, jer o£ekivani prinos moºe ostvariti investiranjem u bezrizi£nuaktivu i to bez preuzimanja rizika.

Model procenjivanja kapitalnih ulaganja povezuje riziko premiju aktive i sa nje-nim β, via

µi − rf = βi(µM − rf ). (5.23)

Ova jedna£ina odreuje pravu koja se zove trºi²na linija hartija od vrednosti ili SML(eng. security market line).

Za dobijanje (5.23), razmotrimo o£ekivani prinos µ portfolija sastavljenog od αinvestiranja u aktivu i i 1 − α investiranja u trºi²ni portfolio, te je µ(α) = αµi +(1 − α)µM . Disperzija prinosa portfolija D(α) zadovoljava D(α) = α2σ2

i + 2α(1 −α)Cov(ri, rM) + (1− α)2σ2

M . Tangenti uslov za M se moºe prevesti na uslov da jenagib krive (

√D(α), µ(α)) za α = 0 jednak nagibu linije trºi²ta kapitala. Po²to je

d

dαµ(α) = µi − µM ,

d

dασ(α) =

Cov(ri, rM)− σ2M

σM= (βi − 1)σM

i kako je dµ(α)/dσ(α) = (dµ(α)/dα)/(dσ(α)/dα), sledi da je

µi − µM(βi − 1)σM

=µM − rfσM

,

odatle vaºi (5.23).

Teorema 8. Korelacija prinosa rizi£ne aktive i prinosa trºi²nog portfolija je 1.

Dokaz. Iz (5.22), (5.21) i (5.23) sledi

µM − rfσM

σi =Cov(ri, rM)

σ2M

(µM − rf ),

odatle je Cov(ri, rM) = σiσM .Dakle,

ρ =Cov(ri, rM)

σiσM=σiσMσiσM

= 1.

Page 65: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 65

Kako je βi = Cov(ri, rM)/σ2M , E(ri) = µi i E(rM) = µM , moºe se (5.23) zapisati

kao regresioni modelri − rf = βi(rM − rf ) + εi, (5.24)

gde je E(εi) = 0 i Cov(εi, rM) = 0. Iz (5.24) sledi da je

σ2i = β2

i σ2M +D(εi).

Zna£i, disperzija σ2i i-tog prinosa aktive predstavlja zbir sistematskog rizika β2

i σ2M i

idiosinkratskog rizika D(εi). Sistematski rizik se jo² zove trºi²ni rizik i predstavljarizik koji pogaa celo trºi²te. Idiosinkratski rizik je rizik jedne aktive ili male grupeaktiva.

Prema βi = Cov(ri, rM)/σ2M , beta se moºe koristiti kao mera osetljivosti aktive

u odnosu na kretanja na trºi²tu. Za aktivu se kaºe da je agresivna ako je njen betave¢i od 1, defanzivna ako je beta manji od 1 i neutralna ako je beta jednak 1.

Kompanije visokih tehnologija, £ije su aktivnosti osetljive na promene na trºi²tu,obi£no imaju visoko beta. Sa druge strane, kompanije za proizvodnju hrane, kojevi²e zavise od potraºnje nego ekonomskih krugova, £esto imaju nisko beta.

5.2.3 Implikacije ulaganja

Pored arpovog koli£nika (µ − rf )/σ, koriste se Trejnorov2 indeks i Jensenov3

indeks.

Koriste¢i β umesto σ kao meru rizika, Trejnorov indeks se deni²e sa (µ− rf )/β.

Jensenov indeks je α u uop²tavanju CAPM na µ− rf = α + β(µM − rf ). Po²toCAPM zahteva α = 0 (videti (5.24)), Jensen je razmatrao op²tiji regresioni modelµ − rf = α + β(µM − rf ) + ε u empirijskom istraºivanju u periodu od 1945-1965.Investicija sa pozitivnim α se smatra boljom od trºi²ne.

5.2.4 Ocenjivanje

Neka je Yt vektor dimenzije q × 1 vi²ka prinosa q aktiva i Xt vi²ak prinosatrºi²nog portfolija (njegov tzv. proksi) u trenutku t. CAPM se moºe povezati saregresionim modelom

Yt = α+Xtβ + εt, 1 ≤ t ≤ n, (5.25)

gde je E(εt) = 0, Cov(εt) = V i E(xtεt) = 0. Primetimo da je (5.25) multivarijaci-ona reprezentacija q regresionog modela oblika Ytj = αj + βjXt + εtj, j = 1, . . . , q.Stavimo da je

X =

∑nt=1Xt

n

2Jack L. Treynor (1930- ), ameri£ki nansijer.3Michael C. Jensen (1939- ), ameri£ki nansijer.

Page 66: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 66

i

Y =

∑nt=1 Yt

n.

Primenom metode ocena najmanjih kvadrata za α i β dobija se

β =

∑nt=1(Xt −X)Yt∑nt=1(Xt −X)2

,

α = Y−Xβ.

Ocena maksimalne verodostojnosti za V je

V = n−1

n∑t=1

(Yt − α− βXt)(Yt − α− βXt)′.

5.2.5 Empirijska istraºivanja CAPM-a

Primer 10. Ilustrova¢emo statisti£ku analizu CAPM-a posmatraju¢i podatke me-se£nih prinosa ²est akcija iz dela 5.1.3 koriste¢i Dow 30 indeks kao trºi²ni portfolioM i tromese£nu drºavnu obveznicu Treasury bills kao bezrizi£nu aktivu. Treasurybills su obveznice koje emituje ministarstvo nansija SAD-a. Rezultati su u tabeli5.2.Svi Jensenovi indeksi u prvoj vrsti su vrlo malih vrednosti i ne razlikuju se zna£ajnood 0.U drugoj vrsti je dato beta svake akcije, koji meri njen trºi²ni rizik. Vidimo da jebeta Intel-a primetno ve¢e od ostalih beta, dok su najmanji za Exxon-Mobil i Pzer.U tre¢oj i £etvrtoj vrsti su prikazani sistematski i idiosinkratski rizici, respektivno.U poslednje dve vrste tabele su arpov koli£nik i Trejnorov indeks svake akcije.Exxon-Mobil ima najve¢i arpov koli£nik i Trejnorov indeks, ²to moºe biti posledicaporasta cene nafte i gasa od 2000.Na slici 5.5 je prikazana tovana trºi²na linija hartija od vrednosti za svaku akciju.

AXP CITI XOM GM INTEL PFE

α× 103 0, 87 0, 81 2, 23 −2, 41 −4, 31 −5, 21

β 1, 23 1, 20 0, 52 1, 44 2, 28 0, 46

β2σ2M × 104 5, 77 5, 48 1, 04 7, 91 19, 80 0, 80

σ2ε × 104 3, 50 4, 18 4, 22 12 26, 70 4, 64

arp ×102 −5, 49 −5, 36 5, 05 −12, 10 −13, 20 −26, 40

Trejnor ×103 −1, 35 −1, 38 2, 22 −3, 74 −3, 96 −13, 40

Tabela 5.2: Performanse ²est akcija u periodu od avgusta 2000. do oktobra 2005.

Pojavom CAPM 60-tih godina, razvili su se empirijski dokazi za i protiv CAPM.Prvi dokazi su bili izuzetno pozitivni, ali kasnih 70-tih je opala favorizacija modela.

Basu je posmatrao uticaj P/E koli£nika. Odnos trºi²ne cene po akciji i netodobitka po akciji (P/E koli£nik) je koristan pokazatelj budu¢im ulaga£ima kapitala,

Page 67: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 67

Slika 5.5: Trºi²na linija hartija od vrednosti za ²est akcija. Horizontalna osa: mese£nivi²ak prinosa S&P 500. Vertikalna osa: mese£ni vi²ak prinosa posmatranih akcija.

Page 68: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 68

jer ve¢i P/E koli£nik ozna£ava ve¢i budu¢i rast neto dobitka, a time je investiranjepouzdanije. On je 1977. godine prijavio uticaj da rme sa niskim P/E koli£nicimaimaju vi²e prose£ne prinose, a rme sa visokim P/E koli£nicima imaju niºe prose£neprinose od dobijenih vrednosti primenom CAPM-a.

Banz je 1981. godine naglasio uticaj veli£ine da rme sa niskim trºi²nim ka-pitalizacijama imaju ve¢e prose£ne prinose od dobijenih primenom CAPM-a, gde jetrºi²na kapitalizacija pokazatelj, koji se dobija mnoºenjem trºi²ne cene svih akcijana berzi sa ukupnim brojem akcija.

Fama i Fren£ su 1992. i 1993. godine otkrili da beta ne moºe da objasni razlikuu prinosima izmeu portfolija nastalih na osnovu P/B koli£nika, koji predstavljaodnos trºi²ne cene akcije i njene knjigovodstvene vrednosti, a koristi se za poreenjevrednosti akcije na trºi²tu sa njenom knjigovodstvenom vredno²¢u. Nizak P/B ko-li£nik moºe zna£iti da je akcija potcenjena, ili nagove²taj da je ne²to fundamentalnolo²e u kompaniji.

Jegade² i Titman su 1995. godine primetili da portfolio nastao kupovinom akcija£ije su vrednosti opale i kupovinom akcija £ije su se vrednosti pove¢ale ima ve¢iprose£ni prinos nego ²to je predvieno u CAPM-u.

5.3 Vi²efaktorski modeli

Vi²efaktorski model uop²tava CAPM uklju£uju¢i ga u regresioni model oblika

ri = αi + β′if+ εi, i = 1, . . . , p, (5.26)

gde je ri prinos i-te aktive, αi i βi su nepoznati regresioni parametri, f = [f1 · · · fk]′je regresioni vektor faktora i εi je neopaºena slu£ajna smetnja koja ima o£ekivanje0 i nekorelirana je sa f. Ako je k = 1, onda se model zove jednofaktorski model iCAPM je upravo jednofaktorski model sa f = rM − rf i αi = rf .

5.3.1 Teorija arbitraºnog vrednovanja

Teoriju arbitraºnog vrednovanja (Arbitrage pricing theory-APT) je uveo Ros1976. godine. Za razliku od jednofaktorskog CAPM-a, gde smo imali dekompozicijurizika na sistematski i idiosinkratski, APT se moºe primeniti kod vi²estrukih faktorarizika. Nasuprot (5.23), APT ne zahteva identikaciju trºi²nog portfolija i povezujeo£ekivani prinos µi i-te aktive sa bezrizi£nim prinosom ili op²tije sa parametrom λ0

bez razmatranja postojanja bezrizi£ne aktive i sa vektorom λ dimenzije k× 1 rizikopremijom,

µi ≈ λ0 + β′iλ, i = 1, . . . , p, (5.27)

pri £emu je (5.27) aproksimacija koja je posledica odsustva arbitraºe u velikoj ekono-miji koja ima dobro-diversikovan portfolio £ija disperzija dostiºe 0 kada p→∞.APT obezbeuje teoriju u ekonomiji koja se zasniva na vi²efaktorskom modeluprinosa aktiva, ipak teorija ne vr²i identikaciju faktora. Pristupi za odabir fa-ktora mogu se svrstati na ekonomski i statististi£ki. Ekonomski pristup precizira(i) promenljive makroekonomije i nansijskog trºi²ta, za koje se smatra da dostiºu

Page 69: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 69

sistematske rizike u ekonomiji ili (ii) karakteristike rmi koje su pogodne za ob-ja²njenje razli£itih osetljivosti sistematskih rizika, formiraju¢i faktore iz portfolijaakcija zasnovane na karakteristikama. Na primer, en, Rol i Ros su 1986. godinekoristili faktore koji uklju£uju prinos razlike izmeu kamatnih stopa dugoro£nih ikratkoro£nih drºavnih SAD obveznica, inaciju porast industrijske proizvodnje iprinos razlike izmeu korporacije visokih i niskih rejtinga obveznica. Fama-Fren£trofaktorski model opisan u delu 5.3.4, koristi karakteristike rme da dobije faktorportfolija, uklju£uju¢i proksi trºi²nog portfolija kao jedan faktor. Statisti£ki pristupkoristi analizu faktora ili analizu glavnih komponenata (eng.principal componentanalysis) da oceni parametre modela (5.26) iz skupa posmatranih prinosa aktiva.

5.3.2 Analiza faktora

Neka je r = [r1, . . . , rp]′, α = [α1, . . . , αp]

′, ε = [ε1, . . . , εp]′ i B matrica dimenzije

p × k £ija je i-ta vrsta vektor β′i. Moºemo (5.26) pisati kao r = α + Bf + ε gde jeE(ε) = E(f) = 0 i E(fε′) = 0. Mada ovo izgleda kao regresioni model, £injenica daje regresor f neopaºljiv zna£i da se ne moºe primeniti regresija najmanjih kvadrataza ocenjivanje B. Neka su rt, t = 1, . . . , n, nezavisne opservacije modela tako da jert = α+Bft + εt i Eεt = Eft = 0, E(ftε

′t) = 0, Cov(ft) = Ω i Cov(εt) = V. Tada

jeE(rt) = α, Cov(rt) = BΩB′ +V. (5.28)

Dekompozicija kovarijacione matrice Σ za rt u (5.28) je su²tinska u analizi faktora,ona razdvaja varijabilnost na sistematski deo, BΩB′, usled varijabilnosti odreenihneopaºljivih faktora i gre²ke (idiosinkratskog dela), V.

Ortogonalni faktorski modeli

Standardna faktorska analiza pretpostavlja strogu faktorsku strukturu u kojoj jefaktorski ra£un za sve parove kovarijansi prinosa aktive, te se pretpostavlja da je Vdijagonalna matrica, V = diag(v1, . . . , vp). Po²to B i Ω nisu jedinstveno odreenesa Σ = BΩB′+V, u ortogonalnom faktorskom modelu se smatra da je Ω = I takoda je B jedinstveno odreeno do na ortogonalnu transformaciju i r = α+Bf+ ε saCov(f) = Ω

Cov(r, f) = E((r−α)f′) = BΩ = B,

D(ri) =k∑j=1

b2ij +D(εi), 1 ≤ i ≤ p,

Cov(ri, rj) =k∑l=1

bilbjl, 1 ≤ i, j ≤ p.

Page 70: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 70

Ocena maksimalne verodostojnosti

Neka su posmatrani rt nezavisni sa raspodelom N (α,Σ), funkcija verodostoj-nosti je

L(α,Σ) = (2π)−pn/2(detΣ)−n/2exp

−1

2

n∑t=1

(rt −α)′Σ−1(rt −α)

sa Σ oblika Σ = BB′ + diag(v1, . . . , vp) u kojoj je B matrica dimenzije p × k.Ocena maksimalne verodostojnosti α za α je r = n−1

∑nt=1 rt. Za odreivanje

ocene Σ moºe se maksimalizovati −12n log det(Σ) − 1

2tr(WΣ−1) po Σ, gde je

W =∑n

t=1(rt − r)(rt − r)′.

Faktor rotacije i faktorski skorovi

U faktorskoj analizi, elementi matrice B se zovu faktorska optere¢enja. Po²to jeB jedinstveno odreeno do na ortogonalnu transformaciju, pratktikuje se da se Bpomnoºi sa odgovaraju¢om ortogonalnom matricom Q, zvanom faktor rotacije. Nataj na£in se uticaj faktora preraspodeli tako da je ukupna varijansa ravnomernijerasporeena izmeu faktora. Primeni¢emo varimax kriterijum kojim se dobija vi²emalih i nekoliko velikih faktorskih optere¢enja. Varimax kriterijum je rotacija kojamaksimalizuje sumu varijansi kvadrata faktorskih optere¢enja. Neka je B

∗= BQ,

£est odabir za Q je ono koje maksimalizuje varimax kriterijum

C = p−1

k∑j=1

p∑i=1

b∗4ij −

(p∑i=1

b∗2ij

)2/p

.Po²to su vrednosti faktora ft, 1 ≤ t ≤ n, neopaºljivi £esto je potrebno uneti slede¢evrednosti, koje se zovu faktorski skorovi. U modelu r−α = Bf+ ε sa Cov(ε) = V,op²ta ocena najmanjih kvadrata za f, kada su B, V i α poznati, je

f = (B′V−1B)−1B′V−1(rt −α).

Stoga je Bartlet4 1937. godine predloºio ocenjivanje ft sa

ft = (B′V−1B)−1B

′V−1

(rt − r). (5.29)

Broj faktora

U teoriji vi²efaktorskih modela i analizi faktora podrazumeva se da je broj faktorak, ali nije nazna£eno kako je taj broj dobijen. Da bi teorija bila korisnija, k treba dabude razumno malo. U empirijskom poslu dva su pristupa za odreivanje k. Jedanpristup je ponavljanje ocenjivanja za razli£ite izbore vrednosti k kako bi se videloda li su rezultati osetljivi na pove¢anje broja faktora.

Drugi pristup uklju£uje formalnije hipoteze za testiranje da vaºi k-faktorski mo-del kada su rt nezavisni sa raspodelomN (α,Σ). Nulta hipotezaH0 je da jeΣ oblika

4Maurice Stevenson Bartlett (1910-2002), engleski statisti£ar.

Page 71: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 71

BB′ + V sa V dijagonalnom matricom i B matricom dimenzije p × k. Statistikakoli£nika verodostojnosti (videti 2.6) koja testira ovu nultu hipotezu je oblika

Λ = n[

log det (BB′+ V)− log det (Σ)

], (5.30)

gde je Σ = n−1∑n

t=1(rt − r)(rt − r)′ ocena maksimalne verodostojnosti za Σ. PodH0, Λ je aproksimativno sa χ2 raspodelom sa

1

2p(p+ 1)−

[p(k + 1)− 1

2k(k − 1)

]=

1

2

[(p− k)2 − p− k

]stepeni slobode. Bartlet je 1945. godine pokazao da se moºe pobolj²ati χ2 apro-ksimacija raspodele za (5.30) zamenom u (5.30) n sa n − 1 − (2p + 4k + 5)/6, ²tose £esto primenjuje u empirijskim istraºivanjima. Na primer, Rol5 i Ros6 su 1980.godine iskoristili ovaj pristup i zaklju£ili da je broj tri odgovaraju¢i broj faktora unjihovom empirijskom istraºivanju za APT.

5.3.3 Pristup: Analiza glavnih komponenata

Osnovna dekompozicijaΣ = λ1a1a′1+· · ·+λpapa′p u analizi glavnih komponenata

se moºe iskoristiti za dekompoziciju Σ na Σ = BB′ + V. Ovde su λ1 ≥ · · · ≥ λpureene sopstvene vrednosti za Σ, ai je sopstveni vektor u odnosu na λi, i

B =[√

λ1a1 · · ·√λkak

], V =

p∑l=k+1

λlala′l. (5.31)

Kao ²to je nagla²eno u sekciji 2.6, analiza glavnih komponenata se naro£ito koristikada je ve¢ina sopstvenih vrednosti za Σ mala u poreenju sa k najve¢ih, tako dak glavnih komponenti za rt− r su odgovorne za ve¢i deo ukupne varijacije. U ovomslu£aju se analiza glavnih komponenata moºe koristiti za odreivanje k. Umestorada sa Σ = (σij)1≤i,j≤p, za koju promenljive mogu biti nesrazmerne, £esto je bo-lje raditi sa korelacionom matricom koriste¢i osnovne komponente standardizovanihpromenljivih

[(rt1 − r1)/

√σ11 · · · (rtp − rp)/

√σpp]′. Standardizacijom se izbegava

promenljiva sa velikom varijansom neopravdanog uticaja za odreivanje faktora pu-njenja. Ako primenimo (5.31) na korelacionu matricu R da bismo ocenili B i V,dobija se ocena V koja nije dijagonalna matrica. esto kori²¢ena aproksimacija jeV = diag

(1−

∑kj=1 b

21j, . . . , 1−

∑kj=1 b

2pj

), po²to se ve¢i deo ukupne varijabilnosti

ubraja u k prvih glavnih komponenti korelacione matrice R. Umesto (5.29), ko-riste¢i analizu glavnih komponenata sa aproksimacijom, ocene faktorskih skorovasu

ft = (B′B)−1B

′ [(rt1 − r1)/

√σ11 · · · (rtp − rp)/

√σpp

]′.

5Richard Roll (1939- ), ameri£ki ekonomista.6Stephen Ross (1944- ), ameri£ki nansijer.

Page 72: Linearni regresioni modeli u nansijama

Osnovni investicioni modeli 72

5.3.4 Fama-Fren£ trofaktorski model

Fama7 i Fren£8 su predloºili model sa tri faktora u kojem se moºe razlika o£eki-vanog prinosa portfolija i bezrizi£ne kamatne stope, E(ri)− rf , objasniti linearnomregresijom. Prvi faktor je vi²ak prinosa na trºi²nom portfoliju, rM − rf , ²to je jedinifaktor u CAPM-u. Drugi faktor je razlika prinosa portfolija S malih akcija i prinosaportfolija L velikih akcija, rS − rL, a predstavlja faktor rizika prinosa u odnosu naveli£inu. Ovde male i velike akcije se odnose na trºi²nu vrednost akcija. Tre¢ifaktor je razlika prinosa portfolija H sa akcijama koje imaju visoke P/B koli£nike iprinosa portfolija L sa akcijama koje imaju niske P/B koli£nike, rH − rL, ²to pred-stavlja faktor rizika prinosa u odnosu na P/B koli£nike. Prema tome, Fama-Fren£trofaktorski model je oblika (5.26) sa f = [rM−rf , rS−rL, rH−rL]′. Ovim modelom,Fama i Fren£ tvrde da su otklonili ve¢inu anomalija o procenama kod CAPM-a.

7Eugene Francis Fama (1939- ), ameri£ki ekonomista.8Kenneth Ronald French (1954- ), ameri£ki nansijer.

Page 73: Linearni regresioni modeli u nansijama

LITERATURA 73

Literatura

[1] John Neter, William Wasserman, Michael H. Kutner, Applied Linear RegressionModels, 1983.

[2] Tze Leung Lai, Haipeng Xing, Statistical Models and Methods for FinancialMarkets, 2008.

[3] Mark L. Berenson, David M. Levine, Timothy C. Krehbiel, Basic Business Sta-tistics, 2009.

[4] Prof. dr Biljana Popovi¢,Matemati£ka statistika, Prirodno-matemati£ki fakultet,Ni², 2009.

[5] http://www.psinvest.rs

[6] http://www.investopedia.com

[7] http://en.wikipedia.org

Page 74: Linearni regresioni modeli u nansijama