21
 The law of reflection P P mirror o r dielectric interface MIT 2 7112 710 2 6 8 w kl  b 29 A ray departing from P in the direction ,with rmpBect o the mirror normal is re cted symmef rice at t same agk 8 . This i s because the symmetric path POP' has minimum length. Campxe, for example the altanative POP . Clearly, IPOI JUP I < IP~I+ ~P I. Comider tbe c~di32wtion a f OP backwards through the mirror. T o o server in the direction f the ray w ll appew to bve originated t P . = NUS

MIT2_71S09_lec02

Embed Size (px)

Citation preview

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 1/21

 

The

law

of reflection

P

P

mirror

or

dielectric

interface

MIT

2 7112 710

2 6 8wkl

 b 29

A

ray

departing

from

P

in the direction

,withrmpBecto the mirror

normal

isre cted symmefr i c e at t

same

a g k

8.

This

is

because

the

symmetric path POP'

has

minimum length.

Campxe,

for example

the

altanative POP .

Clearly,

IPOI

JUP I

<

I P ~ I +~ P I .

Comider tbe

c~di32wtion

af OP backwards

through

the

mirror.

To

o server

in the

direction

f

the ray

w ll

appew

to b v e

originated

t

P .

=

NUS

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 2/21

MIT 2.71/2.71002/06/08 wk1-b-

Reflection from mirrors

30

In:right-handed

triad

Out:left -handed

triad

mirror

Projected:left -handed

triad

(front view)

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 3/21

 

The law of refraction (Snell's Law)

Taking

derivatives wit

respe t

to

x

a(cP ) s b - z

=~&4-22 '&4 =Q

las;

=+-

n a

a's @'

bis re

is know s s

ew,

or e

MIT

2 7112 710

NUS

21 61 8

wkl-b-31

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 4/21

Snell's Law as minimum time principle

Beach,

runnin speed

v

Which path should the lifeguard follow

to reach the drowning person in minimum time

MIT 2 7112 710

21 61 8 wkl -b-32

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 5/21

Snell's Law as momentum conservation principle

M T 2.7112.710 NUS

2 6 8wkl

 

w

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 6/21

MIT 2.71/2.71002/06/08 wk1-b-

Two types of refraction

air glass glass air

from lower to higher index(towards optically denser material)

angle wrt normal

from higher to lower index(towards optically less dense material)

angle wrt normal

34

if the combination of andis such that

then Snell’s law in the less dense mediumcannot be satisfied. This situation is

known as Total Internal Reflection (TIR)

the maximum anglethat can enter the optically dense medium

is such that

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 7/21

glass

air

MIT 2.71/2.71002/06/08 wk1-b-

Total Internal Reflection (TIR)

35

glass

air

at critical angle, the refracted light propagatesparallel to the interface

the result is called a “surface wave”

at angles of incidence higher than critical,the light is totally internally reflected

almost  as ifthe glass-air interface were a mirror

in both cases of surface wave and TIR,there is an exponential tail of electric field

leaking into the medium of lower optical density;this is called the evanescent wave.

We will learn more about evanescent waves after we coverthe electromagnetic nature of light

Typically, the evanescent wave is a few wavelengths longbut it can be much longer near the critical angle

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 8/21

Frustrated Total Internal Reflection (FTIR)

6 glass

n c

If another dielectric ppso cbes within ew distant canatants

from the TLR interface, the tail of the exponenti lly evmescent wave

becomes propagating;

i e the

light couples

out

of

the

medium.

This

situat i ~

s known

as

h s t r a t e d Total injernol

&e j b t i o n ( F T B ) .

n

qu ntum mechanics, there is

n

analogous

ect

b o r n as tunneling.

We will compute the amount

of

energy coupled out of the medium

of

incidence

later, after we study the ekctramgnetic nature of light.

lllii

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 9/21

MIT 2.71/2.71002/06/08 wk1-b-

Prisms

glassair air

TIR TIR

glass

air air

air air

45° 45°

air

glass

TIR

TIRretro-reflector

pentaprism

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 10/21

MIT 2.71/2.71002/06/08 wk1-b-

Fingerprint sensors

laser

illumination

finger

right-angleprism

digitalcamera

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 11/21

MIT 2.71/2.71002/06/08 wk1-b-

Optical waveguides

“planar” waveguide: high-index dielectric materialsandwiched between lower-index dielectrics

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 12/21

MIT 2.71/2.71002/06/08 wk1-b-

Numerical Aperture (NA) of a waveguide

high index contrast (n1/n2) " high NA

NA is the sine of the largest angle that is waveguided

air(n=1)

i.e., NA is the incident angle of acceptance of the waveguide

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 13/21

MIT 2.71/2.71002/06/08 wk1-b-

GRadient INdex (GRIN) waveguide

41

TIRlowest index

highest index

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 14/21

MIT 2.71/2.71002/06/08 wk1-b-

Optical fibers: step cladding

cladding(lower index)

core(higher index)

Core diameter = 8-10µm (commercial grade)

Cladding diameter = 250µm (commercial grade)Index contrast  $n = 0.007 (very low NA)attenuation = 0.25dB/km

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 15/21

MIT 2.71/2.71002/06/08 wk1-b-

Optical fibers: GRIN

cladding(lower index)

core ofgradually

decreasingindex

optical rays “swirl” in a helical trajectory

around the axis of the core

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 16/21

MIT 2.71/2.71002/06/08 wk1-b-

GRIN waveguides in nature: insect eyes

Image by Thomas Bresson at Wikimedia Commons.

Images removed due to copyright restrictions.

Please see

http://commons.wikimedia.org/wiki/File:Superposkils.gif  

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 17/21

MIT 2.71/2.71002/06/08 wk1-b-45

Dispersion

3.5

3.0

2.5

2.0

1.5

1.0

0.5

010

-110

010

1

   A   b  s  o  r

  p   t   i  o  n  c  o  n  s   t  a  n   t   k   (       λ   )

Wavelength λ / µm

Dispersion = the dependence of refractive index n on wavelength λ .

   R  e   f  r

  a  c   t   i  v  e   i  n   d  e  x  n   (       λ   )

10-4

10-3

10

-2

10-1

100

101

Fused silica (SiO2)

n

k

Figure by MIT OpenCourseWare. Adapted from Fig. 2.4 in Bach, Hans, and Norbert Neuroth. The Properties of Optical Glass. New York, NY: Springer, 2004.

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 18/21

MIT 2.71/2.71002/06/08 wk1-b-

Dispersion from a prism

incidentwhite light(all visible

wavelengths)

Newton’s prism

red

green

blue

glassair

rainbowexit

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 19/21

MIT 2.71/2.71002/06/08 wk1-b-

Dispersion measures

Reference color lines

C (H- #

=656.3nm, red),D (Na-  #=589.2nm, yellow),

F (H-  #=486.1nm, blue)

e.g., crown glass has

Dispersive power

Dispersive index aka Abbe’s number

e.g. for crown glass: V =0.01704 or v =58.698

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 20/21

Paraboloidal reflector:  perfect  focusing 

What should the shape function  s( x) bein order for the incoming parallel ray bundle

to come to perfect focus? 

The easiest way to find the answer is 

to invoke Fermat’s principle: since the rays from infinity follow

the minimum path before they meet at P , 

it follows that they must follow the same path. 

focus at F  

 A paraboloidal reflector focuses 

a normally incident plane wave 

to a point 

MIT 2.71/2.71002/09/09 wk2-a- 3

8/17/2019 MIT2_71S09_lec02

http://slidepdf.com/reader/full/mit271s09lec02 21/21

MIT OpenCourseWarehttp://ocw.mit.edu 

2.71 / 2.710 OpticsSpring 2009

For information about citing these materials or our Terms of Use, visit:  http://ocw.mit.edu/terms.