27
VII. EFECTOS BIOLÓGICOS DE LAS RADIACIONES VII. 1. INTRODUCCIÓN COMO muchos otros agentes físicos, químicos o biológicos, las radiaciones ionizantes son capaces de producir daños orgánicos. Esto es en virtud de que la radiación interacciona con los átomos de materia viva, provocando en ellos principalmente el fenómeno de ionización. Luego esto da lugar a cambios importantes en células, tejidos, órganos, y en el individuo en su totalidad. El tipo y la magnitud del daño dependen del tipo de radiación, de su energía, de la dosis absorbida (energía depositada), de la zona afectada, y del tiempo de exposición. Así como en cualquier otro tipo de lesión, este daño orgánico en ciertos casos puede recuperarse. Esto dependerá de la severidad del caso, de la parte afectada, y del poder de recuperación del individuo. En la posible recuperación, la edad y el estado general de salud del individuo serán factores importantes. En casi cien años de usarse las radiaciones, ha sido posible observar la respuesta de diferentes organismos sometidos a tratamiento médico, o sujetos a accidentes con radiaciones. Con base en estas observaciones se tienen ahora caracterizados los efectos, lo cual da los elementos para prevenir futuros riesgos. VII.2. DAÑO BIOLÓGICO POR RADIACIONES Para los agentes farmacológicos en general es válida la regla de que, para obtener un efecto biológico dado, se requiere dar una determinada dosis mayor que la dosis umbral. La dosis umbral es aquella que marca el límite arriba del cual se presenta un efecto, y debajo del cual no hay efecto. Algunos de los efectos de la radiación caen en este caso, los no estocásticos. Otras sustancias no tienen una respuesta de este tipo, es decir no tienen umbral, por lo tanto no hay una dosis mínima para producir un efecto. Consecuentemente, cualquier dosis dada produce un efecto; para obtener un efecto cero se requiere una dosis cero. Los efectos estocásticos de la radiación se comportan de esta manera. La rapidez con la cual se absorbe la radiación es importante en la determinación de los efectos. Una dosis dada producirá menos efecto si se suministra fraccionada, en un lapso mayor, que si se aplica en una sola exposición. Esto se debe al poder de restauración del organismo; sin embargo hay que tomar en cuenta que esta recuperación no es total y siempre queda un daño acumulativo. El lapso entre el instante de radiación y la manifestación de los efectos se conoce como periodo latente. Con base en esto se pueden clasificar los daños biológicos como agudos (a corto plazo),

Mas de los efectos biologicos

Embed Size (px)

Citation preview

Page 1: Mas de los efectos biologicos

V I I . E F E C T O S B I O L Ó G I C O S D E L A S R A D I A C I O N E S

VII. 1. INTRODUCCIÓN

COMO muchos otros agentes físicos, químicos o biológicos, las radiaciones ionizantes son capaces de producir daños orgánicos. Esto es en virtud de que la radiación interacciona con los átomos de materia viva, provocando en ellos principalmente el fenómeno de ionización. Luego esto da lugar a cambios importantes en células, tejidos, órganos, y en el individuo en su totalidad. El tipo y la magnitud del daño dependen del tipo de radiación, de su energía, de la dosis absorbida (energía depositada), de la zona afectada, y del tiempo de exposición.

Así como en cualquier otro tipo de lesión, este daño orgánico en ciertos casos puede recuperarse. Esto dependerá de la severidad del caso, de la parte afectada, y del poder de recuperación del individuo. En la posible recuperación, la edad y el estado general de salud del individuo serán factores importantes.

En casi cien años de usarse las radiaciones, ha sido posible observar la respuesta de diferentes organismos sometidos a tratamiento médico, o sujetos a accidentes con radiaciones. Con base en estas observaciones se tienen ahora caracterizados los efectos, lo cual da los elementos para prevenir futuros riesgos.

VII.2. DAÑO BIOLÓGICO POR RADIACIONES

Para los agentes farmacológicos en general es válida la regla de que, para obtener un efecto biológico dado, se requiere dar una determinada dosis mayor que la dosis umbral. La dosis umbral es aquella que marca el límite arriba del cual se presenta un efecto, y debajo del cual no hay efecto. Algunos de los efectos de la radiación caen en este caso, los no estocásticos. Otras sustancias no tienen una respuesta de este tipo, es decir no tienen umbral, por lo tanto no hay una dosis mínima para producir un efecto. Consecuentemente, cualquier dosis dada produce un efecto; para obtener un efecto cero se requiere una dosis cero. Los efectos estocásticos de la radiación se comportan de esta manera.

La rapidez con la cual se absorbe la radiación es importante en la determinación de los efectos. Una dosis dada producirá menos efecto si se suministra fraccionada, en un lapso mayor, que si se aplica en una sola exposición. Esto se debe al poder de restauración del organismo; sin embargo hay que tomar en cuenta que esta recuperación no es total y siempre queda un daño acumulativo.

El lapso entre el instante de radiación y la manifestación de los efectos se conoce como periodo latente. Con base en esto se pueden clasificar los daños biológicos como agudos (a corto plazo),

Page 2: Mas de los efectos biologicos

que aparecen en unos minutos, días o semanas, y diferidos (largo plazo), que aparecen después de años, décadas y a veces en generaciones posteriores.

El daño biológico tendrá diferentes manifestaciones en función de la dosis. A bajas dosis (menos de 100 mSv o 10 rem) no se espera observar ninguna respuesta clínica. Al aumentar a dosis mayores, el organismo va presentando diferentes manifestaciones hasta llegar a la muerte. La dosis letal media, aquella a la cual 50% de los individuos irradiados mueren, es de 4 Sv (400 rem).

Ordinariamente, cuando se hace referencia a dosis equivalentes, se quiere indicar una dosis promedio al cuerpo total. Esto es importante ya que en ocasiones pueden aplicarse grandes dosis de radiación a áreas limitadas (como en radioterapia) con un daño local. Si estas mismas dosis se aplican a todo el cuerpo pueden ser letales. Por ejemplo, una persona podría recibir 10 Sv (l 000 rem) en un brazo y experimentar una lesión local, pero esa misma dosis a cuerpo entero le causaría inexorablemente la muerte.

VII.3. EFECTOS DE LA RADIACIÓN EN LAS CÉLULAS

Cuando la radiación ionizante incide sobre un organismo vivo, la interacción a nivel celular se puede llevar a cabo en las membranas, el citoplasma, y el núcleo.

Si la interacción sucede en alguna de las membranas se producen alteraciones de permeabilidad, lo que hace que puedan intercambiar fluidos en cantidades mayores que las normales. En ambos casos la célula no muere, pero sus funciones de multiplicación no se llevan a cabo. En el caso en que el daño es generalizado la célula puede morir.

En el caso en que la interacción sucede en el citoplasma, cuya principal sustancia es el agua, al ser ésta ionizada se forman radicales químicamente inestables. Algunos de estos radicales tenderán a unirse para formar moléculas de agua y moléculas de hidrógeno (H), las cuales no son nocivas para el citoplasma. Otros se combinan para formar peróxido de hidrógeno (H202), el cual sí produce alteraciones en el funcionamiento de las células. La situación más crítica se presenta cuando se forma el hidronio (HO), el cual produce envenenamiento.

Cuando la radiación ionizante llega hasta el núcleo de la célula, puede producir alteraciones de los genes e inclusive rompimiento de los cromosomas, provocando que cuando la célula se divida lo haga con características diferentes a la célula original. Esto se conoce como daño genético de la radiación ionizante, que si se lleva a cabo en una célula germinal (espermatozoide u óvulo) podrá manifestarse en individuos de futuras generaciones.

Page 3: Mas de los efectos biologicos

Por lo expuesto, vemos que la radiación ionizante puede producir en las células: aumento o disminución de volumen, muerte, un estado latente, y mutaciones genéticas.

Vale la pena mencionar que estas propiedades destructivas de la radiación se pueden transformar en un beneficio. La radioterapia busca eliminar tejidos malignos en el cuerpo aplicándoles altas dosis de radiación. Sin embargo, por la naturaleza de la radiación, es inevitable afectar otros órganos sanos cercanos. En un buen tratamiento de radioterapia se proporciona la dosis letal al tumor, tratando de que sea mínima la exposición de otras partes del cuerpo.

VII.4. CLASIFICACIÓN DE LOS EFECTOS BIOLÓGICOS

Se han venido mencionando ya algunas maneras de clasificar los efectos biológicos producidos por las radiaciones. Por su importancia conviene reiterar y resaltar los criterios en que se fundamentan las diferentes clasificaciones.

Recientemente la CIPR ha introducido un nuevo concepto en la clasificación de los efectos, basado en la probabilidad de ocurrencia: los efectos estocásticos y los no estocásticos.

Los efectos estocásticos son aquéllos cuya probabilidad de ocurrencia se incrementa con la dosis recibida, así como con el tiempo de exposición. No tienen una dosis umbral para manifestarse. Pueden ocurrir o no ocurrir; no hay un estado intermedio. La inducción de un cáncer en particular es un efecto estocástico. Su probabilidad de ocurrir depende de la dosis recibida; sin embargo, no se puede asegurar que el cáncer se presente, menos aún determinar una dosis. La protección radiológica trata de limitar en lo posible los efectos estocásticos, manteniendo las dosis lo más bajas posible.

En los efectos no estocásticos la severidad aumenta con la dosis, y se produce a partir de una dosis umbral. Para dosis pequeñas no habrá efectos clínicamente detectables. Al incrementar la dosis se llega a niveles en que empiezan a evidenciarse, hasta llegar a situaciones de gravedad. Para estos casos la protección consiste en prevenir los efectos, no excediendo los umbrales definidos en cada caso. Las quemaduras caen en esta categoría.

El daño biológico por radiación puede manifestarse directamente en el individuo que recibe la radiación o en su progenie. En el caso en que el daño se manifieste en el individuo irradiado se trata de un daño somático, es decir, el daño se ha circunscrito a sus células somáticas. Por otro lado, el daño a las células germinales resultará en daño a la descendencia del individuo. Se pueden clasificar los efectos biológicos en el hombre como somáticos y hereditarios. El daño a los genes de una célula somática puede producir daño a la célula hija, pero sería un efecto somático no hereditario. El término "daño genético" se refiere a efectos causados por mutación en un

Page 4: Mas de los efectos biologicos

cromosoma o un gen; esto lleva a un efecto hereditario solamente cuando el daño afecta a una línea germinal.

Síndrome de irradiación aguda es el conjunto de síntomas por la exposición de cuerpo total o una gran porción de él a la radiación. Consiste en náusea, vómito, anorexia (inapetencia), pérdida de peso, fiebre y hemorragia intestinal. Según su periodo de latencia, los efectos se han clasificado en agudos (a corto plazo) y diferidos (a largo plazo).

Los efectos agudos pueden ser generales o locales. Los generales presentan la sintomatología que se resume en el cuadro 8. Los locales pueden ser eritema o necrosis de la piel, caída del cabello, necrosis de tejidos internos, la esterilidad temporal o permanente, la reproducción anormal de tejidos como el epitelio del tracto gastrointestinal, el funcionamiento anormal de los órganos hematopoyéticos (médula ósea roja y bazo), o alteraciones funcionales del sistema nervioso y de otros sistemas.

Los efectos diferidos pueden ser la consecuencia de una sola exposición intensa o de una exposición por largo tiempo. Entre éstos han de considerarse: las cicatrices atróficas locales o procesos distróficos de órganos y tejidos fuertemente irradiados, las cataratas del cristalino, el cáncer de los huesos debido a la irradiación del tejido óseo, el cáncer pulmonar, las anemias plásticas ocasionadas por radiolesiones de la médula ósea, y la leucemia.

CUADRO 8. Efectos biológicos de las radiaciones.

Dosis agudas Efecto probable

0 - 25 rems (0 - .25 Sv) Ninguna lesión evidente.

25 - 50 rems (.25 - .5 Sv) Posibles alteraciones en la sangre, pero ninguna lesión grave.

50 - 100 rems (.5 - 1 Sv) Alteraciones de las células sanguíneas. Alguna lesión. Ninguna incapacitación.

100 - 200 rems (1 - 2 Sv) Lesión. Posible incapacitación.

200 - 400 rems (2 - 4 Sv) Certeza de lesión e incapacitación. Probabilidad de defunción.

Page 5: Mas de los efectos biologicos

400 rems (4 Sv) Cincuenta por ciento de mortalidad.

600 o más rems (6 Sv) Probablemente mortal.

Resumen de los efectos probables de la irradiación total del organismo

Dosis ligera Dosis moderada Dosis semimortal Dosis mortal

0 - 25 rems50 rems

100 rems 200 rems 400 rems600 rems

Ningún efecto clínico detectable.

Ligeros cambios pasajeros en la sangre.

Náuseas y fatiga con posibles vómitos por encima de 125 roentgens.

Náuseas y vómitos en las primeras 24 horas.

Náuseas y vómitos al cabo de 1-2 horas.

Náuseas y vómitos al cabo de 1-2 horas.

Probablemente ningún efecto diferido.

Ningún otro efecto clínicamente detectable.

Alteraciones sanguíneas marcadas con restablecimiento diferido.

A continuación un periodo latente de una semana, caída del cabello, pérdida del apetito, debilidad general y otros síntomas como irritación de garganta y diarrea.

Tras un periodo latente de una semana, caída del cabello, pérdida del apetito y debilidad general con fiebre.

Corto periodo latente a partir de la náusea inicial.

Posibles efectos diferidos, pero muy improbables efectos graves en un individuo medio.

Probable acortamiento de la vida.

Posible fallecimiento al cabo de 2-6 semanas de una pequeña fracción de los individuos irradiados.

Inflamación grave de boca y garganta en la tercera semana.

Diarrea, vómitos, inflamación de boca y garganta hacia el final de la primera semana.

Restablecimiento probable de no existir complicaciones a causa de poca salud anterior o infecciones.

Síntomas tales como palidez, diarrea, epíxtasis y rápida extenuación hacia la 4a. semana.

Fiebre, rápida extenuación y fallecimiento incluso en la 2a. semana.

Algunas defunciones a las 2-6 semanas. Mortalidad probable de 50%.

Finalmente, fallecimiento probable de todos los individuos irradiados.

Contaminación radiactivaSe denomina contaminación radioactiva a la presencia no deseada de sustancias radiactivas en el entorno. Esta

Page 6: Mas de los efectos biologicos

contaminación puede proceder de radioisótopos naturales oartificiales.

La primera de ellas se da cuando se trata de aquellos isótopos radiactivos que existen en lacorteza terrestre desde la formación de la Tierra o de los que se generan continuamente en la atmósfera por la acción de los rayos cósmicos. Cuando, debido a la acción del hombre, estos radioisótopos naturales se encuentran en concentraciones más elevadas que las que pueden encontrarse en la naturaleza (dentro de la variabilidad existente), se puede hablar de contaminación radiactiva. Ejemplos de estos radioisótopos pueden ser el 235U, el 210Po, el radón, el 40K o el 7Be.

En el segundo caso, el de los radioisótopos artificiales, los radioisótopos no existen de forma natural en la corteza terrestre, sino que se han generado en alguna actividad del hombre. En este caso la definición de contaminación es menos difusa que en el caso de los radioisótopos naturales, ya que su variabilidad es nula, y cualquier cantidad se podría considerar contaminación. Por ello se utilizan definiciones basadas en las capacidades técnicas de medida de estos radioisótopos, de posibles acciones de limpieza o de peligrosidad (hacia el hombre o la biota). Ejemplos de estos radioisótopos artificiales pueden ser el 239Pu, el 244Cm, el 241Am o el 60Co.

Es común confundir la exposición externa a las radiaciones ionizantes (p.ej. en un examen radiológico), con la contaminación radiactiva. Es útil en este último caso pensar en términos de suciedad cuando se habla de contaminación. Como la suciedad, esta contaminación puede eliminarse o disminuirse mediante técnicas de limpieza o descontaminación, mientras que la exposición externa una vez recibida no puede disminuirse.

Contenido

[ocultar]

• 1 Posibles contaminaciones

o 1.1 Contaminación de alimentos

o 1.2 Contaminación de agua de bebida

Page 7: Mas de los efectos biologicos

• 2 Contaminación de las personas

• 3 Procedencia de la contaminación

• 4 Símbolos de advertencia de contaminación radiactiva

• 5 Medida

o 5.1 Contaminación superficial

o 5.2 Contaminación volumétrica

• 6 Riesgo

o 6.1 Niveles de contaminación bajos

o 6.2 Niveles de contaminación altos

o 6.3 Efectos biológicos

• 7 Tratamientos de descontaminación de las personas

o 7.1 Contaminación externa

o 7.2 Contaminación interna

• 8 Véase también

• 9 Referencias

• 10 Enlaces externos

[editar]Posibles contaminacionesCuando se habla de contaminación radiactiva, en general se tratan varios aspectos:

1. la contaminación de las personas. Esta puede ser interna cuando han ingerido, inyectado o respirado algún radioisótopo, o externa cuando se ha depositado el material radiactivo en su piel.

2. la contaminación de alimentos. Del mismo modo puede haberse incorporado al interior de los mismos o estar en su parte exterior.

3. la contaminación de suelos. En este caso la contaminación puede ser solo superficial o haber penetrado en profundidad.

4. la contaminación del agua de bebida. Aquí la contaminación aparecerá como radioisótopos disueltos en la misma.

[editar]Contaminación de alimentosAfecta a los alimentos y es originada por productos químicos (pesticidas y otros) o biológicos (agentes patógenos). Consiste en la

Page 8: Mas de los efectos biologicos

presencia en los alimentos de sustancias riesgosas o tóxicas para la salud de los consumidores y es ocasionada durante la producción, el manipuleo, el transporte, la industrialización y el consumo.

[editar]Contaminación de agua de bebida

[editar]Contaminación de las personasLa contaminación radiactiva de las personas puede producirse de forma externa o interna. En la externa, pueden contaminarse la ropa o la piel de forma que cierta cantidad de material con contenido radiactivo se adhiera a ellos. De forma interna se puede producir por la ingestión, absorción, inhalación, o inyección de sustancias radiactivas.

Cuando existe material radiactivo en forma gaseosa, de aerosol, líquida o sólida (esta última en forma de polvo), parte puede impregnar las ropas o la piel de las personas que entren en contacto con este material. También puede ser ingerido, ya porque los alimentos o el agua estén contaminados, ya de forma accidental al llevarse las manos contaminadas a la boca, o inhalado al entrar en un ambiente donde existe polvo contaminado en suspensión, aerosoles o gases con contenido radiactivo.

En el primero de los casos la contaminación permanece en el exterior de la persona, con lo que dosis recibida procede de las radiaciones emitidas que depositan parte o toda su energía en el organismo. En el segundo de los casos el material entra dentro del organismo, y durante su recorrido hasta que es excretado (por el sudor, la orina o las heces) deposita a su vez la energía emitida por esas radiaciones en los órganos por los que se transfiere.

Estas contaminaciones pueden darse en todas aquellas prácticas en las que se manejan materiales radiactivos, hablándose de contaminación principalmente cuando esta se produce de forma accidental.

En el caso de accidentes radiactivos o nucleares o de ataques terroristas con material radiactivo (como por ejemplo con una bomba sucia), pueden producirse contaminaciones de las personas, tanto de forma interna como externa.

Page 9: Mas de los efectos biologicos

Para evitar las contaminaciones en situación normal en aquellas actividades que conllevan el manejo de material radiactivo y que puede suponer un riesgo a alguna persona, se suelen emplear varias barreras (todas empleadas en las actividades con otro tipo de material peligroso. Véase Salud laboral):

1. Información de los riesgos a las personas que llevan a cabo la actividad: forma de manejar el material y de evitar las contaminaciones.

2. Uso de equipos de protección individual que sean adecuados a la posible contaminación. Así, en unas prácticas puede ser suficiente el uso de guantes de algodón y mascarilla de aerosoles, mientras que en casos extremos pueden necesitarse equipos autónomos de respiración, doble mono, calzas, guantes de algodón, guantes de plástico, etc.

3. Uso de símbolos y barreras físicas, tales como puertas cerradas, cadenas, cordones, alarmas o luces, que indican la presencia de material radiactivo.

4. Uso de personal de vigilancia que evite el acceso a aquellas personas no autorizadas a las zonas donde puede producirse la contaminación.

5. Medidas sobre los materiales que pueden producir contaminación. Esto es especialmente importante en las llamadas fuentes selladas, donde el material radiactivo puede fugarse al exterior si se produce una ruptura del sello, por lo que se realizan periódicamente controles de contaminación.

En los casos accidentales no solo debe protegerse el personal de emergencias, sino también a las personas que puedan verse afectadas. En estos casos el personal sanitario, de emergencias, la policía u otros deben actuar para disminuir o evitar la contaminación, además de participar en las tareas de descontaminación. En estos casos las posibles medidas a tomar son las siguientes:

1. Información a las personas susceptibles de verse afectadas por la contaminación.

2. Confinamiento de las personas que se encuentren en una zona afectada.

Page 10: Mas de los efectos biologicos

3. Evacuación de las personas que se encuentren en una zona donde la contaminación pueda ser importante.

4. Evitar el acceso de personas a las zonas contaminadas, mediante personal de vigilancia, barreras físicas o señales de advertencia.

5. Descontaminación de las zonas hasta niveles tolerables. Esto no significa alcanzar un nivel nulo de contaminación, que en ocasiones es irrealizable, sino alcanzar niveles por debajo de los cuales el riesgo de daño a las personas es despreciable.

6. Descontaminación de las personas que se hayan contaminado.

7. Tratamientos mediante medicamentos que eviten la absorción del material radiactivo (son muy conocidos los tratamientos mediante cápsulas de iodo estable que se administran de forma previa a una posible contaminación interna mediante ioso radiactivo), que produzcan una eliminación más rápida del radioisótopo ya incorporado al organismo (por ejemplo con productos quelantes) o que reduzcan el daño que puede producir al organismo.

En los casos extremos, en los que los accidentes o los ataques terroristas conlleven la contaminación de grandes extensiones de territorios, las medidas además pueden incluir:

1. Tratamientos de descontaminación de los suelos o de reducción de la dosis. Esto puede realizarse mediante la retirada de la capa exterior, mediante la dilución con capas más profundas llevando a cabo un arado o añadiendo capas de terreno no contaminado sobre las superficies contaminadas.

2. Tratamientos de descontaminación de los alimentos, mediante su lavado.

3. Prohibición del consumo de alimentos o bebida con contaminaciones muy elevadas, que podrían producir daños a las personas.

4. Evacuación permanente de las zonas contaminadas.

Cuando se realizan tratamientos médicos (de diagnóstico o de medicina nuclear) que conllevan la incorporación de material

Page 11: Mas de los efectos biologicos

radiactivo al organismo no suele hablarse de contaminación, si bien su comportamiento es idéntico. Así por ejemplo, la inyección de sustancias radiactivas se practica con fines de diagnóstico o terapéuticos. Los pacientes que se someten a este tipo de tratamientos son confinados temporalmente, en ocasiones evitándose incluso las visitas de familiares, hasta que su organismo, o la propia desintegración del elemento, elimina la contaminación hasta niveles tolerables. Las excreciones de estos pacientes son recogidas en los hospitales y tratadas como residuos radiactivos cuando es necesario.

La inhalación gas Radón se produce continuamente en cualquier lugar de la Tierra. Sin embargo, en algunas ocasiones los niveles pueden ser muy superiores a los nivelesnormales. Esto suele suceder en zonas donde los suelos poseen niveles elevados de radiactividad natural (principalmente uranio), como puede ser en la zona noroeste de lapenínsula ibérica, en el interior de sótanos poco ventilados o en la minería, ya que en estas ocasiones la acumulación de este gas puede ser superior a la encontrada en la atmósfera. En estos casos tampoco suele hablarse de contaminación.

[editar]Procedencia de la contaminaciónLas radiaciones pueden tener varios orígenes: natural como el radón o artificial, como elplutonio.

En el caso de radioisótopos naturales sobre los que la acción del hombre no ha incrementado la exposición o la probabilidad de la misma a las personas o a los animales, no se habla de contaminación, sino que dicho término se reserva para indicar la presencia indeseada de radioisótopos de procedencia artificial. En este último caso sus principales orígenes son:

Médica: en Medicina Nuclear y Radioterapia se generan residuos contaminados (metales de las jeringas irradiadas, material de laboratorio, excretas de pacientes tratados, aguas residuales, etc.)

Industrial : por la producción de energía nuclear: estas centrales emiten a

la atmósfera sustancias radiactivas, limitadas legalmente para

Page 12: Mas de los efectos biologicos

estar por debajo de los límites legales. Igualmente, los residuos radiactivos pueden ser fuentes de contaminación.

Otras industrias: las sustancias radiactivas tienen un sinfín de aplicaciones en muchos campos, lo que conlleva una cierta generación de residuos radiactivos en diferentes industrias, que cumplen las mismas restricciones que los residuos generados en medicina o en la producción de energía nuclear de igual nivel.

En ciertos casos los radioisótopos tienen un origen natural, sin embargo las actividades humanas provocan que la exposición a las personas se vea incrementada. Esto sucede por ejemplo en la minería con el radón o en ciertas industrias que generan materiales en los que se ha aumentado la concentración en radioisótopos naturales (que se han denominado TENORM, TNORM o simplementeNORM).

Militar: Debido a los ensayos, a cielo descubierto o subterráneas, de las bombas atómicas, a su fabricación o a la investigación asociada. Mencionar el caso de la munición que utiliza uranio empobrecido, ya que, aunque se ha demostrado que el riesgo radiactivo es despreciable (el uranio empobrecido es menos radiactivo que el natural),1 suele asociarse este isótopo natural ("uranio") a la radiactividad.

Accidental: la contaminación radiactiva artificial puede ser resultado de una pérdida del control accidental sobre los materiales radiactivos durante la producción o el uso deradioisótopos. Por ejemplo, si un radioisótopo utilizado en imágenes médicas se derrama accidentalmente, el material puede dispersarse por las personas que lo pisen o puede ocurrir que se expongan a él demasiado tiempo. También cuando ocurren grandes accidentes nucleares como el de Chernóbil, en los que se pueden dispersar elementos radiactivos en la atmósfera, el suelo y las masas acuáticas (ríos, mares, capa freática, etc.).

El confinamiento (o sellado) es la forma de evitar que el material radiactivo contamine. El material radiactivo que se encuentra en envases especiales sellados es contaminación ni puede contaminar a menos que se rompa su sello. En los casos en los que el material

Page 13: Mas de los efectos biologicos

radiactivo no puede ser confinado, se puede diluir hasta concentraciones inocuas.

[editar]Símbolos de advertencia de contaminación radiactiva

Dimensiones utilizadas para el símbolo de presencia de radiaciones. El color de

relleno debe ser negro.

El símbolo utilizado para advertir de la presencia de radiaciones es el trébol de tres hojas, en color negro y de dimensiones bien definidas.2

Cuando este símbolo se utiliza como advertencia en la entrada a las zonas en las que existe riesgo de irradiación o contaminación, suele estar acompañado de otras indicaciones.3

El color. El color del trébol es una indicación de la intensidad de las radiaciones. Ese color puede ser, de menor a mayor intensidad, gris azulado, verde, amarillo, naranja o rojo. En el primero de los casos se indica que existen radiaciones, siendo probable que se alcancen dosis superiores al doble del límite legal al público (2 mSv al año) pero muy improbable que se alcancen dosis superiores a 3/10 el límite legal a los trabajadores (6 mSv al año). En el último de los casos se indica que es muy probable superar el límite legal a los trabajadores (20 mSv al año) en un periodo de tiempo muy corto, estando prohibido el acceso.

Indicaciones adicionales. Cuando el símbolo del trébol aparece solo, o con puntas radiales alrededor de las hojas del trébol, el significado es que la radiactividad puede afectar únicamente de forma externa, como puede ser el caso en los aparatos de rayos X. Cuando el símbolo aparece sobre una trama punteada,

Page 14: Mas de los efectos biologicos

significa que la radiactividad aparece en una forma que puede provocar contaminaciones.

Leyendas. Las señales además se complementan con una leyenda indicativa al tipo de zona en la parte superior y el tipo de riesgo en la parte inferior.

Símbolos de advertencia de contaminación radiactiva y su significado3

Símbolocolor del trebol

Riesgo de contaminación

Riesgo de irradiación externa

Denominación

verde No. SíZona controlada.

verde Sí No.Zona controlada.

verde Sí SíZona controlada.

amarillo No. Sí

Zona de permanencia limitada.

Page 16: Mas de los efectos biologicos

se pasan cuerdas, cadenas, cintas, u otras, del mismo color correspondiente a la zona.

Además, si en un mismo área se pueden distinguir entre diferentes tipos de zona se pueden señalizar en el suelo los límites con líneas de colores correlativos a cada zona pudiendo complementarse con luces del mismo color que la zona.

Nuevo símbolo adoptado en 2007

En febrero de 2007, la Organización Internacional para la Estandarización (ISO), para mejorar la entendibilidad de los símbolos de peligro por radiaciones, añadió a la señalización símbolos utilizados en otras sustancias peligrosas.

[editar]MedidaLa actividad de una sustancia radiactiva se determina por el valor del número de transformaciones o desintegraciones que sufre por unidad de tiempo. La unidad establecida en el Sistema Internacional es el Becquerelio (Bq). 1 Bq = 1 transformación por segundo.

Otra unidad, más antigua pero por motivos prácticos muchas veces más usada, ya que el Bq es una cantidad demasiado pequeña, es el Curio (Ci), definida inicialmente como la actividad de un gramo de Radio, hoy se define como exactamente 3,7x1010desintegraciones por s, es decir, 1 Ci = 3,7x1010 Bq

La contaminación radiactiva puede afectar a superficies o a volúmenes de material o de aire. En una instalación nuclear o radiactiva, la detección y medida de la radiactividad y contaminación suele ser tarea de un Experto en Protección Radiológica.

[editar]Contaminación superficialLa contaminación superficial se expresa en unidades de actividad por unidad de área. En elSI, becquerels por metro cuadrado(o Bq/m2). También se utilizan otras unidades tales comodpm/cm2,

Page 17: Mas de los efectos biologicos

picoCurios por 100 cm2, o desintegraciones por minuto por centímetro cuadrado (1 dpm/cm2 = 166 2/3 Bq/m2).

Este tipo de contaminación puede darse en suelos contaminados o en contaminaciones sobre la piel de las personas.

La contaminación superficial puede ser fija o desprendible. En el primero de los casos esa contaminación no puede transferirse por contacto a otros materiales (como a la piel) ni por resuspensión al aire, por lo que la única forma por la que puede afectar a las personas es por irradiación externa. En el segundo de los casos la contaminación puede transferirse por contacto o por resuspensión en otros medios, ya sea en la piel, el calzado, al aire, etc. Esta última contaminación es la que puede dar lugar a contaminaciones internas y externas de las personas.

[editar]Contaminación volumétricaLa contaminación volumétrica se expresa en unidades de contaminación por unidad de volumen (Bq/m3, becquerels por metro cúbico).

El nivel de contaminación se determina midiendo la radiación emitida por el contaminante. En el caso de un radioisótopo conocido, es posible determinar con precisión la actividad a partir de una medida con un detector de radiaciones. Si se conoce el espectro de la radiación del contaminante se puede conocer mejor la contaminación, cuando no se conoce el contaminante solo pueden hacerse estimaciones groseras bajo suposiciones. Cuando el contaminante emite radiaciones de baja energía se necesita emplear técnicas más depuradas, generalmente en laboratorios especializados en medidas de muy bajo nivel.

[editar]RiesgoEn la naturaleza no existe ningún material que tenga radioactividad cero. Además, no sólo eso, sino que el mundo entero esta constantemente bombardeado por rayos cósmicos, que generan Carbono-14 que se incorpora a los organismos vivos (incluidos los humanos). Otro radioisótopo que se contiene en cualquier material, incluidos los seres vivos (y los humanos) es el 40Potasio. Estas radiaciones han convivido con el ser humano a lo

Page 18: Mas de los efectos biologicos

largo de toda su existencia, por lo que se presupone que en los niveles naturales (que pueden llegar a provocar en las personas que viven en ciertos ambientes niveles superiores a los 10 mSv al año), no son dañinos. De hecho, se ha postulado que los mecanismos de reparación genética que poseen nuestras células pudieron evolucionar gracias a las radiaciones que nos envuelven. Sin embargo, hoy en día, aplicando las normas internacionales de protección radiológica, se aconseja reducir estas radiaciones naturales hasta niveles considerados razonablemente bajos.

[editar]Niveles de contaminación bajosLos riesgos de la contaminación radioactiva para las personas y el medio ambiente dependen de la naturaleza del contaminante radiactivo, del nivel de contaminación y de la extensión de la contaminación. Con niveles bajos de contaminación los riesgos también lo son.

Los efectos biológicos de la exposición externa a la contaminación radioactiva son generalmente los mismos que aquellos procedentes de fuentes externas de radiación que no involucran material radiactivo, como los que se derivan de los aparatos de rayos X, y dependen de la dosis absorbida.

[editar]Niveles de contaminación altosLos niveles de contaminación altos pueden plantear riesgos a las personas y al entorno: los radioelementos tienen una duración más o menos larga y se desintegran emitiendoradiaciones.

Cuando los radioelementos se fijan en el cuerpo humano pueden ser más peligrosos que cuando se eliminan de forma normal por el organismo (en la heces, orina o sudor). Pero siempre depende de la cantidad incorporada al cuerpo. En el caso de los radioisótopos que emiten radiaciones alfa y beta, si los radioisótopos permanecen fuera del organismo el daño que pueden provocar, incluso para actividades muy grandes, es muy limitado. Pero cuando se incorporan, pueden dañar a las células, ya que depositan en ellas toda su energía. Cuando esas células se dañan lo suficiente como para que tengan que intervenir los mecanismos de reparación, pero no lo suficiente como para matarlas, en ocasiones esos

Page 19: Mas de los efectos biologicos

mecanismos pueden generar errores en el material genético, pudiendo crear tumores(carácter mutágeno de las radiaciones).

El cuerpo humano puede incorporar radioelementos de varias maneras:

Por la respiración: cuando los átomos que componen el gas radón se desintegran mientras están en los pulmones, sus productos de desintegración se fijan en otras partículas más pesadas que a su vez se pueden fijar en los pulmones, y continúan su cadena radioactiva y sus emisiones en el interior del organismo.

Por la alimentación: Cuando se contamina un suelo, las plantas, y los animales que comen estas plantas, pueden a su vez contaminarse. Ciertos organismos son particularmente radioacumulantes, como algunos tipos de setas o los mejillones. También hay órganos que son más radiosensibles que otros, y también los distintos radioisótopos se fijan mejor en unos o en otros. Por ejemplo, la tiroides fija el yodo(radiactivo o estable), y por este motivo cuando se producen emisiones importantes de yodo radiactivo (como en caso de accidente grave en una central nuclear), una medida para mitigar los daños que puede producir consiste en la distribución de pastillas de yodo estable a las personas que pudieran verse afectadas de forma que la tiroides quede saturada con este yodo y se evite la incorporación de yodo radiactivo.

Niveles de radiación muy elevados, tanto externa como internamente, pueden llegar a causar la muerte. Estos niveles pueden alcanzarse en un accidente nuclear muy grave o por la contaminación producida en la explosión de armas nucleares, donde se involucran grandes cantidades de material radiactivo.

[editar]Efectos biológicosLa exposición de radiaciones ionizantes en el aire se mide en roentgen. Esta unidad se define como la cantidad de radiación capaz de producir un número dado de iones o átomos cargados eléctricamente en una cantidad determinada de aire bajo condiciones fijas.

Page 20: Mas de los efectos biologicos

El rad es la unidad de medida depósito de energía por la radiación en una cantidad de masa y equivale a 100 ergios por gramo. El equivalente biológico rem es la radiación que produce sobre el ser humano el mismo daño que un rad de rayos X y se utiliza como medida de los efectos biológicos de la radiactividad.

Los límites de aceptación de radiactividad por el cuerpo humano sin daño se sitúan en torno al medio rem por semana. La tolerancia de radiactividad varía levemente entre distintos organismos, aunque una dosis generalizada de cientos de rem ocasionan siempre graves lesiones e incluso la muerte.[cita requerida]

Los efectos biológicos de los radioisótopos que se han incorporado al organismo, dependen de la cantidad de actividad, de su biodistribución, de las tasas de eliminación del radioisótopo, que a su vez depende de su forma química, y del tipo de radiaciones que emita.

Aparte de los efectos producidos por las radiaciones, también pueden aparecer efectos tóxicos debidos a la propia toxicidad química del material depositado.

Algunos radioisótopos se distribuyen uniformemente por todo el cuerpo, por ejemplo en la corriente sanguínea, pero se eliminan rápidamente, como es el caso del agua tritiada. Otros pueden depositarse en órganos específicos y tener tasas de eliminación mucho más bajas. Por ejemplo, la glándula tiroides absorbe parte de cualquier compuesto yodado que entre en el cuerpo. Si se inhalan o ingieren grandes cantidades de compuestos yodados radiactivos, esta glándula puede ser inutilizada o destruida completamente. Los yodurosradiactivos son un producto de fisión nuclear, y fueron uno de los radioisótopos emitidos en el Accidente de Chernóbil que produjo muchos casos de cáncer de tiroides. Por otra parte el yoduro radiactivo se utiliza en el diagnóstico y tratamiento de muchas enfermedades de la tiroides, precisamente por su absorción selectiva por esta glándula.

[editar]Tratamientos de descontaminación de las personas

Page 21: Mas de los efectos biologicos

Simulacro de evacuación de un herido en zona contaminada. El personal que

accede a una zona con niveles altos de contaminación debe utilizar equipos de

protección individual adecuados, mascarillas, guantes, calzas, etc.

La descontaminación de la contaminación externa es frecuentemente tan sencilla como eliminar las ropas contaminadas y limpiar la piel contaminada. La descontaminación interna puede ser mucho más difícil, dependiendo de los isótopos radiactivos de que se trate.

[editar]Contaminación externa[editar]Contaminación interna6456hgy5h53htgg2yt5y2t3454eru14yr34rt1242rtrtrregewg445t25gg33fg4gg34ggtgr3gdhfg3ry2tfvrwyfg237fygr2y9fg237ygf8yfv245tv2364f3v78t63v46fv3t6f65r47vy7862eidywr64g72vrc7u43d52vfdefeqbvygvad37rwbf63254fgiruytf25684fguryg7i34gfie

[editar]Véase también

Envenenamiento por radiación

Page 22: Mas de los efectos biologicos

Símbolo de peligro radiactivo.

El envenenamiento por radiación es el daño causado al cuerpo humano (o de otros animales) por una exposición excesiva a laradiación ionizante.

El término se usa generalmente para referirse a problemas agudos debidos a una dosisgrande de radiación absorbida en un período corto de tiempo. Muchos de los síntomas del envenenamiento por radiación ocurren cuando la radiación ionizante interfiere en el proceso de división celular. Esta interferencia causa especiales problemas a las células con alta tasa de renovación, células que en condiciones normales se reproducirían rápidamente. Por ejemplo, las células que cubren la parte interna del tracto gastrointestinal o las células hematopoyéticas de lamédula ósea.

Contenido

[ocultar]

• 1 Unidades para la medición de radiación

• 2 Síntomas y efectos

• 3 Tabla de niveles de exposición y síntomas

• 4 Véase también

[editar]Unidades para la medición de radiaciónEl Roentgen (R) es la medida de la carga eléctrica producida por las radiaciones X (ionización) o gamma depositada en aire seco en condiciones estándar. Definida como la carga eléctrica depositada por 1 gramo de radio-226 medido a una yarda de distancia en una hora, se sustituyó por la unidad X (C/kg) incluida

Page 23: Mas de los efectos biologicos

en el sistema internacional de unidades, pero sin un nombre definido todavía, con lo que sigue siendo más popular para esta magnitud la unidad antigua.

El rad (acrónimo de radiation absorbed dose) es una unidad de dosis absorbida en términos de energía depositada en la materia. El rad se definió como una dosis absorbida de 100 ergios de energía por gramo de materia.

La unidad más reciente de la dosis absorbida, usada en el sistema internacional de unidades es el gray, que se define como 1 julio de energía depositada por kilogramo de materia. La equivalencia entre ambas unidades es de 1 Gy = 100 rad.

Para determinar el riesgo de la radiación se mide la "eficacia biológica relativa" de la radiación, obteniendo un factor de corrección (Q antes, RBE ahora) que multiplicando a la dosis absorbida da como resultado una medida directa de la dosis efectiva biológica. Esta dosis efectiva biológica, o dosis efectiva simplemente, se mide en rem (acrónimo de roentgen equivalent man), el cual es igual a la "dosis de radiación" absorbida (medida en rads) multiplicada por un "factor de calidad" que valora la eficacia de cada tipo particular de radiación.

En el sistema internacional de unidades la "eficacia biológica relativa" de la radiación se mide en sieverts (Sv), que es igual a 100 rems.

Para las partículas alfa la "eficacia biológica relativa" puede llegar a valer 20, de modo que un rad sería equivalente a 20 rems. Lo mismo es aplicable a la radiación de neutrones. En cambio para las partículas beta, los rayos x y los gamma, la "eficacia biológica relativa" se valora como 1 por lo que en dichos tipos de radiación el rad y el rem serían equivalentes.

[editar]Síntomas y efectosLos síntomas de la enfermedad por radiación se convierten en más serios (y la posibilidad de supervivencia disminuye) cuando se incrementa la dosis de la radiación.

La exposición crónica a la radiación ionizante puede causar leucemia y otros cánceres. La capacidad de la radiación de

Page 24: Mas de los efectos biologicos

impedir la división celular es también usada en el tratamiento del cáncer (radioterapia).

Otros síntomas que produce el envenenamiento por radiación son pérdida de pelo,diarreas, fatiga, náusea, vómitos, desmayos, quemaduras de piel, y a altas dosis, la muerte.

Una dosis de radiación extremadamente alta para el cuerpo entero, como 100 Sv (10.000 rems) causa en un período corto inconsciencia y muerte, ya que se destruyen las células nerviosas.

Una dosis menor (pero todavía alta) causaría una enfermedad severa inmediata, después de la cual la víctima parecerá que se recupera, sólo para morir unos días después, cuando las células intestinales que se dividen rápidamente fallen.

El envenenamiento por radiación puede resultar por la exposición accidental a fuentes de radiación naturales o industriales. Las personas que trabajan con materiales radiactivos a menudo llevan dosímetros para controlar su exposición total a la radiación. Estos aparatos son más adecuados que los contadores Geiger para determinar los efectos biológicos, ya que miden la exposición acumulativa en el tiempo, y son calibrados para cambiar de color o proporcionar algún tipo de señal que avisa al usuario antes de que la exposición alcance niveles inseguros.

La radiactividad causó la enfermedad y muerte después de los bombardeos de Hiroshima yNagasaki a aproximadamente el 1% de las personas expuestas que sobrevivieron a las explosiones iniciales. La tasa de mortalidad debida a la radiación fue más elevada en Hiroshima, porque aunque Fat Man (el nombre de la bomba usada en Nagasaki) tenía un rendimiento más alto que Little Boy (el nombre de la bomba usada en Hiroshima), Fat Man era un arma de plutonio, la cual para el mismo rendimiento fue mucho menos radiactiva que un arma de uranio.

El envenenamiento por radiación continúa siendo una de las mayores preocupaciones después del accidente del reactor nuclear de Chernobyl. De los 100 millones de curies (4exa becquerels ) de material radiactivo liberado, los isótopos radiactivos de xenón-133 yyodo-131 fueron inicialmente los más peligrosos. Debido a su corta

Page 25: Mas de los efectos biologicos

vida media actualmente han decaído, dejando a los productos de vida media más larga (como el cesio-137 y elestroncio-90) como los más peligrosos en este momento.

[editar]Tabla de niveles de exposición y síntomasLas dosis-equivalentes se indican en sieverts. Los síntomas corresponden a una irradiación de todo el cuerpo con una dosis promedio igual al valor indicado.

0,05 a 0,2 Sv: sin síntomas. Algunos autores consideran que existe riesgo potencial decáncer o alteraciones genéticas, aunque no hay consenso en este tema.

0,2 a 0,5 Sv: no aparecen síntomas sensibles. El número de glóbulos rojos disminuye temporalmente.

0,5 a 1 Sv: enfermedad por radiación leve produciendo dolor de cabeza y mayor riesgo de infección. Puede producir esterilidad masculina temporal.

1 a 2 Sv: envenenamiento ligero por radiación, mortandad del 10% después de 30 días (DL 10/30). Los síntomas típicos incluyen náuseas suaves a moderadas (probabilidad del 50% con 200 rad), con vómitos ocasionales, comenzando de 3 a 6 horas después de la irradiación y pudiendo durar hasta un día. Esto es seguido por un anastasis de 10 a 14 días, después de la cual surgen síntomas como malestar general, anorexia y fatiga(probabilidad del 50% con 200 rad). El sistema inmunitario permanece deprimido, con riesgo elevado de infección. Es común la esterilidad masculina temporal.

2 a 3 Sv: envenenamiento severo por radiación, mortandad del 35% después de 30 días (DL 35/30). Son comunes las náuseas (100% con 300 rad), con un riesgo del 50% de probabilidad de producir vómitos con 280 rad. El inicio de los síntomas se produce entre 1 y 6 horas después de producida la irradiación y dura de 1 a 2 días. Después de eso, se produce un anastasis de 7 a 14 días, después de lo cual aparecen los siguientes síntomas: pérdida de pelo por todo el cuerpo (probabilidad del 50% con 300 rad), fatiga y malestar general. Se produce una pérdida masiva de leucocitos, aumentando enormemente el

Page 26: Mas de los efectos biologicos

riesgo de infección. Se puede producir esterilidad femenina permanente. La convalecencia puede llevar de uno a varios meses.

3 a 4 Sv: envenenamiento severo por radiación, mortandad del 50% después de 30 días (DL 50/30). Con dosis de 200 a 300 rad puede producir hemorragias en boca, bajo la piel y los riñones (probabilidad del 50% con 400 rad) en el periodo post anastasis.

4 a 6 Sv: envenenamiento agudo por radiación, mortandad del 60% después de 30 días (DL 60/30). La mortandad aumenta desde el 60% con 450 rad hasta el 90% con 600 rad (a menos que exista un cuidado médico intensivo). Los síntomas comienzan a la hora y media o dos horas después de comenzada la irradiación y duran hasta 2 días. Después de esto, se produce un anastasis de 7 a 14 días, después de lo cual aparecen los mismos síntomas producidos por exposiciones a irradiaciones de 300 a 400 rad, con intensidad aumentada. La esterilidad femenina es común en este punto. El periodo de convalecencia puede durar de varios meses a un año. Las causas primarias de muerte (generalmente de 2 a 12 semanas después de producida la irradiación) son las infecciones y las hemorragias internas.

6 a 10 Sv: envenenamiento agudo por radiación, mortandad del 100% después de 14 días (DL 100/14). La supervivencia depende de los cuidados médicos intensivos recibidos. La médula se destruye parcial o totalmente, por lo que se hace necesario un trasplante de médula. El tejido gástrico e intestinal se ve seriamente dañado. Los síntomas comienzan de 15 a 30 minutos después de la irradiación y duran hasta 2 días. Posteriormente, se produce un anastasis de 5 a 10 días, después de lo cual la persona afectada fallece de una infección o hemorragia interna. La recuperación tomaría varios años y probablemente nunca sería completa.

10 a 50 Sv: envenenamiento agudo por radiación, mortandad del 100% después de 7 días (DL 100/7). Una dosis de este nivel conduce a síntomas espontáneos después de 5 a 30 minutos. Después de una gran fatiga e inmediatas náuseas causadas por la activación directa de los receptores químicos del cerebro por la irradiación, hay un periódo de varios días de bienestar. Después

Page 27: Mas de los efectos biologicos

de esto, la muerte de las células de los tejidos intestinales y gástricos, causando diarrea masiva, hemorragias internas y pérdida de agua, conduce al desequilibrio agua-electrolito. La muerte se produce con delirios y coma debido a la interrupción de la circulación. La muerte es inevitable (con el nivel de conocimientos en medicina actual); el único tratamiento que se puede ofrecer es la terapia del dolor.

50 a 80 Sv: se produce desorientación y coma inmediato en segundos o minutos. La muerte se produce a las pocas horas por colapso total del sistema nervioso.