74
8/13/2019 MIT3_021JS11_P1_L2 http://slidepdf.com/reader/full/mit3021js11p1l2 1/74 1 Basic molecular dynamics Lecture 2 1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation Spring 2011 Part I – Continuum and particle methods Markus J. Buehler Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology

MIT3_021JS11_P1_L2

Embed Size (px)

Citation preview

Page 1: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 1/74

1

Basic molecular dynamicsLecture 2

1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation

Spring 2011

Part I – Continuum and particle methods

Markus J. Buehler 

Laboratory for Atomistic and Molecular MechanicsDepartment of Civil and Environmental Engineering

Massachusetts Institute of Technology

Page 2: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 2/74

2

Content overview

I. Particle and continuum methods1. Atoms, molecules, chemistry

2. Continuum modeling approaches and solution approaches

3. Statistical mechanics

4. Molecular dynamics, Monte Carlo

5. Visualization and data analysis6. Mechanical properties – application: how things fail (and

how to prevent it)

7. Multi-scale modeling paradigm

8. Biological systems (simulation in biophysics) – how

proteins work and how to model them

II. Quantum mechanical methods1. It’s A Quantum World: The Theory of Quantum Mechanics

2. Quantum Mechanics: Practice Makes Perfect

3. The Many-Body Problem: From Many-Body to Single-Particle

4. Quantum modeling of materials

5. From Atoms to Solids

6. Basic properties of materials

7. Advanced properties of materials8. What else can we do?

Lectures 2-13

Lectures 14-26

Page 3: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 3/74

3

Goals of part I (particle methods)

You will be able to …

Carry out atomistic simulations of various processes

(diffusion, deformation/stretching, materials failure)Carbon nanotubes, nanowires, bulk metals, proteins, siliconcrystals, etc.

 Analyze atomistic simulations (make sense of all thenumbers)

Visualize atomistic/molecular data (bring data to life)

Understand how to link atomistic simulation results with

continuum models within a multi-scale scheme

Page 4: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 4/74

4

Lecture 2: Basic molecular dynamicsOutline:

1. Introduction2. Case study: Diffusion

2.1 Continuum model

2.2 Atomistic model

3. Additional remarks – historical perspective

Goals of today’s lecture:

Through case study of diffusion, illustrate the concepts of acontinuum model and an atomistic model

Develop appreciation for distinction of continuum and atomisticapproach

Develop equations/models for diffusion problem from bothperspectives

Develop atomistic simulation approach (e.g. algorithm,pseudocode, etc.) and apply to describe diffusion (calculate

diffusivity) Historical perspective on computer simulation with MD, examples

from literature

Page 5: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 5/74

5

1. Introduction

Page 6: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 6/74

6

dzdydx   ,,(atom)λ  <<<<   (grain)d    D<<   W  H    ,,<<

Relevant scales in materials

 Atomistic viewpoint:•Explicitly consider discrete atomistic structure

•Solve for atomic trajectories and infer from these about material properties &

behavior 

•Features internal length scales (atomic distance)“Many-particle system with statistical properties”

Bottom-up

(crystal)ξ 

Courtesy of Elsevier, Inc.,

http://www.sciencedirect.com.Used with permission.

Fig. 8.7 in: Buehler, M. Atomistic Modeling of MaterialsFailure. Springer, 2008. ©Springer. All rights reserved.This content is excluded fromour Creative Commons license.For more information, seehttp://ocw.mit.edu/fairuse. Top-down

Image fromWikimediaCommons,http://commons.wikimedia.org.

Image by MITOpenCourseWare.

 z 

 x

 yσ yy

σ xy

σ yx

σ yz 

σ xz    σ xx

n y

n x

 A x

 A y

Page 7: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 7/74

dzdydx   ,,

7

Relevant scales in materials

Continuum viewpoint:•Treat material as matter with no internal structure

•Develop mathematical model (governing equation) based on representative

volume element (RVE, contains “enough” material such that internal structure

can be neglected•Features no characteristic length scales, provided RVE is large enough

“PDE with parameters”

Top-down

RVE(atom)λ  <<<<   (grain)d <<   DW  H    ,,<<(crystal)ξ 

Courtesy of Elsevier, Inc.,http://www.sciencedirect.com.Used with permission.

Fig. 8.7 in: Buehler, M. Atomistic Modeling of MaterialsFailure. Springer, 2008. ©Springer. All rights reserved.This content is excluded fromour Creative Commons license.For more information, seehttp://ocw.mit.edu/fairuse.

Image by MITOpenCourseWare.

Image fromWikimediaCommons,

http://commons.wikimedia.org.   z 

 x

 yσ yy

σ xy

σ yx

σ yz 

σ xz    σ xx

n y

n x

 A x

 A y

Page 8: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 8/74

8

2. Case study: Diffusion

Continuum and atomistic modeling

Page 9: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 9/74

9

Goal of this section

Diffusion as example

Continuum description (top-down approach), partialdifferential equation

 Atomistic description (bottom-up approach), based ondynamics of molecules, obtained via numerical

simulation of the molecular dynamics

Page 10: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 10/74

10

Introduction: Diffusion

Particles move from a domain with high concentration to an area oflow concentration

Macroscopically, diffusion measured by change in concentration

Microscopically, diffusion is process of spontaneous net movement

of particles

Result of random motion of particles (“Brownian motion”)

High

concentration

Low

concentration

c = m/V = c( x, t )

Page 11: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 11/74

11

Ink droplet in water 

hot cold© source unknown. All rights reserved. This content is excluded from our CreativeCommons license. For more information, see http://ocw.mit.edu/fairuse.

Page 12: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 12/74

Microscopic observation of diffusion

12

Page 13: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 13/74

B i ti l d t t ti l

Page 14: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 14/74

14

Brownian motion leads to net particle

movement

time

Particle “slowly” moves away from its initial position

Page 15: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 15/74

15

Robert Brown’s microscope

https://reader010.{domain}/reader010/html5/0622/5b2be6b8cfb6e/5b2be6c221e84.jpg

Robert Brown's Microscope

Instrument with which Robert Brown studied Brownian

motion and which he used in his work on identifying the

nucleus of the living cell

Instrument is preserved at the Linnean Society in London

It is made of brass and is mounted onto the lid of the box in

which it can be stored

1827

Page 16: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 16/74

16

Simulation of Brownian motion

http://www.scienceisart.com/A_Diffus/Jav1_2.html

Page 17: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 17/74

Macroscopic observation of diffusion

17

Page 18: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 18/74

18

Macroscopic observation: concentration change

See also:

http://www.uic.edu/classes/phys/phys450/MARKO/N004.html

Ink dot

Tissue© source unknown. All rights reserved. This content is excluded from our

Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Page 19: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 19/74

19

Brownian motion leads to net particle movement

Time t 

c1=m1 /V (low)

c2=m2 /V (high)

© The McGraw Hill Companies. All rights reserved. This content is excludedfrom our Creative Commons license. For more information, seehttp://ocw.mit.edu/fairuse.

© source unknown. All rights reserved. This content isexcluded from our Creative Commons license. For moreinformation, see http://ocw.mit.edu/fairuse.

Page 20: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 20/74

Diffusion in biology

20

http://www.biog1105-1106.org/demos/105/unit9/roleofdiffusion.html

Image removed due to copyright restrictions. See the image now: http://www.biog1105-1106.org/demos/105/unit9/media/diffusion-after-act-pot.jpg.

Page 21: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 21/74

21

2.1 Continuum model

How to build a continuum model to describe thephysical phenomena of diffusion?

Page 22: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 22/74

22

 Approach 1: Continuum model

Develop differential equation based on differentialelement

m L  m R

W=1 H=1

 xΔ   xΔ

 x

 J 

Concept: Balance mass [here], force etc. in a differential volume

element; much greater in dimension than inhomogeneities

(“sufficiently large RVE”)

 J: Mass flux (mass per unit time per unit area)

Page 23: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 23/74

23

 Approach 1: Continuum model

Develop differential equation based on differentialelement

m L  m R

Probability of mass m

crossing the central boundary

during a period Δt is equal to p

W=1 H=1

 xΔ   xΔ

 x

 J 

Page 24: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 24/74

24

 Approach 1: Continuum model

Develop differential equation based on differentialelement

m L  m R

Probability of mass m

crossing the central boundary

during a period Δt is equal to p

 L L  m

 p J 

Δ×=

11

1

 R R   mt 

 p J 

Δ×=

11

1Mass flux from left to right

Mass flux from right to left

W=1 H=1

 xΔ   xΔ

 x

 J 

[ J ] = mass per unit time per

unit area

Page 25: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 25/74

25

 Approach 1: Continuum model

Develop differential equation based on differentialelement

m L  m R

More mass, more flux (m L is ~ to number of particles)

( ) R L   mm

 p J    −

Δ×=

11

1

W=1 H=1

 xΔ   xΔ

 x

 J 

Effective mass flux L L  m

 p J 

Δ×=

11

1

 R R   mt 

 p J 

Δ×=

11

1Mass flux from left to right

Mass flux from right to left

Probability of mass m

crossing the central boundary

during a period Δt is equal to p

Page 26: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 26/74

26

Continuum model of diffusion

c L  c R

W=1 H=1

 xΔ   xΔ

 x

Express in terms of mass concentrations

mc =

 J 

( ) R L   mmt 

 p J    −

Δ=cV m =

Page 27: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 27/74

27

Continuum model of diffusion

( )   1111

1××Δ⋅−

Δ×=   xcc

 p J   R L

c L  c R

W=1 H=1

 xΔ   xΔ

 x

Express in terms of mass concentrations

mc =

 J 

cΔ−=

( ) R L   mmt 

 p J    −

Δ=cV m =

V =

C ti d l f diff i

Page 28: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 28/74

28

Continuum model of diffusion

c L  c R

W=1 H=1

 xΔ   xΔ

 x

Express in terms of mass concentrations

mc =

 J 

 x

c x

 p

 xct 

 p

 J  Δ

ΔΔ

Δ−=ΔΔ

Δ−=   2

Concentration

gradient

expand Δ x

( )   1111

1××Δ⋅−

Δ×=   xcc

 p J   R L

cΔ−=   V =

C ti d l f diff i

Page 29: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 29/74

29

Continuum model of diffusion

 x p D

Δ

Δ=

2

c L  c R

W=1 H=1

 xΔ   xΔ

 x

Express in terms of mass concentrations

mc =

 J 

dx

dc D

dx

dc x

 p J    −=Δ

Δ−=   2

Parameter that measures how “fast” mass

moves (in square of distance per unit time)

 x

c x

 p xc

 p J 

Δ

ΔΔ

Δ−=ΔΔ

Δ−=   2

Concentration

gradient

( )   1111

1××Δ⋅−

Δ×=   xcc

 p J   R L

cΔ−=   V =

Diff i t t & 1st Fi k l

Page 30: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 30/74

30

Diffusion constant & 1st Fick law

 p D ~

dx

dc D

dx

dc x

 p J    −=Δ

Δ−=   2

Reiterate: Diffusion constant D describes the how much mass moves

per unit time

Movement of mass characterized by square of displacement from initialposition

 x p D

Δ

Δ=

2

Diffusion constant relates to the ability of mass to move a distanceΔ x2 over a time Δt (strongly temperature dependent, e.g. Arrhenius)

1st Fick law

(Adolph Fick, 1829-1901)

Flux

2nd Fi k l (ti d d )

Page 31: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 31/74

31

2nd Fick law (time dependence)

dx

dc D J    −= 1st Fick law

c

 xΔ

 x J 1   J 2

( )11

1121

××Δ

××−=

Δ

Δ

 x

 J  J 

c

0 x1

 x

 J: Mass flux (mass per unit time per unit area)

2nd Fick la (time dependence)

Page 32: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 32/74

32

2nd Fick law (time dependence)

dx

dc D J    −= 1st Fick law

c

 xΔ

 x J 1   J 2

⎟⎟ ⎠ ⎞

⎜⎜⎝ ⎛ 

⎥⎦⎤

⎢⎣⎡−−−

Δ=

Δ−=

ΔΔ

==   10

||121

 x x x x   dx

dc Ddx

dc D x x

 J  J 

c

0 x1

 x

0

|)( 01 x xdx

dc D x x J  J 

=

−===

2nd Fick law (time dependence)

Page 33: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 33/74

33

2nd Fick law (time dependence)

dx

dc D J    −=

( )   ⎟ ⎠

 ⎞⎜⎝ 

⎛ −−=−=

dx

dc D

dx

d  J 

dx

c Change of concentration in

time equals change of flux with

 x (mass balance)

1st Fick law

c

 xΔ

 x J 1   J 2

⎟ ⎠

 ⎞⎜⎝ 

⎛ +−

Δ=

Δ

Δ

==   10

||1

 x x x x   dx

dc D

dx

dc D

 xt 

c

0 x1

 x J Δ

2nd Fick law (time dependence)

Page 34: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 34/74

34

2nd Fick law (time dependence)

dx

dc D J    −=

( )   ⎟ ⎠

 ⎞⎜⎝ 

⎛ −−=−=

dx

dc D

dx

d  J 

dx

c

2

2

dx

cd  D

c=

∂2nd Fick law

Change of concentration in

time equals change of flux with

 x (mass balance)

1st Fick law

Solve by applying ICs and BCs…

PDE

c

 xΔ

 x J 1   J 2

0 x1

 x

⎟ ⎠

 ⎞⎜⎝ 

⎛ +−

Δ=

Δ

Δ

==   10

||1

 x x x x   dx

dc D

dx

dc D

 xt 

c

 J Δ

Example solution 2nd Fick’s law

Page 35: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 35/74

35Need diffusion coefficient to solve for distribution!

BC: c ( x = 0) = c0

IC: c ( x > 0, t = 0) = 0

Example solution – 2nd Fick s law

 x0c

0c

Concentration

 x

time t 

),(   t  xc

2

2

dx

cd  D

c=

How to obtain diffusion coefficient?

Page 36: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 36/74

36

How to obtain diffusion coefficient?

Laboratory experiment

Study distribution of concentrations (previous slide)

Then “fit” the appropriate diffusion coefficient so that the

solution matches

 Approach can then be used to solve for more complex

geometries, situations etc. for which no lab experimentexists

“Top down approach”

Matching with experiment (parameter

Page 37: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 37/74

37

identification)

0c

Concentration

 x

time t 0

),(   0t  xc

experiment

continuum model solution

fit parameter D

Summary

Page 38: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 38/74

38

Summary Continuum model requires parameter that describes microscopic

processes inside the material

Typically need experimental measurements to calibrate

Microscopic

mechanisms???

Continuum

model

Length scale

Time scale

“Empirical”

or experimental

parameter 

feeding

Page 39: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 39/74

39

2.2 Atomistic model

How to build an atomistic bottom-up model todescribe the physical phenomena of diffusion?

Approach 2: Atomistic model

Page 40: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 40/74

40

 Approach 2: Atomistic model

 Atomistic model provides an alternative approach to describe

diffusion

Enables us to directly calculate the diffusion constant from the

trajectory of atoms (“microscopic definition”)

 Approach: Consider set of atoms/molecules

Follow their trajectory and calculate how fast atoms leave their initial

position

 x p DΔΔ=

2

Recall: Diffusion constant relates to the “ability” of particle to move a

distance Δ x2 over a time Δt 

Follow this quantity over 

time

Molecular dynamics – simulate trajectory of atoms

Page 41: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 41/74

41Goal: Need an algorithm to predict positions, velocities, accelerations asfunction of time

Molecular dynamics simulate trajectory of atoms

Solving the equations: What we want

Page 42: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 42/74

42

To solve those equations: Discretize in time (n steps), Δt time step:

)(...)3()2()()( 00000   t nt r t t r t t r t t r t r  iiiii   Δ+→→Δ+→Δ+→Δ+→

g q

Solving the equations

Page 43: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 43/74

43

To solve those equations: Discretize in time (n steps), Δt time step:

)(...)3()2()()( 00000   t nt r t t r t t r t t r t r  iiiii   Δ+→→Δ+→Δ+→Δ+→

Recall: Taylor expansion of function f around point a

Solving the equations

Page 44: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 44/74

44

To solve those equations: Discretize in time (n steps), Δt time step:

)(...)3()2()()( 00000   t nt r t t r t t r t t r t r  iiiii   Δ+→→Δ+→Δ+→Δ+→

Recall: Taylor expansion of function f around point a

Taylor series expansion around)(t r i

t t t t a x

t t  xt a

Δ=−Δ+=−Δ+==

00

00

Solving the equations

Page 45: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 45/74

45

To solve those equations: Discretize in time (n steps), Δt time step:

)(...)3()2()()( 00000   t nt r t t r t t r t t r t r  iiiii   Δ+→→Δ+→Δ+→Δ+→

Recall: Taylor expansion of function f around point a

Taylor series expansion around

...)(21)()()(   2

0000   +Δ+Δ+=Δ+   t t at t vt r t t r  iiii

t t t t a x

t t  xt a

Δ=−Δ+=−Δ+==

00

00)(t r i

Taylor expansion of )(t r i

Page 46: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 46/74

46

...)(2

1)()()(   2

0000   +Δ+Δ+=Δ+   t t at t vt r t t r  iiii

...)(2

1

)()()(

  2

0000   +Δ+Δ−=Δ−   t t at t vt r t t r  iiii

t t t t a xt t  xt a

t t t t a xt t  xt a

Δ−=−Δ−=−Δ−==

Δ=−Δ+=−Δ+==

0000

0000

Taylor expansion of r i(t )

Page 47: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 47/74

47

...)(2

1)()()(   2

0000   +Δ+Δ+=Δ+   t t at t vt r t t r  iiii

...)(2

1

)()()(

  2

0000   +Δ+Δ−=Δ−   t t at t vt r t t r  iiii+

...)()()()(2)()(   2000000   +Δ+Δ+Δ−=Δ++Δ−   t t at t vt t vt r t t r t t r  iiiiii

Taylor expansion of r i(t )

Page 48: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 48/74

48

...)(2

1)()()(   2

0000   +Δ+Δ+=Δ+   t t at t vt r t t r  iiii

...)(2

1

)()()(

  2

0000   +Δ+Δ−=Δ−   t t at t vt r t t r  iiii+

...)()()()(2)()(   2000000   +Δ+Δ+Δ−=Δ++Δ−   t t at t vt t vt r t t r t t r  iiiiii

...)()()(2)(   20000   +Δ+Δ−−=Δ+   t t at t r t r t t r  iiii

Taylor expansion of r i(t )

Page 49: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 49/74

49

...)(2

1)()()(   2

0000   +Δ+Δ+=Δ+   t t at t vt r t t r  iiii

...)(2

1

)()()(

  2

0000   +Δ+Δ−=Δ−   t t at t vt r t t r  iiii+

...)()()()(2)()(   2000000   +Δ+Δ+Δ−=Δ++Δ−   t t at t vt t vt r t t r t t r  iiiiii

...)()()(2)(   20000   +Δ+Δ−−=Δ+   t t at t r t r t t r  iiii

Positionsat t0-Δt

 Accelerationsat t0

Positionsat t0

Physics of particle interactions

Page 50: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 50/74

50

Physics of particle interactions

Laws of Motion of Isaac Newton (1642 – 1727):

1. Every body continues in its state of rest, or of uniform motionin a right line, unless it is compelled to change that state byforces impressed upon it.

2. The change of motion is proportional to the motive force

impresses, and is made in the direction of the right line inwhich that force is impressed.

3. To every action there is always opposed an equal reaction: or,the mutual action of two bodies upon each other are always

equal, and directed to contrary parts.

ma

dt 

 xd m f    ==

2

2

2nd law

Verlet central difference method

Page 51: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 51/74

51

...)()()(2)(   20000   +Δ+Δ−−=Δ+   t t at t r t r t t r  iiii

Positionsat t0-Δt

 Accelerationsat t0Positionsat t0

ii   ma f   =How to obtain

accelerations?   m f a ii   /=

Need forces on atoms!

Verlet central difference method

Page 52: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 52/74

52

.../)()()(2)(  2

0000   +Δ+Δ−−=Δ+   t mt  f t t r t r t t r  iiii

Positions

at t0-Δt

Forces

at t0

Positions

at t0

Forces on atoms

Page 53: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 53/74

53

Consider energy landscape due to chemical bonds

 Attraction: Formation of chemical bond by sharing of electronsRepulsion: Pauli exclusion (too many electrons in small volume)

Image by MIT OpenCourseWare.

e

Energy Ur

Repulsion

Attraction

1/r 12

 (or Exponential)

1/r 6

Radius r  (Distance

 between atoms)

How are forces calculated?

Page 54: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 54/74

54

r r U  f 

d )(d −=

Force magnitude: Derivative of potential energy with respect to

atomic distance

To obtain force vector f i, take projections into thethree axial directions

r  x f  f    i

i  =

  r 

 x1

 x2 f 

Often: Assume pair-wise interaction between atoms

Note on force calculation

Page 55: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 55/74

55

Forces can be obtained from a variety of models for

interatomic energy, e.g.

Pair potentials (e.g. LJ, Morse, Buckingham)

Multi-body potentials (e.g. EAM, CHARMM, UFF, DREIDING)

Reactive potentials (e.g. ReaxFF)

Quantum mechanics (e.g. DFT) – part II

Tight-binding

…will be discussed in next lectures

Molecular dynamics

Page 56: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 56/74

56

Follow trajectories of atoms

“Verlet central difference method”

m f a ii   /=

...)()()(2)(  2

0000   +Δ+Δ−−=Δ+   t t at t r t r t t r  iiii

Positions

at t0-Δt

 Accelerations

at t0

Positions

at t0

Summary: Atomistic simulation – numerical

approach “molecular dynamics – MD”

Page 57: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 57/74

57

pp y

 Atomistic model; requires atomistic microstructure and atomic

position at beginning

Step through time by integration scheme

Repeated force calculation of atomic forces

Explicit notion of chemical bonds – captured in interatomic potential

Pseudocode

Page 58: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 58/74

58

Set particle positions (e.g. crystal lattice)

 Assign initial velocities

For (all t ime steps):

Calculate force on each particle (subroutine)Move particle by t ime step t

Save particle position, velocity, acceleration

Save results

Stop simulation

Page 59: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 59/74

 Atomistic description

Page 60: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 60/74

60

Back to the application of diffusion problem…

 Atomistic description provides alternative way to predict D

Simple solve equation of motion Follow the trajectory of an atom

Relate the average distance as function of time from initial point to

diffusivity

Goal: Calculate how particles move “ randomly” , away from

initial position

JAVA applet

Page 61: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 61/74

61URL http://polymer.bu.edu/java/java/LJ/index.html

Courtesy of the Center for Polymer Studies at Boston University. Used withpermission.

Link atomistic trajectory with diffusion constant (1D)

Page 62: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 62/74

62

 x p D

Δ

Δ=

2

Idea – Use MD simulation to measure square of displacement from initial

position of particles, :)(2t r Δ

2

 xΔ

time

Diffusion constant relates to the “ability” of a particle to move a distance Δ x2

(from left to right) over a time Δt 

Link atomistic trajectory with diffusion constant (1D)

Page 63: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 63/74

63

 x p D

Δ

Δ=

2

MD simulation: Measure square of displacement from initial position

of particles, :)(2t r Δ

2 xΔ

Diffusion constant relates to the “ability” of a particle to move a distance Δ x2

(from left to right) over a time Δt 

2r Δ

Link atomistic trajectory with diffusion constant (1D)

Page 64: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 64/74

64

 x p D

Δ

Δ=

2

Replace

r  D

Δ

Δ=

2

2

1

MD simulation: Measure square of displacement from initial position

of particles, and not ….

Factor 1/2 = no directionality in (equal

probability to move forth or back)

)(2t r Δ

2

 xΔ

2r Δ

)(2t  xΔ

 x p D

Δ

Δ=

2

Diffusion constant relates to the “ability” of a particle to move a distanceΔ x

2

(from left to right) over a time Δt 

Link atomistic trajectory with diffusion constant (1D)

Page 65: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 65/74

65

MD simulation: Measure square of displacement from initial position

of particles, :)(

2

t r Δ

 Dt r    22 =Δ

2r Δ

r  D

2

2Δ=   t  R ~

Link atomistic trajectory with diffusion constant (2D/3D)

Page 66: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 66/74

66

 x p D

Δ

Δ=

2

d  D Δ

Δ

=

21

2

1 Factor 1/2 = no directionality in (forth/back)

Factor d = 1, 2, or 3 due to 1D, 2D, 3D

(dimensionality)

2~2   r t dD   ΔΔSince:

22   r C t dD   Δ=+Δ   C = constant (does not affect D)

Higher dimensions

Example: MD simulation

Page 67: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 67/74

67

2r Δ1D=1, 2D=2, 3D=3

slope = D

( )2

d d lim

21

r t d 

 Dt 

Δ=∞→

2

d lim2

1r 

t d  D

t Δ=

∞→

.. = average over all particles

source: S. Yip, lecture notes

Example molecular dynamicsCourtesy of the Center for Polymer Studies at Boston University. Used with permission.

Page 68: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 68/74

68

2

r Δ

 Average square ofdisplacement of all

particles

( )

22 )0()(1

)(

  ∑  =−=Δ

iii

  t r t r  N 

t r  

Particles Trajectories

Mean Square

Displacement function

Example calculation of diffusion coefficient

Page 69: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 69/74

69

2r Δ

1D=1, 2D=2, 3D=3

slope = D

( )22 )0()(

1)(   ∑   =−=Δ

i

ii   t r t r  N 

t r 

Position of

atom i at time tPosition of

atom i at time t=0

2

lim2

1r 

t d  D

t Δ=

∞→

Summary Molecular dynamics provides a powerful approach to relate the

Page 70: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 70/74

70

Quantum

mechanics

Molecular dynamics provides a powerful approach to relate the

diffusion constant that appears in continuum models to atomistictrajectories

Outlines multi-scale approach: Feed parameters from atomistic

simulations to continuum models

MD

Continuum

model

Len th scale

Time scale

“Empirical”or experimental

parameter 

feeding

Multi-scale simulation paradigm

Page 71: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 71/74

71Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Page 72: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 72/74

72

3. Additional remarks

Historical development of computer simulation

Page 73: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 73/74

73

Began as tool to exploit computing machines developed during WorldWar II

MANIAC (1952) at Los Alamos used for computer simulations

Metropolis, Rosenbluth, Teller (1953): Metropolis Monte Carlo method

 Alder and Wainwright (Livermore National Lab, 1956/1957): dynamicsof hard spheres

Vineyard (Brookhaven 1959-60): dynamics of radiation damage incopper 

Rahman (Argonne 1964): liquid argon  Application to more complex fluids (e.g. water) in 1970s

Car and Parrinello (1985 and following): ab-initio MD

Since 1980s: Many applications, including: Karplus, Goddard et al.: Applications to polymers/biopolymers,

proteins since 1980s

 Applications to fracture since mid 1990s to 2000

Other engineering applications (nanotechnology, e.g. CNTs,

nanowires etc.) since mid 1990s-2000

MIT OpenCourseWare

http://ocw.mit.edu

Page 74: MIT3_021JS11_P1_L2

8/13/2019 MIT3_021JS11_P1_L2

http://slidepdf.com/reader/full/mit3021js11p1l2 74/74

74

3.021J / 1.021J / 10.333J / 18.361J / 22.00J Introduction to Modeling and SimulationSpring 2011

For information about citing these materials or our Terms of use, visit: http://ocw.mit.edu/terms.