3
 Recitation 12 16.30/31: Estimation and Control  of  Aerospace Systems November 29, 2010 Consider a space telescope, and let d � be a unit vector aligned with the telescope’s line of  sight.  It is desired to point the telescope towards a star, in direction d � 0 . The dynamics of  the spacecraft are described by the equations of  motion J ω � ˙ + � ω × J � ω = τ , where � ω is the angular velocity of  the spacecraft (in body axes), J  is its inertia tensor, and τ  is the control  torque (in body axes). In body axes, the star’s direction is not xed, but rotates as � d ˙ 0 = � ω × d � 0 . Consider the control  law τ  = k� ω + d � × d � 0 . 1. Find the equilibrium points for the spacecraft, under the given control  law.  2. Consider the following function: V   (� ω,  d � 0 ) = 1 2 � ω · J � ω + 1 2 |d �  d � 0 | 2 . Is it a good candidate for a Lyapunov function? Study the stability of  the equilibrium point(s). It may be interesting  for you to simulate  the system in Matlab, and look at the trajectories  of  the “star vector” d 0 . Notice that the control  law is the sum of  a “derivative” term k� ω and a “proportional” term d � × d � 0 . How do trajectories change as you choose dierent  values of  k? Solution:  First  of  all, let  us  write  the  dynamics  of  the  system, under  the  given  control  law: J � ω ˙ = ω �  × J � ω  k� ω + d � × d � 0 , d � ˙ 0 = ω �  × d � 0 . From  the  second  equation,  we  see  that  equilibrium  points  must  be  such  that  ω �  × d � 0 = 0, i.e., � ω must  be  parallel  to d � 0 , or  ω �  = cd � 0 ,  for  some  scalar  c. Rewriting  the   first  equation  using  this  condition,  we   find  J � ω ˙ = c 2 d � 0 × J d � 0  ckd � 0 + d � × d � 0 . From  the  above  equation,  we  see  that  since  c 2 d � 0 × J d � 0 + d � × d � 0 is  always  orthogonal  to d � 0 , ω � ˙ can  be  zero only  if  c = 0, i.e., if  � ω = 0. Moreover, we  require  that  d � × d � 0 = 0, i.e., d � 0 = ±d � . Summarizing, we  have  two equilibria,  one  with  the  spacecraft  pointing  directly  at  the  star, and  one  with  the  spacecraft  pointing  in  the  opposite  direction. The  given   function  V   is  indeed  a  good  candidate  to study  the  stability  of  the  “good” equilibrium  d � 0 = d � : is  it  always  non-negative,  and  is  equal  to zero only  at  the  equilibrium  point  (d � 0 , ω) = (d, � 0). Let  us  study  its  time  derivative. We  get: V  ˙ (� ω,  d � 0 ) = � ω J � ω + (d �  d � 0 ) d � ˙ 0 = � ω (� ω × J � ω  k� ω + d � × d � 0 ) + ( d �  d � 0 ) (ω �  × d � 0 ). · · · · 

MIT16_30F10_rec12

Embed Size (px)

Citation preview

  • Recitation 12

    16.30/31: Estimation and Control of Aerospace Systems

    November 29, 2010

    Consider a space telescope, and let d be a unit vector aligned with the telescopes line of sight.

    It is desired to point the telescope towards a star, in direction d0. The dynamics of the spacecraft are described by the equations of motion

    J + J = , where is the angular velocity of the spacecraft (in body axes), J is its inertia tensor, and is the control torque (in body axes). In body axes, the stars direction is not xed, but rotates as

    d0= d0.

    Consider the control law

    = k + d d0.

    1. Find the equilibrium points for the spacecraft, under the given control law. 2. Consider the following function:

    V (, d0) = 1

    2 J + 1

    2|d d0|2 .

    Is it a good candidate for a Lyapunov function? Study the stability of the equilibrium point(s).

    It may be interesting for you to simulate the system in Matlab, and look at the trajectories of the star vector d0. Notice that the control law is the sum of a derivative term k and a proportional term d d0. How do trajectories change as you choose dierent values of k?

    Solution: First of all, let us write the dynamics of the system, under the given control law:

    J = J k + d d0, d0 = d0.

    From the second equation, we see that equilibrium points must be such that d0 = 0, i.e., must be parallel to d0, or = cd0, for some scalar c. Rewriting the rst equation using this condition, we nd

    J = c 2d0 Jd0 ckd0 + d d0. From the above equation, we see that since c2d0 Jd0 + d d0 is always orthogonal to d0, can be zero only if c = 0, i.e., if = 0. Moreover, we require that d d0 = 0, i.e., d0 = d. Summarizing, we have two equilibria, one with the spacecraft pointing directly at the star, and

    one with the spacecraft pointing in the opposite direction. The given function V is indeed a good candidate to study the stability of the good equilibrium

    d0 = d: is it always non-negative, and is equal to zero only at the equilibrium point (d0, ) = (d, 0). Let us study its time derivative. We get:

    V (, d0) = J + (d d0) d0 = ( J k + d d0) + (d d0) ( d0).

  • Using the following property of the triple vector product

    u (v w) = w (u v) = v (w u), and remembering that the cross product of two parallel vector is zero, we an simplify the expression

    of V ( d0) as,

    V (, d0) = k||2 ,

    i.e., V is negative semi-denite. As a consequence, Lyapunovs theorem only tells us that the desired equilibrium is stable in the sense of Lyapunov. Asymptotic stability can be proven using Lasalles theorem, since:

    The set in which V = 0 is the set for which ( d0) = (0, , ), i.e., any state in which the angular velocity is zerowith arbitrary attitude.

    However, in case d0 = d, we would have J = 0, thus showing that the largest invariant set in ,

    which V = 0 is just the equilibrium ( d0) = (0, 0).

    2

  • MIT OpenCourseWare http://ocw.mit.edu

    16.30 / 16.31 Feedback Control Systems Fall 2010

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.