51
Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology Bioenergetics Bacteriology for 2001

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology

BioenergeticsBacteriology for 2001

Page 2: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 2

Outline

• Bacterial bioenergetics– What does this mean?– Mitchell’s hypotheses– Why G and mV do not appear in

these lectures

Page 3: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 3

Bacterial bioenergetics

• What I expect you to understand– electron transport chain and ATP

synthesis– How bacteria are adapted to pursue

life according to Mitchell’s hypotheses

• What is possible irrelevant– measuring PMF– the concept of Gibbs free energy

Page 4: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 4

How does bacterial metabolism work

• Central pathways of metabolism• Electron transport chain• ATP synthase

• Are these separate entities or do they work together?

Page 5: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 5

What is the point of the ETC?

• To reduce oxygen to water?• To transport electrons?• To move protons across a

membrane?• All of the above with a side

order of chips?

Page 6: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 6

Mitchell’s postulates

• Four postulates to explain– respiratory phosphorylation– transport of solutes– all membrane-based enzymology

Page 7: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 7Periplasmic space

Building a chemiosmotic organism

Cell membrane

ATP

ADP + Pi

H+

Page 8: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 8

Building a chemiosmotic organism

ATP

ADP + Pi

H+

H+ H+ H+

H+

H+

H+

H+

H+H+

ATP

ADP + Pi

H+

Page 9: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 9

Building a chemiosmotic organism

H+ H+ H+

H+

H+

H+

H+

H+H+

ATP

ADP + Pi

H+

H+Solute

Page 10: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 10

Mitchell’s postulates

• Four postulates to explain– respiratory phosphorylation– transport of solutes– all membrane-based enzymology

Page 11: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 11

Postulate 1

• The respiratory or photosynthetic electron transport chains should translocate protons– i.e. the electron transport chain

and other reactions should function as proton pumps

Page 12: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 12

Building a chemiosmotic organism

ATP

ADP + Pi

H+

H+ H+ H+

H+

H+

H+

H+

H+H+

ATP

ADP + Pi

H+

Page 13: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 13

Postulate 2

• The ATP synthase should function as a reversible proton-translocating ATPase– f1f0 ATPase– activity in the absence of a PMF– reverse flow in presence of PMF

Page 14: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 14

Building a chemiosmotic organism

ATP

ADP + Pi

H+

H+ H+ H+

H+

H+

H+

H+

H+H+

ATP

ADP + Pi

H+

Page 15: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 15

Postulate 3

• Energy-translocating membranes should have a low effective proton conductance– For a chemiosmotic organism to

survive,protons must only be able to move through proteins, and not through membranes

Page 16: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 16

Building a chemiosmotic organism

ATP

ADP + Pi

H+

H+ H+ H+

H+

H+

H+

H+

H+H+

ATP

ADP + Pi

H+

Page 17: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 17

Postulate 4

• Energy-transducing membranes should possess specific exchange carriers to permit metabolites to permeate, and high osmotic stability to be maintained, in the presence of a high membrane potential

Page 18: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 18

Ports, symports, antiports

Solute

Basic port

Page 19: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 19

Ports, symports, antiports

Solute

Symport

H+

Page 20: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 20

Ports, symports, antiports

Solute

Antiport

Solute H+or

H+ or

Page 21: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 21

So what drives ATP synthesis?

• What is the primary pump?• The electron transport chain

pumps 10 protons per NADH + H+

• The NADH + H+ produced during glycolysis etc. is used to create ATP chemiosmotically

Page 22: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 22

The ETC is the primary pump in aerobic respiratory

organisms

Page 23: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 23

Bacteria are chemiosmotic

organisms• Paracoccus denitrificans is an

obligately respiratory organism.

• Has an f1f0 ATPase which is coupled to a conventional electron transport chain.

• E. coli is similar but has a strange ETC and can ferment

Page 24: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 24

The bacterial f1f0 ATPase

Page 25: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 25

Page 26: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 26

Page 27: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 27

What can pH be used for?

• Solute transport– substrates– drug efflux– maintenance of ionic balance

• Bacterial flagellar motion

Page 28: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 28

What is the point of the ETC?

• To reduce oxygen to water?• To transport electrons?• To move protons across a

membrane?

Sometimes

Page 29: Molecular Microbiology Bioenergetics Bacteriology for 2001

How does it all link in?

Page 30: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 30

H+ H+ H+

H+

H+

H+

H+

H+

H+

ATP

ADP + Pi

H+

H+NADH + H+

reduced FMNNADH + H+

reduced FMN

Reducedelectronacceptor

Carbon Source

GlycolyticPathway

TCA

Page 31: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 31

Page 32: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 32

Short questions for group work

• What other means are there of generating PMF?

• What other uses can a proton gradient be put to in bacterial cells?

Page 33: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 33

Page 34: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 34

Page 35: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 35

Page 36: Molecular Microbiology Bioenergetics Bacteriology for 2001

Section IIChemiosmotic solutions

to environmental problems

Page 37: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 37

Aerobic neutrophiles

H+

H+

H+

H+

H+

H+

H+

H+

ATP

ADP + Pi

H+

H+Solute

External pH 6-8

Internal pH 6-8

--

--------

-

Page 38: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 38

Aerobic acidophilesH+ H+

H+

H+

H+

H+

H+

H+

ATP

ADP + Pi

H+

H+Solute

External pH 1-4

Internal pH 5.5

++

++++++++

+

Page 39: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 39

Aerobic alkaliphiles

ATP

ADP + Pi

H+

Na+Solute

External pH 10-11

Internal pH 8.2

--

--------

-

Na+

H+

++

+

++++++

++

H+

Page 40: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 40

Halophiles

ATP

ADP + Pi

H+

Na+Solute

--

--------

-

Na+

H+

++

+

++++++

++

H+

H+

Light

External pH 6-10

Internal pH 6-8

Page 41: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 41

Marine/halotolerant

ATP

ADP + Pi

Na + or H+

Na+Solute

--

--------

-

Na+

H+

++

+

++++++

++

Na+ or H+

External pH 6-10

Internal pH 6-8

Page 42: Molecular Microbiology Bioenergetics Bacteriology for 2001

Section III

An example of a proton pump

Bateriorhodopsin

Page 43: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 43

Halobacterium salinarum

• A member of the Archaea• Also known as Halobacterium

halobium • When grown aerobically utilises a

normal respiratory chain

• In the light under very low O2, purple patches appear on their membranes

Page 44: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 44

Halobacterium salinarum

• Cells lack chlorophyll• Still can generate ATP from

light• Protons are pumped by a

simple (ish) to understand mechanism centered on bacteriorhodopsin

Page 45: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 45

Bacteriorhodopsin, crystal structure

Page 46: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 46

Bacteriorhodopsin, crystal structure, showing retinal

Page 47: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 47

Bacteriorhodopsin, crystal structure, showing retinal, top view

Page 48: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 48

Clever bacterium

• Halobacterium salinarum possesses four rhodopsins– bacteriorhodopsin (bR)

– halorhodopsin (HR)

– sensory rhodopsins I and II

Page 49: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 49

See overhead

• Mechanism p184 Nicholls & Ferguson

Page 50: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 50

Page 51: Molecular Microbiology Bioenergetics Bacteriology for 2001

Molecular Microbiology 51

References

• Nichols and Ferguson - Bacterial Bioenergetics (Academic Press)

• Lehninger, Stryer or another good biochemistry text book

• ASM News